
A New Data Structure for Terrain Models

Petr Lobaz

lobaz4@students.zcu.cz

Department of Informatics and Computer Science1

The University of West Bohemia

Plzeò, Czech Republic

Abstract

In computer applications, work with terrains is very often needed. Requirements on

data structure of the terrain model depend on the application. Here we present data

structure destined mainly for image synthesis software. Presented data structure
is able to store complex terrain features such as overhangs and caves. Notes about

implementation are also included.

KEYWORDS: terrain synthesis, image synthesis, data structure, terrain models

1 Introduction

In many applications it is required to work with terrain models. We can divide
these applications into several types. Main three types are geographical informa-
tion systems (GIS), programs for simulating processes on the earth surface and
below it and programs for image synthesis. Everyone of these applications has spe-

cial requirements how a terrain model (its data structure) should look like. This
depends on what terrain features we want to represent, what accuracy we need,

how we obtain data and what are we going to do with the model. Next, we must

consider memory complexity of the model and how di�cult is to implement tools
for its maintenance. In this article we will take an interest in data structure aimed

at image synthesis software.

Image synthesis software does not need an exact model of the terrain. It means

that some distances (heights) can be slightly di�erent from exact ones. Never-

theless, topological properties of terrain must be stored correctly. Focus of image
synthesis software does not lie in work with terrain, so the data structure should

be simple and fast. It is often needed to represent complex terrain features like
arches, overhangs etc. However, currently there is no data structure that can store

such complex terrains. In the article we will discuss currently used data structures,
give brief overview of methods for terrain generation and rendering and last we

will derive data structure destined for storing complex terrains.

1This work was supported by The Ministry of Education of the Czech Republic: projects

VS 97155, ME 259 and project GA AV A2030801.



2 Currently used data structures

We can divide models of terrain into two types, real and virtual. In GIS, there is of

course interesting �rst case only, that is real terrain. Data can be obtained either by

taking photographs from airplane or satellites, or by direct measuring in terrain.

In both cases, we obtain data about terrain in �nite number of representative

points (usually from thousands to hundreds of thousands points), next we use

a hypothesis that these data (e.g. height) are varying continuously, so we use some

kind of interpolation (e.g. bilinear, bicubic). Note that points that are derived from

representative ones via interpolation are just an approximation of real terrain.

If we use direct terrain measuring, representative points are distributed \ran-

domly", that is they do not create any regular geometric pattern. In fact, these

points should be distributed more dense in places where bigger accuracy is needed

(e.g. steep slopes, river banks). Natural data structure for such a data is triangu-

lated irregular network (TIN), where vertices of triangles are representative (mea-

sured) points, edges give information how to interpolate between these points. This
data structure can be modi�ed to hierarchical version to achieve a) faster point lo-
cation in terrain b) storing of several representations of the same terrain in various
resolutions (level of detail), mainly for speeding up rendering. TIN is able to de-

scribe any terrain feature (but almost nowhere perpendicular slopes or overhangs
are considered), point location can be done quite fast (especially with hierarchical
modi�cation). Opposite to this, modi�cations are not simple, with every change
we must check (and possibly modify) the triangulation. If we do this with sim-
ple (and fast) methods, we can obtain thin triangles that are very unsuitable for
interpolations.

If we measure from bird's eye view we get representative points in regular

pattern, for example square grid, no matter how locally complicated terrain is.
With this view, we can of course measure only one piece of information (e.g. height)
above one point of ideal earth surface, model is then in the form of function of
earth coordinates. If we have representative points in square grid we can store data

e�ciently in two dimensional array. Most often stored data are heights and so this

data structure is called height �eld. Pros and cons are near inverse against TIN. It

is not possible to describe every terrain feature,2 there is no adaptivity if a terrain
is locally more complicated (sampling is the same in the whole height �eld). On
the other hand, modi�cation of such a model is trivial (in sense of work with data;

modi�cation itself, e.g. erosion, can be a complex task), point location is very fast.

Thanks to listed purposes this data structure is used if it is necessary to modify
it often, if information from it is extremely often needed (collision detection), if

we do not require high accuracy (terrains of area of thousands km2) or if a focus
point of application lies somewhere else (image synthesis software).

To choose what data structure to use for virtual terrain model depends on (be-
sides others) how do we want to generate it and what manipulations do we want

to do. Most of algorithms work with common height �eld; there are also algo-

2Sometimes height �eld is modi�ed so that it can describe perpendicular slopes, but more

complicated features are still not possible



rithms that work with TIN or with regular lattice di�erent from square (triangles,

hexagons); see [3].

The last criterium how we can choose data structure is algorithm for render-

ing (hidden surface elimination). Algorithms such as ray casting prefer structures

based on regular lattices, hierarchical if it is possible (for speeding up ray|object

intersection test). Combination of painter's algorithm with regular lattice is very

fast and often used (it is not necessary to sort polygons, arrangement is obvious

from the lattice). In algorithms such as scan line or z-bu�er it does not too depend

what data structure is used, but if we want to avoid aliasing problems we choose

structure that leads to bigger polygons. It is similar in case of continuous (vector,

non-raster) algorithms that cannot use information about arrangement, we choose

structure with less number of polygons (decimated TIN).

3 Motivation for new data structure creation

In image synthesis software, terrain is an often used object. Examples of appli-
cations are architecture, advertising, computer art, computer games, virtual en-
vironments etc. Here we do not need accurate terrain model, we are interested
in appearance only. Due to interactivity of software or big number of rendered
images it is necessary to achieve maximal possible speed, so almost always data
structures with regular (almost always square) lattice are used, even if they have

bigger memory requirements. This is possible because in listed applications we do
not visualize large areas (mainly at most several km2).

Here we get �rst problem that appears if we use regular sampling of terrain.
Virtual camera is usually perspective, polygons that lie in the front are bigger than
those in the back. If we choose linear (bilinear) interpolation of heights, we get very
ugly \teeth" in the front.When we re�ne sampling we get two problems: size of data

quadratically increases (the biggest commonly used height �elds contain about

1000� 1000 heights) while in the back, size of polygons decreases to subpixel size,
causing aliasing problems. Time needed for rendering also quadratically increases
(except of ray casting based algorithms).

We can solve this problem in several ways. First of them is not to use bilinear
interpolation. Instead we can use approximation with e.g. Coons B-spline patches
(let us recall that in our application it is not needed for sampled points to lie on

the surface, we do not need exact model). Using this approach e.g. for height �eld

of size 256�256 we get about 65,000 bicubic patches|it is sure this will slow down
rendering. Next, if we use bad textures, terrain in the front will look unnaturally

smooth.

Another choice is to use true displacement|this method works similar to bump
mapping but geometry of the object is really changed. Its use can be for example

such that in the front bilinear patch will be changed to \bicubic" (we can add

some random height to increase number of details) and this change will smoothly
disappear in the direction to the background; from some distance there will be no

changes to geometry. Advance of this approach is adding procedurally generated



details of arbitrary small size, this cannot be done simply in other methods; see [1].

Unfortunately only small number of rendering engines support this ability (e.g.

Photorealistic RenderMan) because its correct implementation is not trivial.

Next approach is based on using several models of parts of the same terrain.

It is for example possible to use rough sampling for the whole terrain, in the

neighbourhood of camera we cut it o� and replace it with �ner representation.

This cutting can be done by using methods of constructive solid geometry (CSG)

or with special textures (rough terrain will be invisible in the neighbourhood of

camera causing the �ner model to be visible). Structure of nesting these models

is stored outside the height �elds. Nesting can be of course recursive. If we do

not work systematically there can appear problems with overlaping models at the

same level of nesting. One opportunity how to avoid these problems is to constrain

what part of terrain will be replaced with �ner one. It can be done for example

with quadtree data structure or with its extension, structured grid (area is not

divided into 4 parts but into m� n parts). Problems with this data structure are

obvious|much more complicated work with it, parts of terrain must be connected
continuously.

If an application needs to work with simple terrain only it can use one of the
modi�cations noted above. Constraint that follows from that there is de�ned just
one height above every point will not appear in this case. However, in advertising
o�-road vehicle will look better in the complicated, hard accessible terrain rather

than on the meadow. Here we can do nothing with height �eld representation|it
cannot store highly inclined slopes (it depends on density of sampling), overhangs
are not possible. Again, there are ways how to overcome this drawback.

If we want to represent walls of at most perpendicular slope we can slightly
modify height �eld. Information about height will be extended with two bits|one
for (for example) north, second for east direction. If one of these bits will be set to
1 it means that heights between current point and point in appropriate direction

are not continuous, there is a jump. If a bigger perpendicular wall is created in

this way it is necessary to use good texture for it to hide that this part of surface
is smooth (it holds in general in height �elds|the more steep surface the worse
it looks). This modi�cation needs of course special renderer that supports this

extension, or to break terrain into triangles before rendering|doing this we loose

possibility to render it (as a special object) faster.

Second possibility, often used, is to use height �eld as an ordinary object and
to work with it. For example a simple cave can be created using two height �elds,

\convex" and \concave" one. Space between them is quite a good approximation
of cave, we can add some objects into it to hide artifacts. If we de�ne height �eld

in some way as an object enclosing some volume (for example by cutting a cube

with this height �eld) we can use CSG. Then we can create overhang or another

complicated feature using CSG di�erence operation. As it was said, this technique

is often used. Its drawback is that CSG has not any relation to a terrain and so
algorithms that modify terrain (e.g. erosion) cannot be used in this case.



Next problem that must be solved is de�nition of attributes of terrain in its

di�erent parts. Namely these are textures (or materials), relation between terrain

and another objects (both solids like vegetation or stones and particles like sand

or water). Materials can have optical properties only, they can also in
uence al-

gorithms for terrain modi�cation (rivers will have steeper banks in softer rocks).

In currently usually used algorithms there is considered only one material in the

whole area|this is quite unreal even in the small scale.

Let us sum up previous information: for general model of terrain a data struc-

ture is needed that can describe every shape (like general TIN), memory require-

ments as well as complexity of work should be small for simple terrains (the best

would be height �eld like complexity). It should be able to store terrain in di�erent

resolutions in di�erent parts to achieve level of detail e�ect. Next it is necessary

to have relations to volume properties of terrain and to objects that are connected

with it. Existing algorithms for modi�cations, generation and rendering of terrain

should be easily convertible to work with new data structure. Mainly this should

hold for rendering algorithms so that it would be possible to use some existing
(good) renderer. Currently there is no structure that ful�lls all of these parame-
ters.

Before we derive such a structure we must give brief overview of basic methods
for generating and rendering terrains.

4 Methods for terrain generation

There exist two approaches for generating terrain surface: physical and empiri-
cal one. First approach is used mainly for generating whole planets, second one
for mid-scale terrains (several km2). Here we will take a look only on the second
approach, empiric. Thanks the presumption of generating small terrain, we can

neglect curvature of the ideal planetary surface and approximate it with a plane.

Also other parameters that are connected with curvature (e.g. direction of gravita-
tion force) are almost constant in this small area. In the following text we will use
coordinate z as height of terrain above sea level, coordinates x and y will denote

coordinates of ideal surface (approximated by plane).

Majority of empiric algorithms is based on observations from fractal geometry,
mainly that surfaces with some so called fractal dimension look very similar like

terrain. For its generation we can therefore use some method for generating surface

with given fractal properties.

The simplest (and most used) algorithm is one of midpoint displacement meth-
ods (see [3], [2]). The principle of the simplest one (and the worst) is that height

�eld with square shape with heights prescribed in the corners only is divided into
four square parts. We must therefore generate �ve new (random) heights. After

they have been generated we apply this process recursively on parts that have just

been created. These methods work with height �eld as well as with TIN. Their
advance are simplicity, speed and quite good results, drawback is that computa-



tion is dynamic (it is impossible to simply compute height above one point). They

work well for generating rough, jointed terrains.

The second often used method is approximation with trigonometric polynomi-

als (Fourier synthesis), see [3]. Using some rules we generate coe�cients for sin

and cos functions, by summing Fourier series we get height of one point of ter-

rain. If we want to know all heights in the height �eld we can use fast Fourier

transform (FFT). Advance of this method is removal of some artifacts present in

midpoint displacement methods (e.g. creasing, ie. it is visible how the terrain was

generated), drawback is much bigger time requirement. Property of such generated

terrain is its periodicity, it can be both an advance or a drawback. It is better to

use this method for generating smooth, old terrains.

Last mentioned method is functional synthesis, extension of previous method,

see [2], [1]. If we want to hide that functions sin and cos are perfectly smooth, we

have to sum big number of such functions. When we use another functions, more

visually complex, number of summands need not be so large. Very suitable for this

purpose are noise functions, for example Perlin noise, see [1]. On the other hand,
we loose the advance of using FFT.

5 Methods of terrain rendering

Each used algorithm of visualizing terrain in raster space is a modi�cation of known
algorithms|ray casting and painter's algorithm. Thanks to nature of applications

with new data structure, we will not have to consider vector algorithms at all. We
will also discuss algorithms for rendering on the screen only (into memory, resp.),
no special devices like plotters are assumed.

Terrain can be rendered with original, non-modi�ed algorithm as well but by
breaking terrain into primitives we loose information that can be used in render-
ing. In following paragraphs we will talk about algorithms that work with height

�elds only. Visualization of TIN works in similar way but thanks to irregularity,
algorithms are much more complex.

Basic method for rendering terrain is painter's algorithm, forward or backward
(known also as 
oating horizon method). If we know that heights are arranged in
square grid we can easily decide what patch created with bilinear interpolation

of four heights is nearer to the eye (instead of bilinear patch approximation with

two triangles is often used). Then if we render patches in an order that can be

easily constructed in dependance on camera type and view, surface visibility is

automatically solved. Improvement of this method is to draw �rst patches into
temporary bu�er (every one with di�erent colour) and to do texturing in second

pass only on the patches that are really visible.

Backward algorithm works in similar way, �rst it renders primitives in the front
and then in the back. It can draw only such pixels that have background colour.

Algorithm is slightly more complex than previous but there is no need for two

passes to reduce texturing.



Second type of algorithms is based on ray casting method. Basic method is grid

tracing, see [2]. Here a ray is cast and perpendicular projection on the plane with

height �eld is done. Then raster algorithm goes through all cells of height �eld

(cell is formed by four adjacent heights, is is \a small square") that incide with

this projection of ray. While this is done, it detects if a ray is still above terrain.

Test of ray|primitive intersection is done if and only if a ray goes from the state

\above terrain" to \below terrain" and vice versa.

Speedup of this algorithm is based on temporary hierarchy of bounding boxes.

Box that bounds the whole object (height �eld) includes four bounding boxes

inside that (like in quadtree) bound appropriate parts of height �eld. Name of this

method is derived from the data structure idea|quad tracing; see [2]. If a height

�eld is large this algorithm can lead to big speedup.

6 Development of new data structure

Comparing requirements for data structure with typical algorithms noted before,
mainly for rendering, we come to conclusion that it would be better to use height

�eld. Hierarchical approach and level of detail is achieved in quadtree-like struc-
tures, development thus could go this way.

If we want to represent rock wall only (including overhangs) we could generate
height �eld that will not be in basic position. Instead we rotate this height �eld so
that it will no longer represent function z = f(x; y) (for explanation of coordinates
see above) but function x = f(y; z). Now we get a situation that we are able to

represent slopes near vertical one, problem with horizontal slopes appeared. In
real terrain orientation of surface does not vary chaotically, it is always possible to
bound its part that can be represented with one of functions f(x; y), f(x; z) and
f(y; z), so we can use for its representation appropriately oriented height �eld.

Collecting ideas from previous paragraphs we can formulate outlines of new

data structure. We want di�erent parts of terrain to be represented with rotated
height �eld as well as hierarchy. It follows immediately that we can extend quadtree

structure to octree, or structured grid in 2D into structured grid in 3D. Its elements

will be either nothing (cell is void, its contents is air only), material (whole cell is
�lled with one material), rotated height �eld (height �eld de�ned above one of six
faces of cell) or structured grid.

It is obvious that this data structure must be able to represent any ordinary
height �eld regardless how �ne the resolution of grid is. Except of continuity in
x and y directions we must therefore solve the case that surface can go through

several cells one above other. We can solve it in several ways.

The �rst one creates new type of cell contents|cell can contain besides height
�eld also a reference to height �eld de�ned in another cell (this will be called

forced height �eld). This means that in fact we ignore structure of the grid; things

that can be represented with one height �eld are really represented in this way. It
follows that problem of continuity in z direction disappears, modi�cations of this

height �eld is easier than if the terrain is divided into several parts one above other.



Nothing is for free, let us look at problems that arose. If one cell de�nes height

�eld in +z orientation (it means \common" orientation, ie. height says how high

is space �lled with material in +z direction; this notation will be used throughout

the rest of the paper), another cell above de�nes height �eld with �z orientation,

then there is not obvious that these surfaces do not intersect. This would mean

that one cell (in which intersection would appear) must have references to several

height �elds. This is nonsense both in physical sense and data structure, next it

would not be possible to use simpli�ed painter's algorithm for rendering. So if we

want to avoid intersections we must check height �elds somewhere in program. This

checking would be quite di�cult, remember that data structure is hierarchical|

height �eld from the cell at some level in hierarchy can interfere in cells that are in

hierarchy more above or more below. If we constrain this we get again the problem

that was in the beginning, ie. continuity in z direction.

But there exists more serious problem. If we modify terrain not locally, ie.

modi�cation goes through several height �elds (for example creation of river valley)

we must know what height �elds are connected to current one in x and y directions.
If the reference to forced height �eld is represented with pointer to a cell that
de�nes it, there is no information available where this cell lies in hierarchy, so
we do not have information what height �elds are connected. We can solve it

either that in the cell with height �eld we store references to height �elds this
one is connected to (thanks to hierarchy there can be arbitrary number of such
references) or to represent reference to cell like a path to that cell (thanks to
hierarchy this path can be arbitrary long). In both cases we get a trouble with
items of unde�ned length, this is quite a hard problem. We see that forced height

�elds bring more problems than they solve, so we must reject this approach.

The second way of solving continuity problem is as follows. Height �elds will
not neighbour with cell faces, there will be a small margin. For rendering we must
provide height �elds as well as strips that �ll these margins. Using this approach
continuity problem would be solved in all directions, borders between cells would
not be noticeable, there would be no software checking of continuity. The only

thing that must be implemented is creation of these strips. Here we unfortunately

get a problem that cannot be algorithmically solved. Even if we consider height
�elds in directions +z and �z only, there are cases that there is not clear how
height �elds should be connected. Example of this situation is at Figure 1. One of

the presumptions was that there is no need for accurate description, but in sense

of distances, not topology. For solving this problem we would (as in previous case)
save topological information in cells. It can be seen that number of problems did

not reduce. We must therefore reject this method and continue searching another
alternative.

The third way of solving continuity problem must consider that the whole
height �eld lies entirely in one cell and neighbours with its faces exactly. continuity

of two height �elds one above another can be solved with aligning|if a height

overlaps borders of cell we clamp it into the appropriate interval. We can easily
modify this idea so that two possible values in height �eld will denote \height

unde�ned". The di�erence between them is that one height denotes \here should
be height below the cell" and \here should be height above the cell". In this way



Figure 1: Here it cannot be algorithmically decided if there is to be a horizontal

hole between height �elds

we get in every cell height �eld that can have both on above and below a plateau.

This does not matter on the side where this plateau will be covered with another

height �eld; on the other side there must not be this plateau. It can be done so

that renderer will obtain information both about height �eld and how to clip it
(clipping planes)|most of renderers support this ability. Now height �elds that lie
one above another are exactly connected, it was done by modifying some distances.
However, it was said several times that slight modi�cation in distances does not
matter too much. This approach saves topology. The problem here is a practical

one: due to clamping of heights into appropriate interval some visible creases can
appear on the borders of cells. These creases will respect grid structure, this is
obviously undesirable.

With slight modi�cation we can suppress this problem too. Modi�cation comes
from combination of ideas of clamping and forced height �eld. Height �eld in one
cell could contain heights above and below the cell that would give information for
better continuity. We can solve the situation so that we will not clamp heights that

overlap cell borders. Nevertheless we give information about clipping planes to the
renderer, so we have an illusion of forced height �eld but with well de�ned data
structure. Of course, continuity of height �elds must be checked in software, data
on the cell borders will be redundant; this causes problems in every case. However

there was not found better way how to achieve continuity.

In data structure there are another continuities than those described above.

continuity between height �elds of the same orientation \on the sides" (e.g. in x

and y directions for height �elds oriented +z) is trivial|it is su�cient to unify

two appropriate heights. continuity between height �elds of the same orientation
\above and below" (e.g. in z direction for height �elds oriented +z and �z) was

described above. Problem is continuity of height �elds of di�erent orientation.
Here it must be taken into consideration that heights are represented with �nite

precision, border of height �eld must be representable in both orientations and so

on. Complete solution of these cases is still not entirely done. But it is necessary
to know that in the worst case we can solve this by clamping even if the result is

not perfect; it follows that problem has solution in this data structure.



7 Implementation

Hierarchical data structure is always based on dynamic data types and so it is not

good to implement this data structure in a language without support of pointers

or dynamical arrays or something like this. Due to the thing that items of struc-

tured grid can be of various character, language with strong type checking would

at least complicate the implementation. So it seems that C language should be

suitable. Abilities that gives C++ are hard to use in this case, mainly due to ef-

fectivity. Thanks to these reasons it was chosen ANSI C as the best language for

the implementation of this data structure.

Let us summarize information that can be stored in one cell:

� nothing;

� material:

{ memory needed for material de�nition is not uniform;

{ at least information about optical properties, hardness, permeability
and distribution of cracks must be stored;

� height �eld:

{ size is various;

{ at least resolution, orientation, height �eld data, material below height
�eld, another information like about water, objects on it etc. must be

stored;

� structured grid:

{ size is various;

{ resolution and the cells must be stored.

It is obvious that we cannot store data of this variability in an array, so we

have to work with pointers. As a good compromise this approach was chosen:

� array of cells contains heads of lists;

� if the head is equal to NULL, the cell is void;

� there is an (global) array of materials; if the head points somewhere into this

array, the cell is entirely �lled with appropriate material;

� in other cases it is true head of list:

{ items of list are of di�erent type; all of them are based on struct type;

{ each item contains a pointer to the next item and type of current item;



{ if the type is HF, it is a height �eld and struct contains extra informa-

tion: resolution of height �eld, material below height �eld, orientation,

information in what sides of cell continuity must be solved (only for

speedup, it is not necessary), pointer to an array of heights;

{ if the type is GRID, it is structured grid and struct contains extra

information: resolution of the grid and pointer to an array of cells;

{ another information like objects, textures etc. are described in other

items of the list; at this time only speci�cation is done

Now we must notice a property that was still only quietly assumed, it was not

anywhere explicitly said. Solving continuity \on the sides" with height �elds of

the same orientation we assumed that resolution of adjacent sides are the same

or the samples of the one are a subset of the second. One way how this can be

always ful�lled is that we will require the resolution of structured grid to be of

type 2i � 2j � 2k, resolution of height �eld of type (2m + 1) � (2n + 1) (due to

splitting we need center element). Doing this we can store only numbers i, j, k
(m, n, resp.). Then it is more than su�cient to store one dimension in one byte.

An interesting part is implementation of type for one height of height �eld. It
follows from practice that 8 bits is too small resolution, 16 bits gives good results.

We need to represent numbers that lie both inside and outside of the cell. It is not
good choice to de�ne global coordinates of height because with increasing depth
in hierarchy the accuracy of details does not increase, too. Next, to �nd if a height
lies outside of the cell needs an information where this cell lies in the space and
how big it is. Due to these reasons local coordinates inside the cell were chosen.

As a good choice it seems to reserve one bit for information if the height lies inside
or outside the cell, other 15 bits will denote heights between 0 (including) and
1 (excluding) in �xed point representation (in fact type like int is used). One
half of the range lies outside; dividing symetricaly this range we get that we can
represent numbers approximately between �0:5 and 1:5 (in cell local coordinates).

It remains to decide how to represent intervals above and below the cell.

Sometimes it is necessary to have linear ordered heights. Interval of visible
heights then should lie between 0x4000 to 0x8000 (hexadecimal notation; now we

assume that height 1 is visible), interval below the cell 0x000 to 0x3fff, above the

cell 0x8001 to 0xffff. If we notice that summing in two-byte unsigned arithmetic
is a commutative (Abel) group we can do conversion from linear representation to
special one by adding number 0x8000 (by subtracting 0x4000, resp.). In this way

we get a special code with moved zero, where is

0x0000 the smallest visible height (0)
0x4000 center of interval of visibility (0:5)

0x8000 the highest visible height (1)

0x8001 the smallest height above the cell (approx. 1:000030518)

0xbfff the highest height above the cell (approx. 1:499969482)

0xc000 the smallest height below the cell (�0:5)
0xffff the highest height below the cell (approx. �0:000030518)



In this code visibility is easily checked; in linear ordering it is better to do

comparsions.

8 Conclusions

It follows from above that data structure presented is able to store all information

we need. It is for example possible to include more types of representation into the

list in one cell, e.g. several height �elds with di�erent resolutions, both structured

grid and its approximation with height �eld, etc. Everything depends on the im-

plementation of tools for work with this structure. Next advance of the structure

is its openess for including other information|it is needed only to add new type

of list item; if a particular tools implementation cannot work with this type of

item, it can just ignore it (so it is not necessary to change tools implementation

by adding new feature).

References

[1] David S. Ebert, editor. Texturing and Modeling: A Procedural Approach. AP
Professional, 1994.

[2] Kenton F. Musgrave. Methods for Realistic Landscape Imaging (PhD. thesis).
Yale, 1993.

[3] Heinz-Otto Peitgen and Dietmar Saupe, editors. The Science of Fractal Images.
Springer Verlag, 1988.


