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Abstract

Scienti�c visualization often deals with three-dimensional data. Either the data

is inherently three-dimensional, e.g., ow simulation data or medical data, or 3D

is chosen as the biggest reasonable projection space for high-dimensional data,

e.g., dynamical systems or databases. Since conventional displays usually are two-

dimensional, this data has to be transformed to two dimensions which leads to

information loss. Objects in front occlude others lying behind them, lines appear

to coalesce into a uni�ed solid surface of indeterminate depth. This paper gives a

short overview of some approaches which try to enhance the spatial impression of

three-dimensional data displayed as two-dimensional pictures.
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1 Introduction

In the �eld of computer graphics many techniques and algorithms have been devel-

oped to render three dimensional data on two dimensional displays, often trying to

do this as accurate as possible. In scienti�c visualization, however, generating im-

ages which provide maximal insight into three-dimensional data is more important

than rendering an image in a photo-realistic way.

Particularly when depicting large surfaces occlusion becomes a major problem.

Objects that lie behind or within these surfaces cannot be seen. Using transparency

improves the situation but still there are problems: transparent surfaces provide

little cues on their shape, especially the shape of the front-facing portion usually

cannot be perceived accurately. Further, multiple superimposed transparent layers

cannot be distinguished at all and it is almost impossible to estimate the distance

in depth between two such layers. Small, sparse, opaque marks on a transparent

surface facilitate the perception of both the shape and depth of a layered, trans-

parent surface without impairing too much the visibility of objects located behind

it. By taking into account the curvature of the surface when applying these marks,

the perception of the shape of the surface itself can even be enhanced.



Another important issue is what part of the data should be depicted not to obtain

pictures which are overloaded and confusing. Especially when visualizing three-

dimensional ow using stream surfaces it is not only necessary to consider how to

render these surfaces but also which of the in�nite possible surfaces to choose [2].

Also the distribution of streamlines is not trivial [17].

When depicting lines in three dimensional space in general, occlusion is also a

problem [17], but more problematic is that these lines when not in motion tend

to be attened, they appear to be in one plane [7]. The use of common lighting

models and the thereby achieved shading e�ects give important cues for the spatial

perception, but there are also other approaches that try to enhance the perception

of lines in three dimensional space.

2 Enhancing the perception of lines in 3D

To visualize three-dimensional vector �elds it is often necessary to depict three-

dimensional lines, for example stream lines. Since lines in 3D do not have a unique

normal vector, they either have to be at shaded, impairing the spatial impression

of the image, or polygonal tubes have to be used, limiting the number of streamlines

that can be displayed in a scene. Another approach would be to use Line Integral

Convolution [1, 14], a commonly used algorithm for visualizing vector �elds, which

is easily extended to 3D. Unfortunately, the results are not as good as in 2D [2],

too many details obscure the ow topology. Below three approaches are described

which depict lines in three-dimensional space. The �rst illuminates streamlines,

the second tries to ray-cast vector �elds and the third describes some strategies to

enhance 3D Line Integral Convolution.

2.1 Illuminated Streamlines

Although lines in R3 do not have a unique normal vector, Z�ockler et al. [17] illumi-

nate streamlines using the popular reection model of Phong. They select from all

the normal vectors the one coplanar to the light vector L and the tangent vector

T . Let N be this normal vector, L the light direction, V the viewing direction, and

R the unit reection vector (the vector in the L-N -plane with the same angle to

the surface normal as the incident light). Then the light intensity at a particular

point is given by

I = Iambient + Idi�use + Ispecular

= ka + kd L �N + ks (V �R)n (1)

Since light reection on stream lines increases the spatial impression of the resulting

images, lines shaded with this method provide stronger depth cues (see Figure 1).

Furthermore, texture mapping capabilities of modern graphics hardware can be

exploited to render these lines e�ciently, achieving high frame rates even when

large numbers of lines have to be rendered.



Figure 1: Illuminated Streamlines. The ow around a wing on the left and the

electrostatic �eld of a benzene molecule on the right.

A drawback of this method is that the normal vector is not constant but a pro-

jection of the light vector into the normal plane of the stream line. This means

that the angle between the light vector and the normal vector is minimized, re-

sulting in a more uniform brightness than we are used to perceive in real world.

This e�ect yet can be compensated by exponentiating the di�use reection term

in Equation (1).

2.2 Ray-casting Vector Fields

Ray-casting [8] is a direct volume rendering method, where rays are cast into a 3D

array of values and for each ray a vector of sample colors and opacities is computed

by re-sampling the voxel database at k evenly spaced locations.

When ray-casting a vector �eld [3], there is exactly one stream line crossing

the viewing ray at each sampling point. To shade the sampling color accordingly,

there is again the problem that lines in 3D do not have a unique normal vector.

Since there is one plane to which the local velocity vector is normal, the vector

which points mostly towards the viewer while lying in this plane is chosen as the

normal vector. If the light source is located at the viewing position, the shading

computation is simpli�ed and ow towards or away from the viewer appears dark

and ow normal to the viewing direction appears brightest. However, this approach

leads to visualizations that are di�cult to interpret if only a still image is used (see

Figure 2 on the left). The spatial orientation of the ow is much better perceived

if viewpoint animation is used.

To enhance the spatial impression in single images, it makes sense to use

pseudo-color to express velocity magnitude (see Figure 2 on the right) or even

vector �eld direction. Therefore, the angle between the streamline normal and the

light source is mapped to sample hue, so we can see where the ow is directed

towards or away from the light source, i.e., the viewing direction here. The use



Figure 2: Ray-casted vector �elds. On the left streamline shading without color

mapping, on the right color is mapped to velocity magnitude. Light source in both

pictures at viewing position.

of pseudo-color yet for the visualization of vector �eld direction is something to

which the user �rst has to become accustomed to.

2.3 Volume Line Integral Convolution

Line Integral Convolution (LIC) is an elegant algorithm for visualizing vector �elds.

Very good results are achieved for 2D vector �elds, but extending it to 3D arises

some problems. The pictures get confusing, too many details obscure the ow

topology. Some modi�cations to the original algorithm have been proposed by

Interrante and Grosch [7] to achieve better results in three dimensions.

The texture used with 2D LIC would normally be an opaque, uncorrelated

white noise. This has the drawback that the orientation of the vector �eld cannot

be perceived. Wegenkittl et al. [16] developed a method, Oriented Line Integral

Convolution (OLIC), where they use a low frequency input texture and a ramp

like convolution kernel to depict both direction and orientation of the ow. This,

further, inspired Interrante and Grosch to enhance 3D LIC by using a sparsely

opaque input texture and to use LIC to correlate both color and opacity values in

the direction of the ow. They also proposed that the input spots in the volume

should be randomly situated according to an approximate Poisson-disk distribu-

tion, rather than laid out purely randomly. See Figure 3 for an example.

If the stream lines are shaded as described in Section 2.1, the local orientation

of the ow can be clearly depicted but streamlines that are separated in depth

but which ow in a similar direction cannot e�ectively be distinguished. The fol-

lowing techniques have proven useful for clarifying the display of volume textures

generated via 3D LIC:



Figure 3: Volume Line Integral Convolution from an input texture of evenly-

distributed random point samples. Shading is computed as described in Section 2.1.

� By assigning each of the di�erent input texture elements one of a small num-

ber of harmonious yet readily distinguishable di�erent hues, the di�erenti-

ating of the distinct lines is facilitated. Colors can be randomly distributed

among the input points or may alternatively be assigned on the basis of a

function computed either over the streamline or its point of origin. Care must

be taken with the second approach to prevent the perceptual clumping of

elements in homogeneously-valued regions, for example by assigning random

luminance variations.

� Artists and illustrators often use gaps to indicate the depth relation if a line

crosses behind another. To depict such gaps, a second input texture, identical

to the �rst except that it contains slightly larger spots at the same location

as the smaller spots in the original texture, is used during volume rendering

to decrease the contribution to the �nal image of any voxel encountered

after a halo, that is the margin that surrounds every line in the second input

texture, has been entered and subsequently exited, emphasizing the depth

discontinuities in such a way.

� Another approach to facilitate local depth order judgements would be to use

stereo, or to animate the lines so that they follow the ow.

3 Enhancing the perception of layered surfaces

Many applications bene�t from displaying multiple surfaces. When these surfaces

are depicted opaquely, major parts of the model are occluded. This makes it im-

portant to render layered surfaces in such a way, that outer structures can be seen

and seen through the same time. Using transparency to show what lies behind

or within surfaces can be a useful device. Unfortunately, the shape of transparent



Figure 4: Multiple transparent surfaces on the left and multiple opacity-modulating

surfaces on the right

surfaces becomes more di�cult to perceive accurately, for ordinary depth cues of

shading and occlusion are minimally present on them. Adding partly transpar-

ent, partly opaque textures to these surfaces achieves perceptual bene�ts. Several

approaches are described below.

3.1 Opacity-modulating Triangular Textures

Rheingans [13] suggested a straightforward approach which uses conventional tex-

ture mapping techniques to apply a pre-computed two-dimensional texture to a

surface in 3D. These surfaces are assumed to be composed entirely of triangles, for

arbitrary polygon meshes can easily be transformed into triangle meshes.

The texture should have certain characteristics in order to give strong shape

cues on surfaces:

� It must be able to be tiled without seams, since such seams might draw the

observers attention without providing useful information.

� It must have both enough transparent parts for the objects behind to be seen

clearly and enough opaque parts for the surface on which it lies to be clearly

perceived. For these are directly at odds with one another, the right balance

must carefully be achieved as the case arises.

� It should be easy to generate and quick to render. Therefore, it should be

a precomputed image stored in texture memory rather than de�ned by a

procedure evaluated during the shading calculations.

Since the polygons the texture is to be applied to are all triangles, it is obvious

to de�ne an equilateral triangular texture element which is easily mapped to the

triangles. Furthermore, if the sequence of texture values along each side is identical,

and consequently the values at the texture extreme points are the same, any side

of the texture element will match seamlessly with any other side.

If the texture element is de�ned on an equilateral triangle, the textured surface

will appear most regular when the triangles on the surface are also equilateral.



Unfortunately, surface extraction methods like the marching cubes algorithm [11]

normally do not produce equilateral triangles. So texture pattern regularity must

be improved by a preprocessing step which regularizes the polygonal tessellation

producing triangles more uniformly sized and closer to equilateral, to avoid dis-

ruption of the texture regularity. Rheingans used a re-tiling algorithm developed

by Turk [15]. Figure 4 compares multiple transparent surfaces to multiple opacity-

modulating surfaces.

3.2 Feature Lines

Using feature lines as a sparse, opaque texture on transparent surfaces [5, 12] was

inspired by the ability of gifted artists to de�ne a �gure with just a few strokes.

The two types of geometric features most often represented in line drawings are

discontinuities of depth (silhouettes and contours) and discontinuities of curvature

(sharp ridges and valleys). Depicting this small set of meaningful lines gives strong

cues on the shape and position of transparent surfaces.

Silhouette and contour curves are the 2D-projection of points on the 3D sur-

face where the direction of the surface normal is orthogonal to the line of sight.

Silhouette lines are always visible for they form a closed outline around the projec-

tion. Contour curves may be disjoint an can fall within the projective boundary.

Although contour curves are important shape descriptors, their use under condi-

tions of stereo and motion are limited. Because they are viewpoint-dependent, they

must be recomputed and redrawn every time the viewpoint changes or they will

seem to crawl over the surface confusing the perception of the surface data. Fur-

thermore, these contour lines provide little indication of depth distance or surface

shape across forward-facing areas.

Another sparse set of descriptive lines, but which remain �xed on the surface

under dynamic viewing conditions, are ridge and valley lines. To detect these fea-

ture lines some characteristics of surfaces must be examined. At any non-spherical

point on a generic, smooth surface is one direction in which the the surface is curv-

ing most strongly. This direction is referred to as the �rst principal direction and

the curvature in this direction is referred to as the �rst principal curvature. These

two can easily be computed at arbitrary points on a smoothly curving surface from

the eigenvectors and eigenvalues of the second fundamental form [5].

Valley lines now are the locus of points on a surface where the normal curvature

assumes a local minimum in the principal direction associated with the largest,

negative curvature and ridge lines are the locus of points on a surface where the

normal curvature assumes a local maximum in the principal direction associated

with the largest, positive curvature. Every point classi�ed to lie on or near a ridge

or valley line is assigned an additional amount of opacity and a slightly di�erent

color to better distinguish between these two kinds of feature lines.

If all the points identi�ed by the preceding de�nition are displayed opaquely,

the result is not satisfactory, too much lines are displayed. So steps must be taken

to selectively emphasize more important ridge and valley regions and de-emphasize

the others:



Figure 5: An untextured skin surface on the left and the same skin surface with

ridge and valley texture on the right.

� First, the opacity of the ridge and valley points can be de�ned as a function of

the relative magnitude of the normal curvature in the �rst principal direction.

This emphasizes more sharply curved regions.

� Next, only these ridge or valley points are assigned an additional amount of

opacity, which magnitude of the maximum principal curvature at that point

exceeds a speci�ed cuto�.

� It is possible, that after these two steps very deep, but extremely narrow

spurious ridge or valley lines remain visible. The approach to eliminate these

lines is to step away from the point in the �rst principal direction and look

if the approximated surface normals begin to realign before a speci�ed min-

imum distance has been traversed.

Figure 5 shows a treatment plan for a patient with prostate cancer.

3.3 Curvature-directed Strokes

Not all surfaces can be su�ciently characterized by feature lines. There are situ-

ations in which a more continuous representation of both areas where the surface

shape is changing and areas across which it remains relatively uniform would be

desirable. The use of curvature directed strokes [6] was again inspired by artist's

use of lines to show shape. Our perception of a surface's form is strongly a�ected

by the choice of line direction used to represent it. Several di�erent basic tech-

niques are commonly used. Strokes uniformly directed across an entire image tend

the objects appear to be attened, vertically-oriented strokes emphasize height

and horizontally-oriented strokes emphasize width. But the e�ect that has been

chosen to pursue in this work is to align the stroke direction with the direction of

strongest curvature of the surface.

The �rst step is to iteratively select points as evenly distributed as possible over

the surface around each texture element will be centered. Next, principal direction,

for the direction of the stroke, and principal curvature, for the length of the stroke,



Figure 6: Transparent outer shell with principal direction texture on the left com-

pared to a transparent outer shell textured with randomly-oriented constant length

strokes on the right.

are computed at each centerpoint. Each stroke is now modelled as a \slab" with a

length dependent of the principal curvature, a height large enough to allow each

slab to contain the surface across its fullest possible extend without being so large

that it opaci�es the surface in unintended areas, and a properly chosen width. The

geometrical de�nition of each individual stroke is now simply passed to the volume

renderer (see Figure 6).

3.4 Principal Direction-driven 3D LIC textures

Although the results achieved with the method described in Section 3.3 are quite

good, the modelling of the \slabs" as geometric objects is not satisfying. Further-

more, these \slabs" have to be recomputed for each isosurface out of the same set

of data, which is cumbersome in cases where it is necessary to view not one but

multiple level surfaces through a volume distribution.

Interrante [4] proposes a method where the set of principal directions and

principal curvatures is used to de�ne a natural ow over the surface of an object.

Since the �rst principal direction is tangential to the surface with direction of

the strongest curvature, each stream line will lie on an isosurface aligned to the

curvature of this surface. The set of principal directions can be precomputed for the

whole dataset and via 3D Line Integral Convolution it is now possible to generate

a solid stroke texture that illustrates the essential shape information of any level

surface in the data.

Figure 7 compares a transparent surface to a surface with a texture gener-

ated via 3D Line Integral Convolution and the set of principal directions applied,

Figure 8 depicts a series of six surfaces textured by the same method.



Figure 7: Transparent surface on the left and the same surface on the right with a

texture applied generated via principal direction-driven 3D Line Integral Convo-

lution

Figure 8: A series of six level surfaces with the same texture applied generated via

3D Line Integral Convolution and the set of principal directions.



Figure 9: Stream arrows on a stream surface of a dynamical system.

3.5 Stream Arrows

In Section 2 several approaches were discussed which try to visualize three-

dimensional ow by depicting lines in space. Another approach would be to vi-

sualize dynamical systems by depicting stream surfaces. A major problem thereby

is that such surfaces often occlude major parts of the model. Again, transparency

alone does not solve the problem for transparent surfaces provide little depth cues.

Furthermore, since ow has a direction it would be desirable to visualize this di-

rection too.

An extension to standard stream surfaces that on the one hand lets one see

through the surfaces and on the other hand depicts the direction of the ow is

the use of stream arrows [10]. Therefore, arrow-shaped textures are mapped to the

surface, which both depict the direction of the ow and can be made transparent

to show what lies behind them (however, it is also possible to make the remaining

surface transparent and depict the stream arrows opaquely). Figure 9 shows a

stream surface with stream arrows which, since they are transparent, let one clearly

see the inner structure of the dynamical system.

The problem with this approach is that the arrows are equal-sized in texture-

space so they tend to become too big or too small in areas where stream surfaces

spread over regions of high divergence or convergence. To generate stream arrows

that are almost equal-sized in the �nal image it is better to use hierarchical stream

arrows [9]. Therefore, a stack of stream arrows textures is de�ned, where the scale

relation of the arrows between successive levels is de�ned by a constant factor. The

ratio between the size of a mesh in texture space and in phase space is then used

to �nd the most appropriate level in the stack, which makes the arrows almost

equal-sized in the rendered picture. It would not be useful to de�ne a continuous

size function for this purpose because the ability to represent local divergence or



convergence would be lost then.

4 Conclusions

When visualizing three-dimensional data on two-dimensional displays there are

several points that have to be considered.

Lines in 3D do not have a unique normal vector, integrating over all normal

vectors cannot be done e�ciently, so one vector has to be chosen to shade the

lines accordingly, for shading very much increases the spatial impression of the

resulting images. Illuminated stream lines, where the vector coplanar to the light

and tangent vector is chosen as normal vector, give a much better impression of

the vector �eld structure than at shaded stream lines. However, care must be

taken to select the seed points in such a way that the resulting images do not get

overloaded and confusing. Detecting characteristic structures and depicting them

properly with selected stream lines reduces occlusion and enhances the perception

of the vector �eld structure.

Occlusion yet becomes a major problem when depicting surfaces. Transparency

is useful to let one see through surfaces but impairs the spatial impression of

the surface itself and the relative depth of multiple layered surfaces. The general

approach is to use a sparse, opaque texture so the surface can be seen and seen

through the same time. Standard hardware texture-mapping routines can be used

to apply a opacity-modulating texture to a surface. This increases very much the

perception of the shape of the surface itself but often impairs the perception of

the inner structures. Other approaches try to emphasize characteristic parts of the

surface, e.g., by depicting ridge and valley lines or by de�ning strokes dependent

of the curvature of the surface. When depicting stream surfaces it is desirable

to visualize the direction of the ow too what is nicely done by stream arrows,

arrow-shaped textures mapped to the stream surfaces.
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