
Clustering in 2D - Insert algorithm

Jan Luke�s

xlukesj@fel.cvut.cz

Department of Computer Science and Engineering, Faculty of Electrical

Engineering

Czech Technical University

Prague / Czech Republic

Abstract

The goal of this work is to improve speed of searching for intersection of a point,

line segment, rectangle, etc. with a group of bounding-boxes in 2D. In case of

successive passing of bounding-boxes one by one, the complexity is O(n). Our work

present a way with complexity O(log(n)). One of many algorithms that we call

\Insert algorithm" is described in details, the others are mentioned only marginally.

KEYWORDS: clustering, cluster analysis, computational geometry.

1 Introduction

For the given task, the following data are speci�ed: a list of bounding-boxes of 2D

geometrical objects and a tested object (point, line segment, rectangle, etc.) as an

input. The output is a list of bounding boxes which have an intersection with the

tested object. Searching within bounding-boxes takes O(n) complexity. Instead of

it we will build a kind of hierarchy (tree). Then we will traverse this hierarchy.

The basic idea is to take two bounding-boxes and group them together, it means

to create one bigger bounding-box around them. This can be represented as one

node of a tree. The whole thing is about what kind of a tree is the best and how

to create it simply.

The paper is organized as follows: Chapter 2 contains presumptions, Chapter

3 describes our solution, Chapter 4 discuss complexity, Chapter 5 presents results

of measurements and the last Chapter contains summary.

2 Presumptions

We presuppose two-dimensional Euclid's space and Cartesian rectangular system

of co-ordinates. Than we have chosen the following constraints:

� bounding boxes are rectangles parallel to co-ordinate axes

� a hierarchy is represented by a general tree (not restricted to binary)

� bounding-boxes can overlap themselves

� a number of tested objects is much bigger than a number of bounding boxes

� the distribution of probability for location of tested object is constant in the

whole space, it means that it has no relation to the distribution of bounding

boxes

Time complexity should be better than O(n), it means better than processing

bounding-boxes one by one.

There are several methods how can be this problem solved, we have chosen

only one for this text, which is based on inserting bounding-boxes into the tree

one by one.

It is necessary to point out, that building a tree takes a lots of time. For overall

eÆciency is advantageous to traverse the tree many times.

3 Solution

3.1 Minimization of number of comparisons

We want to build a hierarchy, which will be used for fast searching. The struc-

ture we have chosen is a tree (not limited to binary). The leaves represent the

initial bounding-boxes, internal nodes represent bounding-boxes that include their

successors.

A distribution of probability for location of tested object is the same in the

whole plane. Figure 1 shows a typical case.

B1 \ B2

BB1

B2

Figure 1: Clustering two overlapping bounding-boxes into a bigger one

Presume the situation in the picture and that we should

make a test in the extent of bounding-box B. At the be-

ginning let's take only a binary tree. Then we have:

P1 =
S(B1�B2)

S(B)

the probability, that we have to test the interior of bounding-

box B1 which is outside B2.
P2 =

S(B2�B1)

S(B)
the analogical case for the bounding-box B2

P3 =
S(B2\B1)

S(B)

the probability, that we have to test interior of both bounding-

boxes B1 and B2

P4 =
S(B�B1�B2)

S(B)
the probability, that we needn't test anything else

where S(B) is the area of the bounding-box B and total sum P1+P2+P3+P4 = 1.

The number of comparisons performed in the scope of bounding-box B is

C(B) = 2 + P1 �C(B1) + P2 � C(B2) + P3 � (C(B1) + C(B2))

Number two in this equation means that we have to test both bounding-boxes

B1 and B2 for intersection with the tested object. Then we may have to test

the interior of one or both of them. For leaves of a tree (initial bounding-boxes)

C(B) = 0.

When many overlaps between bounding-boxes occur, the component P3 �

(C(B1)+C(B2)) has a high value and therefore we often have to pass both succes-

sors. This is worse than consecutive processing of bounding-boxes. We can solve

this using a general tree, not only binary. Then we get a general expression:

C(B) = n+
nX

i=1

Pi � C(Bi); Pi =
S(Bi)

S(B)

where n is number of successors for a given node B. In case of repeated overlapping

we use sequential passing instead of ineÆcient tree (more comparisons in the scope

of one node).

3.2 Building a hierarchy

The question is how to �nd the structure of a tree in order that the number of

comparisons will be minimal (i.e. how to minimize the function C(B)). There are

two basic approaches:

1. bottom-up method, in each step we �nd two "closest" bounding-boxes, group

them together and continue with new one instead of them. There are many

variants of what we can choose as relation "closest" e.g.:

� the shortest distance between given bounding-boxes

� the smallest area of resultant bounding-box

� the biggest ratio of the area of resultant bounding-box and the area of

the union of given bounding-boxes

� combination of previous

2. insert algorithm - consequent adding bounding-boxes one by one into the

tree

Generally there is a disadvantage of both approaches: if there are many overlaps

among initial bounding-boxes the tree structure will be not eÆcient.

We have chosen the second approach - the insert algorithm, because it solves

at least partially the problem of many overlapping bounding-boxes. It allows to

create trees with more than two successors in one node. This can't be done easily

by the �rst approach, because the number of combination is too large.

The basic idea of the insert-algorithm is to place a given bounding-box locally

into the tree but not to modify the tree structure in a global way. The complex

modi�cations would be necessary when building an optimal tree structure. But for

our data is suboptimum solution good enough. See section 5 for details.

3.3 Inserting

We take one of initial bounding-boxes as a base of the future tree, doesn't matter

which one. Then the other bounding-boxes are put into the tree one by one (in no

particular order).

(Note: In fact the di�erence between the tree that we will get and the ideal tree

depends just on the order and the selection of the �rst one, but we didn't solve

this problem.)

Let's have a tree of bounding boxes and one bounding-box (B) that we want

to insert into the tree. (Starting with the root A). See the Fig. 2.

A

A1 An

�
�

�
�

@
@
@
@

q q q q q

B

Figure 2: Inserting bounding-box in the tree

Than we have three possibilities how to do it:

1. Create new bounding box over A and B. See Fig. 3(a).

2. Put B as one of the successors of A. See Fig. 3(b).

3. Insert bounding-box B somewhere inside one of the successors Ai.

Now we will express the function C (which means number of comparisons) for

each of the situations above.

1. Inserted bounding-box at the same level as original root. C(B) = 0 because

B is a leaf.

S

A B

�
�

�
�

@
@
@
@

a) A0

A1 An

�
�
�
�

@
@
@
@

q q q q q B

HHHHHHHH

b)

Figure 3: Inserting bounding-box at the same level as original root (a) and as one

of successors (b)

C1(S) = 2 +
S(A� B)

S(S)
�C(A) +

S(B � A)

S(S)
� C(B) +

S(A \ B)

S(S)
� (C(A) + C(B))

C1(S) = 2 +
S(A� B)

S(S)
�C(A) +

S(B � A)

S(S)
� 0 +

S(A \ B)

S(S)
� (C(A) + 0)

C1(S) = 2 +
S(A)

S(S)
� C(A)

2. Inserted bounding-box as one of successors.

C2(A
0) = (n+ 1) +

nX

i=1

S(Ai)

S(A0)
� C(Ai) +

S(B)

S(A0)
� C(B)

C2(A
0) = (n+ 1) +

nX

i=1

S(Ai)

S(A0)
� C(Ai)

now substitute from relation for the original root:

C(A) = n+
nX

i=1

S(Ai)

S(A)
� C(Ai)

nX

i=1

S(Ai)

S(A)
� C(Ai) = C(A)� n

then we get:

C2(A
0) = (n+ 1) +

1

S(A0)
� (C(A)� n) � S(A)

C2(A
0) = (n+ 1) +

S(A)

S(A0)
� (C(A)� n)

3. Insert bounding-box B somewhere inside one of the successors Ai.

This means complete recursion. It seems like a big disadvantage that we have

to parse the whole tree every time, but as the tree has complexity only O(n),

it is not so signi�cant.

The result from this situation is a value C3(A
0), which is the lowest from all

possible values for placing B inside A1 or A2,. . . ,An.

In the end we'll choose that variant, which has the lowest value of C, it means

the minimum number of comparisons.

3.4 Implementation of insert algorithm

Representation: in each node we have the relevant bounding-box and the value of

function C. We also remember the path to the place where the inserted bounding-

box will be added.

Algorithm for building a tree

1. tree = one of the bounding-boxes (arbitrary)

2. successively for all other bounding-boxes

(a) �nd a place in the tree where the bounding-box should be added

(b) add the bounding-box there

ad 2.(a) - �nding a place

1. Evaluate function C1.

2. If the tree is only initial bounding-box (has no successors), then there

are no other possibilities. The result is C1

3. Evaluate function C2.

4. Evaluate function C3. Try to insert into each successor and then select

the variant with the lowest C (and remember the path).

5. choose the best one from C1; C2; C3 (the lowest value � minimum num-

ber of comparisons)

ad 2.(b) - adding

According to selected variant and remembered path incorporate bounding-

box into the tree. Then it is necessary to �gure out new values of C on the

path.

Algorithm for traversing a tree

1. At the beginning we have to test the bounding-box in the root of the

tree. If this test fails, the tested object is outside all bounding-boxes.

2. The next steps depend on type of node:

� for internal nodes

Test the related bounding-box in the node. If it fails then stop {

there is no intersection with input bounding-boxes. Otherwise call

testing recursively for each of successors.

� for leaves

Test the bounding-box. If there is no intersection then stop. Oth-

erwise add this bounding-box in the resultant list.

As a result we have a list of bounding-boxes intersecting or including the tested

object.

4 Complexity

Let's expect speci�cation:

� n . . . number of initial bounding-boxes

� q . . . number of tested objects (q >> n)

� complexity of test of intersection between tested object and bounding-box

= O(1)

Now we can look at particular methods for solution:

successively

� time complexity: O(q � n � 1) = O(q � n)

� memory complexity: O(1)

binary tree

� building a tree

1. �gure out values for all pairs of bounding-boxes) O(n2)

2. sort these values) O(n2 � logn)

3. in each step group two bounding-boxes together: O(n)�

(a) select maximum value - two selected bounding-boxes) O(1)

(b) remove all combinations with two selected bounding-boxes)

O(n)

(c) inserting combinations with new bounding-box) O(n � logn)

4. all together: O(n2 � logn)

� time complexity: the best O(q � logn), the worse O(q � n)

1. building a tree: O(n2 � logn)

2. searching: the best O(q � logn), the worse O(q � n) (distribution of

tree, overlapping bounding-boxes)

3. be aware of condition: O(q � logn) >> O(n2 � logn), otherwise it is

not eÆcient (better than successively)

� memory complexity: O(n) { tree

� disadvantage:

1. If there are many overlapping bounding-boxes, we have to traverse

larger parts of the tree.

insert algorithm

� building a tree: We incorporate n bounding-boxes one by one into the

tree. The tree has O(n) nodes, which we have to pass every time.

Modi�cation of the tree has complexity O(logn). All together it is

O(n � (n+ logn)) = O(n2)

� time complexity: the best O(q � logn), the worse O(q � n)

1. building a tree: O(n2)

2. searching: the best O(q � logn), the worse O(q � n)

3. the important condition: O(q � logn) >> O(n2)

� memory complexity O(n) { tree

example of one another approach - only for comparison

Top-down method, dividing space by projection of bounding-boxes in axes.

� time complexity: O(q � logn) always

� memory complexity: O(n2)

� advantages: unambiguous in searching, faster, better for very overlap-

ping bounding-boxes

� disadvantage: bigger consumption of memory

5 Testing and measurements

5.1 Implementation

Computer: IBM/Cyrix P166+, 32MB RAM

Operating system: Microsoft DOS

Programming language: C++

Compilers: Borland C++, DJGPP

5.2 Example

Conditions:

� random generated bounding boxes

� processing all pixels in raster as tested objects (640� 480)

1. Di�erence between values of function C and successive passing

See Table 1. and Figure 4.

n . . . number of initial bounding-boxes

Cseq . . . number of comparisons for successive passing (= n)

Cinsert . . . value of function C (number of comparisons) for the tree which

was created with insert algorithm

Cinsert

Cseq
. . . characteristic ratio in %

n Cseq Cinsert
Cinsert

Cseq

2 2 1.05 52.5 %

5 5 1.71 34.2 %

10 10 3.96 39.6 %

20 20 6.71 33.5 %

50 50 9.55 19.1 %

100 100 15,22 15.2 %

200 200 20.43 10.2 %

500 500 33.43 6.9 %

1000 1000 51.15 5.1 %

2000 2000 78.10 3.9 %

5000 5000 149.02 3.0 %

10000 10000 254.64 2.5 %

Table 1: Di�erence between values of function C

1

10

100

1000

10000

1 10 100 1000 10000

C

n

Cseq

�

�

�

�

�

�

�

�

�

�

�

�

Cinsert

�

�

�

�
�

�
�

�

�

�

�

�

Figure 4: Di�erence between values of function C

2. Time complexity See Table 2. and Figure 5.

n . . . number of initial bounding-boxes

tseq . . . time spended with successive passing

tbuilding . . . time needed for building a tree with insert algorithm

tsearching . . . time needed for searching within the created tree

tinsert = tbuilding + tsearching . . . total sum for insert algorithm
tinsert
tseq

. . . characteristic ratio in %

3. Memory complexity - exactly linear, it means O(n)

n tseq[s] tbuilding[s] tsearching[s] tinsert[s]
tinsert
tseq

2 16 0 0 0 |

5 17 0 1 1 5.8%

10 18 0 2 2 11.1%

20 22 0 2 2 9.1%

50 31 0 3 3 9.8%

100 47 0 4 4 8.5%

200 80 1 5 6 7.5%

500 183 2 9 11 6.0%

1000 342 7 15 22 6.4%

2000 1242 27 22 49 3.9%

5000 | 160 45 205 |

10000 | 636 466 1102 |

Table 2: Di�erence between time complexities

0

200

400

600

800

1000

1200

1400

1 10 100 1000 10000

t

n

tseq

� � � � � �
�

�

�

�

tinsert

� � � � � � � � �
�

�

�

Figure 5: Di�erence between time complexities

6 Summary

The insert algorithm as described above is a suboptimum solution for the problem

of searching for intersecting bounding-boxes within 2D space. Mostly it has much

better time complexity than successive passing of bounding-boxes (O(q � logn) vs.

O(q � n)). And it has only O(n) memory consumption. It can be easily extended

for 3D space if we take ratios of volumes instead of areas.

References

[1] J. �Sarmanov�a A. Lukasov�a. Metody shlukov�e anal�yzy. SNTL, 1985.

[2] Multimedia Theory and Application, Bilateral student workshop CTU Prague-

HTW Dresden, http://cs.felk.cvut.cz/~xobitko/d/xlukesj/. Clustering in 2D -

division approach, December 1998.

