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Abstract

The paper is concerned about the question of smooth glueing of triangular Bézier
patches. In the begining polar forms are briefly explained. After that they are
applied on parametric continuity. We’ll obtain a geometric interpretation of C'
and C? smoothly joined Bézier patches.

In the next part we’ll deal in geometric continuity. We will show relations
between derivatives of two maps which are forced by the condition of their
geometric continuity. In the place of shape parameters matrices occur. The rest
of the paper is devoted to investigating of this matrices and reparametrization
functions. It seems that the matrices are not arbitrary, but very strong conditions
are put on them.

1 Basic definitions

1.1 Bézier patches

Let points tg,%;,t, € £? are non-colinear. Then for each u € E? there exist
unique triplet of numbers Ag(u), A1 (u), A2(u) € R, satisfying

u = Ao(u)to + Ar(u)ty + Aa(u)ts; Ao(u) + Aq(u) + Aa(u) = 1.

The numbers Ag(u), A1(u), Ay(u) are called barycentric coordinates of the
point u with respect to the triangle tot1t,.
In next let’s suppose that the points ¢y, ¢, 1, are fixly given.

Polynomial Bﬁk : B* — R defined

B0 = () SN T+ k=

is called Bernsten polynomial. Notice, that all Bernstein polynomials of degree
n (i.e. 1+ j+ k = n) create basis of the space of polynomials of degree at most n.



Let B: E? — E%is defined :
B(u) = Z Bi?k(u)bijk; b;j, are points from B
i+j+h=n

The restriction of this map to Atptyty is called triangular Bézier patch of
degree n. Points b;; are control points a create a control net.

1.2 Polar forms

A map f: M — N is linear iff it preserves linear combinations, i. e.

FOowiug) = > o f(wi); wi€ M, a; € R

f: M — N is affine iff it preserves affine combinations of points :

FQoigs) =2 aif(ui); us €M, Yla;=1, a; € R

f:(M)" — N is multilinear (multiaffine) iff f is linear (affine) in each argu-
ment when the others are fixed.

f:(M)" — N is symmetric iff its value doesn’t depends on the order of argu-
ments. [t means

f(uW17u7r27 .. 'uwn) = f(u1,U2, .. un)

where (71, m2,...m,) is a permutation of the set (1,2,...n).
Now we can approach a definition of polar forms.

Let F is polynomial E? — E? of degree n. Then there exists unique map
[ (E*)" — EY which is multiaffine, symmetric and has a diagonal property, i. e.
flu,...u) = F(u). This map is called (affine) blossom (polar form) of F.

For our cogitations linear blossoms are more usefull. For this purpose we must
present this two special insertions E? to E°:

u = (up,uz) = 4= (ug,us,0)

u=(up,uz) = u=(uguzl)

Linear blossom (polar form) of the polynomial F' : E* — E® is a map f. :
(E3)" — B¢ which is multilinear, symmetric and has a diagonal property, i. e.
felu,u,...u) = F(u). Such map always exist and is unique.

Linear and affine blossoms of the same polynomial F' satisfy

feltn, tn,y .o tn) = flug, ug,y .. uy); u; € F?



2 Parametric continuity

Maps F, G : E? — E? are parametric continuous of the order q in u € E?
if their directional derivatives in u up to order g are the same.

The theory of polar forms can be applied on parametric continuity of surfaces.
But first let’s mention their two important properties:

Let F' be a Bézier patch of degree n with control points b;;, for i + 7+ k =n
with respect to Atgt 1ty and let [ be its polar form. Then
bk = f(thtith);  i+j+k=n

Furthermore if we denote Dgl&mgqF(u) g-th directional derivative of F' in u
with respect to vectors & ...¢,, then the linear blossom of F' : £? — E? satisfy
relation

n!
(n —q)!

Proofs of this properties you can find for example in [3].

D£1£2~~~£qF(u) = f*(an_qélé---éq) (1)

We started to use a simpler and lucider multiplicative notation:
Instead of f(uq,us,...u,) we are going to write f(ujus...u,). By the entry
F(u"*ujuy ... up) we want to say that argument u occurs (n — k) times there.

Therefore, if we want to find out a value of a derivative of a polynomial, we
don’t need to derivate, but it is enough to look at a certain value of its blossom.

From the previous theorem we get conditions for parametric continuity of two
patches:

Let F,G : E?> — E? are triangular Bézier patches and let u be a point from
E?. Then according to (1) F and G are continuous in u of ¢-th order iff

~ A

J@ i) = g (@) =0,

3 Geometric interpretation

3
% €y = to — tl
to er =1ty — 1
€o €2 ea =1g— 1
31

Figure 1: Mapped space



Let’s denote barycentric coordinates of 1o with respect to Atglily as

Aoy A1, Azt g = Aoto + Aty + Agty where Ag > 0. Let Bézier patches F,G map
this point cofiguration in this way:

F: Atotltg — E2

G A%tztl — E2

Further let b;;; are control points of the patch F' and Eik are control points of the
patch G. Let’s investigate a continuity of this two patches along the common edge
L1ty. If we suppose C° continuity, it is obvious, that derivatives in u € #;1, with
respect to e; are the same — it’s the same Bézier curve. So that it is enough to
find only one more direction already, which is lineary independent with e, with
respect to which the maps F, G poses the same derivative. Then the C'! continuity
is satisfied because of the fact that D¢ F'(u) is linear in £ for a fixed u and so the
other directional derivatives can be composed from the mentioned two.

We can write :

to—t = Aolto — t1) + Aa(ta — t1)

€2 = A€o + Ageq

)
u) = AoDe, F'(u) + XD, Fu)
g*(ﬂn_léz) = Ao *(ﬂn_léo) + )\zf*(ﬂn_léﬁ

g(tatith) = Aof(tatsth) + A f(47145) + Ao f(11857)
biij = Xob1ij + Mboiy1; + A2boijy: 1+ =n—-1, u€tity
And thanks to the blossoming we have simply obtained well-known geometric
interpretation of the C'' continuity:

Bézier patches I : Atgtqty, — E¢, G - Atitols are C'! smoothly joined along the
common boundary iff the control points by;;, boiy1;, b14j, boij+1 lie in the same plane
and create an affine image of the quadrangle tot1tot2 (look at fig. 2).

After similar cogitations we can obtain not so known geometric interpretation
of C? continuity:

Bézier patches I : Atotit, — B4 G - Attty are C? smoothly joined along
the common boundary iff moreover there exist points d;; ¢ = 1,...n — 1 such that
verteces by;i;, byiy15, d;, byij11 lie in the same plane and create an affine image of the

quadrangle totitots and also points d;, byit1j, bzjk, biij41 are coplanar and create an
affine image of the quadrangle tot1tots too (fig. 3).

4 Geometric continuity

Let F,G : E?> — E? are maps. Let « € E%. Then F,( are in u geometric
continuous of ¢-th order iff there exist such parametrization of surfaces F, G, that



Figure 2: C'' continuity

Figure 3: C* continuity

they are parametric continuos of ¢-th order.

It means:

F = F(x,y) i.e. is a function of parameters z,y

G =G(s,1) .

Let’s try to reparametrize the map F' and express it by s,t. So x and y will be
written as functions: @ = x(s,t), y = y(s,1). Let both maps are now expressed in
the way, that they are parametric continuous in u = (s, %):



Continuity of first degree:
Fy(u) = Gs(u) N Fi(u) = Gy(u)
For continuity of second degree moreover
Fos(u) = Gs(u) N Fglu) =Ga(u) AN Falu) = Gulu)
But F' has to be derivated as a compound function. Let’s denote
) = L)

Hiti )

Then the relation between derivatives of I' and G with respect to the original
parameters can be expressed by connection matrices

()= () (5) g

G azo b F afy 2a10b10 b Ioe
Got | = | ann by (Fl) + | @001 aiobor + ao1bio  brobor Foy (3)
Gt oz boz Y G(Zn 2001001 5(2)1 Fyy

Let G’ is the matrix of first derivatives of (G, G is the matrix of its second
derivatives and so on. Similary let F” is the matrix of first derivatives of F, F”
is the matrix of its second derivatives and so on. Then the relations (2), (3) and
other can be written in a simpler way:

G/ — QllF/
G// - leF/ —|— QQQF” (4)
G/// — Q13F/ _I_ Q23F// _I_ QSSF”/

Surfaces I and G are in u geometric continuous of ¢-th degree iff there exist
matrices

Qij; ]:1(],@:1]

satisfying the mentioned relations.

We observe that the relations for the geometric continuity of surfaces are very
similar to the ones for the geometric continuity of curves. But as shape parameters
there are matrices ;; instead of real numbers.



5 Geometric continuity of Bézier patches

Now we are going to apply the results of the previous section on the Bézier
patches.

Let Bézier patches F, (¢ are defined on the quadrangle tot1l,ly like this:

F: Atotltg — E2
G A%tztl — E2

Let F' and (G are regularly aparametrized in this way:

F=F(rs)

G = G(s,t)
where parameter r raises in the direction eg, s raises in the direction e; and ¢ in
the direction ey (look fig.1). We suppose C° continuity : F'(0,s) = G(s,0). In the
begining we require geometric continuity of the first order of the patches I’ and

G along the common boundary tit;. It means that for all v from this edge there
exist a matrix Oy, satisfying (2). In this special case it can be written:

DelG _ (@10 b10 DeoF
D62G B o1 bo1 DelF

where a;;, b;; are functions of the point w.

Thanks to the fact that parameter s is common for both F' and G it holds
D.,G(u) = D, F(u) for all u € t1t3 and so a9 = 0 and byp = 1 constantly.

Let a = ag; b = bgy for simplicity. Then :

(211:(2 é) a=a(u) b=bu)

The result can be geometricaly interpreted : Bézier patches are in u geometric
continuous of first degree iff they have in u the same tangent plane.

Let’s continue by investigating of geometric continuity of second degree of two
Bézier patches. Besides the matrix €217, with the specified form, the matrices 247
and €5 must exist, such that

G// — Q12F/ _I_ Q22F//

If we look at (3), we can notice, that all elements of the matrix 45 are already
known, because it is composed only of coeficients occured in €45.

And as for €215, it’s possible to proceed like in the case of 2;;. Because the
same parameter and the derivative of the same curve is considered, it holds

DelelG(u) = D6161F(u) = a0 = b20 = 0



It will be a bit more complicated for the combined derivative:

Deye, G(u) = De, (De, G(u))
= Del(aDeoF(u) + bDelF(u))
= aDel(DeoF(u)) + bD@l(DelF(u))
= 4Dy Flu) + Do, Flu)

and after comparing with (3) we obtain ay; = by; = 0 constantly for all u € t1.
The result of this observations is the next equation :

D. e, G 0 0 D F 0o 0 1 Deyeo

D.e,G]1 =10 0 D OF +10 a b Deye, F

D.,..G c d c a? 2ab b D. . F

€2€2

We could continue similary. After the small cogitation above the equation for
the ¢-th derivative

GO = O F' 4 QuF" + - 4+ Q@ (5)

we realize that if the previous derivatives has been investigated, new coeficients
appear only in matix €}y, — the ¢g-th derivatives of the reparametrization functions
are only there. Let’s look at it more closely.

Let the reparametrization functions @ and y are polynomials of degree m (look

[2]) :
z(u,v) = Z aguv’ A y(u,v) = Z Biiu'v’

i+j<m +j<m

From the matrix Q5 it follows x,, = a;; = 0 and also y,, = b;; = 0. It means
that nor x(u, v) neither y(u,v) contains combined member. Furthermore from €4
it is x, = a19 = 0, 1. e. & doesn’t depend on parameter u. In the case of y it is
a bit different: y, = bjp = 1 constantly along the whole boundary ¢;¢5. It means
that y(u,v) contains u only as a linear member witch coeficient 1. The result can
be written:

z(u,v) = z(v) = Zaivi

y(uv U) =u-+ Zﬁzvl
=0

And then we obtain more specified form of €; :

Clqo bqO 0 0
qu _ e _

A1g-1 blq—l 0 0

Cloq qu Clqo bqO



Only last two members of €2y, can get an arbitrary value.

Let’s look at the result. It seems that if the conditions of GC?~! smooth joining
of the patches F' and G has been formulated and we want to reach smoothnes of
g-th order, it can be determined by only two shape parameters in the matrix y,.
There’s no possibility to manipulate with other matrices occured in the relation
between G0 and F'@ (look (5)). So the geometric continuity of curves and surfaces
are very similar not only because of the form of the equation system (4) but also
because of the constraints for the work with shape parameters.
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