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Abstract

The paper is concerned about the question of smooth glueing of triangular B�ezier

patches. In the begining polar forms are brie
y explained. After that they are

applied on parametric continuity. We'll obtain a geometric interpretation of C1

and C2 smoothly joined B�ezier patches.

In the next part we'll deal in geometric continuity. We will show relations

between derivatives of two maps which are forced by the condition of their

geometric continuity. In the place of shape parameters matrices occur. The rest

of the paper is devoted to investigating of this matrices and reparametrization

functions. It seems that the matrices are not arbitrary, but very strong conditions

are put on them.

1 Basic de�nitions

1.1 B�ezier patches

Let points t0; t1; t2 2 E2 are non-colinear. Then for each u 2 E2 there exist

unique triplet of numbers �0(u); �1(u); �2(u) 2 R, satisfying

u = �0(u)t0 + �1(u)t1 + �2(u)t2; �0(u) + �1(u) + �2(u) = 1:

The numbers �0(u); �1(u); �2(u) are called barycentric coordinates of the

point u with respect to the triangle t0t1t2.

In next let's suppose that the points t0; t1; t2 are �xly given.
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is called Bernsten polynomial. Notice, that all Bernstein polynomials of degree

n (i.e. i+ j + k = n) create basis of the space of polynomials of degree at most n.



Let B : E2
! Ed is de�ned :

B(u) =
X

i+j+k=n

B
4

ijk(u)bijk; bijk are points from Ed

The restriction of this map to 4t0t1t2 is called triangular B�ezier patch of

degree n. Points bijk are control points a create a control net.

1.2 Polar forms

A map f :M ! N is linear i� it preserves linear combinations, i. e.

f(
P
�iui) =

P
�if(ui); ui 2M; �i 2 R

f : M ! N is a�ne i� it preserves a�ne combinations of points :

f(
P
�iji) =

P
�if(ui); ui 2M;

P
�i = 1; �i 2 R

f : (M)n ! N is multilinear (multia�ne) i� f is linear (a�ne) in each argu-
ment when the others are �xed.
f : (M)n ! N is symmetric i� its value doesn't depends on the order of argu-
ments. It means

f(u�1 ; u�2; : : : u�n) = f(u1; u2; : : : un)

where (�1; �2; : : : �n) is a permutation of the set (1; 2; : : : n).

Now we can approach a de�nition of polar forms.

Let F is polynomial E2
! Ed of degree n. Then there exists unique map

f : (E2)n ! Ed which is multia�ne, symmetric and has a diagonal property, i. e.
f(u; : : : u) = F (u). This map is called (a�ne) blossom (polar form) of F.

For our cogitations linear blossoms are more usefull. For this purpose we must

present this two special insertions E2 to E3:

u = (u1; u2) ) û = (u1; u2; 0)

u = (u1; u2) ) �u = (u1; u2; 1)

Linear blossom (polar form) of the polynomial F : E2
! E3 is a map f� :

(E3)n ! Ed, which is multilinear, symmetric and has a diagonal property, i. e.

f�(�u; �u; : : : �u) = F (u). Such map always exist and is unique.

Linear and a�ne blossoms of the same polynomial F satisfy

f�(�u1; �u2; : : : �un) = f(u1; u2; : : : un); ui 2 E2



2 Parametric continuity

Maps F;G : E2
! Ed are parametric continuous of the order q in u 2 E2

if their directional derivatives in u up to order q are the same.

The theory of polar forms can be applied on parametric continuity of surfaces.

But �rst let's mention their two important properties:

Let F be a B�ezier patch of degree n with control points bijk for i+ j + k = n

with respect to 4t0t1t2 and let f be its polar form. Then

bijk = f(ti
0
t
j
1
tk
2
); i+ j + k = n

Furthermore if we denote D�1�2:::�qF (u) q-th directional derivative of F in u

with respect to vectors �1 : : : �q, then the linear blossom of F : E2
! Ed satisfy

relation

D�1�2:::�qF (u) =
n!

(n � q)!
f�(�u

n�q �̂1�̂2 : : : �̂q) (1)

Proofs of this properties you can �nd for example in [3].

We started to use a simpler and lucider multiplicative notation:

Instead of f(u1; u2; : : : un) we are going to write f(u1u2 : : : un). By the entry

f(un�ku1u2 : : : uk) we want to say that argument u occurs (n� k) times there.

Therefore, if we want to �nd out a value of a derivative of a polynomial, we

don't need to derivate, but it is enough to look at a certain value of its blossom.

From the previous theorem we get conditions for parametric continuity of two

patches:

Let F;G : E2
! Ed are triangular B�ezier patches and let u be a point from

E2. Then according to (1) F and G are continuous in u of q-th order i�

f�(�u
n�i�̂1 : : : �̂i) = g�(�u

n�i�̂1 : : : �̂i); i = 0; : : : q

3 Geometric interpretation
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Figure 1: Mapped space



Let's denote barycentric coordinates of et0 with respect to 4t0t1t2 as

�0; �1; �2 : et0 = �0t0 + �1t1 + �2t2 where �0 > 0. Let B�ezier patches F;G map

this point co�guration in this way:

F :4t0t1t2! E2

G :4et0t2t1! E2

Further let bijk are control points of the patch F and ebijk are control points of the

patch G. Let's investigate a continuity of this two patches along the common edge

t1t2. If we suppose C0 continuity, it is obvious, that derivatives in u 2 t1t2 with

respect to e1 are the same { it's the same B�ezier curve. So that it is enough to

�nd only one more direction already, which is lineary independent with e1, with

respect to which the maps F;G poses the same derivative. Then the C1 continuity

is satis�ed because of the fact that D�F (u) is linear in � for a �xed u and so the

other directional derivatives can be composed from the mentioned two.

We can write :

et0 � t1 = �0(t0 � t1) + �2(t2 � t1)

e2 = �0e0 + �2e1

De2F (u) = �0De0F (u) + �2De1F (u)

De2G(u) = De2F (u)

De2G(u) = �0De0F (u) + �2De1F (u)

g
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eb1ij = �0b1ij + �1b0i+1j + �2b0ij+1; i+ j = n� 1; u 2 t1t2

And thanks to the blossoming we have simply obtained well-known geometric
interpretation of the C1 continuity:

B�ezier patches F :4t0t1t2! Ed; G : 4t1et0t2 are C
1 smoothly joined along the

common boundary i� the control points b1ij; b0i+1j;eb1ij; b0ij+1 lie in the same plane
and create an a�ne image of the quadrangle t0t1et0t2 (look at �g. 2).

After similar cogitations we can obtain not so known geometric interpretation
of C2 continuity:

B�ezier patches F : 4t0t1t2 ! Ed; G : 4t1et0t2 are C2 smoothly joined along
the common boundary i� moreover there exist points di; i = 1; : : : n� 1 such that

verteces b2ij; b1i+1j; di; b1ij+1 lie in the same plane and create an a�ne image of the

quadrangle t0t1et0t2 and also points di;eb1i+1j;eb2jk;eb1ij+1 are coplanar and create an

a�ne image of the quadrangle t0t1et0t2 too (�g. 3).

4 Geometric continuity

Let F;G : E2
! Ed are maps. Let u 2 E2. Then F;G are in u geometric

continuous of q-th order i� there exist such parametrization of surfaces F;G, that



Figure 2: C1 continuity

Figure 3: C2 continuity

they are parametric continuos of q-th order.

It means:

F = F (x; y) i.e. is a function of parameters x; y

G = G(s; t) :

Let's try to reparametrize the map F and express it by s; t. So x and y will be

written as functions: x = x(s; t); y = y(s; t). Let both maps are now expressed in

the way, that they are parametric continuous in u = (s0; t0):



Continuity of �rst degree:

Fs(u) = Gs(u) ^ Ft(u) = Gt(u)

For continuity of second degree moreover

Fss(u) = Gss(u) ^ Fst(u) = Gst(u) ^ Ftt(u) = Gtt(u)

But F has to be derivated as a compound function. Let's denote

aij(u) =
@i+j

@si@tj
x(u)

bij(u) =
@i+j

@si@tj
y(u); u 2 E2

Then the relation between derivatives of F and G with respect to the original

parameters can be expressed by connection matrices

�
Gs

Gt

�
=

�
a10 b10
a01 b01

��
Fx

Fy

�
(2)

0
@Gss

Gst

Gtt

1
A =

0
@a20 b20
a11 b11
a02 b02

1
A�Fx

Fy

�
+

0
@ a210 2a10b10 b210
a10a01 a10b01 + a01b10 b10b01
a2
01

2a01b01 b2
01

1
A
0
@Fxx

Fxy

Fyy

1
A (3)

Let G0 is the matrix of �rst derivatives of G, G00 is the matrix of its second

derivatives and so on. Similary let F 0 is the matrix of �rst derivatives of F , F 00

is the matrix of its second derivatives and so on. Then the relations (2), (3) and

other can be written in a simpler way:

G0 = 
11F
0

G00 = 
12F
0 + 
22F

00 (4)

G000 = 
13F
0 + 
23F

00 + 
33F
000

: : :

Surfaces F and G are in u geometric continuous of q-th degree i� there exist

matrices


ij; j = 1 : : : q; i = 1 : : : j

satisfying the mentioned relations.

We observe that the relations for the geometric continuity of surfaces are very

similar to the ones for the geometric continuity of curves. But as shape parameters

there are matrices 
ij instead of real numbers.



5 Geometric continuity of B�ezier patches

Now we are going to apply the results of the previous section on the B�ezier

patches.

Let B�ezier patches F;G are de�ned on the quadrangle t0t1et1t2 like this:

F :4t0t1t2! E2

G :4et0t2t1! E2

Let F and G are regularly aparametrized in this way:

F = F (r; s)

G = G(s; t)

where parameter r raises in the direction e0, s raises in the direction e1 and t in

the direction e2 (look �g.1). We suppose C0 continuity : F (0; s) = G(s; 0): In the

begining we require geometric continuity of the �rst order of the patches F and

G along the common boundary t1t2. It means that for all u from this edge there

exist a matrix 
11, satisfying (2). In this special case it can be written:�
De1

G

De2
G

�
=

�
a10 b10
a01 b01

��
De0

F

De1
F

�

where aij; bij are functions of the point u.

Thanks to the fact that parameter s is common for both F and G, it holds

De1
G(u) = De1

F (u) for all u 2 t1t2 and so a10 = 0 and b10 = 1 constantly.

Let a = a01 b = b01 for simplicity. Then :


11 =

�
0 1

a b

�
; a = a(u) b = b(u)

The result can be geometricaly interpreted : B�ezier patches are in u geometric

continuous of �rst degree i� they have in u the same tangent plane.

Let's continue by investigating of geometric continuity of second degree of two

B�ezier patches. Besides the matrix 
11, with the speci�ed form, the matrices 
22

and 
12 must exist, such that

G00 = 
12F
0 + 
22F

00

If we look at (3), we can notice, that all elements of the matrix 
22 are already

known, because it is composed only of coe�cients occured in 
11.

And as for 
12, it's possible to proceed like in the case of 
11. Because the

same parameter and the derivative of the same curve is considered, it holds

De1e1
G(u) = De1e1

F (u) ) a20 = b20 = 0



It will be a bit more complicated for the combined derivative:

De1e2
G(u) = De1

(De2
G(u))

= De1
(aDe0

F (u) + bDe1
F (u))

= aDe1
(De0

F (u)) + bDe1
(De1

F (u))

= aDe0e1
F (u) + bDe1e1

F (u)

and after comparing with (3) we obtain a11 = b11 = 0 constantly for all u 2 t1t2.

The result of this observations is the next equation :

0
@De1e1

G

De1e2
G

De2e2
G

1
A =

0
@0 0

0 0

c d

1
A
�
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F

De1
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+

0
@ 0 0 1

0 a b

a2 2ab b2

1
A
0
@De0e0

F

De0e1
F

De1e1
F

1
A

We could continue similary. After the small cogitation above the equation for

the q-th derivative

G(q) = 
1qF
0 + 
2qF

00 + � � �+ 
qqF
(q) (5)

we realize that if the previous derivatives has been investigated, new coe�cients

appear only in matix 
1q { the q-th derivatives of the reparametrization functions

are only there. Let's look at it more closely.

Let the reparametrization functions x and y are polynomials of degree m (look

[2]) :

x(u; v) =
X

i+j�m

�iju
ivj ^ y(u; v) =

X
i+j�m

�iju
ivj

From the matrix 
12 it follows xuv = a11 = 0 and also yuv = b11 = 0. It means

that nor x(u; v) neither y(u; v) contains combined member. Furthermore from 
11

it is xu = a10 = 0, i. e. x doesn't depend on parameter u. In the case of y it is

a bit di�erent: yu = b10 = 1 constantly along the whole boundary t1t2. It means

that y(u; v) contains u only as a linear member witch coe�cient 1. The result can

be written:

x(u; v) = x(v) =

nX
i=0

�iv
i

y(u; v) = u+

nX
i=0

�iv
i

And then we obtain more speci�ed form of 
1j :


1q =

0
BB@

aq0 bq0
: : :

a1q�1 b1q�1
a0q b0q

1
CCA =

0
BB@

0 0

: : :

0 0

aq0 bq0

1
CCA



Only last two members of 
1q can get an arbitrary value.

Let's look at the result. It seems that if the conditions of GCq�1 smooth joining

of the patches F and G has been formulated and we want to reach smoothnes of

q-th order, it can be determined by only two shape parameters in the matrix 
1q.

There's no possibility to manipulate with other matrices occured in the relation

betweenG(q) and F (q) (look (5)). So the geometric continuity of curves and surfaces

are very similar not only because of the form of the equation system (4) but also

because of the constraints for the work with shape parameters.
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