
Virtual Reality Modeling Language Version 2

Juraj Sofranko
juraj.sofranko@st.fmph.uniba.sk

http://pascal.fmph.uniba.sk/~4sofranko/

Faculty of Mathematics and Physics
University of Comenius

Bratislava, Slovakia

Abstract

The Virtual Reality Modeling Language (VRML) is the tool for creating 3D virtual
worlds on the World Wide Web. Even though it is in its infancy VRML allows you to
realize your visions of the virtual worlds and make them available to everyone on the
Web. The specification defines VRML version 2.0 aims to capture recommended
practice and such to be used as a replacement for VRML 1.0.

Keywords: Anchors, Appearance, Lights, Material, Nodes, Sound, Transformation

1. Introduction to VRML

1. 1 History of VRML

The origins of the VRML date back to the middle of 1994, to European Web
conference in which Tim Berners Lee (father of the WWW and HTML) was talking
about the need for a 3D Web standard. He coined the name VRML (Virtual Reality
markup Language) as an acronym to HTML (HyperText markup Language). The
name has quickly changed to Virtual Reality Modeling Language.

VRML was based on the Inventor file format form Silicon Graphic Incorporated. It
was VRML 1.0. A small extension to VRML, called VRML 1.1. It contained facilities
to add audio clips to a scene and some very primitive animation. But because it was
not enough to create compelling content VRML 1.1 never saw the light of day.

1. 2 The Requirements for VRML 2

SGI and their engineer Gavin Bell, responsible for introducing the VRML
community to Inventor, conceived of three requirements for VRML 2:

1. Composability
2. Scalability
3. Extensibility

Composability allows an author to create a city. Scale it down and place it on the
table like a model. This table can be placed in a building and building on a planet.

Scalability allows worlds of arbitrary size to be created. You can be able to see a
galaxy, zoom in on one planet, then a city, a statue and a bird sitting on head of this
statue. This is difficult due to limits in the precision of computer hardware.

Extensibility allows author to extend the capability of the language for special
purposes. Author can create some new geometric object or multiusers worlds.

The release of VRML 2 specification was announced at Siggraph ‘96.

2. Basic VRML Objects

2. 1. 1 Nodes

Nodes in VRML are some function units. The name of node indicates its basic
function (like Sphere, Cube, and Transform). Nodes contain a list of fields, which
holds values that define parameters for its function. For example

Cone {
 field SFFloat bottomRadius 1
 field SFFloat height 2
 field SFBool side TRUE
 field SFBool bottom TRUE
}

field in Cone node defines height of cone. Some words in example are in bold. I
put them to bold, because they can be actually typed to the VRML file. Every field in
VRML has default value. In example it was 1 for bottomRadius and 2 for height. If
you do not enter any vale in the field it will use the default value for that field. (All
lengths in VRML are in meters and angles are in radians.)

2.2 Shapes, Appearance, Material and Geometry

Creating VRML file only with a Cone node will not do anything. Because you
specified only geometry, not its appearance. You can do this in node Shape.

Shape {
 exposedField SFNode appearance NULL
 exposedField SFNode material NULL
}

The simplest VRML scene cans looks like this:

#VRML V2.0 utf8
Shape {
 geometry Cone { }
}

The Appearance node holds all information to the look of the object.

Appearance {
 exposedField SFNode material NULL
 exposedField SFNode texture NULL
 exposedField SFNode textureTransform NULL
}

The material field holds a Material node. It holds information about what color to
make an object. Other two fields hold information about images that can be wrapped
on or around the object. All fields in Material node are related to the color of the
object.

Material {
 exposedField SFFloat ambientIntensity 0.2
 exposedField SFColor diffuseColor 0.8 0.8 0.8
 exposedField SFColor emissiveColor 0 0 0
 exposedField SFFloat shininess 0.2
 exposedField SFColor specularColor 0 0 0
 exposedField SFFloat transparency 0
}

Let’s extend our example:

#VRML V2.0 utf8
Shape {
 appearance Appearance {
 material Material {
 diffuseColor 1 0 0
 }
 }
 geometry Cone { }
}

2.3 The VRML File Format

As you can see in present examples both start with the same line.

#VRML V2.0 utf8

This line is called VRML header line. Every VRML file must start with one. What
does it mean?

- is actually a sign for comments. If you want write comments to a VRML file
you have to write this sign.

VRML V2.0 – means that file is in VRML format in version 2.0
utf8 – signs that text in file is in utf8 encoding standard. Utf8 is an ISO standard

that allows characters in file to be read by a text editor. It’s UNICODE standard.

2.4 Field Data Types

In next table you can find all VRML data field types. Fields that can hold only
single value start with SF (Single value Field). Fields which start with MF (Multiple
value Field) can holds an array of values. Many SF field types have a corresponding
MF field type.

Type Description
SFBool The Boolean value TRUE or FALSE.
SFFloat A 32-bit floating point value.
SFInt32 A 32-bit signed integer.
SFTime An absolute or relative time value.
SFVec2f A pair of floating point values usually denoted as u, v because they

are most often used to represent texture coordinates.
SFVec3f Three floating point values usually denoted as x, y, z because they are

most often used to represent a 3D position.
SFColor Three floating point values, each between zero and one, representing

the red, green, and blue components of a color.
SFRotation Four floating points value. The first three values represent an axis

(with 0,0,0 being the other point on the axis line) and the fourth value
represents the angle of rotation in radians around that axis.

SFImage A two-dimensional image with one to four color components,
allowing representation of monochrome to full-color images with
transparency.

SFString A UTF8 (international character) string.
SFNode A container for a VRML node.
MFFloat An array of SFFloat values.
MFInt32 An array of SFInt32 values.
MFVec2f An array of SFVec2f values.
MFVec3f An array of SFVec3f values.
MFColor An array of SFColor values.
MFRotation An array of SFRotation values.
MFString An array of SFString values.

2.5 Transformation

VRML use a World Coordinate System. Positive part of axis X goes to the right,
positive part of Y goes up and positive part of Z goes toward to you.

To move, scale or rotate shapes is used the Transform node.

Transform {
 eventIn MFNode addChildren
 eventIn MFNode removeChildren
 exposedField SFVec3f center 0 0 0
 exposedField MFNode children []
 exposedField SFRotation rotation 0 0 1 0
 exposedField SFVec3f scale 1 1 1
 exposedField SFRotation scaleOrientation 0 0 1 0

 exposedField SFVec3f translation 0 0 0
 field SFVec3f bboxCenter 0 0 0
 field SFVec3f bboxSize -1 –1 –1
}

To children field you have to put all shapes which will be changed. If there will be
only one shape you do not have to use the brackets.

First three numbers in rotation field determinate axis of rotation and fourth number
angle of rotation (in radians). Center field sets a point through the axis of rotation
goes. ScaleOrientation field determinates the axis along the object scales.

2.6 Basic Geometric Primitives

Except the Cone has VRML three more basic geometric primitives: Box, Sphere
and Cylinder. Here are their definitions:

Box {
 field SFVec3f size 2 2 2
}

Sphere {
 field SFFloat radius 1
}

Cylinder {
 field SFBool bottom TRUE
 field SFFloat height 2
 field SFFloat radius 1
 field SFBool side TRUE
 field SFBool top TRUE
}

3. Building Complex Objects

3.1 The IndexedFaceSet

VRML allows you define patches of flat surfaces. Two rules govern the definition
of these faces. First, all the points of the patch must be coplanar. If they don’t, some of
browsers will render them wrong and some of them doesn’t render them at all. Second
rule is that surfaces should be convex. They don’t have to, but rendering a non-convex
patches is much expensive then convex.

IndexedFaceSet {
 eventIn MFInt32 set_color Index
 eventIn MFInt32 set_coordIndex
 eventIn MFInt32 set_normalIndex
 eventIn MFInt32 set_texCoordIndex
 exposedField SFNode color NULL
 exposedField SFNode coord NULL
 exposedField SFNode normal NULL

 exposedField SFNode texCoord NULL
 field SFBool ccw TRUE
 field MFInt32 colorIndex []
 field SFBool colorPerVertex TRUE
 field SFBool convex TRUE
 field MFInt32 coordIndex []
 field SFFloat creaseAngle 0
 field MFInt32 normalIndex []
 field SFBool normalPerVertex TRUE
 field SFBool solid TRUE
 field MFInt32 texCoordIndex []
}

Coordinate {
 exposedField MFVec3f point []
}

Here is the simple example of IndexedFaceSet. It is a square.

Shape {
 geometry IndexedFaceSet {
 coord Coordinate {
 point [0 0 0, 1 1 0, 1 0 0, 0 1 0]
 }
 coordIndex [0, 2, 1, 3, -1]
 }
}

The Coordinate node holds four points. They are not in right order. The ordering is
given in the coordIndex field containing the sequence in which the points should be
connected. Each value of coordIndex is an index into a list of coordinate points. The
last value is –1, which indicates the end of surface. The –1 is not necessary in cases,
when face ends with last index in field.

This index system saves a lot of space. By default, only one side of face gets
rendered. This is useful when you are rendering solid objects. If you want render both
sides of face you have to set solid field to FALSE. Counterclockwise order to
clockwise order you can change in field ccw.

3.2 The IndexedLineSet

VRML can also draw 1D objects. Lines are drawn with IndexedLineSet node,
which is similar to IndexedFaceSet.

IndexedLineSet {
 eventIn MFInt32 set_color Index
 eventIn MFInt32 set_coordIndex
 exposedField SFNode color NULL
 exposedField SFNode coord NULL
 field MFInt32 colorIndex []
 field SFBool colorPerVertex TRUE
 field MFInt32 coordIndex []
}

Points are drawn by PointSet. It is not indexed. You have to put there coordinates
by coordinate.

PointSet {
 exposedField SFNode color NULL
 exposedField SFNode coord NULL
}

3.3 ElevationGrid

VRML allows you to create worlds, and for worlds you need some land. The
ElevationGrid node is a right thing for this purpose.

ElevationGrid {
 field MFFloat height []
 field SFBool ccw TRUE
 field SFBool solid TRUE
 field SFInt32 xDimension 0
 field SFInt32 xSpacing 0.0
 field SFInt32 zDimension 0
 field SFInt32 zSpacing 0.0
}

Four fields define the grid of points onto which the height map is applied
xDimension and zDimension defines count of point in x and z axis. xSpacing and
zSpacing defines a distances between this points. Field height defines height of each
point in grid.

4. Object Appearance

4.1 Textures

I have shown you how to apply color on object in Material node. But you can also
add a texture around the surfaces of the object. Textures are added using the
ImageTexture node.

ImageTexture {
 exposedField MFFloat url []
 field SFBool repeatS TRUE
 field SFBool repeatT TRUE
}

The url field has a string, which is the filename of the image, which you want to
apply on the object. As a texture you can use GIF of JPEG files. Mapping on each
object is different. For example for cube is it one copy of image on each face and for
sphere is image wrapped around. Fields repeatS and repeatT allows you to control
when the object is larger then image. Normally, if the texture cannot cover the entire
object it simply repeats. If you want only a single copy of the texture, you can set
repeatS and repeatT to FALSE.

4.2 Transforming Textures

If you don’t like the way that is texture mapped on object you can use
TextureTransform node.

TextureTransform {
 exposedField SFVec2f center 0 0
 exposedField SFFloat rotation 0
 exposedField SFVec2f scale 1 1
 exposedField SFVec2f transformation 0 0
}

Next picture shows you how is TextureTransform node used.

original image simply repeats
image

scale 2 2 translate 0.5
0.5

rotate 0.78
center 0 0

4.3 Changing Text Font Style

For styling text is used FontStyle node.

FontStyle {
 field SFString family “SERIF”
 field SFBool horizontal TRUE
 field MFString justify “BEGIN”
 field SFString language “”
 field SFBool leftToRight TRUE
 field SFFloat size 1.0
 field SFFloat spacing 1.0
 field SFString style “PLAIN”
 field SFBool topToBottom TRUE
}

Fields family and style are changing a look of the font. They both take SFString
value. For font it is SERIF, SANS and TYPEWRITER. For style it is PLAIN, BOLD,
ITALIC and BOLDITALIC. In this time is discussion about using all names of font
which you are using in your system. Size field does not mean absolute size of
characters, but every font has a notation of how tall it must be to look acceptable with
lines are spaced at this distance. Spacing is multiplied by size. Field justify allows you
to align text. This field cans takes two strings. One for horizontal and one for vertical
justification. If you change one of fields horizontal, leftToRight or topToBottom you
can change direction of text for vertical, from right to the left and from bottom to top.
In language field you can choose language from utf8 standard. (For US English it is
en_US, for Chinese it is zh_CN.

5. Using Lights

The human system operates by receiving light reflected by object in the world.
Virtual worlds try to mimic the real world as close as possible. It means light too, but
calculating every bit of light from every possible source is not practical for real-time
rendering. Shortcuts are need. First, the light is computed only for vertexes of the
objects. The surfaces are then colored by interpolating colors. Before the color of the
vertex can be computed the renderer must know the source of all the possible lights in
the scene. Some light is generated by the objects itself (the emissiveColor and
ambientIntensity from Material node). But most of the color of the object comes from
external lights.

In VRML scene you have your own light. It called a headlight. The headlight is
positioned to always look in the same direction as you.

5.1 Simple Lighting

The simplest type of light in VRML scene is the DirectionalLight.

DirectionalLight {
 exposedField SFFloat ambientIntensity 0
 exposedField SFColor color 1 1 1
 exposedField SFVec3f direction 0 0 -1
 exposedField SFFloat intensity 1
 exposedField SFBool on TRUE
}

This light hasn’t got a position in scene. It is used for primary light sources (like
sun; headlight is made with DirectionalLight too). Light coming from
DirectionalLight node takes the form of the parallel rays with directions set up in
direction field. Note that the objects don’t block the rays. VRML doesn’t support
shadows. Light from this source is inside room with no windows too. To eliminate
this effect the DirectionalLight is scoped. It means, that it lights only objects
contained in its group.

5.2 Advanced Lighting

PointLight {
 exposedField SFFloat ambientIntensity 0
 exposedField SFVec3f attenuation 1 0 0
 exposedField SFColor color 1 1 1
 exposedField SFFloat intensity 1
 exposedField SFVec3f location 0 0 0
 exposedField SFBool on TRUE
 exposedField SFFloat radius 100
}

PointLight has the same ambientIntensity, color, intensity as the DirectionalLight,
but rather then having a direction field it has location field. The scope of PointLight is
different from that of the DirectionalLight. Field radius bordered PointLight. The

intensity is not same in all distances around location. The rate at with the intensity
drops off with distance is controlled by the attenuation field.

The most advanced and compute-intensive, light in VRML is the SpotLight.

SpotLight {
 exposedField SFFloat ambientIntensity 0
 exposedField SFVec3f attenuation 1 0 0
 exposedField SFFloat beamWidth 1.570796
 exposedField SFColor color 1 1 1
 exposedField SFFloat cutOffAngle 0.785398
 exposedField SFVec3f direction 0 0 -1
 exposedField SFFloat intensity 1
 exposedField SFVec3f location 0 0 0
 exposedField SFBool on TRUE
 exposedField SFFloat radius 100
}

It has the same fields as a DirectionslLight and a PointLight plus two new fields.
beamWidth is an angle from centerline to the edge of light cone. It defines where the
light starts to drop off. cutOffAngle is an angle measured from the centerline. It
defines a cone where SpotLight no longer illuminates.

6. Sounds and Anchors

6.1 Ambient Sound

Until now we have created silent worlds. Adding sound to these worlds we will
make worlds more interesting. Here are nodes need to make sound in a scene.

Sound {
 exposedField SFVec3f direction 0 0 -1
 exposedField SFFloat intensity 1
 exposedField SFVec3f location 0 0 0
 exposedField SFFloat maxBack 10
 exposedField SFFloat maxFront 10
 exposedField SFFloat minBack 1
 exposedField SFFloat minFront 1
 exposedField SFFloat priority 0
 exposedField SFNode source NULL
 field SFBool spatialize TRUE
}

AudioClip {
 exposedField SFString description “”
 exposedField SFBool loop FALSE
 exposedField SFFloat pitch 1.0
 exposedField SFTime startTime 0
 exposedField SFTime stopTime 0
 exposedField MFString url []
 eventOut SFTime duration_changed
 eventOut SFBool isActive
}

For ambient sound you have to set the values in maxBack, minBack, MaxFront and
MinFront fields to a very large distance. Set spatialize field to FALSE. To source
field goes an AudioClip node, where url holds address of .wav or .midi file. If you set
stopTime to –1 playing sound will not stop until you leave the world.

6.2 Sound with Location

MaxFront and MinFront
define distances in the direction
of the direction field and
MaxBack and MinBack in
opposite direction. With these
parameters you can control a size
of the area in which the sound is
heard. It forms an ellipsoidal
volume of sound, as you can see
on the picture. And you have to
set up field spatialize to TRUE.

6.3 Anchors

In HTML pages you can click on a highlighted text and be taken to another page.
You can also place hyperlinks to VRML worlds. Here is the definition of Anchor
node.

Anchor {
 eventIn MFNode addChildren
 eventIn MFNode removeChildren
 exposedField MFNode children []
 exposedField SFString description “”
 exposedField MFString parameter []
 exposedField MFString url []
 field SFVec3f bboxCenter 0 0 0
 field SFVec3f bboxSize -1 –1 -1
}

url field holds information about address where you will go and children holds all
shapes, which will react on your double-click.

7. Conclusion

VRML in its latest version 2 is very powerful tool for creating virtual worlds on
Web. This was only one third of VRML. If you want to know more about this
specification you can find other information at addresses which I gave you in
references.

8. References

[1] The VRML 1.0 Specification, http://vag.vrml.org/vrml10c.html

[2] The VRML 2.0 Specification, http://vag.vrml.org/vrml20c.html

[3] Campbell Bruce, Marrin Chris: Teach yourself VRML 2 in 21 days, pp. 20-117,
sams.net Indianapolis, 1996.

