Using VRML for creating inter active demonstrations of
physical models

Karel Cibulka, Jiri Zara
Czech Technical University, Faculty of Electrical Engineering,

Department of Computer Science and Engineering, Prague, Czech Republic
e-mail: xcibulka@hwlab.felk.cvut.cz zara@fel.cvut.cz

Abstract

We present utilization of VRML language as atool for interactive visualisation of physical
simulations. Techniques for creating interactive and visual simulations are analysed and practically
implemented in form of a VRML library. Primary effort is focused to the real-time interactive work,
but the off-line visualization of large data sets obtained from other simulation systemsis allowed as
well. Examples show that the proposed approach is easy to use, flexible and powerful enough to
visualize both simple and more complex processes.

1 Introduction

With growing number of powerful computers being available to larger number of people, utilization ¢
computers for more tasksisincreasing. One of possible domains for using them is computer
simulation of areal world or more particularly of physical phenomena. There are not many simple and
yet available tools or programs, that enable creating that kind of simulations, that is why users are
forced to create them by themselves. Creating of the simulations by thisway is not acceptable for
many users. The approach of using awell-known and fairily available programming language is tested
as asolution of previously presented problem, so that user can use our work for creating of
simulations with minimal programming experience. VRML language is chosen as a primary modeling
environment for its capability to create interactive 3D worlds, wide availability on all types of
computers, and great extendibility through scripts.

The structure of this paper is organized as follows. Basic simulation concepts of real world

simulations on computers are discussed inChapter 2. In Chapter 3 these simulation concepts are
implemented in VRML language. A group of utilities for assembling of simple simulations (Simulation
Tool Box (STB) library) is presented inChapter 3.1 . Experimental simulations constructed with STB
library are presented inChapter 4.

2 Simulation and visualisation

The simulation and visualisation of real world is a very extensive task, with avariety of problemsand
subtasks. For our purposes we will simplify the problems, theoretically covering the task of
mathematical solving and representing of simulated phenomena. Let us assume, that auser is ableto
express the mathematical representation of a problem and he or she wants to embed this mathematical
model only into avisual representation. If simulations are examined by means of their visual
representation in computers, they can be divided into two separate groups.

Thefirst group, called "off-line" simulations, represents simulations, in which a user obtains computed
values from a mathematical program outside simulation. Computation related to creating of simulation
key valuesis not directly inside the simulation.

The second group, called "on-line" simulations, represents simulations containing some sort of control
that implement mathematical model of simulated phenomena. The user can change simulation

parameters interactively, thereby he or she can immediately affect behaviour of the ssmulation.

Implementation of simulations and their visualisation can be generally divided into severa parts (as
shown inFigure 1):

* Visua model, which represents simulated phenomena or behaviour.

* Graphical User Interface, dedicated to controlling of input values, visual representation and the
run of ssimulation.

e Simulation control, which controls behaviour of simulation in response to user or other events.

Simulation

6uI k= Simulation — Visual

control model

Figure 1: Basic smulation partsand their communication.
Each part of smulation is discussed in following chapters.
2.1 Visual model

Objective of all smulationsisto present results of mathematical computations (generated from an
experimental theory or from an observation of real phenomena) to a user in areadable and
understandable form. Primarily it isin form of tables of numbers, graphs or animated visualisation of
simulation. The focusis set on the third form of visualisation, which enables creating applicationsin
an interesting visual form, understandable also for users that are not theoretically familiar with
presented problems.

2.2 Graphical User Interface

Main task of GUI isto create avisual interface between a user and a simulation control. This
represents a set of visual displays that show actual state of simulation and simulated phenomena (e.g.
different types of indicators, such as digital displays), and a set of control elements that allows
interactively interfere with smulation (e.g. different types of buttons, controllers).

2.3 Simulation Control

The tasks of simulation control can be divided into two parts, each communicating with the other.
Thefirst part isthe simulation control related to GUI. It traces user requests to change simulation
parameters and supplies values for displaysin GUI. The second part is related to control the run of
simulation. It changes visual representation of simulation based on simulation parameters supplied

from mathematical model (previously presented on-line type of simulation), or from other simulation
program (off-line type of simulation). Particular properties of this division is discussed in next two
chapters.

2.3.1 Off-line simulation

This set of simulations uses an independent program, which can implement sophisticated algorithms
and procedures for precise creation, representation and problem solution. Problems solved by this
program can be so complex, that the results cannot be computed in real time. Then the computed data
are preprocessed and finally sent to the simulation control. The off-line simulation present them to a
user. The advantage of this approach is precision of computation model, which is based on program
dedicated to solve simulation problems. This program can compute large simulation problems
independently on user’s machine, which is used only for presenting results to a user. In this case the
visualisation is almost independent on mathematical model previously used. On the other hand the
user is not able to view result dependecy on change in input parametersin real-time (e.g.
immediately). TheFigure 2 represents block diagram of off-line simulations.

General simulation solving machine
or program

General simulation
solving engine

m_— Simulation on
simulation parameters computed data yser's machine

b

Data
converter

6UI kK= Simulation — Visual

control model

User

(910)k

—

Figure 2: Off-line simulation scheme.
2.3.2 0On-line simulation

For primitive simulations, which do not need complex computations, the solving of problem can be
incorporated into simulation control. This type of simulation can reflect user’s changes of input values
of ssimulation immediately (or almost immediately, depending on implementation of simulation
computation algorithm). Main disadvantage is restriction to mathematical or algorithmic simple
simulations, because computation must be performed in real time, during simulation presentation.
Simulation is limited to user’s computer resources, which are already used in visualisation engine. The
second disadvantage can be the implementation of simulation solving engine directly in simulation
model. For new algorithms used for solving the same problem it is heeded to change simulation
control. Thistype of simulations can be divided into two groups, each of them is applicable for
different tasks:

* Passive on-line simulations. Simulation solving engine computes behaviour of visualisation
model once for one change of input values and then it "sleeps” until input values are changed
again. Thisgroup is analogy of off-line simulations with the exception, that off-line ssimulations
do not contain solving engine inside simulation. Passive simulations can be aso used for
simulating phenomena, which are independent of time (e.g. ssimulation of non-kinetic models).
One good example can be ssimulation of reflection or refraction of rays inside a user defined and
modified environment.

* Active on-line simulations. Simulation solving engine computes continuously behaviour of
visualisation model based on current state of input values and on current time inside simulation.
Such models can have kinetic equations implemented in simulation solving engine, which
computes e.g. position based on actual time of simulation. This sort of simulations assume
knowledge of the solution based on time, and it must be sufficiently simple to be computed in
real time. Active simulations implement only simple simulations, main advantage of this solution
Isimmediate response to user changes of input values. An example can be simulation of
pendulum, based on all the parameters defined by the user (e.g. gravity).

Figure 3 shows block diagram of both on-line simulation groups.

Simulation on user's machine

Simulation
solving

6UI k= Simulation — Visual

control model

User

(910)

—

Figure 3: On-line smulation scheme

3VRML

The Virtual Reality Modeling Language (VRML) isafile format for describing interactive 3D objects
and worlds. Now it is defined as 1SO standard | SO/IEC 14772-1;1997, for further information look at
web site http://www.vrml.org/Specifications/VRML97/index.html VRML is designed to be used on
the Internet, intranets, and local client systems. VRML is aso intended to be a universal interchange
format for integrated 3D graphics and multimedia. VRML may be used in avariety of application
areas such as engineering and scientific visualization, multimedia presentations, entertainment and
educational titles, web pages, and shared virtual worlds. VRML has been designed to fulfil several
requirements:

» Enable the development of computer programs capable of creating, editing, and maintaining
VRML files, aswell as automatic translation programs for converting other commonly used 3D
fileformatsinto VRML files.

* Provide the ability to use and combine dynamic 3D objects within aVRML world and thus
allow re-usability.

* Provide the ability to add new object types not explicitly defined in VRML.

» Capable of implementation on awide range of systems.
* Emphasize scalable, interactive performance on awide variety of computing platforms.
e Enable arbitrarily large dynamic 3D worlds.

VRML is capable of representing static and animated dynamic 3D and multimedia objects with
hyperlinks to other media such as text, sounds, movies, and images. VRML browsers, as well as
authoring tools for the creation of VRML files, are widely available for many different platforms.
VRML supports an extensibility model that allows new dynamic 3D objects to be defined allowing
application communities to develop interoperable extensions to the base standard. There are mappings
between VRML objects and commonly used 3D application programmer interface (API) features.
Each VRML file:

* implicitly establishes aworld coordinate space for al objects defined in thefile, aswell asall
objectsincluded by thefile

* explicitly defines and composes a set of 3D and multimedia objects

e can specify hyperlinks to other files and applications

 can define object behaviours

Main structure of language is based on object oriented programming concepts. All parts of VRML
scene is defined by group of object definitions in the source text of scene. It is defined by "nodes’, in
OOP terminology they can be called objects. Nodes have defined internal data - "fields" with default
initial value, which can be redefined. Each node can contain input and output fields, called eventln and
eventOut. They generate or receive events to/from other nodes. This events are for example changes

of object position or node' s field value. For passing events between nodes mechanism of routesis
created. ROUTE keyword defines interconnection between eventln of one node (destination of event)
and eventOut of second node (source of event).

Nodes are grouped by their functionality into several categories:

1. Visible geometry Nodes Nodes representing basic geometric primitives Gox, Spher e, Cone,
Cyl i nder), extended geometric primitives (ndexedFaceSet , Ext r usi on, Text), Special
objects (I ndexedPoi nt Set , | ndexedLi neSet). Nodes used for changing visual representation
of geometry by defining its colour (vat eri al) and textures (I rageText ur e, Movi eText ure).
Nodes used for changing background of scene (Backgr ound) and nodes adding special visual
effects (Fog).

2. Invisible geometry Nodes: These nodes are not directly visible, but they can affect visual
representation of other visible nodes in scene. Nodes used for defining lightsgoi nt Li ght ,
Spot Li ght) belongsin this category. Node used for predefining starting location of viewer
(Vi ewpoi nt)

3. Sensors: Invisible nodes which enables direct interaction with user fouchSensor ,

Pl aneSensor , Cyl i nder Sensor). Nodes detecting movement of user (Pr oxi mi t ySensor) or
other events created by user movement (Vi si bi | i t ySensor).

4. Control Nodes. Nodes used for interpolating values between defined set of key-values
(Ool orlnterpol ator , Positionlnterpol ator , Rotationlnterpol ator ,

Scal ar I nt er pol at or), time generator (Ti meSensor) and script nodes containing
programming code in Java or JavaScript (Scri pt).

5. Browser communication: Nodes used for interaction with host browser (Navi gat i onl nfo) or
used for creating linksto other HTML or VRML documents (Anchor).

6. Special nodes: Nodes used for grouping other children nodes thus enabling creation of
hierarchical structure of nodesin scene (G oup, Transform, Bi | | board, Col | i si on, Swi tch,
LoD). Sound emitting node (Sound). Node changing style of text nodes (Font St yl e).

3.1 VRML and simulation

Basic structure of interaction processin VRML sceneisonFigure 4.

Sensor] Script 3| Timer =] Interpolator > Geometry

Figure 4: Scheme of interaction processin VRML

A user does some interaction with VRML scene, affecting Sensor node. Sensor node then generate an
event, which is processed through Script and is sent to TimeSensor. TimeSensor starts generating
time events, used for interpolating in Interpolator node. Output of Interpolator node is routed to
Geometry or other node. Thisisavery basic concept, some of described nodes can be bypassed or
some other can be inserted into the event route. In the VRML scene more of these event routes can
be used independently or they can affect each other.

Simulation parts described inChapter 2 can be implemented in VRML in the way schematically
described on Figure 5 .

GUL
Input component Display
GUI GUI
Sensor geometry geometry
J/ 1\ A
&UTL &UT
script script
Sim. control
k.
Control N
script ¢ TimerSensor
Sim. geometr
S B 3 N 3
TimerSensor |=>| Interpolator > Model
m r g po r 4 Qeﬂﬂ'l'B'h"f

Figure5: Simulation structurein VRML

Simulation control part controls operation of the whole VRML scene. It isimplemented byscri pt
node. Script gets input values from input GUI nodes, creates values for output GUI nodes and
communicates with scene geometry. In off-line simulations Script does not compute any new values
for scene geometry, it controls only "playback™ of precomputed values stored in interpolator nodes.
Scripts in on-line simulations are more complex, they must compute actual values of simulation based
on values from input GUI nodes. Script node is interconnected with TimeSensor node, which is used
for generation of simulation time.

GUI isdivided into two parts: input components (nodes used for user input) and output components -
displays (nodes presenting data to user). These components can contain sensors (input components
only), visible geometry and control scripts implementing behaviour of component. Input and output
events from them are then routed to control script.

Simulation geometry contains geometry used for visualization of simulation subject. For off-line
simulations there is also an interpolator node, used in conjunction with TimeSensor for playback of
precomputed key values of simulation.

3.2 The Simulation Tool Box

Based on concepts introduced in Chapter 3.1, library of basic elementsis proposed. It contains basic
components used for building ssmple ssimulations. Thislibrary is called Simulation tool box or STB. It
Is created using concept of external VRML prototypes (EXTERNPROTO), which enable to create new
types of nodes. The nodes are defined outside main simulation VRML file and they are imported using
EXTERNPROTO keywords. Main simulation file then contains only references to used external nodes,
geometry used for visualization of simulation and main simulation script.

STB library is divided into three parts:

* Input GUI components - Components used for data input; this part implements set of buttons,
scrollbars, knobs etc.

e Output GUI components - Components used for displaying data; this part implements set of
indicators, gaugers, displays etc.

e Other components - Set of auxiliary components, designated for simplifying common tasks (e.g.
steppable TimeSensor or components used for data conversions between different VRML data

types).
4 Examples

For demonstration purposes few simple examples of smulationsin VRML are created. In this chapter
implementation of STB library fromChapter 3.2 and its utilization in a pendulum example is presented

4.1 Simple STB library implementation

Example of simple STB library contains set of usable components, implementing GUI components
and simple auxiliary components.

Input GUI componentsin library are constructed from visible geometry, used in conjunction with
VRML sensors and control script to convert user input to VRML data. Data types supported by STB
library for input components are following:

* SFBool ean: Implemented by set of buttons (i npBut t on).

* SFInt 32: Implemented by switches (npMul ti Swit ch).

* SFFl oat : Implemented by set of scrollbars, knobs a digital calculator { npScr ol | Bar ,
i npKnob, i npFl oat Di gi t al Cal ¢).

Other data inputs can be done by using standard types and converting components (e.g. three
SFFI oat datainputs can be converted to one SFCol or datavalue).

Output GUI components utilizes scripts. They then control visible geometry, used for displaying data
values. Data types supported by STB library for output components are following:

* SFBool ean: Implemented by indicators @i sShowBool).

* SFInt 32: Implemented by indicators with multiple shapes or colours i sShow nt 32).

* SFFl oat : Implemented by set of scrollbars and knobs @i sShowFl oat , di sShowFl oat Knob) or
by digital display @i sShowFl oat Di gi t al).

* SFString: Components used for creating text labels (di sText Label).

Other VRML types can be converted to supported data types (e.g. SFCol or converted to three
SFFI oat values can be displayed by three scrollbars).

Auxiliary components are various data converters used for converting smple VRML data types
(SFBool ean, SFI nt 32, SFFI oat) from/to other datatypes (e.g. SFCol or). They contain only a
converting script, which converts input data types to different output data types. During conversion it
Is possible to adjust input value (e.g. by linear scaling). Examples of this conversion components in
STB library are:

* conBool I nt 32: Converts SFBool ean to two possible SFI nt 32 values.
* conFl oat Vec2: Convertstwo SFFI oat valuesto one SFvec2f value.
* conCol Fl oat : Converts SFCol or valueto itsthree SFFI oat components.

Next set of auxiliary components are supporting scripts, like steppableTi meSensor and script
implementing simple control panel. Steppableri meSensor component (st epTi neSensor) isable to
generate time events like standard Ti neSensor , or time can be stepped by defined time slice forward
or backward. Generated time can be also accelerated or decel erated with respect to real time (e.g. one
second in simulation can be 10 secondsin real time).

Table 1 shows program interface (EXTERNPROTO) of a component from STB library. ThiSEXTERPROTO
isincluded in source code of VRML scene. Then the component is used in the same way as standard
nodes, that is by its name and definition of new values.

EXTERNPROTO i npScrol | Bar [# Scrol|l Bar input conponent
field M-Node sbKnobObj ect # scroll bar’s knob geonetry
field SFFl oat m nVal ue # M n/ Max range of data

event I n SFFl oat set mi nVal ue
field SFFl oat maxVal ue
event I n SFFl oat set nmaxVal ue
field SFFl oat val ue # data val ue
event |l n SFFl oat set val ue
event Qut SFFl oat val ue_changed
] "inpScrollBar.wl"

Table 1: Programming interface of i npScrol | Bar component from STB library
Implementation of each component is divided into four parts, each part has following meaning:

1. Component header - contains VRML file header and definition ofPROTO header, in which all
public data fields and events of component are defined.

2. Component geometry - contains sensor and geometry of component. This part of component is
visibleto auser.

3. Component control script - contains script, which is controlling behaviour of component,
controls data input, output and changes to component geometry.

4. Component routes - this part definesRoUTES used for linking geometry and script of
component.

Figure 6 shows some examples of GUI components.

O
7153 07515 611151213

Figure 6: Examples of GUI components

4.2 Experimental model

We have developed several experimental simulations using STB library presented previously in
Chapter 4.1. One of them is simple mathematical pendulum, implementing well-known simplified
Kinetic equation (seeFigure 7).

¢ = agcos(t g_)

[

Figure 7: Kinetic equation of mathematical pendulum

The equation isimplemented in simulation’s control script. The script receives time events from
Ti meSensor , computes new actual position (rotation) of a pendulum and updates corresponding
geometry. The user can change the gravity, the length and the starting angle of the pendulum.
Example of screen with smulation in phase of setti ng input valuesisiri gure 8.

Figure 8: Setting parameters of pendulum example

When the simulation is started, pendulum starts moving, according to the parameters entered by user.
Set of associated displays shows current values of interest (the angle, the position of a pendulum).

Figure 9 shows example of moving pendulum.

Figure 9: Running simulation of pendulum example

The simulation VRML program consists of 5 parts:

1. VRML file header - contains VRML header and EXTERNPROTOS for components included from
STB library.

GUI part - contains definition of GUI using STB library components.

Smulation geometry - geometrical representation of mathematical pendulum.

Smulation control - a script which controls behaviour of scene.

ROUTES definitions - definitions of event linksin scene.

S A

All calculations needed by simulation are implemented by Script node in simulation control part.

5 Conclusion

The use of VRML as general purpose simulation tool shows several aspects of thislanguage. The
language is well defined and makes possible to create alarge set of interactive simulations. Concept ¢
off-line simulations can enable its usability to visualize more complex simulations.

Most of current problemswith VRML simulations are related to two following problems. The first
problem is computational power (strictly speaking display performance) of wide available computers.
They are not yet powerful enough to animate complex scenes smoothly in real time. We hope that this
problem disappears in near future, as computer industry isinnovating every day with incredible speed.
The second problem is linked with VRML implementation in browsers. VRML as SO standard is
existing about one year and this affects quality of currently available VRML browsers. For working
simulations the support of script nodes is needed (particularly Java or JavaScript language support).
STB library utilizes concept of EXTERNALPROTO definitions, but not all browsers always support these
properties of VRML language correctly.

Presented STB library is only a part of more complex work, which implements set of tools for smple
and interactive construction of smulationsin VRML. STB library implements basic components used
in common simulationsin VRML, like GUI and auxiliary components. It can be used as a standalone
library, components can be imported into any other VRML scenes. Advantage of this concept is
independence of current implementation of componentsin STB library if its program interface remains
the same. Components can be upgraded by means of visual representation and scene, which is using
them, does not need to be changed. Disadvantage of this concept is necessity of manual including of
EXTERNPROTOS definitions into VRML file, because VRML prohibits to import them by single
keyword.

STB library and examples presented inChapter 4 are tested on well-known CosmoPlayer browser
from SiliconGraphics. This browser (by our experience) implements most of VRMLs with minimum
errors.

This articleis focused on basic simulation concepts and their testing in implementation of on-line
simulations. We are working on extending of STB library with tools for visual construction of scenes.
We also pay efforts toward generalization of STB into form, usable by other available products (e.g.
CosmoWorlds). The second task is creation of experimental off-line simulations, which will utilize
general purpose simulation systems as a base source of simulation values. Example of thissystemis
TeleSimulation Project - Simulation of multidisciplinary systems via Internet.

6 References

VRML 97 specification: http://mww.vr ml.or g/Specifications/VRML97/index.html
VRML on SGI site: http://cosmosoftware.conv

Gl CosmoPlayer 2: http://cosmosoftwar e.convdownl oad/player .html

NCSA VRML home: http://notme.ncsa.uiuc.edu/General/VRML/

TeleSmulation Project: http://icosym.cvut.cz/dyn/default.htm

