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Abstract

There are different methods to represent global illumination in image generation algorithms. One
solution is to use radiosity algorithms, another one is to use particle tracing. This document gives an
overview on different rendering algorithms using particle tracing.
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Introduction

In rendering we are interested in generating pictures of an artifically described environment. The
goal is to generate images which look like pictures taken with a real camera. This requires to
calculate the power reaching the camera from a given direction, i.e. through a given pixel. The
rendering equation describes the reflected radiance from a surface point x:
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where Ψr  and Ψi  are the direction of the reflected incoming radiance. f r  is the BRDF
(Bidirectional Reflectance Distribution Function) at x , Li is the incoming radiance and Φ i  is the
incoming flux. Different methods have been used to evaluate this equation. To describe the
incoming radiance at a surface point, global illumination methods have been used, which can be
divided to radiosity methods and methods using particle tracing.

Particle tracing is a method to simulate the behaviour of large number of particles. In a general
algorithm there is a time unit which is used as a step interval in the simulation. In every step each
particle is examined. Particles can be born, move, collide, change their properties and die in the
environment. Image generation algorithms use a simpler particle tracing method. These methods
utilise the particle behaviour of light, where each light particle has a small quantity of power. To
simulate the light particles (their interaction with the environment), we trace particles from event to
event. Light particles do not collide with each other, so each particle can be simulated separately.
Usually we assume that during the flight of the particle from one surface to another no event can
change its directional properties. The media between the surfaces is vacuum or affecting only the
colour, but not the directional properties of the particle, so the effect can be calculated at the
endpoint. Figure 1 shows the two different types of particle tracing methods in two dimensions.



Figure 1: Left: a general particle tracing scene with several particles at the same time. Right:
particle paths, which can be traced separately. Two particle left the scene, one has been absorbed.

Advantages of particle tracing methods over radiosity algorithms:
•  Low memory consumption: While most of the radiosity algorithms requires meshing which

consumes a huge amount of memory especially while rendering large scenes. This algorithm uses
very small amount of memory, only for the currently traced particle.

•  Easily handles local complexity: With radiosity algorithms where the model has a very high
global complexity (large number of surfaces), but a limited local complexity (small subsets of
surfaces are mutually visible), partitioning can be used to decompose the model into separately
resolvable subsets. But if any subset has a high local complexity, then partitioning may not reduce
the number of problems to a solvable size. This problem can occur in large closed buildings, like a
railway station, or a university hall; it doesn’t occur with particle tracing.

•  Ideal specular effects: For specular surfaces many radiosity algorithms can only use a virtual
image method. With this method only a number of ideal and planar surfaces can be handled
practically.

•  Parallelism. This algorithm can be easily parallelised, because large number of photons needs
to be traced, and they have no connection with each other, and they don’t effect the scene.

Particle Tracing Algorithm

How to trace a particle

To simulate a particle we have to generate particles in the scene, then we have to trace these
particles through reflections and refractions, until they are absorbed or leave the scene.

We can total the power emitted by the lightsources (Φ ). Then we generate n  particles, each
carrying power Φ / n . For each lightsource  li with power Φ i , we trace N ni i= Φ Φ/  rays
according to the emission characteristics of the lightsource, as in [1].



Another method: for each particle we only store the attenuation. The attenuation describes the
decrease of the power of the particle from its birth on. When we need the photon’s power, we divide
the power of the light source which emitted the photon by the total number of photons emitted by
the same lightsource, and multiply this value by the attenuation of  the particle, as in [2]. This
method allows us to increase the number of photons emitted by each light source, but this can lead
to bias in the solution.

After we have found the lightsource for the particle, a starting point and a direction on the
lightsource, we trace the particle through the scene. At each intersection (a photon hits a surface) a
photon can be absorbed, refracted or reflected. If it is not absorbed, we store the properties of the
photon, and generate a new direction and colour according to the physical properties of the material.
Figure 2 shows a scene with different particle paths and surfaces with particle hits.

Figure 2: Left: A few particle paths in a scene. Right: Particle hits on surfaces

Particle properties

Different algorithms need different photon properties, but each algorithm requires to store the
power of the particle. A particle can have a fixed wavelength power, say red or green or blue [1], or
this power can represent the full spectra [4]. For many algorithms it is important to store the
incoming direction of the particle. Some kind of position information on the surface hit is also
needed. We can store the identifier of  the surface and local coordinates on it, or we can store
position in the scene, and a surface normal vector [4].

How to use the generated particle data

One type of algorithms use particle data to generate different meshes, used during the display
phase. These algorithms can use the particle distribution information to estimate irradiance at a
surface point. This irradiance can be used in a raytracer. The other type of algorithm directly use
particle data during rendering.

The algorithms also differ in their goals. Some of the mesh generator algorithms can render
realtime walkthroughs in an environment, and are used in commercial applications, but they are less
physically correct. The other algorithm has a big computation time, but generates more realistic
pictures.



Mesh generator algorithms

In these type of algorithms we use the previously generated hit points on the surfaces with an
associated incoming power. For these algorithms we must store the power of the particle, the
surface which the particle hit and a local coordinate on the same surface.

We are interested in the diffuse radiance of a surface. A Lambertian surface has a constant BRDF
( R π ) for all incoming/outgoing directions, where R  is the reflectance. This implies, that a
Lambertian surface will have a constant surface radiance for all incoming/outgoing direction pairs.
On a Lambertian surface at ( , )u v  coordinates, we have a surface reflectance R u v( , ) and an
irradiance H u v( , ) . The radiant exitance M u v( , ) of the surface at ( , )u v  is R u v( , ) H u v( , ) . The
radiance is L u v M u v( , ) ( , )= π , or it can be expressed like L u v R u v H u v( , ) ( , ) ( , )= π . This
equation implies that we can store the irradiance and the reflectance of the surface independently,
and later reconstruct the radiance.

At this point, we have to generate surface meshes from the irradiance presented by the photon
hits. This is a density estimation problem, where we have non-uniform random samples. To
estimate this photon density, there are different classes of density estimation algorithms have been
used:

•  Histogram methods: The surface is subdivided into buckets in which the number of photons
and/or their accumulated energy is stored.

•  Nearest neighbour methods: The density at a point is estimated by dividing the power of the
nearest N neighbours (usually it is a fixed number) by the area of  a region (centered at the point)
containing these photons.

•  Kernel estimators: The density is estimated as spatially spread energy distributions.
 
 Figure 3 illustrates these three different types of estimation techniques.

Figure 3: Different methods to estimate the irradiation at X from the distribution of the photon hits.
On the left: Histogram technique, in the middle: the nearest neighbour method, on the right: there

are few photons with their kernels, shown from above.

Kernel estimators

We have a list of hit points for each surface, and we have to estimate the irradiance on the
surface. The irradiance is represented by these hits, where a finite amount of energy strikes an
infinitely small area.



In one dimension the density function of the irradiance can be represented by taking n  samples
( xi ):
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where φn  is the power of the n th photon. We know that the irradiance is a smooth function, so to
place a spike at every photon hit would not be a good idea. Instead we use smooth kernel functions
and replace the delta functions with k x xi1 ( )− , where k1  has a unit volume. A kernel function
spreads the energy of the photon over its surrounding area. These kernels should be centered at the
origin, have a non-zero region, and be “lump” shaped. Figure 4 shows an example for a two
dimensional kernel function.

Figure 4: Example of two dimensional kernel functions. On the diagram each kernel has the same
volume

In two dimension, the irradiance function can be estimated:
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where x j  is the position of the j th point. If we replace the delta functions with ni  kernel

functions k j :
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The kernel functions have the conflicting requirements of being narrow enough to capture detail,
and wide enough to eliminate the randomness caused by the non-uniform sampling presented by the
hit points. We can use a scaling parameter h  to widen or narrow the filter. We have to preserve the
volume of the kernels, so we increase the height:
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 Examples for kernel functions can be found in [1], [2].
To generate meshes from the estimated irradiance, we can sample H u v( , )  at a finite set of

locations and use some polinomial elements to interpolate between these values. We can use these
polinoms during rendering, or we can generate meshes for the surfaces describing the irradiance.



An importance sampling technique using the particle distribution

To evaluate the rendering equation, Monte Carlo integration techniques can be used. In these
methods we sample the integrand at random directions. Random sampling is very inefficient,
because we have a very small chance to pick a direction where significant amount of light can come
from. It would be a good idea to sample the integrand from directions contributing most of the
outgoing radiance, so another algorithm, importance sampling can be used. The basic idea behind
importance sampling is to place more samples where the integrand function is larger. The sampling
can be described with:
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where p z( ) is a probability density in V , the zi  points are selected according to this probability
density, and σ  is the variance. The variance can be minimized if p z( )  is proportional to the
integrand f z( ) .

A path tracer works in the following way: we generate a starting direction from the camera. We
examine whether a surface is hit or the particle leaves the scene. If a surface has been hit, we
generate a new direction. In case of  importance sampling this new direction depends on some kind
of  knowledge about important directions. We continue this process until a lightsource has been
reached or the photon leaves the scene. At each reflection point we have to scale the calculated
radiance according to the probability distribution of the importances.

If we examine the rendering eqation:
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we can see that an impotance sampling algorithm can use the physical characteristic of the
surface (its BRDF) to generate the important directions. With the outgoing direction and the BRDF
we can select the incoming directions which carries most of the radiance. This algorithm does not
need to have knowledge about the global illumination at the surface, which is also part of the
rendering eqation.

     We can use the particle data to drive an importance sampler in a path tracer algorithm. For
this algorithm the important properties of a particle are its power, its position in the scene and its
incoming direction.

How to generate important directions

We are interested in generating directions which contribute most of the outgoing radiance at x .
We estimate the incoming radiance using the generated particle distribution in the scene. This
importance sampling technique is presented in [4]. At a surface point x  we construct a hemisphere
or a sphere (if  the surface is diffusely transparent) which will describe the important sampling
directions.

We build this importance map by the following algorithm:

• Initialise the (hemi)sphere to zero in each region

• Find the N nearest neighbour of  the point currently hit. This N is a fixed number during the

algorithm.



• Assume that each neighbour has been reflected at x . For each neighbour, calculate the product

of the incoming power of the particle and the BRDF. The BRDF is evaluated in the direction of the

sampling ray, and the direction of the incoming particle.

• Add this value to the region which contains the particle’s incoming direction.

• When every particle’s contribution is added to the sphere, distribute a small portion of the total

importance in the sphere among each region. This operation is important, because only this way can

the algorithm generate sampling rays in directions where no particle came from.

• Generate a new sampling direction.

• Scale the returned radiance. Because importance sampling is used, we have to scale the radiance

returned by the sampling ray. The scaling factor is:

Figure 5 shows a hemisphere, and an importance map. To decide how many regions should an
importance map have, we have to run simulations, and measure the quality of the images and the
computation times.

Figure 5: Left: a hemisphere with an incoming photon direction. Right: an importance map

To generate an outgoing sampling direction, we have two possibilities. The first method is based
on mip-mapping. We demonstrate this algorithm in a case where we have just four areas with
importances I1, I2, I3 and I4. This transformation decomposes a rectangle of size A x B to four
subrectangles having an area proportional to the importances of the original rectangles. Then we
generate a uniformly distributed random point in the transformed rectangle. We find the original
rectangle for this point and scale it’s coordinates to represent a point in the original rectangle.
Figure 6 illustrates this method.



Figure 6: The mip-map based generation of a sampling direction

The second method is a kind of a linear inversion technique. This method takes advantage of the
fact that the inportance map is discretized, thus it can be considered as a one-dimensional, row
continous array. The algorithm selects an element of this array proportional to its importance. We
sum all the importance weights of  the areas and generate a random number in the range of [ , ]0 I ,
where I is the sum. Then we scan the rows of the importance map and sum up the importance
values. When this sum becomes greater than the generated random number, we select the last region
whose weight was added to the sum. Then we can generate a random point in the selected region.
Figure 7 shows how this algorithm works.

Figure 7: Selecting a region with random number r .



Our work

We currently implemented a particle tracer and an inportance sampler. The importance sampler
can generate directions using only the BRDF of the surface or using the data provided by the
particle tracer. The implementation was easy using our library we are developing.

These scenes are the test scenes for our library. There is an empty office room, and another one
with books on the table and a mirror on the wall. We have a box with one lightsource on the ceiling
and one behind the camera.

An office room with mirror and books



On this picture there is the box scene rendered with different number of samples taken at each pixel.
The number of samples from left to right are: 1, 2, 4, 8, 16, 32, 64 and 128.

A bigger version of the box.
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