Multiresolution based on View-Dependent
Progressive Meshes

Markus Grabner

grabner@icg.tu-graz.ac.at

Computer Graphics and Vision
Graz University of Technology
Graz |/ Austria

Abstract

Despite technological progress the increasing user demands require so-
phisticated algorithms for rendering and transmitting large 3D models. The
key to solving these problems is multiresolution. This article shortly dis-
cusses some multiresolution methods developed during the past decade. The
recent progressive meshes (PM) approach got much attention because it is
very suitable for these requirements. The most important ideas regarding
the PM framework are presented. Finally an implementation based on the
PM representation is discussed including some modifications and extensions.

1 Introduction

During the last years computers are more and more used for visualization of differ-
ent kind of data. Due to the fast technological progress it is now possible to handle
large data sets. Viewing and manipulating of CAD models, medical data created
by computer tomography, or digital elevation models constructed from satellite
images is no longer restricted to supercomputers. Although mid-range graphic
workstations can do all these things, there is the law of nature that computers are
too slow. In the same amount as computational speed is increasing, the user’s de-
mands are also increasing (or even more). Some performance problems can (only)
be solved by waiting six months for the next computer generation. But intelligent
algorithms for the rendering of triangle meshes can achieve on today’s hardware
a performance otherwise not to be expected within the next years. This article
explains a method called Progressive Meshes introduced by HUGUES HOPPE in
[5] and extended in [6, 8].

One common approach to speed up graphics output is multiresolution, all ob-
jects are availabe at different resolutions. Among these resolutions the coarsest one
sufficient to meet some user-defined fidelity goal is actually used for rendering. One
can not expect to gain as dramatic improvements as with other problems (e.g. using
binary search with T'(n) = O(logn) instead of trivial search with T'(n) = O(n)).
Nevertheless the number of primitives required for an adequate approximation is
usually much less than the total number of primitives for the whole model. It is
desirable to have an output-sensitive algorithm, i.e. one with a rendering time of

T(n,m) = O(m), where n is the size of the data set, and m is the area on screen
covered by the projection of the object. An algorithm with this property can speed
up rendering by two ways:

e Small objects that are far enough away from the camera occupy only a small
fraction of the display area. They can be approximated with few primitives
without visual loss of accuracy.

o Large objects that are only partly visible don’t need to be sent to the graphics
pipeline as a whole. Those parts lying outside the view volume! are clipped.

Note that reducing the number of triangles not necessarily reduces the number
of pixels drawn. Instead, the geometry subsystem (see [3]) gets less work to do pre-
venting it from being the performance bottleneck. Progressive Meshes as described
in [6] support these features and are explained in more detail in section 3.

2 Survey on multiresolution methods

There is a large number of different multiresolution approaches, each one with its
preferred application. A more extensive summary can be found in [13].

The methods differ greatly in the time required for preprocessing. Multiresolu-
tion models are usually built iteratively by applying a sequence of simplification
steps. Naturally, the more time is spent for generating the multiresolution repre-
sentation, the better is the approximation of the original data at different reso-
lutions. Selecting the optimal sequence for simplification can significantly reduce
the number of triangles required to achieve a fixed approximation quality. Typi-
cally methods that take into account the original mesh at each simplification step
produce better results at the cost of a more sophisticated (and time consuming)
algorithm. This is necessary, if a global constraint is given by the user (although it
is possible to take advantage of the locality of the individual steps, as used e.g. in
[9, 11]). This constraint can be expressed in different ways. Common choices in-
clude defining a geometrical error metric or using an energy function (as in [9]) to
measure the accuracy of an approximation. On the other hand, using a local crite-
rion for the guidance of the simplification process can be much faster. In this case,
however, it is hard to assure a bounded precision, because locally estimated errors
need to be accumulated in some way making an exact measurement impossible.

It is not always clear to which group a particular algorithm belongs. Some
method of one class might be considered a special case of another class. The fol-
lowing list should be understood as a rough grouping of different methods according
to their most important properties.

Lthe volume whose projection fits on the screen, usually a frustum or a quader, see [3]

2.1 Level Of Detail (LOD) switching

The simplest approach to multiresolution is explicitly providing the same object at
different resolutions. Fach mesh is stored independently, therefore only few levels
of detail can be used. For this reason switching between two different represen-
tations causes distracting popping effects. Furthermore one single object can’t be
selectively refined. Viewing a large terrain model requires the whole mesh (even
those parts far away from the camera) to be rendered at the same resolution that
is necessary for a sufficient approximation near the viewpoint. Splitting a large
object into several smaller parts is also a bad idea, although this can reduce the
rendering time in some cases. But the borders between two patches at different
resolutions become clearly visible, even cracks in the surface can occur.

2.2 Decimation

These methods iteratively remove elements (vertices, edges or triangles) from the
mesh. When removing a triangle, it is replaced by a single vertex that is chosen to
minimize some error metric. After updating the neighborhood this step is repeated
until some stop criterion is reached. Other approaches remove vertices and retrian-
gulate the resulting holes, thus successively simplifying the mesh. The removal of
edges and their adjacent faces is also possible. As stated above, Progressive Meshes
can be considered a special case of edge decimation.

Different proposals were made to bound the error of the simplified mesh. Some
methods define an error volume surrounding the original mesh. Simplification stops
when the simplified mesh is no longer completely contained in this error volume. In
[11] the HAUSDORFF-distance is explicitly measured between regions of topological
correspondence. The deviation spaces explained in section 4.1 are constructed in
a similar way.

Another method worth mentioning is presented by LINDSTROM et al. in [12].
It is used for (and restricted to) the rendering of height fields. The mesh must be
defined over a regular grid. Adjacent triangles are merged when the screen-space
geometric error introduced by this operation is below a user-definable threshold.
This error is measured as the projection to the screen of the vertical deviation
between the simplified and the original mesh. HOPPE refers to this idea in [6].

2.3 Clustering

Clustering methods are not restricted to a particular topological type of their input
and output data. In the simplest and fastest case vertices are clustered by discrete
gridding and coordinate truncation. All vertices in one cluster are replaced by a
single vertex. Edges and triangles that have become degenerate are removed. This
procedure results in a simpler mesh, which might have a different topological type.

An interesting approach is described in [4]. It combines techniques used for
Progressive Meshes and clustering methods. The authors report very good results
for objects consisting of many separate parts.

Figure 1: Simplifying a mesh with subdivision connectivity

2.4 Wavelets

Wavelet-based algorithms do not explicitly manipulate the elements of the input
mesh. Instead, its geometry is represented by multiresolution analysis in a more
abstract way. You can think of this process as applying a low pass filter to the mesh
creating a coarser mesh. At the same time, an high pass filter is used to capture the
details (stored as wavelets) that are lost due to low pass filtering. This procedure
can only be performed on meshes with subdivision connectivity (see figure 1). For
more details on wavelets see [1].

Only few meshes in practice satisfy the subdivision connectivity constraint.
Therefore methods are required to transform arbitrary meshes to this special type.
In [2] a solution is presented based on a discrete VORONOI-diagram. It is built upon
the input mesh to separate it into triangular patches which are then remeshed with
subdivision connectivity.

3 Review of Progressive Meshes

This section summarizes the ideas presented by HOPPE in his recent work on
Progressive Meshes. The results of [7] are not discussed here because they are
optimized for the non-viewdependent case.

3.1 Mesh Optimization

Although the approach in [9] is not immediately related to multiresolution, it
introduces some concepts HOPPE’S further work is based on. The primary goal
of this paper is to approximate surfaces reconstructed from unorganized points.
Therefore the input data is assumed to be a set of points rather than a continuous
surface.

The tradeoff between the number of vertices and the approximation quality is
defined by an energy function. Thus large geometric errors are penalized as well as
a large number of vertices, where the relative weight between these contradictory
goals is defined by the user. The optimization procedure tries to find the mesh
with minimum energy.

Optimization is performed by two nested loops. The outer loop modifies the
mesh connectivity by randomly selecting an edge and performing one of three pos-

B

(a) initial (b) edge col- (c) edge split (d) edge swap
patch lapse

Figure 2: Local operations to modify the mesh connectivity

sible edge operations (collapse, split, and swap, see figure 2) on the associated
surface patch. Operations modifying the topology are disallowed. The inner loop
chooses the vertex locations for fixed connectivity to minimize the energy function
discussed above. Locality is exploited by only considering vertices in the neigh-
borhood of the modified edge. The optimization procedure stops if no more edge
operations are found that could further reduce the energy.

3.2 Progressive Meshes

The results explained in the previous section are extended in [5] to define a mul-
tiresolution representation called Progressive Meshes (PM). 1t is constructed by
iteratively applying the edge collapse operation to the input mesh until some error
threshold or a specified number of faces is reached. The edges are no longer se-
lected at random. Instead they are taken from the head of a priority queue sorted
by increasing error introduced by the collapsing operation. Therefore the mesh is a
good approximation at each step (not only at the end of simplification). When no
more edge collapse operations are performed, the resulting mesh (the base mesh)
is stored together with a sequence of split records as the PM representation. The
vertexr split operations are the inverse of the corresponding edge collapse operations

(see figure 3(a)).

The PM representation is also able to take into account attributes such as color
and normal vectors. Furthermore discontinuity curves defined as abrupt changes
in these attributes between adjacent faces are considered. Avoiding modifications
of the topology of discontinuity curves improves the appearance of the simplified
mesh. The energy function (see section 3.1) is extended two deal with these two
concerns.

3.3 View-Dependent Refinement

View-Dependent Refinement adresses the problems described in section 2.1. Al-
though it was already considered in [5], it turned out that some modifications of the
original approach are required ([6]). View-dependence is integrated into the PM

vsplit vsplit
T — T
vy S v,
.~ .~
ecol ecol

(a) according to [5] (b) according to [6]

Figure 3: Different definitions of the mesh operations wvsplit and ecol

framework by only performing those vertex split operations required for a certain
screen-space error. Because the mesh operations can’t be performed independently,
a PM hierarchy tree is to be considered instead of a simple list. It proved useful
to redefine the ecol/vsplit operations as shown in figure 3(b). The vertex split is
legal if the faces f,o to f,.3 are already present in the mesh.

Some conditions have to be tested for each vertex to decide if it should be
split or not. In [6], viewing volume, backfacing, and screen-space error tests are
used. A vertex obviously doesn’t need to be split if it lies outside the viewing
volume or belongs to a backfacing region. If the vertex is visible from the current
viewpoint, an estimation of the screen-space error introduced by the corresponding
edge collapse is needed. HOPPE extends the metric used in [12] and defines an error
volume called deviation space (figure 4(a)), whose projection to screen is used for
the screen-space error test. All these conditions are packed into a single function
grefine which returns true if a vertex should be split and false otherwise.

3.4 Smooth LOD Control

In [8] view-dependent PMs are applied to the rendering of very large terrain models.
Memory usage is minimized through the use of output-sensitive data structures.
Moreover, the PM representation is stored in a way that it doesn’t need to be kept
entirely in main memory.

Geomorphing? between two static meshes was already possible in [5, 6]. Now
a scheme is presented for real-time applications. While the mesh connectivity is
modified immediately when a vertex split becomes necessary, the associated ge-
ometric changes are distributed over several frames. This technique is simple to
use for the (very likely) case of forward movement of the viewer. However, it has
some drawbacks, especially when the viewer moves backwards. In section 4.2 an
alternative approach is presented.

HoPPE also describes a procedure that alleviates memory problemes during
preprocessing. The mesh is recursively split into smaller blocks which are then

Zsmooth geometric interpolation between two objects

(a) HopPE ([6]) (b) extended

Figure 4: Approximation of the error volume by different deviation spaces

simplified independently up to a certain error threshold. After that the individual
blocks are stitched together, and simplification is continued with the new larger
blocks. This strategy enables preprocessing of huge models even on workstations
with moderate main memory sizes.

4 Implementation

The implementation is mainly based on [6]. This section explains some modifica-
tions and extensions.

4.1 Deviation spaces

A deviation space as used in [6] is shown in figure 4(a). The error vectors (repre-
senting the geometric deviation between the original and the simplified mesh) are
bounded by a volume consisting of a sphere and two cones. In this implementation
the deviation spaces are “clipped” at a sphere large enough to contain all error
vectors (figure 4(b)). Thus the tops of the cones are cut off resulting in less detail
drawn without exceeding the screen-space error tolerance.

After a vertex v is created by an edge collapse operation, for all leaf nodes of
the hierarchy tree below v, (vertices of the original mesh) their nearest neighbor
on N, (all faces adjacent to v,) is computed. The error vectors are the deviations
between a leaf vertex and its nearest neighbor on N, . By descending the PM
hierarchy it is also guaranteed that only topological corresponding regions are
considered (as in [11]).

4.2 Geomorphing

HOPPE suggests that geomorphing sequences should cover a constant time, typi-
cally one second. This causes two problems. After an immediate stop in the viewer’s

15 15 15

1 1 1
05 I 05 f 05 f
0 0 0

-0.5 -0.5 -0.5

(a) boolean (b) linear (c) smooth

Figure 5: Modifying the function grefine to support geomorphing

movement the mesh needs this constant time for stabilization. Moreover, it is hard
to deal with the PM dependencies when geomorphing is used to smoothly coarsen
the mesh.

An alternative approach not explicitly dealing with time redefines the function
grefine (see section 3.3) to have continuous range. Figure 5 shows the output of
different types of this function for a visible vertex (inside the viewing-volume,
not backfacing). The x-axis is the screen-space geometric error (the projected size
of the deviation space), using an arbitrary scaling for demonstration purposes.
With grefine defined as in figure 5(b) or 5(c) flexible geomorphing sequences are
generated depending on the current viewing parameters instead of time. Such a
sequence can even be reverted before it is finished.

For reasons not explained here a more sophisticated algorithm is required for
the traversal of vertices to be evaluated with qrefine. However, this procedure can
be optimized, so only little computational overhead is added.

4.3 Parallel preprocessing

Meshes worth being simplified with any multiresolution method usually consist of
many thousands of triangles. Therefore it is very unlikely that two consecutive edge
collapse operations affect neighboring regions. A parallel preprocessing algorithm
can take advantage of this property. This implementation is based on POSIX
threads. Several concurrent threads try to perform the local mesh operations (edge
collapses) in parallel. Before modifying the mesh it must obviously be guaranteed
that no other thread is currently working on the involved region (marked red in
figure 6). Note that the red regions are directly modified by collapsing the thick
edges and therefore must not overlap. The green regions (consisting of all faces
containing at least one green vertex) are also required to be untouched during the
creation of the simplification record. But because only read accesses are performed,
they may safely overlap as indicated in figure 6. A proper locking technique applied
to the green vertices is sufficient to avoid conflicts.

Figure 6: Locking considerations for parallel preprocessing

4.4 Progressive Transmission

As already indicated in [2, 5], an important application for multiresolution models
is progressive transmission. Transmission of the whole model might take minutes or
even hours for a large mesh using a low-bandwidth network. Therefore a method is
required to successively transmit the surface geometry starting with a coarse sim-
plification. The PM approach supports progressive transmission in a quite natural
way because the data is already stored as a coarse base mesh and a sequence of
detail records. Transmitting the whole object while getting an early impression of
its appearance is easily and efficiently done by transmitting the PM representation.

In the view-dependent framework the client only requests a small part of the
object stored at the server. In this implementation a simple approach was chosen
where the client requests any information not yet received. Alternatively the client
could send its viewing parameters to the server, which can then determine the data
needed by the client without further communication. However, the latter method
has disadvantages during rapid movement.

5 Results

Unfortunately the implementation has not yet reached a point where reliable run
times and similar statistics can be reported. Instead some qualitative observations
are presented. Some images (figure 7) further document the results.

The deviation spaces (section 4.1) succeed in adding detail near the silhouettes
as reported in [6]. While this works well for regions with low curvature, the devia-
tion spaces degenerate to spheres after few simplification levels for rough regions.
This is not surprising, but an algorithm that delays the degeneration to higher
levels as far as possible would be desirable.

Geomorphing as described in section 4.2 produces very attractive results. The
only drawback of the static approach seems to be the presence of many nearly
degenerate triangles under certain circumstances. However, this is only visible in
wireframe mode because texture coordinates and normal vectors are interpolated
together with the vertex locations.

Parallel preprocessing was tested on a Dual-Pentium-II board. A rough estima-
tion of run times revealed that about 8% of the simplification code run in critical
sections (i.e. only one thread at a time). That results in a lower bound of 54% of
execution time compared to a uniprocessor machine. In experiments the execution
time could be reduced to 64%. While this result is not too bad for a two-processor
machine, some improvements might increase parallelism. At the moment the prior-
ity queue seems to be the bottleneck when using the concurrency scheme of section

4.3.

No detailed statistics are available about progressive transmission (section 4.4)
by now. First experiments indicate that transmission takes place in reasonable
times even at a low bandwidth. An integrated utility allows the bandwidth to
be explicitly limited so that the effect of using modem lines and other typical
transmission media can be explored.

6 Summary and future work

After giving a short survey on recent multiresolution methods, the progressive
meshes representation was presented. This is a promising multiresolution approach
that can be extended to support view-dependent refinement and real-time applica-
tions. Future work includes extending the refinement criteria to account for surface
shading as it was already done in [14, 10].

The implementation described in section 4 is the current state of my diploma
thesis. [hope that the reader is now curious about future results in this young and
dynamic field of research and might even be interested in the final version of this
work. The diploma thesis is expected to be finished in 1999 and will reveal many
details which are beyond the scope of this article.

References

[1] Michael F. Cohen, Tony D. DeRose, Alain Fournier, Leena-Maija Reissell,
and Peter Schroder. Wawvelets and their Applications in Computer Graphics.
SIGGRAPH 94 Course Notes. 1994.

[2] Matthias Fck, Tony DeRose, Tom Duchamp, Hugues Hoppe, Michael Louns-
bery, and Werner Stuetzle. Multiresolution analysis of arbitrary meshes. In
Robert Cook, editor, SIGGRAPH 95 Conference Proceedings, Annual Confer-
ence Series, pages 173-182. ACM SIGGRAPH, Addison Wesley, August 1995.
held in Los Angeles, California, 06-11 August 1995.

3]

[11]

[12]

James D. Foley, Andries van Dam, Steven K. Feiner, and John F. Hughes.
Computer Graphics, Principles and Practice, Second Fdition. Addison-
Wesley, Reading, Massachusetts, 1990. Overview of research to date.

Michael Garland and Paul S. Heckbert. Surface simplification using quadric
error metrics. In Turner Whitted, editor, SIGGRAPH 97 Conference Proceed-
ings, Annual Conference Series, pages 209-216. ACM SIGGRAPH, Addison
Wesley, August 1997. ISBN 0-89791-896-7.

Hugues Hoppe. Progressive meshes. In Holly Rushmeier, editor, SIGGRAPH
96 Conference Proceedings, Annual Conference Series, pages 99-108. ACM
SIGGRAPH, Addison Wesley, August 1996. held in New Orleans, Louisiana,
04-09 August 1996.

Hugues Hoppe. View-dependent refinement of progressive meshes. In Turner
Whitted, editor, SIGGRAPH 97 Conference Proceedings, Annual Conference
Series, pages 189-198. ACM SIGGRAPH, Addison Wesley, August 1997.
ISBN 0-89791-896-7.

Hugues Hoppe. Efficient implementation of progressive meshes. Technical
Report MSR-TR-98-02, Microsoft Research, Microsoft Corporation, One Mi-
crosoft Way, Redmond, WA 98052, January 1998.

Hugues Hoppe. Smooth view-dependent level-of-detail control and its appli-
cation to terrain rendering. In IFEFE Visualization '98, pages 35-42, October
1998.

Hugues Hoppe, Tony DeRose, Tom Duchamp, John McDonald, and Werner
Stuetzle. Mesh optimization. In James T. Kajiya, editor, Computer Graphics
(SIGGRAPH 93 Proceedings), volume 27, pages 19-26, August 1993.

Reinhard Klein. Multiresolution representations for surfaces meshes. Tech-
nical report, Wilhelm-Schickard-Institut, GRIS, Universitat Tubingen, Ger-
many, June 1997.

Reinhard Klein, Gunther Liebich, and Wolfgang Strafler. Mesh reduction
with error control. In IEFEE Visualization '96. IEEE, October 1996. ISBN
0-89791-864-9.

P. Lindstrom, D. Koller, W. Ribarsky, .. Hodges, N. Faust, and G. Turner.
Real-time, continuous level of detail rendering of height fields. In Computer

Graphics (SIGGRAPH 96 Proceedings), pages 109-118, 1996.

Enrico Puppo and Roberto Scopigno. Simplification, LOD and Multiresolu-
tion, Principles and Applications. Furographics Tutorial. Blackwell Publish-
ers, 1997.

Julie C. Xia and Amitabh Varshney. Dynamic view-dependent simplification
for polygonal models. In IEEFE Visualization "96. IEEE, October 1996. ISBN
0-89791-864-9.

(b) simplified version (2998 trian-
gles) gles)

(c) original terrain model (199114 (d) simplified using view-
triangles) dependent refinement (4995
triangles)

(e) original model in wire-frame (f) simplified model with viewing
representation parameters of figure 7(d)

Figure 7: Images generated with the implementation discussed in section 4

