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Abstract

The most important part of 3D visualization of tomographic data is an object model
reconstruction. The traditional reconstruction techniques include some artefacts since the
distances between slices are too big. We cannot scan the CT slices of smaller distance due
to either the radiation dose or the time. We have developed a new statistical reconstruction
technique based on both data modelling by Markov random �elds and �nding solution by
Simulated annealing algorithm.
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1 Introduction

CT scanner provides an information about scanned object, which is put in set of 2D projec-
tions - two dimensional pictures, slices. This slices are saved in a digital form and ready for
other use.

Visualization is a very important part of CT slices processing. This scanned data visualiza-
tion might be based on simple display of single pictures or on a more di�cult reconstruction
of a 3D object model. We are particularly interested in this second part of the CT slices
visualization.

Traditional interpolation techniques contain many di�erent artifacts (postaliasing, pre-
aliasing, ringing . . . ), which arise while scanning an object (noise) or during the reconstruc-
tion itself. This artifacts depend on the size of interval the object was scanned within. It
was a reason which led us towards the idea of creating a new reconstruction technique. This
technique suppresses previously mentioned artifacts and uses parameters obtained from CT
scanner.

The main goal of our work is to introduce a new statistical reconstruction technique
which uses both Bayesian paradigm and data modelling by Markovov random �elds (MRF)
tomographic data processing. A new consequential model is created according to the qualities
of CT scanner and scanned data. Our program interpolates data with this new technique.



2 Traditional reconstructions and their defects

Traditional reconstruction techniques are based on the convolution of interpolation �lter with
sampled data. The problem arises when the slices are scanned with big distances. This problem
is formulated by Shanon ([13] [10]): Sampling interval T has to ful�ll the relation

T <
1

2fmax

; (1)

where 2fmax is the heightest Fourier spectral component in the sampled function and T = 1

fs
,

sampling frequency fs is also called Nyquist rate.

Sampling a signal at a rate lower than postulated by Shannon leads to a very serious
parasitic e�ect: aliasing.

In our case (CT slices) aliasing appears because each slice is scanned with some radiation
dose and high resolution CT data are usually taken only from cadavers. In MRI tomography,
scanning a su�cient number of slices for 3D reconstruction requires medically unacceptable
time.

The most commonly used interpolation is linear interpolation [9] or higher interpolation
techniques based on convolution �lter function with sampled data (5b). However, results still
su�er from staircase artifacts and false contours. A great interpolaton technique is shape based
interpolation [6]. Although these techniques work well, removing the staircase artifacts, they
can be used only for segmented objects and not for gray level tomographics.

3 The statistical reconstruction technique

Our technology considers parameters of CT scanner obtained from scanning the homoge-
nous material by this scanner. These parameters inuence such �nal forms of CT pictures as
thickness of slices or noise of apparatus.

We transform the reconstruction problem of 3D object to the 1D object reconstruction.
This 1D object is a perpendicular line on slices (�g. 1a). A value of any pixel of this line is a
value of the function in this point (�g. 1b, c).
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Figure 1: CT - slices

A principle of this proposed technique is based on �nding a solution f � with maximum
likehood (maximalization of a posteriori probability - MAP) by Simulated Annealing (�g. 2).
The function f is modelled by MRF.



Figure 2: Process of reconstruction

3.1 Parameters of CT scanner

The parameters of CT scanner are thickness and radiation intensity. We can express these
parameters by the Point Spread Function (PSF, �g. (3)). The x axis is perpendicular on CT
slice and axis y is paraller to it. Scanned material is a plate with the thickness w and with
the inclination 45� according to the plain of scanning. y axis goes through the slice and x axe
is perpendicular on y, and goes through the �rst intersection of the material with y axis.

We examine an intensity of scanned point in y0.
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Figure 3: The pro�le of a CT slice

The value in point y0 is

f(y0) =
Z +1

�1
g(x; y0)h(x) dx;

where h(x) is PSF and g(x; y0); x 2 (�1;1) are values of scanned material.

Since material is homogenous and scanning under the angle 45� it holds:

g(x; y0) = 0; x > x0;

g(x; y0) = 1; x � x0;

so f(y0) =
R x0
�1 h(x) dx.



Let 2d be the thickness of a slice. To �nd a function h(x) we need only the interval
< �d; d > because values f(y) for y < �d are the same as these of an interval y > d.

Since the plate is scanned under 45� we get x0 = �y0 and therefore

f(y0) =
Z �y0

�1
h(x) dx =

Z 0

�1
h(x) dx +

Z �y0

0

h(x) dx = K +H(�y0); (2)

where K is a constant and H(y) is a primitive function according to h(x).

Deriving (2) we get

f 0(y) = h(y) y 2< �d; d >

We �nd an interval < �d; d > from a CT slice.

But the function f(y) on interval < �d; d > is discrete and so we can substitute f(y) by
the set of values f = ff0; f1; : : : ; fmg. Then

hi = (fi � fi�1)=di i = 0; : : : ; m;

where di is a distance between neighbor points.

We choose an approximate function (e.g. Gaussian) from these points or we use directly
these points.

3.2 Markov and Gibbs Random Fields

Let S is a discrete set of sites [7].
S = f1; : : : ; mg

A site often represents a point or a region in the Euclidean space as an image pixel. A
rectangular latice for a 2D image of size n� n can be denoted by

S = f(i; j)j1 � i; j � ng

Let L is a discrete set of labels (values, e.g. 256 level of grayscale). The function f

f : S 7! L fi = f(i)

is called mapping from S to L and f = ff1; : : : ; fmg. Function f is also called con�guration.

When all the sites have the same labels L, the set of all possible labelings is the following
Cartesian product

L = L � L� : : :� L| {z }
m

= Lm;

where m is the size of S.

The sites in S are related to each other via a neighborhood system N (�g. 4) [7]

N = fN ij 8i 2 Sg;
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Figure 4: 4-neighborhood and 8-neighborhood

where N is the set of sites neighboring i.
For a regular lattice S is a neighbor set of i de�ned as

N = fi0 2 S j djpixeli; pixeli0 j
2 < r; i0 = ig;

where djA;Bj denotes the Euclidean distance between A and B.

A clique c for S with N is de�ned as a subset of sites in S. A single-site clique is c = i, a
pair-site clique is c = i; i0, a pair-site clique is c = i; i0; i00. The collections of these cliques are

C1 = fij i 2 Sg

C2 = f(i; i0)j i0 2 N ; i 2 Sg

C3 = f(i; i0; i00)j i; i0; i00 2 S are neighborsg

F is a random �eld if F = fF1; F2; : : : ; Fmg is a set of random variables de�ned on S in which
each variable Fi takes a value fi z L (denotation is Fi = fi). We denote the probability P (Fi =
fi) as P (fi). And the join probability is denoted P (F = f) = P (F1 = f1; : : : ; Fm = fm) or
abbreviated P (f).

F is said to be a Markov random �eld on S with respect to a neighborhood system N if
and only if

P (f) > 0 8f 2 L

P (fij fS�fig) = P (fij fN ); Markovianty (3)

where S � fig = f8k 2 S; i 6= kg; fN = ffi0j i
0 2 N g. The Markovianty depicts the local

characteristics of F . The label at a sites are depend only on neighboring sites.

F is said to be a Gibbs random �eld on S with respect to a neighborhood system N if and
only if

P (f) = Z�1
� e�

1

T
U(f); (4)

where Z =
P

f2L e
� 1

T
U(f) is a constant called the partition function, T is a temperature and

U(f) is the energy function. Energy is

U(f) =
X
c2C

Vc(f) =
X

fig2C1

V1(fi) +
X

fi;i0g2C2

V2(fi; fi0) + : : : (5)

Obviously, the Gaussian distribution is a special member of this Gibbs distribution family.

The Hammer-Cli�ord theorem [7][4] establishes the equivalence of MRF and GRF.

Theorem: F is a MRF on S with respect to N if and only if F is a GRF a S with respect
to N.

Result: If F is a MRF where f 2 L then we can express P (f) as (4).



3.3 Reconstruction and probability

Let forig � L is the scanning object de�ned on Sf � S and d � L are data de�ned on Sd � S.
In general, a model can be expressed as

d = '(forig) + e or di = '(fi) + ei (6)

where '(�) is a nonlinear operator, e is a noise and '(fi) =
Pa

j=1 h(j)f0(i� j); h(�) is PSF
CT-scanner or if we use the set of value hj from CT scanner then h(j) = hj. The operator
' is the convolution PSF or set of labels obtained from CT scanner (section 3.1) with the
object.

Let f � L is any set of values de�ned Sf � S. We want to �nd so f that the probability
P (f=d) is maximal. So the solution is

f � = arg max
f2L

P (f=d): (7)

We express relationship between scanned data and the set of values f by Bayes formula [7]:

P (f=d) =
P (d=f)P (f)

P (d)
(8)

P (f=d) is a conditional probability (a posterior probability) where d is �xed. Probability that
F1 = f1; : : : ; Fm = fm for 8Fi 2 Sf provided F

0

1 = d1; : : : ; F
0

m = dm for 8F
0

i 2 Sd

P (d=f) is probability that F = d; 8Fi 2 Sd if F
0

= f ; 8F
0

i 2 Sf

P (f) is probability of event f , or F = f ; 8Fi 2 Sf (a priori probability)

P (d) is probability, that s = d; 8Fi 2 Sd which is �xed for 8f 2 L.

From (6) and (8) (e is independent on f) issue

P (d=f) = P (['(f) + e = d]=f) = P ([e = d� '(f)]=f) = P (e = d� '(f)) (9)

Since Gaussian distribution is a special case of Gibbs distribution, we assume e have Gaussian
distribution e � N (0; �2).

And so

P (d=f) = 1

�
p
2�
e�U(d=f) (10)

U(d=f) = (d� '(f))2=2�2 =
Pm

i=1 (di � '(fi))
2=2�2 (11)

Since P (d) is �xed for 8f 2 L:

f � = arg max
f2L

(P (f=d)) = arg max
f2L

(P (d=f):P (f)) (12)

from (4): P (f) = Z�1 � e�U(f) where Z is a constant and from (10): P (f) = K�1 � e�U(d=f)

where K is a constant, we get:

max(P (f):P (d=f))() min(U(f):U(d=f)) (13)

We shall express energies U(f) and U(d=f) in the following section 3.4.



3.4 Energy

The energy function depends on an contextual constraint. We are interested in the energies
U(f) and U(d=f), where U(d=f) is known (10) and U(f) we choose from the type of scanning
function (1c). This function is a piecewise continuous and her set of values is ordered. And
from these features we create the energy function U(f).

A general contextual constraint is the smoothness. For spatially continuous MRFs the
smoothness prior often involves derivatives.

U(f) =
Z
(f 0a(x))

2 dx; (14)

The energy takes the minimum value of zero only if f is absolutely at.

But we use discrete values so we use the �rst order approximation of the �rst derivative

U(f) =
X
i2I

(fi � fi�1)
2 =

X
c2C

Vc(f) =
X
i2S

X
i02Ni

V2(fi; fi0); (15)

where fi = fa(xi) a I is set of indexes where the disrete function is de�ned.

In general, we can express the function pair-potencials as

V2(fi; fi0) = g(fi � fi0) (16)

For the purpose of restoration, the function g is generally even

g(�) = g(��) (17)

and nondecreasing on interval h0;1)
g(�) � 0 (18)

When f does not contain discontinuities, g(�) is usually a quadratic function g(�) = �2. To
encode piecewise smoothness, g has to satisfy a necessary condition

lim
�!1
jg0(�)j = C <1; (19)

where C 2 h0;1) is a constant. The condition (19) allows for � ! 1 discontinuities. A
possible choice is the truncated quadratic funcion

g(�) = minf�2; �g (20)

If we assume the aditive Gauss noise, e � N (0; �2), the energy U(d=f) is (10).

We can express the join probability as

E(f) =
X
i2S

('(fi)� di)
2=(2�2) +

X
i2S

X
i02N i

g(fi � fi0);

or equivalently
E(f) =

X
i2S

('(fi)� di)
2 + �

X
i2S

X
i02N i

g(fi � fi0);

where � = 2�2. We control the present of the noise in the picture by parameter, �. If no noise
is present then � = 0.



In the 1D case where set of sites is S = f1; : : : ; mg and set of the nearest neighbors i is
N = fi� 1; i+ 1g, we can (3.4) express as

E(f) =
mX
i=1

('(fi)� di)
2 + 2�

mX
i=2

g(fi � fi�1); (21)

Li [7] put for g(�), when g(�) piecewise smoothness function, function (20) or another
functions issued from Euler equation [3] and the conditions (17), (18) and (19)

g1(�) = �e��
2

g2(�) = �
1

1 + �2

g3(�) = ln(1 + �2) (22)

g4(�) = j�j � ln(1 + �2)

g5(�) = j�j

We have get the best results with functions g4 and g5.

3.5 Minimalization

We use Simulated Annealing (SA) [7] for minimalization of the energy E(f). SA simulates
the physical annealing procedure in which a physical substance is melted and then slowly
cooled in a search of a low energy con�guration. For the escape from the local minimum to
the global minimum the Metropolis algorithm is used. At each step the following con�guration
f 0 is randomly chosen from N(f) (the vicinity of f), for instance, by changing one of the fi's
into a new label f 0i .

Metropolis:

initializef ;

repeat

generatef 0 2 N(f);

4E  E(f 0)� E(f);

P = minf1; e�4E=T
g;

if randomh0; 1) < P thenF  f 0;

until (equilibrium is reached)

return f

SA applies a sampling algorithm, Metropolis, successively at the decreasing values of the
temperature T . The starting temperature is choosen from Metropolis algorithm: T is the start
temperature when number of accepted statuses is 70% - 80%. Number of iterations we can
choose 10n or 5n, where n is a number of sites. The decreasing sequence of temporary must
satisfy limt!1 T (t) = 0. So T (t) we can choose as T (t) = C

ln(1+t)
or T (t) = �T (t�1)



Simulated Anealing:

initialize T and f ;

repeat

randomly sample f 0 2 N(f) under T ;

Metropolis(T; f);

decrease T ;

until (T > Tmin)

return f

4 Conclusions

The proposed technique o�er new recourses of reconstruction object model and it seems to
be a good tool to respectable reconstruction from the CT slices. However, the problematic
part of these reconstructions is a choice the right energy function g(�) which we choose as
(22). The corect choice of this energy is described in [7]. The best functions from these are g4
and g5 (�g. 5c). The statistical interpolation also allow us to manipulate with the thickness
of slices, the noise and type of smoothness.

Figure 5: (a) Original object (b) traditional technique (c) statistical reconstruction

References

[1] Raj Acharya, Richard Wasserman, Je�rey Stevens, Carlos Hinojosa, Biomedical Imag-

ing Modalities: A Tutorial. Computerized Medical Imaging and Graphics 3-24, 9 May,
USA 1994.

[2] Jozef Bruna, Alois Sehr, Celotelova vypocetni tomogra�e. vyd. Avicennum Praha, 1988.

[3] R. Courant and D. Hilbert, Methods of Mathematical Physics. vol. 1, Interscience
Publisher Inc., New York, 1953

[4] U. B. Desai, Markov Random Field Models for Early Vision Problems. U. B. Desai
India, July 1993.



[5] Andrew S. Glassner, Principle of Digital Image Synthesis.Morgan Kaufmann Publish-
ers, San Francisco, California 1995

[6] G.T. Herman, J. Zang, C.A. Bucholts, Shape-based interpolation. IEEE Computer
Graphics and Applications, pp. 69-79, March 1992

[7] Stan Z. Li, Markov Random Field in Computer Vision. Springer, 1995.

[8] Stephen R. Marschner, Richard J. Lobb, An Evaluation of Reconstruction Filters for

Volume Rendering. IEEE Computer Graphics and Applications, pp.100-108, 1994

[9] J. Anthony Parker, Robert V. Kenyon, Donald E. Troxel, Comparison of Interpolating

Methods for Image Resampling. IEEE Transactions on Medical Imaging, MI-2 pp.31-
39, March 1983

[10] John G. Proakis, D. G. Monolakis, Digital Signal Procesing. MacMillan Publishing
Company, 1989.

[11] Milos Sramek, Visualization of Volumetric Data by Ray Tracing. PhD thesis, Wien,
June 1996

[12] Erich Veach, Leonidas J. Guibas,Metropolis Light Transport. Computer Graphics Pro-
ceedings, pp. 65-76, SIGGRAPH, Addison Wesley, Los Angeles 1997

[13] R. Weit, Digital Biosignal Processing. Elsevier Science Publishers B. V. 1991


