
Visualization Over The Internet

Andreas Kolb
ak@teleweb.at

Institute of Computer Graphics
Vienna University of Technology

Austria

Abstract

Scientific visualization is a powerful tool to investigate and analyze complex problems such as
CFD-simulation data or medical volumetric datasets. Especially these days where data sets in the
range of gigabytes to terabytes have to be illustrated and investigated a large number of valuable
visualization techniques have been developed by researchers all over the world. Unfortunately, it
takes quite a long time until these scientific advances are available to a broad user community. This
is the point where the Internet jumps in as becoming more and more the bridge between scientists
providing advanced visualization techniques for complex systems and users all over the world who
investigate their problems in various applications.

Keywords: Visualization, Internet

1. Introduction

1.1 WWW as a platform

One of the most impressing developments in communication technology during the past decade has
been the amazingly fast evolution of the World Wide Web based on the Internet. The useful
combination of intuitive web browsers with similar look and methods of interaction on multiple
platforms and servers spreading information all over the web provides a powerful facility to
distribute information to a large number of users. Information sharing was never easier than now
with the facility Internet.
The main advantage of the Internet is it’s independence of hardware and software and thereafter
makes it possible to connect new developments in the field of scientific visualization and almost
any other topic with a large community of users.

1.2 Motivation

Scientific visualization is typically used to illustrate and investigate numerical data with the aim on
images that are easier to interpret than the raw underlying numbers. The development of new
visualization techniques is usually done by scientists using expensive specialized hardware and
visualization software which is in common ways not accessible to the ordinary users. The results of
their research can only be passed to other scientists with similar hard- and software or some lucky
users who are also owner of such special devices and software components. This is usually only a
small subset of potential users, but to reach a broader field of audience, the developed visualization
techniques have to be implemented on other, common platforms as well. This step is very time and
money intense and, of course, not taken by scientists at all. Because the number of users who have a

desktop PC is significantly higher than the number of users currently working with high
performance visualization systems, a visualization solution running on simple desktop PC’s will
improve the distribution of innovative methods from scientific developers to users significantly.
The benefits for the developers would be more feedback from a broader field of users and thereafter
the possibility to tune the system so that it fits the users best.
To cope with that problem the world wide web might be the key. Due to its “near” platform
independence and intuitive way to use it hides the complexity of the beneath internet and connects
computers from various types and platforms.

1.3 Demands on a visualization technique

To be broadly accepted by the user community a good visualization technique must cope with the
following problems and include these important features:
• Portability: The visualization technique should be portable and run on all kind of common

platforms to grant a great amount on potential users the usage. Of course, the most common
platforms like UNIX workstations, desktop PC’s using WindowsNT and Macintosh
computers should be covered in addition to special scientific hardware. Java and VRML both
provide the power to realize this.

• Intuitive usage: The technique offers a set of predefined visualization configurations covering
common problems and presents the same intuitive interface on each platform to ease the use
for people with more than one computer and/or when changing the operating system. Almost
any browser released up to now meets this requirement. The user shall also be able to use at
least one sample data set to test the visualization technique if it meets his requirements.

• Flexibility: The visualization technique should be flexible, allowing the user to visualize the
data in a customized way with a minimum amount of work due to premade configuration
settings. The user shall also be able to go into further details as he is given the possibility to
tune all the parameters of the premade configuration by hand. It should also be of no great
afford for the user to visualize his own data rather than given sample data sets.

• Interactivity: The illustration and the investigation of the data set through the user shall be an
interactive process. The user should be able to change parameters, points of views and set
filters while investigating the data to make the visualization a living process and to invite to
“play with the data”.

• Unambiguousity: The technique shall be at least rudimentary safe to misinterpretation of the
visualized data due to wrong settings or parameters. This is a feature who bears much
responsibility because a visualization technique with to much overwhelming parameters to
change can be as useless as a technique with to much restrictions.

2. Visualization over the WWW

2.1 Advantages and Disadvantages

The usage of the word wide web at visualization techniques has initiated the development of many
platform independent data and program standards. The distribution and retrieval of information has
become much more easier than ever before due to standardization taking place on several levels:
• WWW Browsers from different manufacturers running on different platforms use very similar

user interfaces and follow mainly the same intuitive ways to use. Regardless of hardware or
platform the user interacts in the same way with the browser who handles the different problems
with platform, hardware and the internet itself.

• Standardized data formats like HTML have been defined with the development of browsers
making publishing information world wide very easy. The data has to be provided only once
and can be retrieved from a wide range of platforms all over the world.

As HTML for textual information and JPG/GIF for two dimensional images VRML has gained
importance as a modeling language. For three dimensional scenes it can easily be integrated into
WWW pages opening the opportunities to present three dimensional data sets with optional user
interaction.
Finally, the programming language JAVA [Jav] has created the possibility to write and compile
software once and run it on different platforms without modification. JAVA is close coupled with
HTML and VRML, providing a toolkit to create portable and interactive applications based on the
internet. The disadvantage which comes with that independence is the lower performance in
comparison to "machine native” compiled code. The reason for that loss of performance is that
JAVA code is interpreted instead of being executed directly. There are several ways to cope with
that problem like just-in-time compilers, which translate JAVA code into native machine code
before the execution or to use a processor which accepts JAVA as machine language. Such an
approach is made by the Sun company – the development of the “pico Java” kernel as an
inexpensive network computer.

2.2 Visualization pipeline

The most common reference model of visualization over the word wide web is the visualization
pipeline described in Upson [Ups] and McNabb[Nab]. This model sees the visualization process as
a pipeline in which a source of data is fed in and filtered, mapped and rendered to create a final
image to envision the data.
The filter process selects the data of interest, the map process creates an abstract geometrical
representation of the data – perhaps a contour map – and the render process takes the 3D geometry
from the map process and applies lightning, shading and projection to create a final image. This
pipeline is shown in the figure below:

 Figure 1: Visualization Pipeline

This model can also be applied to visualization over the web. The flow begins with the data set and
ends with the final visualization image at the viewer, but different scenarios occur when considering
who has responsibility for the intermediate processes and where to cut this pipeline to use the

internet as a connecting medium. Generally three scenarios can be distinguished which differ
mainly in their characteristics of flexibility and demands on the visualization server and the client
performance which are explained in the next sections in detail.

3. Methods of visualization

3.1 2D visualization publishing

The user sends a request to the publisher in which he tells his needs and wishes by selecting the
desired parameter in, for example, HTML forms. The publisher uses CGI scripts to process the
information given by the user and creates the visualization as an image or video sequence and posts
it on the web. The viewer can investigate this depiction either directly with his browser or download
it for using a helping application such as an MPEG player or an image processing program. This
scenario is shown in the figure below:

 Figure 2: 2D visualization, getting images across the WWW

The advantages and disadvantages are clear: This is the least expending method for the viewer to
get his visualization as all the filtering, mapping and rendering is done by the visualization server.
The client has only to download the picture or video sequence that was rendered once. A major
disadvantage for the publisher is that he has to render a new image for every new view the users
selects or parameter changed. This means high demands of performance on the visualization server
and makes interactive working by the user almost impossible.

3.1.1 Graphical Address Browser of Vienna

The municipal authorities of Vienna provide a very special service over the net [Gab]. The users
can enter an address with the name and number of any street or place of Vienna, choose a resolution
and are served with the according sector of Vienna’s map. Further more the users can change the
viewpoint by clicking into the image or choose another resolution. It comes in very handy that at
some resolutions the routes of all kind of public transport are printed on the map with the according
stations. A sample of such a map is shown on the figure below.

 Figure 3: Sector of Vienna’s map

3.2 3D visualization

With this method the publisher transmits the visualization as a three dimensional model to the user.
The most common way to do this nowadays is using VRML, which allows to shape a world rather
than a simple image. The viewer has the possibility to render the model as he wish with a special
browser and may change the viewpoint to gain more insight into the visualized data.
With a VRML visualization the viewer has much more freedom to investigate than viewing a
simple image but the abstract model of the data has often been predefined by the publisher and can’t
be changed by the viewer even if there are some visualizations where the user can set parameters
according to the model to be visualized via HTML forms. The figure below depicts this method and
the place, where the visualization pipeline is cut by the internet. With this method the visualization
work is divided into the viewers part – the rendering - and the remaining server part which
presupposes more computing speed at the viewers side due to the rendering part. But even with the
rendering part passed to the user’s side the visualization server still has to compute visualizations
for many users which costs much performance and resources.

 Figure 4: 3D visualization, getting objects building a world across the WWW

3.2.1 Normal Mode Visualization

The figure below shows an example of 3D visualization [Nor] at the University of Darmstadt,
Germany. The upper part is a clickable image where the user can choose a frequency and below he
can see atoms move at his chosen frequency in a VRML file. There he can interactively change his
viewpoint at acceptable performance due to the rendering takes place on the viewers machine.

 Figure 5: Screenshot of a 3D visualization with a VRML file

3.3 Visualization Software Publishing

The third method occurs when the viewer is doing the whole visualization and no computational
power needs to be provided by the publisher. This bears the most advantages for the publisher as the
resources he has to provide to facilitate his visualization technique are minimized. In terms of the
visualization pipeline described earlier the whole pipeline moves to the viewer.

 Figure 6: Visualization software publishing

Another major advantage of this method is the independence of the viewer from the publisher
during the visualization. But on the other hand the disadvantage of this method is that the client has
to do all the computations and so must provide high computing resources. A supreme example of
visualization software publishing is the VizWiz JAVA applet which is described in the next sections
in detail.

4. VizWiz

4.1 Introduction

To describe a scientific visualization tool in detail the Java applet VizWiz [Viz], developed at the
University of California San Diego, is introduced here in a brief way. As a Java applet VizWiz is
completely platform independent and usable over the whole world wide web. It provides basic
interactive scientific visualization functionality, such as isosurfaces, cutting planes and elevation
plots. The data can be uploaded into the applet by the user via the applet’s web server and the
visualization is generated and can be investigated interactively as shown below.

 Figure 7: The VizWiz user interface

The unique feature of VizWiz is that it makes interactive scientific visualization possible for any
data set across the internet. The viewer’s only prerequisite is a Java enabled browser which are wide
spread and available without any fee like Netscape’s Communicator or Microsoft’s Explorer.
VizWiz is not only a useful platform independent visualization system but also a demonstration of
both the pros and contras of implementing such a complex application as a Java applet.

4.2 Motivation of development

Plenty of scientific visualization tools are available today but all of these applications share a major
disadvantage – they are platform dependent. Even some of them are released for multiple platforms,
but they are only ported from the source, native platform onto other platforms. This means great
work due to the structure of visualization systems. They are graphic intense and often use platform
if not even hardware specific routines that are not portable easily. Additionally, developers of multi-
platform systems must test the code on every platform, support every version separately and – of
course – have deep insights into every platform they develop for. If changes or new releases are
made they have to bee made and tested for every platform, too. VizWiz as a Java applet has only to
be developed, coded and tested once and also works on every Java supporting platform ranging
from a simple 486 PC’s to a SGI or SPARCstation. Nowadays there is no way to perform 3D
visualizations on such a wide variety of platforms with so little overhead for both the user and the
programmer.
Another main disadvantage of most of the visualization systems out by now is that they must be
download or purchased and installed by the user before they can be used or tested. Although this is
not really difficult but very annoying, time intense and often disappointing when the system does
not meet with the users requirements. In other words it is not possible at all to try out a tool without
downloading it, installing and configuring it. Making an application tool available as a Java applet
copes with that problem as it runs automatically when the web page in which it is implemented is
download by the viewer’s browser. VizWiz also automatically load a sample data set which can be
immediately used to get in touch which various functions of VizWiz. Another motivation to
develop a system using Java was that VizWiz is resident on the internet and nor locally on the
viewer’s machine and can be used from everywhere through the internet.
As a conclusion the main topics of the motivation developing using Java were to provide

• a new kind of scientific visualization tool,
• almost complete platform independence,
• a simple and intuitive usage, especially at the first time,
• a trivial to try out tool and
• to develop a system with which it is possible to check out the advantages and pitfalls of

Java as a scientific programming language.

4.3 VizWiz and Java

Java has been rumored as the language that will enable a shift in storage of application from the
desktop to the internet. The powerful combination of CGI scripts and the WWW itself opens a wide
range of possible applications. But these applications have a shared feature. They are based on user
input into an HTML form and thus are not interactive in the sense a Java applet makes possible. The
main problem while developing VizWiz in Java was that a Java applet is not allowed to access the
file system on the machine it is executing for security reasons. How the developers cope with that
problem is explained in the next chapter.

4.4 Goals and implementation

As briefly mentioned in the chapter about motivation of development there were several goals the
developers wanted to archive which are explained in detail below:
1. The tool had to be completely platform independent.
2. It had to be uncomplicated and easy to use, especially the first time.
3. It had to provide the expected basic set of 3D visualization functionally.
4. Its performance had to be acceptably interactive and its graphic acceptable attractive, even on

low end machines.
5. Users had to be able to easily use this tool to visualize their own data sets.

4.4.1 Platform independence

Although it is impossible to archive real platform independence, Java is the best way to
approximate it. The major problem using Java was the performance as the only way to implement
3D graphics without requiring that the user have installed any supporting software besides a Java
enabled browser is to use the standard Java API. As Java programs are interpreted and not executed
directly they are generally slower than their counterparts in native code would be. But the loss of
performance due to the interpretation is only the smallest one. All the windowing and graphics code
VizWiz uses are made through Java which means by software rather than by machine specific
accelerators and other hardware. As VizWiz is both computationally and graphically intensive
sacrificing of direct hardware graphics support bears the major loss in performance.
This problem will be solved in future releases with the Java 3D API since it will enable to take
advantage of 3D hardware.

4.4.2 Ease of initial use

Using Java for developing VizWiz the applet is downloaded automatically and running it the first
time is no more difficult than simply visiting a web page. The developers cope with the security
problem that Java applets are not granted direct file access in a very special way. This feature is
very understandable from the security aspect but is a very hindering one when developing a useful
application where it is necessary and obvious for “normal” programs to load data from the users
machine and save settings, outputs and temporary files. VizWiz uses CGI scripts and HTML forms
to solve this explained in point 5.4.5 “Visualization of users data”

4.4.3 Visualization functionality

As VizWiz needed to provide a set of basic visualization functions the developer included support
for isosurfaces, cutting planes, point clouds and elevation plots. All the surface functions are
polygon surfaces which can either be filled or visualized using a wireframe. All visualization
objects are implemented in the same manner as a set of vertices and connection indices.
Additionally a base color for each line or polygon is specified. Furthermore, all visualization
services use the same rendering engine which makes it easy to add new services.
In addition to the static position of every polygon two more parameters are calculated by VizWiz. A
color based on the base color and the angle the polygon makes with the light source and a distance
from the camera used for polygon sorting during rendering.
The control panel on the left side of the window allows to change parameters affecting the display
like resolution, scaling and loading files. On the right side there is an inspector panel which is
context sensitive, a different one for each object, which allows to change individual parameters for
the particular display object. The display area in the center shows the actual visualization and can
be rotated by dragging the mouse over it.

4.4.4 Interactivity

To archive both an adequate performance and an interactive visualization tool various techniques
had to be used while developing VizWiz. To compensate the loss of performance due to Java’s
inability to use potential 3D hardware the developers used smart caching to avoid duplication of
computations, simplified rendering and interactive resolution control through the control panel.

4.4.5 Visualization of users data

As VizWiz is running in standard browsers like Netscape or Internet Explorer it has no direct access
to the file system of the viewers machine. HTML is not entirely restricted from reading the local file
system so the developers used a HTML/CGI workaround to upload the viewers data. The name of
the file containing the data to be visualized can be entered by the viewer into an HTML form and
the contents of the selected file will be uploaded to the VizWiz server and processed by a CGI
script. This script reads the data and generates a new file on the server which is readable by the
VizWiz applet and downloadable by the viewer.

5. Conclusions

VizWiz is an intuitive to use tool with the ability to visualize own data sets at an acceptable
performance. But it is obvious that tools like VizWiz should use Java3D as in natural Java the
performance penalties due to the missing opportunity of using machine dependent 3D hardware is
the most hindering point.
Generally as the computing speed of desktop PC’s of “ordinary” users increases the visualization
pipeline will move to the users in the next time. Applets like VizWiz will be the next visualization
techniques as every publisher can host such services at almost no cost.

6. References

[Gab] WWW, “Graphisches Adreßortungssystem”,
http://www.magwien.gv.at/gismap/cgi-bin/wwwgis/adrsuche/

[Hab] R.B. Haber and D. A. McNabb, “Visualization idioms: A conceptual model for scientific
visualization systems” pp74-93, IEEE, 1990

[Nor] WWW, “Normal Mode Visualization”,
http://www.pc.chemie.th-darmstadt.de/vrml/vib/

[Ups] C. Upson et al, “The Application Visualization System: A computational environment
for scientific visualization”, IEEE Computer Graphics and Applications, Vol 9, Number
4, pp30-42, 1989

[Viz] WWW, “VizWiz, a Java applet for interactive 3D scientific visualization on the Web”,
http://sdsc.edu/vizwiz/vizwiz.html

