
Proceedings of the
20th Central European Seminar
on Computer Graphics

April 24 - 27, 2016
Smolenice, Slovakia

Co-organized with SCCG

Institute of Computer Graphics and Algorithms
Vienna University of Technology

Faculty of Mathematics, Physics and Informatics
Comenius University Bratislava

Sponsors

 Edited by Michael Wimmer, Jiří Hladůvka, and Martin Ilčík © 2016
 ISBN:978-3-9502533-8-2

Slovak Society of
Computer Science

Impressum

Vienna University of Technology
Institute of Computer Graphics and Algorithms
Favoritenstraße 9-11/186
1040 Vienna

ISBN 978-3-9502533-8-2

Welcome to CESCG 2016!

This book contains the proceedings of the 20th Central European Seminar on
Computer Graphics, short CESCG, which continues a history of very successful
seminars. Again this year, CESCG proceedings have an ISBN (978-3-9502533-8-2)
and will therefore remain retrievable as long as there are libraries!

The long history of CESCG has started in 1997 in a medium-sized lecture room
in Bratislava, bringing together students from Bratislava, Brno, Budapest, Graz,
Prague, and Vienna. The idea found wide appraisal and the seminar moved to the
beautiful castle of Budmerice, where it was held for 8 consecutive years, constantly
growing in size and attraction. It was just in the 10th anniversary year 2006 that
CESCG had to take a detour to move to Častá-Papiernička Centre, while it was
back in Budmerice castle in 2007. Unfortunately, since 2011 the Budmerice castle
is not available for scientific activities. After spending the one year in Viničné, in
2012 we moved to the beautiful castle in Smolenice.

Who are the CESCG heroes who made this year’s seminar happen? In no partic-
ular order – because many people were involved equally – we would like to thank
the organizers from Vienna: Michael Wimmer, Anita Mayerhofer, Katharina
Krösl, Thomas Trautner, and Werner Purgathofer. Special thanks goes to Mar-
tin Ilč́ık for taking care of the complete reviewing process and scientific program
preparation. We are very thankful to the CESCG organizers from Bratislava,
mainly Andrej Ferko, always an inspiration to CESCG; Ela Šikudová, and
Michal Ferko for the excellent preparations and on-site organization.

The main idea of CESCG is to bring students of computer graphics together
across boundaries of universities and countries. We mainly focus on sustainable
academic and research development in the field of Computer Graphics in Visegrad
Countries and Austria. Our mission is to support undergraduate talents in their
future careers. Therefore, we are proud to state that we have achieved again a
high number of 16 participating institutions and a tight time schedule of 19 valu-
able student works, 3 specialized interactive workshops, and two invited talks. We
welcome groups from Bratislava (UK and STU), Slovakia; Brno (VUT and MU),
Plzeň and Prague (CTU and KU), Czech Republic; Budapest (BME), Hungary;
Bonn, Germany; Graz and Vienna (TU and VRVis), Austria; Szczecin, Poland;
Bergen, Norway; Maribor, Slovenia; and Sarajevo (UnSa), Bosnia and Herzegov-
ina.

We assembled an International Program Committee of 14 members, allowing us
to have each paper reviewed by three IPC members during the informal reviewing
process. We would like to thank the members of the IPC for their contribution to
the reviewing process. The IPC of CESCG 2016 consists of:

Vanda Benešová Selma Rizvić
Jǐŕı Bittner Michael Schwärzler
Andrej Ferko Jǐŕı Sochor
Helwig Hauser László Szirmay-Kalos
Michael Kenzel Michael Wimmer
Ivana Kolingerová Borut Žalik
Rados law Mantiuk Pavel Zemč́ık

The reviewing process was further supported by: Zuzana Berger Haladová, Michael
Birsak, Martin Brunnhuber, Zuzana Černeková, Michal Domanski, Michal Ferko,
Christian Freude, Christian Hafner, Michael Hecher, Bernhard Kerbl, Michael
May, Haichao Miao, Przemyslaw Musialski, Stefan Ohrhallinger, Michal Piovarči,
Reinhold Preiner, Mohamed Radwan, Hiroyuki Sakai, Elena Šikudová, Bernhard
Steiner, Ivana Uhĺıková, Ivana Varhańıková, and Károly Zsolnai-Fehér.

The first invited talk “Visual data science – Advancing science through visual
reasoning” will be held by Torsten Möller from the Research Group Visualization
and Data Analysis of the Vienna University, Austria. The second invited talk
by Jaroslav Křivánek from the Computer Graphics Group at the Department
of Software and Computer Science Education of the Charles University, Czech
Republic, will be about “Realistic Rendering in the ArchViz and Visual Effect
Industries: When Academic Research Meets Practice”. Martin Ilč́ık from TU Wien
will train the students “How to pitch” and he will also guide the students in the
second workshop called “The Hero’s Journey in Science”.

To celebrate the 20 years of the seminar, Martin initiated the CESCG EXPO
project. 10 companies specialized on visual computing will present their innovative
products in a small interactive exhibition on Sunday afternoon. Our partners are:

Bohemia Interactive, Prague, Photoneo, Bratislava,
Capturing Reality, Bratislava, Vectary, Bratislava,
Escape Motions, Piešťany, Vis Gravis, Bratislava,
Keen Software House, Prague, VRVis, Vienna,
Lost in the Garden, Vienna, Waltzing Atoms, Vienna.

The seminar is co-organized with the Spring Conference on Computer Graphics
(SCCG), which takes place right after. The organization of a seminar where there
are only low expenses for the students requires funding. We are very thankful to
the sponsors of CESCG 2016:

– Disney Research, Innovations in Entertainment Technologies,
– NVidia, The Way It’s Meant to Be Played,
– VRVis, Research Center for Virtual Reality and Visualization,
– OCG, The Austrian Computer Association,
– SISp, Slovak Society for Computer Science,
– Waltzing Atoms, The atomic toolbox,
– Eurographics, The European Association for Computer Graphics.

Please note that the electronic version of these proceedings is also available at
http://www.cescg.org/CESCG-2016/.

April 2016, Michael Wimmer, Jǐŕı Hlad̊uvka, Martin Ilč́ık.

Table of Contents

Invited Talks

Realistic rendering in the ArchViz and visual effect industries: When academic research meets
practice . 3

Jaroslav Křivánek. Charles University, Czech Republic

Visual data science – Advancing science through visual reasoning . 5

Torsten Möller. Vienna University, Austria

Real-time Rendering

Rendering high detail models from displacement maps . 9

Martin Volovár. Slovak University of Technology, Slovakia

Real-time cast shadow contours . 17

Péter Barabás. Budapest University of Technology and Economics, Hungary

Configurable rendering effects for mobile molecule visualization . 25

Lukas Prost. Vienna University of Technology, Austria

Visualization

Sonoco: Interactive visual comparison of filtering operations on time-dependent medical imag-
ing data . 35

Deniz Gezgin. University of Bergen, Norway

Interactive visual analysis of animal trajectories in a T-Maze . 39

Fabrizia Bechtold. VRVis, Austria

Image Processing & Vision

Recognition of important features of triangulated human head models . 47

Katěrina Kubásková. University of West Bohemia, Czech Republic

Segmentation of brain tumors from magnetic resonance images using adaptive thresholding
and graph cut algorithm . 55

Zuzana Bobotová. Slovak University of Technology, Slovakia

Classification of built-up areas in LiDAR data based on second-generation connectivity filters . 63

Robi Cvirn. University of Maribor, Slovenia

Wavelet-based hierarchical heightmap compression method . 71

Michal Lašan. Charles University, Czech Republic

Augmented Reality & Interaction

Foreground detection and prototyping of photographic composition on Android 81
Marek Salát. Brno University of Technology, Czech Republic

Natural interaction with small 3D objects in virtual environments . 87
Irfan Prazina. University of Sarajevo, Bosnia and Herzegovina

Generation of lecture notes as images from recorded whiteboard and blackboard based presen-
tations . 93

Ondrej Jariabka. Comenius University, Slovakia

Modeling & Simulation

Dynamic simulation of virtual agents and obstacles in virtual cities . 103
Roman Mankovecký. Masaryk University, Czech Republic

Procedural generation using grammar based modelling and genetic algorithms 111
Karl Haubenwallner. Graz University of Technology, Austria

Guided 2D modeling of 3D buildings using oriented photos . 119
Lisa Kellner. VRVis, Austria

Perception

Simulation of the luminance adaptation of the human visual system to varying background
illumination . 129

Marek Wernikowski. West Pomeranian University of Technology, Poland

Using perception-based filtering to hide shadow artifacts . 137
Felix Kreuzer. Vienna University of Technology, Austria

Acceptable system latency for gaze-dependent level of detail rendering . 145
Micha l Chwesiuk. West Pomeranian University of Technology, Poland

State of the Art

State of the art in real-time registration of RGB-D images . 155
Patrick Stotko. University of Bonn, Germany

Sponsors of CESCG 2016

vi

Invited Talks

Realistic Rendering in the ArchViz and Visual Effect Industries:
When Academic Research Meets Practice

Jaroslav Křivánek

Charles University
Czech Republic

Abstract

Research and practice of computer graphics has witnessed a renewed interest in realistic rendering
based on physics-based Monte Carlo light transport simulation. This effort is propelled by the desire
to accurately render arbitrary environments with complex geometry, materials and light sources,
which is often difficult with the once industry-standard, but now obsolete, ad hoc rendering solutions.
For this reason, the movie and archiviz industries now rely on physically-based rendering methods,
which poses new challenges in terms of strict requirements on image quality, algorithm efficiency
and robustness, as well as usability.

In this talk, I will summarize some of my research contributions in the area of realistic render-
ing using physically-based light transport simulation that have been adopted by some of the major
companies in the field such as Weta, PIXAR or Chaos Group. I will then juxtapose these academic
results to my industry experience gained through the design and development of Corona Renderer
in the company Render Legion, that I’ve recently co-founded. I will discuss the applicability and
relevance of my research results to the world of production rendering for architectural visualization.
I will conclude with some open challenges both in research and practice of physically-based realistic
rendering.

Bibliographical Details

Jaroslav Křivánek is a researcher and associate professor of Computer Science at the Faculty of
Mathematics and Physics of Charles University in Prague, and a co-founder of the the Render Legion
company - developer of Corona Renderer. Prior to these appointments, he was a Marie Curie research
fellow at Cornell University, and a junior researcher and assistant professor at Czech Technical
University in Prague. Jaroslav received his Ph.D. from IRISA/INRIA Rennes and Czech Technical
University (joint degree) in 2005. His primary research interests are global illumination, radiative
transfer (including light transport), Monte Carlo methods, and visual perception. His research is
driven by the goal of developing novel practical ways of producing realistic, predictive renderings
of virtual scenes. The technologies he has co-developed are used, among others, by Weta Digital,
PIXAR Animation Studios, or Sony Pictures Imageworks, and, of course, in Corona. In 2014,
Jaroslav was selected for the New Europe 100 list, “a list of outstanding challengers who are leading
world-class innovation from Central and Eastern Europe for taking computer graphics to the next
level”.

4

Visual Data Science – Advancing Science Through Visual
Reasoning

Torsten Möller

University of Vienna
Austria

Abstract

Modern science is driven by computers (computational science) and data (data-driven science).
While visual analysis has always been an integral part of science, in the context of computational
science and data-driven science it has gained new importance. In this talk I will demonstrate novel
approaches in visualization to support the process of modeling and simulations. Especially, I will
report on some of the latest approaches and challenges in modeling and reasoning with uncertainty.
Visual tools for ensemble analysis, sensitivity analysis, and the cognitive challenges during decision
making build the basis of an emerging field of visual data science which is becoming an essential
ingredient of computational thinking.

Bibliographical Details

Torsten Möller is a professor at the University of Vienna, Austria, since 2013. Between 1999 and
2012 he served as a Computing Science faculty member at Simon Fraser University, Canada. He
received his PhD in Computer and Information Science from Ohio State University in 1999 and a
Vordiplom (BSc) in mathematical computer science from Humboldt University of Berlin, Germany.
He is a senior member of IEEE and ACM, and a member of Eurographics. His research interests
include algorithms and tools for analyzing and displaying data with principles rooted in computer
graphics, image processing, visualization and human-computer interaction.

He heads the research group of Visualization and Data Analysis. He served as the appointed
Vice Chair for Publications of the IEEE Visualization and Graphics Technical Committee (VGTC)
between 2003 and 2012. He has served on a number of program committees and has been papers co-
chair for IEEE Visualization, EuroVis, Graphics Interface, and the Workshop on Volume Graphics
as well as the Visualization track of the 2007 International Symposium on Visual Computing. He
has also co-organized the 2004 Workshop on Mathematical Foundations of Scientific Visualization,
Computer Graphics, and Massive Data Exploration as well as the 2010 Workshop on Sampling and
Reconstruction: Applications and Advances at the Banff International Research Station, Canada. He
is a co-founding chair of the Symposium on Biological Data Visualization (BioVis). In 2010, he was
the recipient of the NSERC DAS award. He received best paper awards from IEEE Conference on
Visualization (1997), Symposium on Geometry Processing (2008), and EuroVis (2010), as well as
two second best paper awards from EuroVis (2009, 2012).

6

Real-time Rendering

Rendering High Detail Models from Displacement Maps

Martin Volovár∗

Supervised by: Peter Drahoš†

Institute of Applied Informatics
Faculty of Informatics and Information Technologies

Slovak Technical University
Bratislava / Slovakia

Abstract

In this paper, we present a method to generate a high res-
olution mesh from low poly mesh directly on GPU to re-
duce bandwidth overhead between GPU and CPU. We use
known methods such as subdivision surface, displacement
mapping and adaptive tessellation to generate more geom-
etry in certain parts where it is necessary. This method
is suitable for animation because small numbers of control
points are modified. The main aim of this work is effective
render a high quality mesh in the real time.

Keywords: Vector displacement map, Adaptive tessella-
tion, Feature adaptive subdivision

1 Introduction

Since the first GPU has been released, GPU performance
has been highly increased. Modern high-end GPUs can
render around 6 billion triangles per second [11]. Mem-
ory bandwidth and an I/O latency has been improved too,
but not as much as GPU render speed. What was not
limiting factor before, is now a performance bottleneck.
Transferring data between CPU and GPU is not a prob-
lem if a model geometry is static. In case of a model ani-
mation, modifying complex objects on CPU and updating
GPU buffers can be impossible for every frame [9]. Mo-
tivation is to transfer only small parts of data and calcu-
late model on GPU instead of transferring whole updated
model. These parts could be changed position of control
vertices or a changed sub-image of a displacement map.

Further motivation is to take advantage of adding de-
tail dynamically in certain parts of model. This allows
to change a complexity of a model according to its flat-
ness and a screen space area. There is a similar method
named LOD (Level of detail), which uses pre-generated
models in different resolutions, but that method requires
more memory and there is a problem in a continuity when
the resolution is switched.

∗xvolovar@stuba.sk
†peter drahos@stuba.sk

2 Background

This section describes methods to generate high detail
mesh from control mesh.

2.1 Subdivision surfaces

Smooth surfaces often occur in the nature. Traditional
method, polygon surface, requires many polygons to ap-
proximate a smoothness [4]. Geometric modelling of com-
plex models is problematic. In the past, memory for stor-
ing complex models was expensive. Using subdivision
surfaces it is possible save memory storage.

Subdivision surfaces are a curved-surface representa-
tion defined by a control mesh [2]. Subdivision surface
smooths initial model using recursive subdivision algo-
rithm [3]. Subdivision level depends on how many subdi-
vision steps are required. Subdivision step has two stages:
mesh refinement and vertex placement. Mesh refinement
subdivide every face and edge. Vertex placement set vertex
position according to subdivision rule. Position is calcu-
lated by linear interpolation of neighbour vertices.

Hypothetical surface created after an infinite number of
subdivision steps is called limit surface [2]. The limit sur-
face has often C2 continuity everywhere, except at extraor-
dinary vertices [10]. The most well-known subdivision al-
gorithm for quad meshes is Catmull-Clark.

Adaptive subdivision allows to use different subdivision
level on certain parts of mesh. Adaptive subdivision uses
flatness test to avoid subdividing flat parts of model [2].

In feature adaptive subdivision method, the limit sub-
division surface is described by a collection of bi-cubic
B-spline patches [8]. This is advantage because patches
can be rendered directly using hardware tessellation. In-
stead of uniform subdivision, where geometry complexity
grows exponentially, using feature adaptive subdivision,
complexity is close to linear [6].

2.2 Tessellation

Tessellation is the process of breaking patch into many
smaller primitives [11]. Patch is defined as set of control
points. Patch type can be line, triangle, quad, B-Spline,

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)

Bézier, etc. Tessellation factor controls fineness of patch.
Adjacent edges should have the same tessellation factor
because T-vertices could create a crack. Tessellation can
convert quads to triangles, but common usage is to add ge-
ometric detail. Tessellation is now hardware accelerated.

2.3 Displacement mapping

Displacement mapping is using with tessellation to add
high frequency detail with low memory I/O [7]. Instead of
creating a smooth surface with subdivision surface, using
displacement mapping it is possible make a rough surface.

A displacement map is a special type of texture where
the stored values refer to a displacement of a vector. A
commonly used type of displacement maps is the scalar
displacement map, where each value corresponds to a dis-
placement along the normal vector of a vertex. Scalar dis-
placement map is easy to compute since normal vectors
are cached. With vector displacement map it is possible
displace vertex to any direction. Vector displacement map
requires more memory than scalar because it uses all tan-
gent vectors - t, b, n.

3 Our Contribution

Our solution combines feature adaptive subdivision
scheme and displacement mapping with adaptive tessel-
lation. Solution scheme is shown in the Figure 3. We use
OpenSubdiv1 library, because it supports subdivision and
tessellation. An input for our program is a displacement
map and control mesh. The mesh contains vertex posi-
tions, UV coordinates and indices. The input model should
have a quad topology because we use a Catmull-Clark sub-
division scheme. Catmull-Clark scheme can produce un-
dulating artifacts (Figure 1). Faces should not overlap in
texture space because we need 0..1 to 1 mapping between
surface and texture space. The output is effective render-
ing of high resolution model.

3.1 Preprocessing

Input mesh is subdivided by feature adaptive subdivision
algorithm. Current implementation of OpenSubdiv pro-
duces only bi-cubic patches for feature adaptive refine-
ment2. Bi-cubic patches can approximate smooth surface
like subdivision scheme [5]. UV coordinates of thhe new
vertices are linearly interpolated from control points.

Input displacement map is filtered by Laplace filter
(Equation 1) with the aim to identify which parts require a
higher tessellation factor. Instead of filtering displacement
map it is possible filtering the normal map. The advan-
tage of doing this is that values in Laplace map depends

1http://graphics.pixar.com/opensubdiv/docs/
intro.html

2http://graphics.pixar.com/opensubdiv/docs/
subdivision_surfaces.html

Figure 1: Catmull-Clark subdivision can behave poorly on
triangle topology. Wireframe model is control mesh.

Figure 2: Example of displacement map and calculated
Laplace map. The Laplace map is used in adaptive tessel-
lation to affect tessellation fineness.

on displacement map strength. In the Figure 2 is example
of displacement map3 and calculated Laplace map.

D2xy =

0 1 0
1 −4 1
0 1 0

 (1)

We generate a normal map for correct lighting, be-
cause application of displacement map can change direc-
tion of normal vectors. Normal map is obtained using FBO
(Frame buffer Object). When we render the model and use
normal map, we apply the normal map shading in Frag-
ment Shader. This can reduce continuity problems when
adaptive tessellation is on. Model also looks more detailed
when it is low poly. We use two approach of generating the
normal map.

First approach is described in Algorithm 1. Model is
tessellated with high tessellation factor to get high quality
model, so we can use the normal map for different LOD.

3http://content.luxology.com/asset/exref/
fd5171e820982995daaf5e15db00955d.png

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
10

Next, we apply displacement mapping. Calculating nor-
mal vectors is done by using Geometry Shader. This is
because Geometry Shader has access to all points in trian-
gle. Normal vector is obtained using cross product of two
vectors that lied on triangle. Normal vector is normalized
to unit length. Since all calculations are done in object
space, normal vector is transformed to tangent space. To
get normal map, whole model is rendered in texture space
and colors are set respectively to normal vector.

Data: BSpline patches, displacement map
Result: normal map
foreach patch do

tessellate with high tessellation factor;
end
foreach tessellated triangle do

apply displacement mapping;
calculate normal vector via cross product;
transform normal vector to tangent space;
set position to UV coordinate;
transform position from UV space to NDC

(Normalized Device Coordinates);
set normal vector as output color;

end
Algorithm 1: Generating normal map from a displace-
ment map.

Problem with this approach is that shading is naturally
flat. This is because whole tessellated triangle have the
same normal vector. Shading artifact depends on texel size
of tessellated triangle. Figure 4 shows shading aliasing,
where is normal map with different resolution applied.

Second approach uses linear interpolation of normal
vectors of vertices in tessellated triangle. In this approach
we do not use Geometry Shader. In the Figure 6 is de-
scribed how we get the normal vector of vertex P. We
use two near points PA and PB, where distance from actual
point P is e in direction t and b tangent vectors. Like in the
Section 3.3 we apply displacement mapping and calculate
new positions P′, P′B and P′A. Normal vector is obtained
with cross product of two vectors that lies on triangle de-
fined by vertices P′, P′B and P′A. Unlike, in the first ap-
proach all calculations are in tangent space, so there is no
need to transform the normal vector. Parameter e affects
blurriness of normal map (Figure 5).

3.2 Tessellation

For patches we use B-Splines, because they can approx-
imate smooth surface. It is important to have the same
outer tessellation factors along adjacent edges of patches.
Otherwise, cracks can appear. There is also problem that
patches can have different size. Two adjacent patches can
have the same subdivision level or level differs by one. In
the Figure 9 two cases are present, where T-vertices ap-
pears.

Feature
adaptive

subdivision

Generating
normal
map

Adaptive
tessellation

Displacement
mapping

Rendering

Handling
events

Changing
control
points

Changing
displacement
parameters

Changing
view/
IDLE

Figure 3: Overview of our method.

Figure 4: Shading aliasing of first approach of generating
normal map depends on displacement map size (from left
- 128×128, 256×256, 512×512).

Tessellation fineness of our solution depends on patch
level of detail TLOD, patch flatness TF and tessellation qual-
ity TQ. Tessellation coefficients TLOD and TF are used
because adaptive tessellation requires them. Initially we
measured TLOD as edge length in screen space. There was
problem if angle between patch edge and view vector was
small. It is shown in the Figure 8. To avoid this artifact
TLOD is calculated as l/w in center of edge, where l is dis-

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
11

Figure 5: Parameter e (from left - 0.01, 0.02, 0.1, 0.2)
affects blurriness of normal map in second approach of
generating the normal map.

P PA

PB

e

e

P'

t

b

P'A

P'B
dPB

dPA

n

dB

dP

dA

Figure 6: Calculating normal vector n in tangent space
adding epsilon value e to P for vertices PA and PB on t
and b axis. P′, P′A and P′B are positions after displacement
mapping of vertices P, PA and PB. Normal vector is ob-
tained using normalized cross product of vectors dPB and
dPA.

tance of two corner points that lies on the edge. We use 14
tessellation factors 2 inner and 12 outer (Figure 7).

Inner tessellation factor for horizontal and vertical di-
rection is calculated as:

Tin = TLOD ·TF ·TQ, (2)

where:

• TLOD is average of l/w of middle edge points of patch
in screen space. l is distance between two corner
points that lies on patch edge in object space. l is
scale correction, so TLOD depends of patch size.

• TF is texture value in Laplace map of center patch UV
coord.

• TQ is global value of patch quality. Slow GPU should
has this value low.

Figure 7: Outer tessellation factors for B-Spline
patch used by Opensubdiv to avoid tessellation cracks.
tessOuterLo and tessOuterHi are used in case transition
edge (Edge connected with two smaller patch) [1].

Figure 8: Tessellation artifact caused by using adaptive
tessellation, where tessellation factor of edge is calculated
as distance of two corner points, lies on this edge in screen
space. Distance between corner points is small and edge
has small outer tessellation factor.

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
12

a) b)

Figure 9: T-vertices occur in edge where patch has a) same
subdivision level, but different outer tessellation factor on
adjacent edge b) subdivision level that differs by one and
tessOuterLo, tessOuterHi tessellation factors are not the
same as tessOuter of adjacent edge of smaller patch.

Tin is rounded to nearest integer value and clamped, so
minimal value can be 1. This is because inner tessellation
with level less than 1 is undefined.

The easiest solution to avoid T-vertices is to set global
outer tessellation factor to a constant value and in case of
transition edge to double it. Problem with this solution
is that inner tessellation factors change over surface and
outer tessellation factor does not have to suit well. Our ad-
vanced method is based on simple idea that adjacent vertex
has the same UV coordinate. We use the same Equation 2
like on inner tessellation factor, but coefficients TLOD and
TF are calculated differently. For neighbour patches that
uses same subdivision level, TLOD is l/w of middle edge
point in screen space. Else TLOD is calculated as l/w of
center in edge for Lo and Hi segments. If adjacent patch
have the same subdivision level then TF uses UV coordi-
nate of middle point edge. In other case UV coordinate is
chosen with weight 1/4 and 3/4 of corner UV coordinates
because it is center of edge in smaller patch.

3.3 Displacement mapping

We use a vector displacement map. Tangent vectors - t,
b, n are calculated from barycentric patch coordinates and
patch parameters. Calculating a new position P′ of a vertex
in an object space is in the Equation 3.

P′ =

Px
Py
Pz

+ s ·

tx bx nx
ty by ny
tz bz nz

dr−o
dg−o
db−o

 , (3)

where:

• P′ is new position in object space after the displace-
ment mapping.

• P is an old position in object space before the dis-
placement mapping.

• t, b, n are unit tangent vectors defined in object space.

• s is a strength of displacement.

• d is a vector displacement value in displacement map.

Figure 10: Morphing animation using linear interpolation
of two displacement map.

Figure 11: Animation, where control vertex is changing.

• o is a texture value, where displacement is zero. For
unsigned displacement map it should be zero and for
signed displacement map it should be set to 0.5.

4 Results

We can animate model changing displacement parameters
or changing control points position. Our solutions can
with a small amount of control vertices change shape of
model (Figure 11). It is also possible to create morphing
animation with linear interpolation of two displacement
maps (Figure 10). Our solution uses adaptive tessellation,
so generated geometry is view dependent (Figure 12). In
our tests we use Nvidia GT 740M GPU and i7-4702MQ
CPU.

Generating subdivision surface from control mesh is
fast (Table 2) because we use feature adaptive subdivision
rather than uniform subdivision. Feature adaptive subdivi-
sion is usually faster than uniform because feature adap-
tive subdivision uses fewer patches than uniform subdivi-
sion uses quads (Table 1). This is because bi-cubic patches
can better approximate limit surface. However, quad uses
only 4 vertices instead of 16 in case of B-Splines. Model
complexity of feature adaptive subdivision grows linearly
instead of exponentially. CPU time is measured via high
resolution timer4 in beginning and ending of generating
function. OpenGL functions can be asynchronous, so
GPU time is measured using GL TIME ELAPSED query.

4https://msdn.microsoft.com/en-us/library/
windows/desktop/dn553408

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
13

Figure 12: Generated geometry is view dependent.

Table 1: Geometry complexity of Feature Adaptive subdi-
vision and Uniform subdivision.

Control mesh Subdivision

level Feature
Adaptive

Uniform

Faces Vertices Patches Quads
1 4 3 28 256
1 4 6 64 4096
1 4 8 88 65536

406 450 3 442 25984
406 450 6 478 1,663 M
406 450 7 490 6,652 M
4697 450 2 8926 74848
4697 4678 3 11098 0,299 M
4697 4678 5 15442 4,790 M

Table 2: Generating subdivision surface from control
mesh.

Control mesh Subdivision

level
Feature

Adaptive
Uniform

Faces Vertices Generating
time [ms]

Generating
time [ms]

CPU GPU CPU GPU
1 4 3 1,62 0,018 0,016 0,004
1 4 6 1,71 0,019 0,767 0,001
1 4 8 1,74 0,017 11,42 0,017

406 450 3 1,79 0,003 9,139 0,003
406 450 6 1,80 0,065 649 0,002
406 450 7 1,86 0,064 2755 0,001

4697 450 2 1,73 1,024 231 0,001
4697 4678 3 1,72 3,670 110 0,010
4697 4678 5 2,14 5,865 1966 0,020

We use GPU Evaluator in feature adaptive subdivision, so
GPU time grows faster than CPU.

Table 3 shows that second approach of generating the
normal map is faster. We assume it is because first ap-
proach uses transformation to tangent space. In second
approach is one more pipeline stage - Geometry Shader.
Time of generating normal map depends mainly on model
complexity.

Table 4 shows generating time of Laplace map in differ-
ent resolutions.

In other test we compare render time between our
method with tessellation and drawing raw array of trian-
gles. We also test input memory size of our method and
polygon surface method. We would rather compare ren-
der time between our method and polygon surface, but all
connectivity information is lost. Our test model contains 4
control vertices with position and UV coordinate. Model
size in both axis is one unit. Input control of our method
mesh takes 0,1 kB. We used 128× 128, 256× 256 and
512× 512 RGB displacement texture. Displacement tex-

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
14

Table 3: Normal map generating time.

Triangles Patches Texture size Time of
first ap-
proach
[ms]

Time of
second

ap-
proach
[ms]

7048 28 256×256 0,541 0,986
7048 28 512×512 0,618 1,048
7048 28 1024×1024 0,719 1,282

1,037 M 442 256×256 9,256 21,348
1,037 M 442 512×512 9,438 21,277
1,037 M 442 1024×1024 9,954 21,544

29,623 M 11098 256×256 186,671 451,689
29,623 M 11098 512×512 188,061 451,899
29,623 M 11098 1024×1024 191,264 455,060

Table 4: Laplace map generating time.

Texture size Time [µsec]
256×256 73
512×512 261

1024×1024 970

ture has size of 48, 192 and 768 kB. We capture generated
tessellated surface as transform feedback and draw again
with polygon surface method. Render speed is measured
using GL TIME ELAPSED between draw command. In
case that generated triangles is more than value around
9000 our method is faster. Maybe, it is because of the
memory overload. Number of triangles is obtained via
GL PRIMITIVES GENERATED query.

In Tables 5, 6 and 7 estimated mesh size is present, if
we used polygon surface method. We assume using uint16
index buffer, 32-bit float vertex buffer, 8 vertex attributes
(3 - position, 3 - normal vector, 2 - UV coordinate) and
triangle grid topology.

5 Conclusions

Our method allows to generate mesh from low poly con-
trol mesh. This method has some advantages: automatic
generation LOD, animation with changing small number
of control points, sculpting surface, faster animating, etc.
It is possible that out method uses less memory.

There are some artifacts: aliasing in the normal map,
continuity in adaptive tessellation, problematic UV map-
ping between closed surface and texture space. Future
work can try to avoid these artifacts.

Table 5: Generated geometry and render time (displace-
ment map 128×128)

Distance Triangles Our
method
render
time

[µsec]

Triangle
array

render
time

[µsec]

Polygon
surface
mesh

estimated
size [kB]

3,138 1258 53 19 27,0
1,722 3546 77 59 76,2
1,0 9834 158 187 211,3

0,513 11858 230 263 254,8

Table 6: Generated geometry and render time (displace-
ment map 256×256)

Distance Triangles Our
method
render
time

[µsec]

Triangle
array

render
time

[µsec]

Polygon
surface
mesh

estimated
size [kB]

3,138 1202 54 20 25,8
1,722 3312 81 58 71,2
1,0 9386 163 185 201,7

0,513 11412 233 261 245,2

6 Acknowledgments

This work was supported by the Grant VEGA 1/0625/14.

References

[1] Osd tessellation shader interface. http:
//graphics.pixar.com/opensubdiv/
docs/osd_shader_interface.html. Ac-
cessed: 2016-02-10.

[2] Michael Bunnell. Adaptive tessellation of subdi-
vision surfaces with displacement mapping. GPU
Gems, 2:109–122, 2005.

[3] E. Catmull and J. Clark. Recursively generated
b-spline surfaces on arbitrary topological meshes.
Computer-aided design, 10(6):350–355, 1978.

[4] James D. Foley, Andries van Dam, Steven K. Feiner,
and John F. Hughes. Computer Graphics: Principles
and Practice (2Nd Ed.). Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1990.

[5] Charles Loop and Scott Schaefer. Approximat-
ing catmull-clark subdivision surfaces with bicubic

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
15

Table 7: Generated geometry and render time (displace-
ment map 512×512)

Distance Triangles Our
method
render
time

[µsec]

Triangle
array

render
time

[µsec]

Polygon
surface
mesh

estimated
size [kB]

3,138 1246 55 19 26,8
1,722 3462 84 60 74,4

1,0 9363 181 188 201,2
0,513 11464 254 264 246,3

patches. ACM Transactions on Graphics (TOG),
27(1):8, 2008.

[6] Matthias Nießner. Rendering subdivision surfaces
using hardware tessellation. Verlag Dr. Hut, 2013.

[7] Matthias Nießner and Charles Loop. Analytic
displacement mapping using hardware tessellation.
ACM Transactions on Graphics (TOG), 32(3):26,
2013.

[8] Matthias Nießner, Charles Loop, Mark Meyer, and
Tony Derose. Feature-adaptive gpu rendering of
catmull-clark subdivision surfaces. ACM Transac-
tions on Graphics (TOG), 31(1):6, 2012.

[9] Henry Schäfer, Benjamin Keinert, Matthias Nießner,
and Marc Stamminger. Local painting and deforma-
tion of meshes on the gpu. In Computer Graphics
Forum, volume 34, pages 26–35. Wiley Online Li-
brary, 2015.

[10] P. Schröder, D. Zorin, T. DeRose, DR. Forsey,
L. Kobbelt, M. Lounsbery, and J Peters. Subdivi-
sion for modeling and animation. ACM SIGGRAPH
Course Notes, 12, 1998.

[11] Graham Sellers, Richard S. Wright, and Nicholas
Haemel. OpenGL SuperBible: Comprehensive Tu-
torial and Reference. Addison-Wesley Professional,
7th edition, 2015.

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
16

Real-time Cast Shadow Contours

Péter Barabás∗

Supervised by: László Szécsi†

Computer Graphics Group
Department of Control Engineering and Information Technology

Budapest University of Technology and Economics
Budapest / Hungary

Abstract

This paper presents a real-time algorithm for drawing
shadow contours in non-photorealistic rendering. We
use the straightforward idea of intersecting shadow vol-
umes with shadow receiver surfaces, proposing a practical
scheme for accelerating the process on the GPU. Real-time
operation is achieved by building a 2D bounding volume
hierarchy (BVH) that relies on implicit spatial coherence
in triangle mesh models.

Keywords: NPR, outline rendering, shadow volumes

1 Introduction

Photo-realism has been in the focus of rendering systems
for decades. Photo-realistic rendering aims at creating
images that are indistinguishable from real-world pho-
tographs, which is made possible by the precise simula-
tion of physics laws during the rendering process. How
accurately physics is applied in the rendering algorithm
determines the level of realism of the result.

Computer graphics also tries to mimic artistic expres-
sion and illustration styles [6, 16, 18]. Such methods are
usually vaguely classified as non photo-realistic render-
ing (NPR). While the fundamentals of photo-realistic ren-
dering are in optics that are well understood, NPR sys-
tems simulate artistic behavior that is not mathematically
founded and often seems to be unpredictable. Therefore,
the first step of NPR is to model the artist by establish-
ing a mathematical model describing his style, and then
solve this model with the computer. The result will be ac-
ceptable if our model is close to the not formally specified
artistic behavior. During the history of NPR, many indi-
vidual styles were addressed. Many of those styles employ
pen lines, pencil lines, or brush strokes to build an image.
These elements are often used to draw outlines.

Outline visualization is extensively used in a wide range
of applications, from CAD systems to stylized rendering.
It can clarify the shape of a complex 3D object or may

∗medve9213@gmail.com
†szecsi.laszlo@gmail.com

highlight essential features. The human visual system pro-
cesses seen images by identifying shapes separated by dis-
continuities. Outline rendering provides strong cues for
shape separation, substituting for subtle and expensively
rendered real-world cues like scattered lighting and shad-
ows, and providing a stronger visual language in stylistic
rendering. Cartoon shading, in particular, relies on edge
visualization to convey shape information, in lieu of real-
istic shading.

This paper proposes a stylized rendering method where
outlines are drawn to emphasize the contours of shadows,
and describes a GPU-based real-time implementation. The
organization of the paper is as follows. In Section 2 we
summarize the related previous work on NPR, and out-
line rendering in particular. We explain why cast shadow
contours received little attention, and evaluate the fitness
of existing methods for this purpose. Section 3 introduces
our approach. A detailed description of the final algorithm,
and the discussion of results and future work conclude the
paper.

2 Previous work

There are two well known approaches to outline rendering.
The first one works in image space with the use of color,
normal, and depth maps [15]. Edge pixels—those that lie
near discontinuities in these maps—can be found using
edge detection filters. What level of image-space discon-
tinuity warrants outline edges must be adjusted by fine-
tuning filter parameters and applying mask textures [17].
Object-space consistency of outlines during animations is
also subject to those parameters. Cast shadow contours
can easily be drawn if edges are detected on an untextured
but shadowed rendering of the scene. The main problem
with this approach is the excessive texture access band-
width and the absence of real scalability in line features.

The other approach works in world space and generates
new triangle strip geometry to visualize the outlines. In the
following, we discuss methods in this category in greater
detail.

There are two basic classes of outlines that are always
drawn in line art, both indicating some kind of perceived

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 1: Crease (left) and silhouette (right) outlines.

discontinuity (see Figure 1). Silhouettes appear at discon-
tinuities in image space, where a continuous object sur-
face appears to end. For manifold surface models this can
happen only where the surface folds behind itself, mean-
ing that outlines are located on the border of the visible
(camera-facing) and not visible (back-facing) part of the
object surface. The other class of displayed outlines—
called creases or feature lines—indicate discontinuities in
the surface normals, and they are defined by the topology
of the mesh itself, independent of the view direction or the
camera settings. In this paper, we take some ideas from
conventional silhouette identification approaches, and dis-
cuss which are useful in finding shadow contours. Our pre-
sented results also include conventional outline rendering
in addition to the newly proposed shadow contour outlines.

In addition to the silhouettes and creases discussed
above, outline drawings may feature further lines. Sug-
gestive contours [4] and apparent ridges [10] define out-
lines based on surface curvature characteristics. While
these can provide superior visual cues, especially in ab-
sence of additional shading, they are less fit if we aim at
minimal-overhead real-time rendering [3].

Cast shadow contours are yet another class of outlines
that can appear in drawings. They have received less at-
tention in research, both for artistic and technical reasons.

On the artistic side, cast shadow contours are relatively
rarely drawn in technical or artistic images. Quite of-
ten, under natural illumination, shadows are supposed to
have soft edges, and it is undesirable to draw attention to
discontinuities in brightness due to cast shadows. When
shadows need to appear hard, they are often rendered in
solid black, making outlines not very prominent, even if
drawn. However, where shadows need to be emphasized,
especially in architectural or artistic sketches (Figure 2),
shadow outlines are often drawn. Even in paintings, some
strokes aligned on cast shadow contours are present (Fig-
ure 3).

On the technical side, cast shadow contour generation
is theoretically straightforward, and less prone to artifacts
than silhouette outlines. Eisemann et al. [5] described the
process of intersecting shadow volumes with the meshed
shadow receiver surface. It requires the identification of
the shadow caster silhouette as seen from the light source,
and projecting it onto shadow receiver surfaces. We dis-
cuss these two phases in the following subsections.

source: https://u.osu.edu/idvisualization/

source: http://tightline-sketchblog.blogspot.hu/

source: http://www.anfitrion.co/p/2682/

source: https://alison512480.wordpress.com

Figure 2: Architectural or artistic sketches with cast
shadow contours.

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
18

Figure 3: The Night Café in Arles by Vincent van Gogh,
watercolor.

2.1 Shadow volume generation

Extraction of the shadow caster silhouette is a well-known
operation in shadow volume computation used for sten-
cil shadows, which can be implemented in a GPU shader
pass [2].

Figure 4: Markosian [14] (left), and Herzmann–Zorin sil-
houettes [9] (right) seen from a viewpont different from
the camera position used for silhouette extraction. Figure
taken from Benard et al. [1].

There are two basic ways to define silhouettes on trian-
gle meshes. The approach by Markosian et al. [14] oper-
ates on the discrete triangle mesh geometry itself, select-
ing those edges as silhouette edges which separate front-
facing and back-facing triangles. When rendered in solid
color, the silhouette looks smooth, but—as shown in Fig-
ure 4—it is often ragged on the object surface. In the im-
age plane, the edge loop can even turn back along the ob-
ject silhouette multiple times, which becomes apparent if
strokes are rendered semi-transparently. The definition by
Hertzmann and Zorin [9] avoids this problem, as it con-
siders the smooth surface instead of the triangulated one,
reconstructing silhouettes from the vertex normals. For a
given vertex a with normal na and vector ca to the cam-
era, we define the scalar field f (a) = na · ca, extending f
to triangle interiors by linear interpolation. Silhouettes are
taken to be the zeroset of f , yielding clean, closed poly-
lines whose segments traverse faces in the mesh (rather
than following edges, as in the Markosian method).

For stencil shadows, the Markosian-style silhouettes are
extruded, as they provide artifact-free self-shadowing, and
overly complex or back-tracking shadow volume bound-
aries do not influence the quality of the projected shadows.
However, for the purposes of cast shadow contour ren-
dering, these problems are just as relevant as for straight-
forward silhouette rendering. Therefore, Hertzmann-and-
Zorin-style silhouettes should be preferred.

When rendering silhouettes, hidden outlines should be
removed. This is expensive to solve geometrically, thus
screen-space methods are preferred. Depth testing is
quite unreliable, and ID buffers were more successfully
used [13]. For cast shadow outlines, there is no estab-
lished practice. Geometric processing of shadow volumes
would not be real-time, and adapting the ID buffer method
is also not straightforward. Thus, we propose to solve the
problem of removing cast shadow outlines due to hidden-
from-light silhouettes in screen space (in Section 3.2).

2.2 Intersection

Eisemann et al. [5] described the process of intersecting
shadow volumes with the meshed shadow receiver surface.
Their purpose for extracting cast shadow contours was to
transform 3D objects into 2D clip art. Therefore, real-time
performance was not targeted and no acceleration scheme
for the intersection was proposed.

Performing intersection in real time, however, is chal-
lenging in practice, as it is a crossbar on shadow volume
and surface mesh faces, resulting in a naive algorithm of
O(n2) time complexity. Intersection tests can be accel-
erated using spatial subdivision schemes, but in dynamic
scenes the cost of constructing those may be prohibitive.

In this paper, we show that we get a reasonably tight
bounding volume hierarchy over the shadow volume faces,
if we apply the object median subdivision scheme on the
primitive stream generated by a contour-extruding geome-
try shader, without any additional ordering or cost heuris-
tics. We compare intersection performance with that of a
proper top-down object median subdivision scheme with
object sorting to show that there is no significant perfor-
mance penalty incurred.

3 New method

Generating cast shadow contours is a simple and straight-
forward problem in theory. By using the geometry of
shadow volumes, we can easily find the intersections be-
tween shadow volume faces and shadow receiver faces.
This would mean, however, that we would need to check
every shadow volume face against every shadow receiver
face. Even a moderately complex scene would impose a
prohibitively large computation time, if we were to utilize
this naive approach.

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
19

3.1 Intersection acceleration

We assume a perspective pinhole camera for a point light
source, or an orthographic camera for a directional light
source. Shadow caster silhouette edges—which are also
faces of the shadow volume, when extruded—appear as
2D line segments when projected on the camera’s image
plane. Our method relies on building a 2D bounding vol-
ume hierarchy (BVH) over these line segments. Travers-
ing the BVH allows us to reduce the number of shadow
volume faces we need to check for each receiver face.
The contour edges constitute the leaves of the BVH tree,
and nodes are axis-aligned bounding boxes, or AABBs—
rectangles in this 2D case—, enclosing all child leaves.
During traversal, we project each shadow receiver face to
the camera plane, and check its AABB against the cells
of the BVH recursively. If there is no intersection with a
cell, its children are not traversed, filtering out most of the
shadow volume faces that our shadow receiver face does
not intersect.

A BVH is useful if it eliminates costly intersection com-
putations. Thus, BVH cells should be as small as possible.
This is often achieved by separating primitives into two
locally coherent clusters, and repeating the process recur-
sively to obtain a hierarchy. The clustering can be done by
sorting primitives according to one (or more) of their spa-
tial position coordinates, and splitting the sorted list into
two parts. Splitting may be based on cost heuristics or
simple strategies like the spatial median (similarly sized
cells) or the object median (same number of elements in
both cells) [8, 19].

Building a BVH that is efficient, however, suffers from
the same performance problems that we aim to solve. Var-
ious methods for interactively building BVHs with GPU
support have been proposed, one of the most relevant be-
ing linear bounding volume hierarchies (LBVH) [12, 11].
However, even this method requires sorting primitives at
least once, with a severe performance impact for our ap-
plication. In this paper, we investigate the effect of relying
on the inherent spatial coherence in typical triangle mesh
models, completely forgoing the sorting step. This means
that we use the cast shadow contour’s edge primitives in
the order they are written by the GPU after the silhou-
ette detector shader. We use the object median splitting
scheme, to avoid computation of cost heurisics, and ob-
tain a balanced BVH tree, which is both easy to store and
efficient to traverse on the GPU. This allows us to create
the BVH in a bottom-up fashion, which can be solved ef-
ficiently using parallel reduction [7].

As triangle mesh geometries are typically modelled
with some inherent spatial coherence or even optimized
into triangle strips, our intuition was that even if the silhou-
ette detection and the parallel stream processing introduce
some randomness, the output contour segments would still
exhibit sufficient coherence on a local scale. This would
mean that the BVH built using this ordering is only sub-par
on a few of the highest levels, compared to one built with

proper sorting, introducing a fairly constant, but relatively
small overhead.

3.2 Hidden caster silhouette removal

Shadow caster silhouettes hidden from the light source
appear on the shadow receiver surface as shadow con-
tours that fall inside already shadowed areas. These in-
ner shadow contours need to be filtered out, otherwise
multiple objects casting overlapping shadows or concave
shadow casters would cause erroneous contours to appear
on receivers. To solve this, we utilized the information al-
ready available to us via shadow volume generation—the
stencil buffer. In the stencil buffer, each texel has a value
corresponding to the amount of shadow volumes it is con-
tained in. This means we can use that information to check
if a contour edge is inside a single shadow volume or not.
Some ambiguity would be present, as all contours are ex-
actly on the boundary of the shadow volume. In order to
avoid the flickering caused by these inaccuracies, we off-
set all contours towards the inside of the shadowed surface,
using the receiver surface normals and the shadow volume
face normals.

4 Implementation

The implementation of such an algorithm is inherently
multi-pass. The following steps provide an overview of
what an implementation entails:

• shadow volume generation,

• rendering shadow volume faces and computing axis
aligned bounding rectangles in the light source cam-
era’s screen space,

• building the bounding volume hierarchy,

• checking for shadow volume–shadow receiver inter-
sections using the bounding volume hierarchy.

Each step is implemented as a separate shader pass.
Since we want to implement the bounding volume hier-
archy builder using parallel reduction, using the GPU and
a very short compute shader is a natural choice. Normally,
only the result in the stencil buffer is used when imple-
menting shadow volume based shadows, the geometry is
thrown away. For our purposes, we need to access the
geometry of the shadow volume in later passes. For this
we use the stream output functionality of GPUs, emitting
the world positions of the vertices composing the extruded
faces of the volume.

Once we have the shadow volume faces, we feed the
contents of the stream output buffer back into the pipeline
for a pass rendered from the light source. The light source
requires its view and projection matrices to be set-up—
similar to the shadow mapping technique—since we are
rendering from the viewpoint of the light. The shader run

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
20

in this pass is very straightforward, we just transform the
primitives to the space of the light source, project them,
and create the AABBs we need in the next step. The end
results are streamed out as well, which gives us the actual
order of the leaves later in the bounding volume hierarchy.

4.1 Building the BVH

We set up the buffer that will contain the bounding volume
hierarchy using a representation that is similar to the array
representation of the heap data structure. This helps us to
easily calculate indexes of child nodes. The bounding vol-
ume hierarchy is created using a compute shader, which
processes each level above the leaf level. The buffer con-
taining the hierarchy is filled up from back to front, with
leaves being the elements at the end, and their parents oc-
cupying the previous elements.

The only guarantee in stream output primitive order is
that subsequent draw calls will take up subsequent regions
in the stream output buffer. Since the primitive order de-
fines the spatial coherence of the bounding volume hi-
erarchy, we will need to measure performance against a
bounding volume hierarchy constructed with proper sort-
ing.

4.2 Tree traversal and edge generation

The final pass is where we find the actual shadow con-
tours. A geometry shader runs on the shadow receiv-
ing meshes. As visible cast shadow outlines appear on
faces that appear as front faces as seen both from the cam-
era and from the light source, back faces in either aspect
are culled. Then, we generate the light-screen-space axis
aligned bounding rectangle of the primitive, and traverse
the bounding volume hierarchy while checking against the
axis aligned bounding rectangles of its nodes. For each tra-
versed leaf we precisely calculate if there actually is any
intersection with the primitive. If there is, we have to de-
termine whether the contour is completely inside the prim-
itive, or just partially, and calculate the actual intersection
points accordingly.

Traversing a tree-like data structure is usually achieved
by recursion, which is forbidden in shader code. There-
fore, we implemented recursion using a small local stack.
At each intersected node of the tree we push one child
node on our self-managed stack and evaluate the other.
After a traversal branch terminates because of a non-
overlapping AABB or because of reaching a leaf, we pop
a node from the top of the stack. Traversal is complete
when no nodes remain on the stack. We also skip faces
with normals facing away from our light source to elimi-
nate intersections on sides opposite from the light, and to
save performance.

There is a practical limitation with regards to using the
geometry shader. The buffer we output vertices into is
limited in size, so depending on the amount of data we
want to stream out—position, in our case—we can only

output a limited number of vertices. With a single po-
sition tuple of four floats, we can currently output 256
vertices, which means 128 contour edges for each trian-
gle. This limitation could require us to increase poly-
gon count on shadow receiving geometry to prevent the
GPU from discarding contour edges. To lower the im-
pact of this limitation, we quantize the positions and dis-
card contour segments which have no length after quan-
tization. We achieve this by defining a grid in 3D world
space with a small enough resolution to be unnoticeable—
usually around 1/10 of the contour stroke width—and then
each contour segment point is snapped onto the nearest
grid point. If the length of the contour segment is zero
after quantization, we do not render it.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 200 400 600 800 1000 1200

F
ra

m
er

at
e

#shadow contour segments

Sorted
Unsorted

Figure 5: Overall performance of shadow outline render-
ing with our GPU bottom-up bounding volume hierarchy
construction without sorting, and with the CPU top-down
solution with sorting, on an NVidia 970 GTX and an i7
3770K. The shadow receiver had 2182 faces.

 0

 5

 10

 15

 20

 25

 30

 0 200 400 600 800 1000 1200

T
im

e(
m

s)

#shadow contour segments

Sorted
Unsorted

Figure 6: Tree traversal times for trees constructed with
our GPU bottom-up approach without sorting, and with
the CPU top-down solution with sorting. Surprisingly, the
unsorted tree often outperformed the sorted one.

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
21

5 Evaluation of unsorted bounding
volume hierarchy performance

For the purpose of comparison, we needed to implement a
bounding volume hierarchy building algorithm that does
not exploit pre-existing locality, but sorts the silhouette
segments before subdividing them. Numerous such algo-
rithms exist, with different schemes used for partitioning
objects (Sulaiman [19] offers an overview). These may
have significant differences in performance. We opted for
a simple one that is close to our method in that it builds
a balanced tree, and does not use expensive cost estimates
to improve partitioning: the object median method. This
is a top-down method, sorting the objects according to a
coordinate axis, and splitting them so that the two parti-
tions have the same number of elements. We implemented
this method on the CPU. There is little doubt that compar-
ison with a more sophisticated bounding volume hierar-
chy construction scheme (e.g. with surface area heuristics)
could provide better traversal statistics—at least in theory.
In practice, traversing unbalanced trees would require a
larger local stack and a less direct tree representation, both
of which would impact GPU performance, which is why
we focused on the most practical object median method.

We measured our bottom-up GPU implementation
against the top-down CPU algorithm. Not surprisingly, the
overall frame rate was much more favorable with the GPU
algorithm, especially as the face count of the shadow vol-
ume increased (Figure 5). This is easy to explain, as CPU
sorting made the application CPU-limited, and bounding
volume hierarchy construction stalled the rendering pro-
cess. This could be somewhat mitigated by parallel sort-
ing on the GPU—making the solution much more complex
and difficult to implement—but tree construction times
will always remain relatively high.

Figure 7: Eagle shadow caster test scene with cast shadow
contours on double ellipsoid receiver.

More interestingly, we measured the tree traversal times
for the two methods. Test scenes are shown in Fig-
ures 7, 8, 9, 10, 11. Table 1 shows scene characteristics and

Figure 8: Deer shadow caster test scene with cast shadow
contours on double ellipsoid receiver.

Figure 9: Eagle and giraffe shadow casters test scene with
cast shadow contours on double ellipsoid receiver.

times for tree traversal with the sorted and unsorted trees.
We expected the sorted tree to perform better, but of course
not so much as to validate construction overhead. Surpris-
ingly, we found that more often than not the unsorted tree
performed even better than the sorted one. Thus, we con-
clude that not sorting the objects is perfectly sound in this
application.

6 Conclusion

We have shown that during shadow contour rendering, it
is unnecessary to include an expensive sorting step, when
building an acceleration hierarchy over the contour edges.
We have presented an algorithm for rendering cast shadow
contours exploiting this fact. Comparison with the ob-
ject median split scheme using sorting revealed that traver-
sal times remain similar, while tree construction times are
much lower, allowing for real-time operation for scenes of
about thirty thousand triangles.

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
22

Figure 10: Candle shadow casters test scene with cast
shadow contours on deck chair.

Table 1: Tree traversal times (in ms) for the test scenes.
Shadow caster polygon counts and the number of shadow
contour edges are given for every scene.

Test scene polys lines sorted unsorted
Eagle 21328 707 18.66 19.13
Deer 28434 797 30.25 25.23
G&E 25930 954 55.23 50.69
Candles 21594 512 28.3 19.24
Heart 20468 293 5.11 6.93

7 Future work

Stylization of the shadow contour strokes should be im-
proved to mimic actual artistic work.

Cast shadow outlines should integrate smoothly with
other kinds of strokes in artistic rendering, offering a spe-
cial tool for emphasizing shadows. Therefore, we need to
integrate our method with NPR techniques other than out-
line rendering. Filling the shadows with hatching is the
most obvious task. In architectural rendering, research-
ing ways to render outlined shadows with precise hatching
strokes may be interesting.

We could further compare the performance of the un-
sorted bounding volume hierarchy against more sophis-
ticated methods, like the linear bounding volume hierar-
chy [12, 11]. This could provide some additional insight
into the locality requirements characteristics. However, if
not sorting works adequately, it is hard to envision a sce-
nario where devoting resources to build a better bounding
volume hierarchy could pay off—at least in a dynamic en-
vironment where shadow contours change in every frame.

8 Acknowledgements

This work has been supported by OTKA PD-104710.

References

[1] Pierre Bénard, Aaron Hertzmann, and Michael Kass.
Computing smooth surface contours with accurate
topology. ACM Transactions on Graphics (TOG),
33(2):19, 2014.

[2] Stefan Brabec and Hans-Peter Seidel. Shadow vol-
umes on programmable graphics hardware. In Com-
puter Graphics Forum, volume 22, pages 433–440.
Wiley Online Library, 2003.

[3] D. DeCarlo, A. Finkelstein, and S. Rusinkiewicz. In-
teractive rendering of suggestive contours with tem-
poral coherence. In Proceedings of the 3rd Interna-
tional Symposium on Non-photorealistic Animation
and Rendering, pages 15–145. ACM, 2004.

[4] D. DeCarlo, A. Finkelstein, S. Rusinkiewicz, and
A. Santella. Suggestive contours for conveying
shape. In ACM Transactions on Graphics (TOG),
volume 22, pages 848–855. ACM, 2003.

[5] Elmar Eisemann, Holger Winnemöller, John C Hart,
and David Salesin. Stylized vector art from 3d mod-
els with region support. In Computer Graphics Fo-
rum, volume 27, pages 1199–1207. Wiley Online Li-
brary, 2008.

[6] Paul Haeberli. Paint by numbers: Abstract im-
age representations. In ACM SIGGRAPH Computer
Graphics, volume 24, pages 207–214. ACM, 1990.

[7] Mark Harris et al. Optimizing parallel reduction in
CUDA. NVIDIA Developer Technology, 2(4), 2007.

[8] Vlastimil Havran. Heuristic ray shooting algorithms.
PhD thesis, Citeseer, 2000.

[9] A. Hertzmann and D. Zorin. Illustrating smooth
surfaces. In Proceedings of the 27th annual con-
ference on Computer graphics and interactive tech-
niques, pages 517–526. ACM Press/Addison-Wesley
Publishing Co., 2000.

[10] T. Judd, F. Durand, and E. Adelson. Apparent ridges
for line drawing. In ACM Transactions on Graphics
(TOG), volume 26, pages 19–19. ACM, 2007.

[11] Tero Karras. Maximizing parallelism in the construc-
tion of BVHs, octrees, and k-d trees. In Proceedings
of the Fourth ACM SIGGRAPH/Eurographics con-
ference on High-Performance Graphics, pages 33–
37. Eurographics Association, 2012.

[12] Christian Lauterbach, Michael Garland, Shubhabrata
Sengupta, David Luebke, and Dinesh Manocha. Fast
bvh construction on gpus. In Computer Graphics Fo-
rum, volume 28, pages 375–384. Wiley Online Li-
brary, 2009.

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
23

[13] L. Markosian and J.F. Adviser-Hughes. Art-based
modeling and rendering. Brown University, 2000.

[14] L. Markosian, M.A. Kowalski, D. Goldstein, S.J.
Trychin, J.F. Hughes, and L.D. Bourdev. Real-
time nonphotorealistic rendering. In Proceedings
of the 24th annual conference on Computer graph-
ics and interactive techniques, pages 415–420. ACM
Press/Addison-Wesley Publishing Co., 1997.

[15] M. Nienhaus and J. Doellner. Edge-enhancement—
an algorithm for real-time non-photorealistic render-
ing. Journal of WSCG, 11(2), 2003.

[16] Emil Praun, Hugues Hoppe, Matthew Webb, and
Adam Finkelstein. Real-time hatching. In Pro-
ceedings of the 28th annual conference on Computer
graphics and interactive techniques, pages 581–581.
ACM, 2001.

[17] J. Shin. A stylised cartoon renderer for toon shading
of 3d character models. Master’s thesis, University
of Canterbury, UK, 2006.

[18] Thomas Strothotte and Stefan Schlechtweg. Non-
photorealistic computer graphics: modeling, render-
ing, and animation. Elsevier, 2002.

[19] Hamzah Asyrani Sulaiman. Bounding Volume Hier-
archies for Collision Detection. INTECH, 2012.

Figure 11: Heart shadow caster test scene with cast
shadow contours on three bowling pin receivers.

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
24

Configurable Rendering Effects For Mobile Molecule
Visualization

Lukas Prost∗

Supervised by: Reinhold Preiner†

Institute of Computer Graphics and Algorithms
Vienna University of Technology

Vienna / Austria

Abstract

Due to their omnipresence and ease of use, smart phones
are getting more and more utilized as educational in-
struments for different subjects, for example, visualizing
molecules in a chemistry class. In domain-specific mobile
visualization applications, the choice of the ideal visual-
ization technique of molecules can vary based on the back-
ground and age of the target group, and mostly depends
on the choice of a graphical designer. Designers, however,
rarely have sufficient programming skills and require an
engineer even for the slightest adjustment in the required
visual appearance. In this paper we present a configuration
system for rendering effects implemented in Unity3D, that
allows to define the visual appearance of a molecule in a
JSON file without the need of programming knowledge.
We discuss the technical realization of different rendering
effects on a mobile platform, and demonstrate our system
and its versatility on a commercial chemistry visualization
app, creating different visual styles for molecule render-
ings that are appealing to students as well as scientists and
advertisement.

Keywords: Molecule Shading, Mobile, Unity3D

1 Introduction

Mobile molecule visualization can be useful for many dif-
ferent groups e.g, scientists and students. Yet, every tar-
get group has their own requirements due to their different
purposes. Often it is up to a designer to create a visual
appearance that best meets those requirements. Designers,
however, rarely have the technical skills to realize their
design in a graphical rendering framework on their own.
An engineer has to build the design and alternate it every
time the slightest adjustment has to be made. As a result,
there are always at least two people required to maintain
an application’s update life cycle.

In this paper, we present a mobile molecule visualiza-
tion implemented in Unity3D, that allows to easily modify

∗lukas.prost@tuwien.ac.at
†preiner@cg.tuwien.ac.at

Figure 1: Exemplary screenshots of a commercial chem-
istry visualization app.

the visual appearance with the help of a JSON configu-
ration file. Designers can change the rendering by set-
ting parameters in these files e.g. which shaders to use
or where lights should be placed with no required pro-
gramming skill whatsoever. In the remaining paper, we
will demonstrate how to apply high quality rendering ef-
fects like screen space ambient occlusion, depth of field
and comic shading/outline rendering in a mobile commer-
cial chemistry visualization app (see Figure 1) and how to
make them configurable using JSON files.

The rest of this paper is structured as follows: Section 2
reviews some related mobile molecule visualization apps,
gives background in Unity and JSON, and discusses the
related work on the rendering effects used by our system.
Section 3 shows the JSON file that is used for appear-
ance parametrization and how the textual information is
used for molecule rendering. In Section 4 different render-
ing techniques are explained in more detail that are used
to visualize molecules. Finally, in Section 5 we present
some results and show different rendering styles that can
be achieved by our system.

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)

2 Background and Related Work

2.1 Molecule Visualization Systems

NDKmol [3] is an open source visualization app for smart
phones. It supports many different visualization tech-
niques like bond and ribbon diagrams and has direct ac-
cess to the RCSP Protein Data Bank (RCSP PDB). The
rendering, however, looks very plain and scientific. RCSB
PDB Mobile [4] is a molecule visualization app that is offi-
cially provided by RCSP PDB. Because it is based on ND-
Kmol, it has the same visual appearance. Molecules [2] is
an alternative open source app that can load molecules di-
rectly from RCSP PDB. Unfortunately, it is only available
for iOS. Atomdroid [10] is an app for Android with a lot
functionality besides visualization. Among other things it
allows to build molecules and do trajectory analysis. The
last update, however, was 2012.

2.2 Unity3D

Unity3D is a free to use game engine which supports de-
ployment for many different platforms. A Unity3D project
consists of different scenes which be thought of as levels
in a game. They contain all elements, e.g. scripts and
models, and information, e.g. level architecture, required
to run the scene as a program. All objects appearing in a
scene are Game Objects (GO). A GO is the core element
of Unity3D and can be thought of a container for compo-
nents. The properties of a GO are defined by the compo-
nents that are attached to it. These components can e.g. be
a transform component, defining the GO’s position, orien-
tation and scale, or the camera component that enables the
GO to render the scene. Later in the paper we will show
how to manipulate a Unity-based system to define a GO’s
visual appearance using JSON config files.

2.3 JSON

The JavaScript Object Notation (JSON) [1] is an up-to-
date, easy to read file format for transferring data and is
mainly used in web development. It is lightweight and
widely supported. JSON is used in the presented system
to store visualization meta data. XML would have been
the other option, yet it was dismissed because it is ver-
bose and therefore not as legible as JSON. Data is stored
as name/value pairs. While the name is always a string,
the value store different types of data, ranging from sim-
ple types (number, string) to complex types like arrays or
objects. An array can contain values, arrays and objects.
Objects can store name value pairs. For more details about
JSON and its syntax, see the JSON specification [1].

2.4 Realtime Rendering Effects

Comic Shading One technique to shade objects with a
flat cartoon look is hard shading presented by Lake et al.

[15]. The shading is done by a texture lookup based on
the dot product between the normal vector and the light
direction, but without interpolation resulting in a shading
with few solid colors. Mitchell et al. [17] create a cartoon
look without hard shading by using a 1D lookup texture
and a modified Lambert lighting model. Vanderhaeghe et
al. [20] present an approach for creating stylized render-
ings (including toon shading) dynamically by composing
procedural primitives. A primitive describes a shading be-
havior and its parameters can be defined dynamically.

Outline Rendering Akenine-Möller, Haines and Hoff-
man [5, p.512] describe a heuristic method, that marks
surface points as part of an object’s silhouette if the dot
product between the view and the normal vector is close
to zero. Isenberg et al. [13] mark edges that share a front
facing and a back facing polygon relative to the viewer as
silhouette edges. Another approach presented by Akenine-
Möller et al. [5] is the halo or shell method. An object is
rendered by two passes, where the first pass renders the
front faces of an object and the second pass renders its en-
larged back faces. Kolivand and Sunar [14] detect silhou-
ette edges for shadow volumes by sending a ray for each
edge from the light source to one along this edge translated
end vertex of the edge. If the ray does not intersect with
any face of the object, the processed edge is a silhouette.

Ambient Occlusion The concept of ambient occlusion
(AO) and its benefits are described by Landis [16]. An
implementation is given by Pharr and Green [19]. A
technique that enables dynamic real time computation is
screen space ambient occlusion (SSAO) which first was
presented by Mittring [18]. It simulates occlusion from
nearby surfaces by using the depth buffer to approximately
reconstruct local geometry. To do so, random samples are
placed around each fragment’s view space position which
is then compared against the depth of the surrounding ge-
ometry using simple depth buffer lookups. The more sam-
ples are covered by the surrounding geometry, the more
the fragment is occluded. Filion and McNaughton [11]
describe an improved version of Mittring [18] by aligning
the samples on a hemisphere around the surface normal
reducing self occlusion dramatically.

Depth of Field Physically correct Depth of Field (DoF)
rendering is presented by Cook, Porter and Carpenter [7],
who simulate light distortion by ray tracing through a vir-
tual lens. Haeberli and Akeley [12] render the scene from
several slightly different view points and use the accumu-
lation buffer to blend the renderings together into a final
image. Demers [8] simulates DoF in screen space by sep-
arating the scene into layers based on the depth buffer. Af-
ter blurring these layers based on their depth, the scene
is composed back together resulting in a visual appealing
DoF effect. Filion and McNaughton [11] present an im-
plementation of this approach that uses five layers.

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
26

3 Appearance Parametrization

In this Section we will demonstrate how we parameter-
ize the visual appearance of a molecule by a simple JSON
configuration file, and how it is integrated in a Unity3D
application to control its scene rendering.

Listing 1: Template for the JSON configuration file
{
"camera" : {

"orthographic" : <boolean> ,
"bgcolor" :

[<integer> , <integer> , <integer>] }
,

"mapping" : {
<<string> : <string>>*
"post_effects" : [<string>*] },

"shaders" : [
<{
"name" : <string> ,
"shader" : <string> ,
"properties" : { ... } },
}>*]

"lights" : [
<{
"type" : <string>,
"position" :

[<integer> , <integer> , <integer>],
"color" : [<integer> , <integer> , <integer>]

,
"intensity" : <float> ,
"shadow" : <string> ,
"strength" : <float> ,
"movable" : <boolean> ,
}>*]

}

3.1 JSON Config File

The whole visual appearance of a scene is stored in a
JSON config file (JCF). A template of its structure and
syntax is shown in Listing 1. Our configuration file has
four main name/value pairs:

• Camera has an object that stores a background color
and a boolean defining whether the projection is or-
thographic or perspective.

• Shaders stores an array of shader objects. A shader
object contains a name for the shader (name) and
the name of the used shader (shader). The first one
functions as a reference/id which is valid inside the
current JCF, whereas later one is the actual name of
the used shader inside the application. Moreover, a
shader object contains a property object storing pa-
rameters for each individual shader. The available
shaders are the Unity3D default shaders as well as
custom shaders described in Section 4.

• Mapping has an object with name/value pairs where
the name refers to an actual object in the scene
and the value is the reference to a shader object in
Shaders. The available scene objects depend on the
application. post effects stores an array of post pro-
cessing shader references that will be applied in the
order of the array.

• Lights stores an array that contains light objects. A
light object contains all properties of a light source
e.g, its type (point or directional), its position and
what kind of shadow it casts (none, soft or hard).

3.2 Integration in Unity3D

The system that applies the JCF described in Section 3.1 to
the Unity3D Scene consists of the three independent mod-
ules: a ShaderProvider, aCameraProvider and a Lighting-
Provider. The interaction of these modules with the core
entities of an Unity application is illustrated in Figure 2.

The ShaderProvider works with the data stored in
Shaders and Mapping. Every Game Object (GO) that will
be rendered requests a shader from this module, either
by specifying its defined type or by asking for a specific
shader reference. The ShaderProvider first checks if the
requested shader is available. If this is the case, it loads
the shader from the system, sets the properties stored in
the corresponding JCF shader object and then applies it to
the requesting GO. Besides providing shaders for GOs, it
can also provide post processing shaders for the camera.

The CameraProvider reads the parameters specified by
Camera in the JCF and modifies the parameters of the
Unity camera component accordingly. In a similar way,
the LightingProvider module processes the data given by
Lights. For each JCF light object a new light is placed in
the Unity scene.

Figure 2: Relation of the Config Loader Modules (blue) to
the Unity3D Scene Elements (orange).

4 Molecule Rendering Effects

In this section, we describe three major rendering effects
that are supported in our molecule visualization app, and
discuss their realization in a mobile real-time rendering
framework.

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
27

4.1 Comic Shading and Outlining

To support a non-photo realistic, stylized look, a highly
customizable shader was implemented to provide a high
degree of visual variety to the designer. The shader does
actual hard shading and allows outline rendering in ob-
ject space. For the latter, both the dot product method and
the hull method of Akenine-Möller et al. [5] were imple-
mented. Both provide a good trade-off between perfor-
mance and results depending on the model.

Comic Shading To achieve an efficient comic style that
is easy to configure by a designer, we implemented hard
shading without texture lookup. Using a texture-based ap-
proach, the designer would have to provide a texture for
every single GO, which would not be possible just based
on a modification in the JCF. The basis for the brightness
calculation is a modified Lambert term, shown in Equation
1 [17]. The original Lambert reflection model is extended
by scale constant α , a bias β and an exponent γ .

(α(n̂ · l̂)+β)γ (1)

These constants can also be configured by the user in
the JCF and allow to modify the distribution of the hard
shading borders. To achieve a hard shading look, Equation
1 is discretized by clamping, resulting in the final shading
formulation:

(α +β)γ

s

⌊
s(α(n̂ · l̂)+β)γ

(α +β)γ

⌋
(2)

The subdivision parameter s defines the number of gra-
dients/shading borders and is again configurable by the
JCF.

Figure 3 shows examples of hard shaded atoms with dif-
ferent subdivision parameters s.

Figure 3: Comic shaded spheres (α = 0.5, β = 0.5 and
γ = 2) with s = {2,4,8} from left to right.

Outline Rendering For outline rendering [5], we need
to calculate the dot product between the view vector and
normal vector at each pixel. If the result lies below a spe-
cific user defined threshold (typically values between 0.25
and 0.5), the pixel gets rendered in a border color. Both
the threshold and the border color are parameters that can
be set by the user in the JCF. This algorithm is very effi-
cient because it adds only one additional dot product and
comparison evaluation to the pixel color. An outline of a
sphere rendered with this method can be seen in the upper
row of Figure 4.

The second outline rendering technique available in our
system is the hull method [5]. This method creates an
outline by first enlarging a model and then rendering its
backfaces. The enlarging is done by a vertex translation
along the vertex normal. To do so, the vertex and its corre-
sponding normal vector need to be transformed into view
space. Then, the vertex is translated along the x and the y
coordinate of the normal vector. The length of the transla-
tion defines the hull size and can be modified by the user.
This value depends on the size of the objects because it is
happening in view space. For the atoms, it is normally be-
tween 0.005 and 0.03. After the translation, the front faces
are culled and the back faces are rendered with the defined
border color. The results can be seen in the lower row of
Figure 4.

Figure 4: Outlines rendered with different methods. The
numbers show the dot product threshold (upper row) and
the hull size (lower row).

4.2 Screen-Space Ambient Occlusion

SSAO is a fast screen space effect suitable for mobile real
time applications, that can greatly enhance the visual qual-
ity of the resulting images. It uses the depth buffer as a
discretized representation of the scene, based on which it
estimates the ambient occlusion for each pixel in screen
space.

To this end, we first need to calculate the view space
position of the pixel. Samples are then placed around this
point by adding a set of predefined offset vectors to their
view-space position. Each new sample point is then pro-
jected back to screen space where their z-values are com-
pared to the stored depth at their target screen space posi-
tion (similar to shadow mapping). Each neighboring sam-
ple with a z-value larger than the stored depth increases the
ambient occlusion value of the center pixel. To keep the
ambient occlusion value independent of the number N of
used samples, it is normalized by N. Because this proce-
dure is repeated for every pixel with the same samples, this
process can also be seen as a convolution of the discretized
scene with a sample kernel.

For high-quality AO effects, Christensen [6] recom-
mends at least 256 samples. Yet, such a high sample count
is not feasible for mobile real-time rendering. Therefore,

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
28

Engel [9] presents an SSAO implementation that achieves
a moderate result with only 16 samples. Without further
regard, such a small sample count would lead to a visible
pattern of the sample kernel. For this reason, this tech-
nique randomly rotates the sample kernel for each pixel
using a random rotation matrix. Filion and McNaughton
[11] suggest using a random vector provided by a noise
texture instead of random rotation matrices. Each offset
vector of the sample kernel is reflected by this offset vector
resulting in a semi randomization of the kernel per pixel.
Since it is the most efficient SSAO variant, we choose this
random-vector-based technique for our mobile real-time
rendering system.

The randomization of the sample kernel reduces kernel
artifacts, but results in a coarse SSAO image. For this rea-
son, the buffer that stores the SSAO values are blurred with
a kernel that should be small enough (4x4 pixels) to pre-
serve borders as good as possible.

Finally, each pixel of the rendered scene is darkened
by its corresponding value in the SSAO texture. Because
these values lie in the interval [0,1], they can simply be
multiplied to the pixels color. The effect of SSAO on the
visual expressiveness of a scene is demonstrated in Figure
5.

Figure 5: Scene rendered without SSAO (left) and with
SSAO (right)

4.3 Depth of Field

Ray-tracing Depth of Field effects, as suggested by Cook
et al. [7], or accumulation of multiple render passes as
proposed by Haeberli and Akeley [12] would be too costly
for a real-time performance on mobile platforms. There-
fore, DoF is applied as a post processing effect based on
the method of Filion and McNaughton [11].

Based on the values in the depth buffer, the screen-space
representation of the scene is divided into five depth layers,
as shown in Figure 6. Each layer is defined by a range that
can be set by the designer in the JCF. A texel is assigned to
a layer if its depth value falls into the layers depth range.
The designer can define the five layers by setting the four
border depth values TR[0], TR[1], TR[2] and TR[3] be-
tween them. The relation between the TR values have to
be TR[0] ≤ TR[1] ≤ TR[2] ≤ TR[3].

The DoF effect is applied in four steps. The first step
separates the scene based on the given ranges into layer’s.
The near and the far layer are stored in two separate frame

Figure 6: DoF layers (l.t.r): near, transition near to focus,
focus, transition focus to far, far.

buffers. If a texel’s depth is an element of e.g. the near
layer, its color and depth are rendered into the near layer
frame buffer. Otherwise, the texel is rendered with the
camera’s clear color. The focus layer does not get stored
in a separate frame buffer. Instead, the unprocessed input
frame buffer is used. After the pixels are assigned, the near
and the far layer frame buffers are blurred with a separated
Gaussian. Finally, the layers are composed together based
on the same ranges as were used for their separation. If a
depth value is in the range of a transition layer, the result-
ing texel is determined by interpolating between the texels
of the two neighbor layers.

5 Results

Our configurable rendering system can be easily used by
people without any programming skills. An engineer has
to implement shaders in our system only once. After he
made them accessible for the configuration loader, the de-
signer can apply and modify them as he wishes. In the
following, we will give an example of four different de-
signs that can be produced in our system, and show their
performance on several mobile devices.

5.1 Visual Designs

Table 1 presents four different looks that were produced
in our system only by manipulating the JSON config file.
The table shows an outline of these config files, and il-
lustrates the resulting visual appearance on four different
molecules. The shader referred to as basic is the stan-
dard shader provided by Unity3D. The shader’s dofPost
and ssaoPost denote the post-processing DoF and SSAO
shaders, respectively. Finally, toon addresses the object
space comic shader.

Education The visual appearance for students was cre-
ated with a simple and flat design in mind. Flat and tactile
looking interfaces are currently modern and widely used.
Moreover, the design tries to support a visual gamification
to be appealing for this target group. To this end, comic
shading and outline rendering was used.

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
29

Advertisement Education Scientific Future

Fu
lle

re
n(

C
60

)
A

rs
en

ik
(A

s 2
O

3)
A

nt
hr

ac
en

(C
14

H
10

)
M

ag
ne

si
um

(M
g)

"camera" : { <...> },
"mapping" : {

"atom" : "advert",
"connector" : "advert

",
"post_effects" : [
"dof", "ssao"] },

"shaders" : [
{ "name" : "advert",
"shader" : "basic",
"properties" : {
"smoothness" : 0.15,
"metallic": 0.3 }
},
{ "name" : "dof",
"shader" : "dofPost",
"properties" : {
"layers" :

[0,0,0.7,0.9]}
},
{ "name" : "ssao",
"shader" : "ssaoPost"

,
"properties" : { }
}],

"lights" : [<...>]

"camera" : { <...> },
"mapping" : {

"atom" : "school",
"connector" : "school

",
"post_effects" : []

},
"shaders" : [

{ "name" : "school",
"shader" : "toon",
"properties" : {
"color" : [0,0,0],
"hull_size" : 0.45,
"outline_bias" : 0.0,
"scale" : 0.5,
"bias" : 0.65,
"exponent" : 1,
"steps" : 4 }
}],

"lights" : [<...>]

"camera" : {
"orthographic" : "

true",
...

}
"mapping" : {
"atom" : "science",
"connector" : "science

",
"post_effects" : []

},
"shaders" : [

{ "name" : "science",
"shader" : "basic",
"properties" : {
"smoothness" : 0.5,
"metallic": 0.2}
}],

"lights" : [<...>]

"camera" : { <...> },
"mapping" : {
"atom" : "future",
"connector" : "basic"

,
"post_effects" : ["

dof"] },
"shaders" : [

{ "name" : "basic",
"shader" : "basic",
"properties" : {
"smoothness" : 0.5,
"metallic": 0.2}
},
{ "name" : "future",
"shader" : "toon",
"properties" : {
"color" : [0,0,0],
"hull_size" : 0.0,
"outline_bias" : 0.0,
"scale" : 0.5,
"bias" : 0.65,
"exponent" : 1,
"steps" : 4 }
},
{ "name" : "dof",
"shader" : "dofPost",
"properties" : {
"layers" :

[0,0,0.7,0.9]}
}],

"lights" : [<...>]

Table 1: Different molecules rendered with different styles and summarized JCF defining the visualizations.

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
30

Advertisement To sell a CG-related product, its visual
output has to look as stunning as possible. Moreover, the
quality of the renderings used in advertisement directly re-
flect the public image of the company producing the soft-
ware. Therefore, SSAO as well as DoF are applied to the
rendering. By doing so, the molecule looks much more
plastic and ”realistic”.

Scientific For science, the visual appearance should
support the understanding of the structure of a molecule.
The rendering should avoid any additional effects that clut-
ter the image of a molecule. For this reason, standard shad-
ing was used without any effects and the camera uses an
orthographic projection. This aims at supporting the un-
derstanding of the structure of a molecule.

Future This look was created to demonstrate how object
types can be shaded differently. The visibility of the atoms
gets significantly enhanced by applying a bright comic
shader to the atoms and a dark basic shader to the con-
nectors,.

5.2 Performance

Performance data for the advertisement, education and sci-
entific look is shown in Figure 7 for a smart phone and a
tablet. The used smart phone was a OnePlus One with
a resolution of 1920x1080. The tablet data was gathered
from a Nvidia SHIELD TABLET K1 with a resolution of
1920x1200. The performance data was gathered by ren-
dering each example for a short period of time. The FPS
value was taken in short intervals. The final results for
each example are the average over the collected FPS val-
ues.

Figure 7: Performance data. Polygon number next to the
name.

The performance values indicate an expected depen-
dence on the polygon count of the model. The Educa-
tion and Science styles run at acceptable rates even for big
models. For all our models, the Advertisement style is the

computationally most demanding one, with under 10 FPS
on smart-phones. This can be attributed to the usage of the
Depth of Field effect. This performance is acceptable, as
this style is mostly meant for creating still shots used in
advertisement.

6 Conclusion and Future Work

We have presented a system that allows to define the vi-
sual appearance of rendered molecules only by modify-
ing parameters in a JSON configuration file. The syntax
and the structure of this file is simple to read and easy to
understand, such that even people without deeper knowl-
edge about rendering and shaders can change the visual
appearance of a scene easily. Since the shown system
reads the JSON file during run-time, the rendering style
can be changed fast without the need of rebuilding the ap-
plication. This supports prototyping with fast and easy ad-
justments. A GUI with live feedback would simplify the
process even more. This is left open for future work.

References

[1] Json specification. http://www.json.org/.
Accessed: 13-02-2016.

[2] Molecules. http://www.
sunsetlakesoftware.com/molecules.
Accessed: 13-02-2016.

[3] Ndkmol. http://webglmol.osdn.jp/. Ac-
cessed: 13-02-2016.

[4] Rcsb pdb mobile. http://www.rcsb.org/
pdb/static.do?p=mobile/RCSBapp.
html. Accessed: 13-02-2016.

[5] T. Akenine-Möller, E. Haines, and N. Hoffman.
Real-time rendering. CRC Press, 2008.

[6] P. H Christensen. Global illumination and all that.
SIGGRAPH 2003 course notes, 9, 2003.

[7] R. L. Cook, T. Porter, and L. Carpenter. Distributed
ray tracing. SIGGRAPH Comput. Graph., 18(3),
1984.

[8] J. Demers. Depth of field: A survey of techniques.
GPU Gems, 1(375), 2004.

[9] W. Engel. Shaderx7. Charles River Media, 2009.

[10] J. Feldt, R. A Mata, and J. M Dieterich. Atomdroid:
a computational chemistry tool for mobile platforms.
J. of chem. inf. and modeling, 52(4), 2012.

[11] D. Filion and R. McNaughton. Effects & techniques.
In ACM SIGGRAPH 2008 Games, SIGGRAPH ’08.
ACM, 2008.

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
31

[12] P. Haeberli and K. Akeley. The accumulation buffer:
Hardware support for high-quality rendering. In
Proc. of the 17th Annu. CC on CG and Interactive
Techniques. ACM, 1990.

[13] T. Isenberg, B. Freudenberg, N. Halper,
S. Schlechtweg, and T. Strothotte. A devel-
oper’s guide to silhouette algorithms for polygonal
models. CG and AP, IEEE, 23(4), 2003.

[14] H. Kolivand and M. S. b. Sunar. New silhouette de-
tection algorithm to create real-time volume shadow.
In DMDCM, 2011 Workshop on, 2011.

[15] A. Lake, C. Marshall, M. Harris, and M. Blackstein.
Stylized rendering techniques for scalable real-time
3d animation. In Proc. of the 1st Int. Symp. on Non-
photorealistic animation and rendering. ACM, 2000.

[16] H. Landis. Production-ready global illumination.
Siggraph course notes, 16(2002), 2002.

[17] J. Mitchell, M. Francke, and D. Eng. Illustrative ren-
dering in team fortress 2. In Proc. of the 5th Int.
Symp. on Non-photorealistic animation and render-
ing. ACM, 2007.

[18] M. Mittring. Finding next gen: Cryengine 2. In ACM
SIGGRAPH 2007 courses. ACM, 2007.

[19] M. Pharr and S. Green. Ambient occlusion. GPU
Gems, 1, 2004.

[20] D. Vanderhaeghe, R. Vergne, P. Barla, and W. Bax-
ter. Dynamic stylized shading primitives. In Proc. of
the ACM SIGGRAPH/Eurographics Symp. on Non-
Photorealistic Animation and Rendering, NPAR ’11.
ACM, 2011.

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
32

Visualization

Sonoco: Interactive Visual Comparison of Filtering Operations
on Time-Dependent Medical Imaging Data

Deniz Gezgin∗

Sergej Stoppel†

Supervised by: Stefan Bruckner‡

University of Bergen / Norway

Figure 1: Sonoco Overview of a contrast-enhanced ultrasound video stream. The figure shows the different views. The
used data is taken from Youtube. [7]

Abstract

Medical imaging often requires fine-tuned processing
pipelines to reduce noise and to remove artifacts. Visual
assessment by experts is a critical step in determining the
performance of individual techniques or parameters, as
goals are often ill-defined and trade-offs need to be con-
sidered. In this paper, we address the visual evaluation of
filtering and other data enhancement operations on time-
dependent medical imaging data. We present Sonoco, a
web-based comparative visualization system which pro-
vides the user with flexible tools for comparing multiple
filtering operations on one or several data streams. By
providing a visual overview of temporal changes, our ap-
proach enables the quick identification of major differ-
ences which can then be explored in their spatial context.

∗dgezgin90@gmail.com
†sergejsto@googlemail.com
‡stefan.bruckner@gmail.com

Keywords: Comparative Visualization, Visualization of
time-dependent data, Web-based tool, Filtering, Image
Processing

1 Introduction

Decision support based on visualization is very common
in the medical area. In radiology, contrast-enhanced ultra-
sound has many applications like blood flow rate detection
or organ edge delineation. The time-domain often needs
to be preserved for different reasons, e.g., tracking the
distribution of a contrast-agent. Image filtering is applied
to highlight or smooth specific features which need to be
inspected further and compared by the domain expert.
Furthermore, it is often necessary to view multiple video
streams simultaneously. The high spatial and temporal
resolution of ultrasound makes detection of differences a

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)

challenging task. A phenomenon called change blindness
can occur, where visual changes in space and time are
not noticed by the observer [4]. Time is also a very
critical parameter. For example, the user has no time
restriction to compare multiple images, but in video data,
the displayed image is changing rapidly, depending on the
frame rate. Gleicher et al. shows a variety of comparative
visualization techniques [1]. However, these methods are
not suitable for multiple temporal data. There is currently
no application for image processing experts to compare
filtered time-dependent ultrasound recordings.

In this paper we present an approach to combine com-
parative visualization and visualization of time-dependent
image data in order to provide users with visual support
for observing multiple video streams. Sonoco, our
interactive system, provides a juxtaposed overview of
the filter methods. Selected video streams are used to
compute temporal differences. Observing these temporal
changes helps to identify the impact of different methods
and settings in a quantitative way. A superposition view
supports the exploration of the spatial dimension in the
same space.

Our system is based on a client/server architecture,
which makes it easy to use and save resources on the client.
It is directly linked to Matlab, a common environment for
prototyping medical image processing filters.

2 Related Work

The subject of visual comparison has been extensively
studied. In this paper we focus on the comparison of im-
ages or image series, i.e. videos, only. The visual compari-
son of images can be roughly classified in three categories:
image variation measurement via image metrics, emphasis
of differences in images and support for image comparison
without difference computation methods.
Over the last few decades several image metrics have
been developed, with different intentions. The image met-
rics can be classified into perceptual and non-perceptual
metrics. We refer to Lin et al. [2] for an overview of the
most common and important perceptual image metrics. In
this paper we use non-perceptual mean squared metric to
compute the differences between consecutive images.
Pixel based image metrics allow to find and emphasize
local differences in images. A typical example of this ap-
proach is the work of Schmidt et al. [6], where the dif-
ferences in large sets of images were emphasized. Many
approaches use color to indicate differences between im-
ages, such as presented by Sahasrabudhe et al. [5], where
the difference between the image and data-set was empha-
sized, or by Suomi et al. [8], where changes between MRI
images were highlighted. However, these methods are sen-
sitive to global intensity shifts, which occur in video data.
We do not utilize direct emphasis of differences in this pa-

per.
In some cases image metrics are not suitable, in these cases
no explicit support can be provided to the viewer. The
viewer must rely on his or her memory to make the com-
parison. Several visualizations have been developed to aid
the comparison and to reduce the memory effort of the
user. Gleicher et al. [1] provides an overview of the most
common techniques. In our approach we use a combina-
tion of superposition via checkerboard views and a side by
side comparison of the video data.

3 Sonoco

Sonoco supports the analysis of time-dependent data.
Manual filtering and comparison can take considerable ef-
fort and time. Synchronizing multiple video streams is
challenging without the right tool. Sonoco helps the user
to inspect the data by four unique views. The thumbnail
view gives a first overview of the computed filters. Fil-
ter parameters and image properties can be customized.
A juxtaposition view of selected videos can be set up
via simple drag and drop operations. The temporal dif-
ference graph depicts the pixel changes per time-frame.
Users can select regions in this view to loop over the cor-
responding frames. A checkerboard view combines the
videos into one single view.
Our combination of the used methods results in a new and
integrated visual analytics tool. Interaction between all
views is shown in Figure 1. We have chosen this set of
methods to fulfill the basic needs of an image processing
expert and not overload the interface. Details about the
views are described in the next subsections.

3.1 Thumbnail View

Filtered videos are shown on the left side of the interface as
a thumbnail view. Filtering image data helps the user to get
more information about the data. For example, smoothing
helps to reduce noise, sharpening helps to detect edges.
There is no right filter, but rather different methods for
different problems. The user is very important in a fil-
tering pipeline, since the filter results can not always be
quantified. Fully automated calculations does not bring the
best result. However, our tool offers basic filter function,
implemented in Matlab (Gaussian Filter, Laplace Filter,
Laplace of Gaussian Filter, Motion Filter, Sharpening Fil-
ter). Customization of the default settings is possible, if
the parameters are not satisfying. The filtered streaming
data is shown as a thumbnail view to compare the differ-
ent methods right away. Selected filters can be dragged to
a 2× 1 or 2× 2 grid in the center for juxtaposed compar-
ison. Synchronized playback is possible for the dragged
videos as well as the thumbnail videos.

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
36

Figure 2: This figure shows the most important steps from section 5 Scenario. a) Original data from the user. b) Thumbnail
view of filtered videos after upload. c) Mask for customizing filter parameters and change image settings. d) Juxtaposing
two videos & difference graph

3.2 Temporal Difference Graph

Visual analytics supports the comparison process by show-
ing differences over the time domain. The mean squared
error (MSE) is a good non-perceptual metric to detect
temporal changes. The difference of the greyscale value
per pixel between two frames indicates a minor or major
change. All these values are summarized per frame and
displayed to the user. If two videos are selected with 10
frames each, the graph shows two line charts with 9 values
per line. Our graph visualization technique is based on a
streamgraph to compare the MSE between different filter
methods. For example, a higher MSE of the same frame
in another video indicates to a higher level of noise. The
impact of different parameter settings can be measured by
the MSE.

The shown graph allows the user to mark any region
for further analysis. Selected regions are looped during
playback to allow a detailed inspection of subtle temporal
differences. Unimportant aspects of the data are skipped,
which speeds up the analysis.

3.3 Checkerboard View

The checkerboard view superpositions multiple videos and
automatically helps the human eye to detect differences.
The same filter methods and just different parameter set-
tings can lead to non-detectable differences for the ob-
server. Furthermore, users can interactively change the
size of the tiles and also move the checkerboard. This an-
imated view shows the selected graph region mentioned
above. The user can move the checkerboard and change
size while the videos are still looped.

4 Architecture and Implementation

Figure 1 describes the architecture we used for the real-
ization. The client can access our tool through the web
and get all features. A web server provides the front-end.
All image processing methods are implemented in Mat-
lab. A Matlab function called fspecial creates predefined
filter kernels which are used in our tool. Matlab Jar Com-
piler creates a Jar-File for the integration in Java Code.
Every Matlab function is mapped to a Java method. Im-
portant user interactions trigger an Ajax request to the cor-
responding Java servlet. These servlets are provided by a
JBoss application server and builds an interface between
the browser and the Matlab computations.

Our tool does not require any client installation. Users
can upload any known video format and all filtering pro-
cesses are done on-the-fly. Even people with no MATLAB
knowledge can filter their data and compare them.

5 Scenario

Sonoco offers many possibilities to modify and compare
video streams. This sections describes a typical use-case,
which helps to understand the interaction from the user’s
perspective.

One of our image processing experts received a
contrast-enhanced ultrasound video from a radiologist.
The original data doesn’t give enough insight into the data,
thus he needs image processing for further analysis. The
top row of Figure 1 shows the thumbnail view of the fil-
tered videos after uploading his data to our tool. Filter
methods should improve the contrast of vessel boundaries.
Therefore, edge preserving filters are chosen. Two se-
lected filters, Laplacian and Laplacian of Gaussian, are

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
37

In- Length FPS Resolut- Upload Graph
put (sec) ion (sec) (Sec)
V1 15 20 848x648 60 23
V2 3 25 848x648 23 8
V3 34 25 552x420 220 25
V4 145 5 850x480 160 40

Table 1: Computational Time. V1 - V3 are contrast-
enhanced ultrasound data, varying in resolution, length
and frames per second. V4 refers to a surveillance video
with a low framerate.

dragged to the centered view for better comparison. The
second filter highlights the vessels much better. Param-
eters can be finetuned, recomputed and the impact com-
pared. The mask for customizing the parameters is shown
in Figure 2(a). However, detecting differences on the same
filter just by juxtaposition is a challenge, since the compar-
ison relies on the memory of the user only. To get a mea-
surement of the variation, he creates the difference graph
to see which filter settings smooth out more artifacts than
the other (Figure 2(b)). One specific second of the video
shows high amplitude in the graph. This indicates the po-
sition, where the contrast-agent got distributed in almost
all visible vessels. Sonoco now allows him to select a re-
gion and loop over this particular second. As mentioned
above, Juxtaposition is not the best choice for comparison
time-dependent data, so he opens the Checkerboard view
to get an even better comparison for his selected region.

6 Conclusion and Future Work

Our presented scenario shows an easy way to compare
time-dependent data. Reduction of the video duration sup-
ports the viewer’s analysis and decision making. How-
ever, Mean Squared Error (MSE) is very sensitive to global
changes, which could lead to inexpressive graphs. Ultra-
sound often comes with movements of the body part or
sensor. The resulting MSE only shows high values, since
artifacts appear in a different position for every time frame.
Another difference detection method, like perceptual met-
rics, could be used to avoid the movement problem.

The Matlab computation time scales with the frame rate,
duration and resolution. Table 1 shows an overview of the
computation time. Our tests were done a machine with
32 Gigabyte of RAM and a 3GHz Intel(R) Core(TM) i7-
5960X CPU. Matlab allows you to enable GPU rendering
or parallel computing which speeds up the calculations.
More efficient Matlab algorithms optimizes the computa-
tion time as well.

We are currently working on another way to superpo-
sition multiple videos. Malik [3] shows an extended ap-
proach of the checkerboard. Instead of quadratic patterns,
his method uses hexagonal elements for comparison.

Sonoco was specifically designed for use by medical

image processing experts, but many of the employed vi-
sualization and interaction techniques may be helpful in
other different fields, e.g. surveillance data. Our tool helps
image processing experts to modify and compare time-
dependent data without writing a line of code.

References

[1] Michael Gleicher, Danielle Albers, Rick Walker,
Ilir Jusufi, Charles D. Hansen, and Jonathan C.
Roberts. Visual comparison for information visualiza-
tion. Information Visualization, 10(4):289–309, Octo-
ber 2011.

[2] Weisi Lin and C. C. Jay Kuo. Perceptual visual quality
metrics: A survey. J. Vis. Comun. Image Represent.,
22(4):297–312, May 2011.

[3] Muhammad Muddassir Malik, Christoph Heinzl, and
M Eduard Groeller. Comparative visualization for
parameter studies of dataset series. Visualization
and Computer Graphics, IEEE Transactions on,
16(5):829–840, 2010.

[4] Lucy Nowell, Elizabeth Hetzler, and Ted Tanasse.
Change blindness in information visualization: A case
study. In infovis, page 15. IEEE, 2001.

[5] Nivedita Sahasrabudhe, John E. West, Raghu Machi-
raju, and Mark Janus. Structured spatial domain image
and data comparison metrics. In IEEE Visualization,
pages 97–104, 1999.

[6] Johanna Schmidt, Meister Eduard Groeller, and Stefan
Bruckner. Vaico: Visual analysis for image compar-
ison. IEEE Transactions on Visualization and Com-
puter Graphics, 19(12):2090–2099, 12 2013. Demo:
http://www.cg.tuwien.ac.at/ jschmidt/vaico/.

[7] Trust Bio sonics Inc. Tbs-002 in rabbit
liver tumor lesion detection (on philips cx50).
https://www.youtube.com/watch?v=vxI8nBSIjVc.

[8] K. Suomi and Jarkko Oikarinen. Visualization of
changes in magnetic resonance image data. In The
8-th International Conference in Central Europe on
Computer Graphics, Visualization and Computer Vi-
sion’2000, WSCG 2000, 2000.

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
38

Interactive Visual Analysis of Animal Trajectories in a T-Maze

Fabrizia Bechtold∗

Supervised by: Krešimir Matković†

VRVis Research Center
Vienna / Austria

Abstract

Research of animal behavior helps scientists to better un-
derstand different behavioral processes of animals and hu-
mans. The T-Maze is used to study the learning ability.
Trajectories resulting from conducted runs in T-Maze are
evaluated. Current state of the art methods analyze trajec-
tories of individual animals separately, and then use only
scalar features in the ensemble analysis. Interactive visual
analysis can be used to improve the analysis of ensem-
bles of trajectories and their features. In this paper, we
introduce the Gate-O-Gon, developed to solve domain ex-
perts’ tasks. The Gate-O-Gon is a specific visualization
for T-Maze data showing overall direction characteristics
of animals and it is integrated in a coordinated multiple
views system. This paper presents the Gate-O-Gon, the
integrated system, and analysis tasks which were identi-
fied by domain experts in related work.

Keywords: Interactive Visual Analysis, Animal Trajec-
tories, Coordinated Multiple Views, Memory Learning

1 Introduction

To get a deeper understanding of the complex human be-
ing, its physiological processes, and eventually to develop
better medical care, animal behavioral studies are often
used. These studies enable research on neural mech-
anisms, underlying learning processes, or physiological
processes, which can be very similar to those of hu-
mans [3]. One experiment commonly used in behavioral
studies — used primarily on rodents — is the T-Maze. The
T-Maze is a simple maze consisting of T-shaped segments
with one right and one wrong path. By observing and
tracking the rodents in the maze, researchers get insight
on working memory and spatial learning. This enables a
deeper insight on the animals’ learning ability.

The T-Maze used in the experiments which are de-
scribed in this paper consists of seven T-segments as
shown in Figure 1. The animals are placed in the start
area and recorded with a video tracking system until they
reach the end area or time runs out.

The state of the art analysis commonly interprets the

∗fabrizia.bechtold@hotmail.com
†matkovic@vrvis.at

Figure 1: A picture of the T-Maze experiment showing the
7 T-segments, the start and the end area. The mouse is
sitting in the end area after it successfully completed the
task, the corresponding trajectory is also depicted.

rodents’ trajectories separately, the analyzed results pro-
vide no information about the whole ensemble of trajecto-
ries. The analysis is based on scalar features of trajectories
(such as length, average velocity, or time needed to reach
the end area). Previous work has shown how interactive
visual analysis can help in comprehending trajectory en-
sembles, originating from an open field experiment [5].
After domain experts gave positive feedback and motiva-
tion to continue the research, we extended it to the T-Maze
data. The Gate-O-Gon is the first visual result motivated
by specific tasks in the T-Maze experiments.

2 Interactive Visual Analysis and re-
lated work

Visual Analytics [4] is the science of analytical reasoning
facilitated by visual interactive interfaces [8] . Interactive
Visual Analysis gives insight on not apparent information
contained in data. By interacting with the data and getting
a prompt visual feedback new and different information

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 2: A screen capture of an analysis session using currently available views in the Coordinated Multiple View System
’ComVis’. Each view represents the whole ensemble of animal trajectories and gives different insight on it. Views such
as’Curve view’, ’Box Plot’, ’Parallel Coordinates’ or ’Scatter Plot’ are used.

can be obtained. Interactive Visual Analysis often relies on
the well known mechanism of coordinated multiple views
(CMV) [6, 1]. The coordinated multiple views display var-
ious attributes or dimensions of a data set by employing
different views simultaneously. The views are linked, and
user can brush—interactively select a subset of data in any
view. Brushing (selecting) a subset of data in one view
highlights the same subset in all other views. The Gate-O-
Gon is integrated in the CMV-System ComVis (Figure 2)
which supports composite iterative brushing, as well as an
advanced data model which allows, in addition to scalar
values, time series and trajectories as atomic units, i.e., at-
tributes in a record. Andrienko et al. [2] describe visual
analysis of movement data combining interactive visual
displays, cognition, and reasoning with database opera-
tions and computational methods.

3 T-Maze Ensemble Data and Analy-
sis Tasks

The T-Maze used for the underlying experiments measures
1.4× 1.4 meters. It consists of seven T-Segments (gates),
the start area, and the end area. A gate consists of a corri-
dor splitting into two visually indistinguishable corridors,
one leading to the next gate, the other in a dead end. The
experiment was conducted for two weeks, the first week
focusing on the animals’ short term memory, and the sec-

ond week on their long term memory. In the first week
the rats were put into the maze three times a day from
Monday to Friday, in the second week only on Friday.
The animals were motivated to run through the maze by
giving them a reward (food placed in the end area). The
runs were tracked with an infrared video camera in a dark
room. Once an animal passed the correct path of the 7th

gate (which is equivalent to successfully completing the
run) or the time limit expired the tracking ended.

Several questions arose after the trajectories are col-
lected. Do the animals pass the correct gate first, do they
turn back and run in the wrong direction, how far do they
run back, how far did they come before making a wrong
choice etc. In order to answer these questions, the tra-
jectories are first evaluated and several scalar features are
computed. The features include, for example, total time
spent in each gate, total time and distance traveled, num-
ber of right and wrong choices etc. A gate is evaluated as
correctly passed if the animal crossed the correct gate first,
even if turning back immediately after. The times spent in
each gate are computed separately for running towards the
end (correct direction) and towards the start (wrong direc-
tion). The time an animal spends in the overall wrong di-
rection starts after it correctly passed a gate. If it then starts
running in the wrong direction (towards the start area) this
gate is memorized until the animal passes a correct gate
again. All times spent in the traversed gates in between
yield the total time spent in the wrong direction. For ex-

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
40

Figure 3: A screen capture of an analysis session us-
ing currently available views in the Coordinated Multiple
View System ’ComVis’. The trajectorie is displayed in
green, with the sections where the mouse runs in the wrong
directions in blue. The Yellow crosses are an indicator of
time, marking the position of the mouse every 5 seconds.

Figure 4: A screen capture of an analysis session using
the Gate-O-Gon View. The T-Maze is visible in the back,
each gate has a Gate-O-Gon depicting the distribution of
time spent in the wrong direction for the respective gate.

ample, Figure 3 shows a trajectory partly green and purple.
Green indicates the path running towards the end area, pur-
ple the wrong direction. Here the purple part show that the
animal correctly passed gate five and returned to the start
area. Here all times the animal spent in the gates four,
three, two, one, and in the start area are computed.

Interactive Visual Analysis can help in answering the
above questions by offering new possibilities to explore
the whole trajectory ensembles at once. The data set which
we analyze consists of one trajectory per run, with a to-
tal of 400 trajectories. In addition to the trajectory, each
record has scalar attributes such as: Animal ID, total time,

total distance, number of gates passed correctly, number
of gates not passed correctly, and many more. Finally, the
record also has a time series attribute—the distance trav-
eled as a function of time [7].

4 Design and Development of the
Gate-O-Gon

The complex data set as introduced above, can be explored
using the CMV-system as already shown for the open field
data [5]. With this system, visualizing scalar values and
interactively brushing and selecting subsets offers analysis
possibilities which lead to better evaluation than conven-
tional approaches. But there is still room for improvement.
The system does not answer questions related to the over-
all direction of the animal, and times spent traveling in
correct and wrong direction. These are specific questions
for the T-Maze experiments. The next step is to visualize
not only if an animal was heading into the wrong direc-
tion but also where it turned around and how far it had
already come at any given time. How can the distances
be compared, as there is a difference between an animal
that came back to the start area from the gate 5 or from the
gate 1. The solution is a new view which displays where
an animal runs in the wrong way. Note that the animal can
be running in the wrong way only in the start area and in
the gates 1 to 6. The gate 7 is irrelevant as the experiment
stops as the animal enter the end area, therefore the animal
can never be in the area of the gate 7 while moving in the
wrong direction.

Let ni be the gates whereas i ∈ {0,1,2, . . . ,8}, and i = 0
and i = 8 for the Start and the End Area. The maximum
reached gate is defined as R ∈ {1,2, . . . ,7}. For each gate
ni where an animal is moving in the wrong direction we
can identify R. ”We are interested in the distribution of R
for each gate. Note that we know that animals entered gate
ni from gate ni−1 or ni+1, but we want to know how far the
animal already had gone” [7].

The distribution of R is calculated from each trajectory.
For this project the trajectories are already pre-evaluated
and contain scalar values as well as the trajectory data.
The trajectory data consists of coordinates. To compute
the total distance traveled in the wrong direction each co-
ordinate is evaluated separately. At any point of the evalu-
ation the highest reached gate and the lowest retraced gate
are known. Each coordinate is tested on it’s position in
the maze and assigned to the corresponding gate. There-
fore the current direction the animal is running is known
and whenever it changes directions to running the cor-
rect way, after retracing once, the total distance traveled
in the wrong direction is known and saved in a distinct
data-structure.

We propose a novel visualization of wrong direction dis-
tribution in respect to the gates. The newly introduced
Gate-O-Gon depicts the wrong direction and the distribu-

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
41

Figure 5: This screen capture shows an analysis session using the Gate-O-Gon view. The detailed view of the start area is
selected. In this case a subset was selected as visible from the quadrangle in the histogram area. The subset contains all
trajectories where the animal had passed the correct gate line of gate 7 but returned to the start area shortly after.

tion of R. It can be superimposed in the T-Maze itself.
The set of trajectories can also be shown. As each gate
has its own distribution, the Gate-O-Gon is placed on each
gate. Figure 4 shows the current version of the Gate-O-
Gon view. It gives a good overview of all wrong direction
distributions, but is too small to get detailed information,
hence a detailed view showing only the distribution of the
selected gate, as shown in Figure 5, is also available.

The Gate-O-Gon (as depicted in Figure 5) is shaped like
an octagon, each side representing a gate. The idea to use
an octagonal shape was born from the wish to visualize a
direct connection between two gates and that for all gates.
The gates starting with the start area (gate 0) in the bottom
left, followed by gate 1, 2,. . . , 6 are shown in a clockwise
order.

The edges of the octagon also show the distribution of
R of all gates as a histogram, with the selected gate high-
lighted and the others faded. At gate 0 the values of R can
go from 1 to 7, at gate 1 from 2 to 7 etc. At gate ni the
values of R can go from i+1 to 7.

Additionally, the gate edges are connected by a strap
also representing the distribution of R. At present the only
distribution of the total times an animal was running in
the wrong direction from gate n j to gate ni with j > i is
computed. Future design might contain other parameters
such as correct time. For the selected gate i only connect-
ing straps to gates i+1 are available, since, as mentioned
before, an animal cannot run in the wrong direction when
coming from a lower gate h to gate i, with h< i. The thick-
ness of the strap reflects the distribution of R and it shows

the same value as the histogram in the gate edges.

For easier distinction, each gate has a different color,
blending from deep red to deep blue. For example, gate 0
is deep red, gate 4 is light blue and gate 7 is depicted in
deep blue. The colors are reflected in the connecting strap
and histogram, as well as in the T-Maze itself, where each
gate is softly colored in the equivalent color(Figure 5). To
emphasize the return direction from a higher gate connect-
ing straps color is blending from the color of gate n j to the
color of the selected gate ni. For example, in Figure 5 the
connecting strap from the gate 5 to the gate 0 is blending
from blue to deep red. These colors are also used to paint
the background of the corresponding gates in the back-
ground of the MCV.

When selecting a subset of the data in a different view
the Gate-O-Gon changes transparency, highlighting the
brushed data set. At present brushing in the Gate-O-Gon
is only possible in the detail view’s histogram. Figure 5
shows brushing in the Gate-O-Gon histogram, returning
animals from gate 7 to the start area are selected. The
brushed subset is highlighted in the connecting straps as
well as in the histogram. The whole ensemble set is hinted
at by reduced opacity.

In the background of the Gate-O-Gon-View the used T-
Maze is displayed. Inside the T-Maze the trajectories of
the data set can be seen, using standard coloring of the
ComVis MCV. Blue represents the whole, unbrushed data
set, grey the non-selected subset, pink the selected subset.

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
42

5 Conclusions

This paper describes an idea for improving the analysis of
animal trajectories ensembles. It introduces the Gate-O-
Gon, a novel visualization which supports exploration and
analysis of many trajectories at once. We will evaluate if
the Gate-O-Gon can give answers to the important ques-
tion of animal direction in particular gates and the previ-
ously achieved furthest point in case of the wrong direc-
tion.

Further improvement steps could include further devel-
opment of the Gate-O-Gon, different approaches to dis-
play the distribution of the total traveled distance, or a heat
map. We, moreover, plan a close cooperation with domain
experts and conduct a comprehensive evaluation.

References

[1] G. Andrienko and N. Andrienko. Coordinated multi-
ple views: a critical view. In Coordinated and Mul-
tiple Views in Exploratory Visualization, 2007. CMV
’07. Fifth International Conference on, pages 72–74,
July 2007.

[2] Gennady L. Andrienko, Natalia V. Andrienko, Peter
Bak, Daniel A. Keim, and Stefan Wrobel. Visual An-
alytics of Movement. Springer, 2013.

[3] H. Bubna-Littitz and J. Jahn. Psychometric testing in
rats during normal ageing. procedures and results. J
Neural Transm Suppl, 44:97–109, 1994.

[4] Joern Kohlhammer, Daniel A. Keim, Giuseppe San-
tucci, Gennady Andrienko, and M. Pohl. Solving
problems with visual analytics. In The European Fu-
ture Technologies Conference and Exhibition 2011.
Procedia Computer Science, 2011.

[5] Kresimir Matkovic, Christiana Winding, Rainer
Splechtna, and Michael Balka. Interactive Visual
Analysis of Ethological Studies: Getting Insight from
Large Ensembles of Animals’ Paths. In EuroVA 2012:
International Workshop on Visual Analytics, pages
85–89, 2012.

[6] Jonathan C. Roberts. State of the Art: Coordinated &
Multiple Views in Exploratory Visualization. In Proc.
of the 5th International Conference on Coordinated &
Multiple Views in Exploratory Visualization. IEEE CS
Press, 2007.

[7] R. Splechtna, F. Bechthold, C. Winding, M. Balka,
and K. Matković. Interactive visual analysis of ani-
mal trajectories in a t-maze, oct 2014.

[8] J J Thomas and K A Cook. Illuminating the path: The
research and development agenda for visual analytics.
IEEE, 2005.

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
43

44

Image Processing & Vision

Recognition of Important Features
of Triangulated Human Head Models

Kateřina Kubásková
Supervised by: Ivana Kolingerová

Department of Computer Science and Engineering
University of West Bohemia

Pilsen / Czech Republic

Abstract

Feature detection is often used in geoinformatics or com-
puter graphics. A lot of feature detection methods have
been developed. The goal of this work is to find methods
suitable to detect features, implement and test them on the
triangulated model of human head which is used to create
an identikit.

Keywords: feature, curvature, thresholding, triangular
model, morphological operators, MLS approximation

1 Introduction

The features of the model usually refer to a region of a part
with some interesting geometric or topological properties.
The detection of features is automatic and simple for hu-
man brain, but not for the computer. There have been deve-
loped many methods for recognition of features and they
are used in various fields; CAD, NPR, computer vision,
computer graphics, geoinformatics or cartography.

The aim of this work is to find methods suitable to detect
features, implement and test them on a triangulated model
of human head used to create a 3D identikit - a 3D por-
trait enabling to identify a person. The proposed method
should be able to detect the features automatically or ma-
nually. Next step is to detect important points - the control
points (the corners of eyes, lips, etc.). It is important to de-
tect them, because they are used to deform a human head
model or add a texture (see Figure 1). These points have
been found manually and it was very time-consuming.

The rest of the paper is organized as follows. Section 2
gives an overview of the needed theory and existing me-
thods. Section 3 presents the proposed methods to detect
features on models of human head. Section 4 analyses re-
sults and experiments and Section 5 offers conclusions.

2 Theory and state of the art

In this section we briefly describe necessary background
needed for the methods that can be used to recognize im-
portant features.

Figure 1: Identikit of a man seen together with control
points.

2.1 Differential geometry

At the beginning it is necessary to define a regular sur-
face. Let D⊂ R2 denote an open subset. A smooth vector
function r : D→ R3 of two variables is called parametri-
zation for the surface S⊂E3 consisting of all points P with
~OP = r(u,v) with (u,v) ∈ D if
1. r is one-to-one map,
2. the partial derivatives ru(u,v) = [xu(u,v),yu(u,v),

zu(u,v)] and rv(u,v) = [xv(u,v),yv(u,v),zv(u,v)] are li-
nearly independent at every point (u,v) ∈ D. A subset S
that has a parametrization r as above is called a regular
surface [12].

Next we define the tangent plane to the surface S⊂ E3

at P as a plane that contains all tangent vectors to curves
on S in a point P. The tangent plane is spanned by the
tangent vectors to two parameter curves: ρ(s, t) = r(u,v)+
sru(u,v)+ trv(u,v) .

A vector n ∈ R3 is called a normal vector to S at P if n
is perpendicular to all tangent vectors v ∈ ρ(s, t). Let n be
a unit normal vector, then
n(P) = n(u,v) = ru(u,v)×rv(u,v)

|ru(u,v)×rv(u,v)| [12].
An important property that characterizes a surface is

curvature because it measures a local bending. The nor-
mal curvature nκ(i) is defined as the curvature of the
curve that belongs both to the surface S and to the nor-
mal plane containing both n and unit tangent vector of the

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)

curve. The normal curvature can be computed as nκ(i) =
r̈ ·n, where r̈ is the second derivative of a vector function r
parametrized by the arc length. It can be negative, positive
or zero [10].

At every point we define two types of directions - prin-
cipal and asymptotic. Asymptotic directions are the di-
rections with normal curvatures equal to zero. Principal
directions are orthogonal directions with maximal or mi-
nimal normal curvatures. These two principal curvatures
are called maximal curvature κmax and minimal curvature
κmin.

The principal curvatures determine the range of the cur-
vature of the surface in local neighborhood of a point. We
can use the principal direction to compute other curvatu-
res. The Gaussian curvature at a point P ∈ S is obtained
by the relation in Equation 1.

K(P) = κmax(P) ·κmin(P). (1)

The average of principal curvatures is called the mean
curvature (Equation 2).

H(P) =
1
2
(κmax(P)+κmin(P)). (2)

More information can be found in [1, 10, 12].

2.2 Methods for feature recognition

There are several different representations for surfaces
used in computer graphics but triangular meshes seem to
be prevalent. Our head models are represented by 3D tri-
angular meshes defined by a graph G = (V,E,F), where
V is a set of vertices of the mesh, E is a set of edges, F is
a set of triangles. Due to popularity of triangular meshes
representation there are many studies on feature detection
on them.

There are some classical methods which somehow eva-
luate (classify) the vertices or edges and threshold them as
belonging to a feature or not. Hubeli et al. in [3] describe
some classification operators such as second order diffe-
rence or best fit polynomial. Another classification opera-
tors can be the disrete Laplace-Beltrami operator from [5].

A range of robust methods is available to detect features
directly from the meshes. Rössl et al. [4] compute curva-
ture and use morphological operators to produce feature
lines. Ohtake et al. [7] have developed a technique that is
based on computing curvature tensors and their derivatives
at each vertex by means of the projection and global ap-
proximation of an implicit surface. Their method achieves
good results, but the detection process is time-consuming.
Yoshizawa et al. [8] used local polynomial fitting of tri-
angulated meshes to estimate curvature tensors and their
derivatives and it reduces the computation time. Another
reduction of time-complexity of estimation of the curvatu-
res and their derivatives are addressed in [9] by applying
the modified moving-least-squares (MLS) approximation
directly to the mesh.

Kim et al. [11] have developed a technique based on vo-
ting tensor theory, which can handle n-dimensional trian-
gular mesh. Karlı́ček in [2] tested and compared methods
suitable for various classes of geometric objects, including
triangulated head models.

3 Proposed method

In the previous section we described some methods that
are used for detection of features. We selected and com-
bined those methods that can handle sharp angles be-
tween neighbouring triangles and triangulated approxi-
mation of smooth surfaces and also work in optimal
time-complexity. Our proposed method consists of the
following parts:

• Vertex evaluation - for detection of features

• Evaluation thresholding

• Detection of important areas

• Detection of control points

3.1 Vertex evaluation

We experimented with three methods. The first one uses
discrete curvature and was chosen because of good expe-
rience reported for head models in [2]. The second one
uses a modified MLS approximation and the last one is
Laplace-Beltrami operator.

3.1.1 Discrete curvature

The triangular model is a piecewise linear function and it
is not possible to determine the derivation. We use appro-
ximation equations for curvature described in [10].

To compute the discrete curvature, a ”mixed area” for
each vertex, denoted Amixed , is needed. It is based on Vo-
ronoi region defined for non-obtuse triangle. The area of
the Voronoi region can be computed as

AVoronoi =
1
8 ∑

j∈Ni

(cotαi j + cotβi j)||vi− v j||2,

where Ni is the set of 1-ring neighbour vertices of vertex
vi, αi j and βi j are the two angles opposite to the edge in the
two triangles sharing the edge (vi,v j) (see Figure 2a). This
expression for the Voronoi area does not hold in case of ob-
tuse angles. If there is an obtuse triangle among the 1-ring
neighbours, the Voronoi region either extends beyond the
1-ring or is truncated compared to our area computation.

The mixed area Amixed is computed as follows: for each
non-obtuse triangle we use the Voronoi area, for each ob-
tuse triangle we use the midpoint of the edge opposite to
the obtuse angle and connect the midpoint to the centers
of the adjacent edges. The mixed area is in Figure 2b.

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
48

Now when the mixed area is explained, we can express
the curvature. Mean curvature is computed by Equation 3:

H(vi) =
1

4Amixed
∑
j∈Ni

(cotαi j + cotβi j)||vi− v j||2. (3)

Gaussian curvature is given by Equation 4:

K(vi) = (2π−
f

∑
j=1

θ j)/Amixed, (4)

where θ j is the angle of the j-th face at the vertex vi, and
f denotes the number of faces around this vertex. This
operator will return zero for any flat surface.

a) b)

Figure 2: a) 1-ring neighbourhood of vertex vi. The angles
opposite to the edge (vi,v j) are α and β . Cotangent (green)
Laplacian vectors for vertex vi [5]. b) Mixed area at vertex
vi. Light blue are the areas in non-obtuse triangles, dark
blue is in a triangle with an obtuse angle at the vertex vi
and the purple area in the triangle with an obtuse angle at
one of the remaining vertices [2].

We have seen in Section 2.1 that the mean and Gaussian
curvatures are easy to express in terms of the two principal
curvatures nκmin and nκmax. Therefore we can define the
discrete principal curvatures by Equation 5.

nkmax(vi) = H(vi)+
√

H2(vi)−K(vi),

nkmin(vi) = H(vi)−
√

H2(vi)−K(vi).
(5)

We must make sure that H2 is always larger than K to
avoid numerical problems. If it is not the case than set√

H2(vi)−K(vi) to zero.

3.1.2 MLS approximation

In this section we use modified MLS approximation de-
scribed in [9].

Given a vertex vi, we first find a local reference plane
H. We use a tangent plane orthogonal to a vertex normal
at vertex vi as a local reference plane. Estimation of the
normal vector n = (n1,n2,n3)

T at each vertex is done by
averaging the normals of a 1-neighbourhood of triangles
and the vertex itself. The tangent plane in general form is
obtained

H : x ·n1 + y ·n2 + z ·n3 = d.

Let Nk
i be k-neighbourhood of vertices at vertex vi, and

let X = {xi}i∈Nk
i

be the orthogonal projections of the verti-

ces Nk
i to H, represented in a specific orthonormal coordi-

nate system defined on H, so that the origin is vi. The size
of the k-neighbourhood depends on the user. But 1 and 2-
neighbourhood generates a poor MLS surface in which it
is difficult to locate the principal directions. Adding more
neighbors leads to an increased time-complexity. In our
experiments we usually use 3-neighbourhood.

Next, we define a local approximation to the surface as
the third-degree polynomial p that minimizes the weighted
least-squares error given by

E = ∑
v j∈Nk

i

(p(x j)− f j)
2θ(‖vi− v j‖),

θ(‖vi− v j‖) = e−(‖vi−v j‖2/h2),

where the function θ is Gaussian non-negative weighting.
The parameter h is the average of the lengths of the 1-
neighborhood edges of vi and f j = nT v j−d are the heights
of the vertices v j over H.

The error function can be rewritten as

E = ∑
v j∈Nk

i

(b(x j)
T c− f j)

2θ(‖vi− v j‖).

where p(x) = b(x)T c, b(x) is the base vector of the po-
lynomial and c is a vector of unknown coefficients. Then
we put the partial derivations of the error function equal
to zero to find the coefficients of the polynomial and get a
linear system of equations given by Equation 6.

Ac = d, (6)

where A = ∑
vi∈Nk

i

2b(x j)b(x j)
T ,θ(‖vi− v j‖) and

d = ∑
vi∈Nk

i

b(x j) f j θ(‖vi− v j‖). The solution of the linear

system is c = A−1d.
Now we can estimate the principal curvatures at each

vertex vi. We convert the MLS polynomial z = p(xi) into
the implicit surface F = z− p(xi).

For each vertex vi we can estimate the unit normal vec-
tor at vi as n = ∇F/(|∇F |). Next we can estimate the prin-
cipal curvatures κ in the associated principal directions
t = (t1, t2, t3) as follows

κ =
Fi jtit j

|∇F | ,

where Fi j denotes the second partial derivatives of F . Di-
rections tmax and tmin are given by eigenvectors correspon-
ding to the two non-zero eigenvalues of ∇n. The matrix
∇n is given by Equation 7.

∇n =

∂n1
∂x

∂n1
∂y

∂n1
∂ z

∂n2
∂x

∂n2
∂y

∂n2
∂ z

∂n3
∂x

∂n3
∂y

∂n3
∂ z

 . (7)

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
49

Mean and Gaussian curvature can be then estimated
using principal curvatures by expressions in Section 2.1.
Unlike the method in Section 3.1.1, now we can get also
negative values.

3.1.3 Laplace-Beltrami operator

The last method for classification of vertices is the
Laplace-Beltrami operator [5, 6]. The discrete Laplace-
Beltrami operator for a triangular mesh at the vertex vi is
defined in Equation 8.

δi = ∑
(vi,v j)∈E

ωi j(v j− vi), (8)

where ∑
(vi,v j)∈E

ωi j = 1 and the choice of weights defines

the character of δi.
We choose the cotangent weights ωi j = cotα+cotβ

2 ,
where α and β are the angles opposite to the edge (vi,v j)
(see Figure 2a). The cotangent Laplacian is zero on planar
1-rings because of geometry-dependence. The cotangent
Laplacian vector can be seen in Figure 2.

The cotangent Laplace-Beltrami operator is dependent
on the size of triangles, therefore, for evaluation of vertices
we have to use a modified cotangent Laplacian, which is
defined in Equation 9.

δi =
1
di

∑
(vi,v j)∈E

ωi j(v j− vi), (9)

where di =
Si
3 and Si is the area of the adjacent triangles at

vertex vi. The discrete Laplace-Beltrami operator is a vec-
tor, therefore, we use the size of the vector for evaluation
of vertices.

It is also possible to use truncating of evaluation. A per-
centage of vertices with the highest evaluation are selected
and they get a new value, the highest evaluation without
already selected vertices.

3.2 Thresholding

After we have classified vertices using the described me-
thods, we apply a standard thresholding to evaluate the
vertices. The user specifies the threshold parameter as mi-
nimal weight that a vertex must have to be included into
the subset of feature vertices. In case of the curvature com-
puted using MLS approximate we have also negative wei-
ghts; so in negative thresholding the user specifies a maxi-
mal weight.

We normalize the values of evaluation using the
Equation 10.

w(vi) =
w(vi)

|wmax|
·100 [%], (10)

where w(vi) is either the curvature from Section 3.1.1 or
3.1.2 or the size of cotangent Laplacian from Section 3.1.3

and |wmax| is the absolute value of maximum evaluation of
all vertices.

In agreement with recommendation in [2] we can
also apply morphological operators on feature vertices to
achieve better results. Morphological operators deal only
with binary values. So we use a thresholding operation to
determine the feature vector Ω:

Ωi =

{
1 f or wi ∈ [a,b]
0 otherwise,

where wi is evaluation at vertex vi and a,b are threshol-
ding parameters. A set Fs of significant vertices can be
expressed as Fs := {v j ∈ F |Ω j = 1}.

The morphological operators for triangulated meshes
are defined as follows.

Dilation
Let Fs ⊆ {1, · · · ,N}. The dilation of Fs by k-

neighbourhood Nk is defined as.

dilatek(Fs) := {v j |∃vi ∈Fs : v j ∈ Nk
i }.

The dilation operator adds vertices to the feature. It can
therefore be used to fill ”holes” in the features.

Erosion
Let Fs ⊆ {1, · · · ,N}. The erosion of Fs by k-

neighbourhood Nk is defined as

erodek(Fs) := {v j |Nk
j ⊆Fs}.

The erosion operator reverses the effect of dilation. It cuts
off undesired branches.

Opening
The opening operator is defined as

openk(Fs) = dilatek(erodek(Fs)).

The opening operator applies the erosion and after it ap-
plies the dilation. This application removes undesired arti-
facts, but the size of the feature is not preserved.

Closing
The closing operator is defined

closek(Fs) = erodek(dilatek(Fs)).

In closing F the feature is first grown and shrinked after-
wards. It fills holes in the inner region of the feature and
fills bays along the boundary.

3.3 Detection of important areas

Our aim is mainly to detect features automatically. In this
case, we have to find a suitable threshold that gives the
best result. One minimal threshold does not achieve a good

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
50

result on the whole model. Due to this we decided to detect
important areas, which include the entire area of eyes, ears,
nose and lips. Then we detect features and by applying
different thresholds in different areas we get better results.

We based the detection of important areas on the sim-
plest from the presented vertex evaluation approaches, i.e.
the mean curvature from Section 3.1.1. The minimal thre-
shold is selected as an average of evaluations. In Figure 3
we can see the resulting features. Then morphological ope-
rators are applied: closing operator, the opening operator,
another closing operator and a dilation. The results of this
algorithm are dependent on the choice of k-neighbourhood
and the number of vertices N.

From experimental results we chose the following k-
neighborhood:

• N ≤ 13000 ⇒ k = 5,

• 13000≤ N ≤ 20000 ⇒ k = 10,

• N > 20000 ⇒ k = 15.

If an automated processing is not required, the user may
select whether the last operator, the dilation, is applied and
chooses its k-neighborhood.

a) b) c)

Figure 3: Detection of important areas: a) Features after
evaluation by mean curvature and thresholding by average
of evaluations. Detection of important areas with b) 15, c)
10 - neighbourhood.

Now the important areas on the head are detected. The
area of ears is already separated but the rest is so far con-
nected which is not what the user needs.

To separate these areas, two methods can be applied.
The first method uses a simple distance based selection.
The boundary between eyes and nose is in the half of
distance between the point with maximal x-coordinate and
the peak of the nose (maximal y-coordinate). The boun-
dary between the nose and the lips is in the two thirds of
the distance between the peak of the nose and the point
with the minimal z-coordinate (see Figure 4).

The second method is based on the first, but the de-
tection of the nose is modified. The area of the nose con-
tains all vertices in the marked region in Figure 5. This
region is formed by the nose root (the lowest point on the
line of the nose), the boundary between the eyes and the
nose and the width of the nose.

Figure 4: First method of separation of areas.

Figure 5: Second method of separation of areas.

3.4 Detection of control points

Next goal is to try to find the control points - the most
important points of the feature. By the feature detection
we get the border of the lips, eyes and ears, then detection
of the control points is not difficult as described further.

Eyes On the eyes we need to detect the corners and 8
points. The corners of an eye have extreme x-coordinates
(see Figure 6).

Figure 6: Detection of control points on eyes. Features
(red) and control points (black).

Lips At first we detect the corners of lips (v1,v2) as
extreme x-coordinates. Using these two points we detect
other 12 points. Some of them are on the border of lips
and some of them in the middle of the lips (see Figure 7).

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
51

Figure 7: Detection of control points on lips. Features (red)
and control points (black).

Ear We detect 5 points on the ears (see Figure 8a) First
two points (v1,v2) have extreme z-coordinates. Other two
points (v3,v4) lie in the first quarter of the distance from v1
or v2 and has the minimal y-coordinate. The last point v5
lies in the middle of the ear.

Nose The detection on the nose is the most difficult task.
Some of the points have to be detected outside of the set of
features. The tip v1 of the nose is found by the maximal y-
coordinate, the nose root v2 have minimal y-coordinate on
the line of nose. The point v3 lies in the middle between v1
and v2. Other 5 points are detected in the features using the
already known points, details see [1]. The detection can be
seen in Figure 8b).

a) b)

Figure 8: Detection of control points: a) on ears, b) on
nose. Features (red) and control points (black).

4 Experiments and results

In this section we show results of the proposed methods.
The method was implemented in Microsoft Visual Studio
2010 using the programming language C# and .Net Fra-
mework version 4. The program, where the method from
Section 3.1.1 and morphological operators were imple-
mented, was taken from [2]. We added other methods de-
scribed in Section 3.1.2 and 3.1.3 and algorithms for auto-
matic detection, detection of important areas and detection
of control points.

We tested our proposed methods on 11 models. Each
method works on various areas of the head differently. The
choice of thresholds is important. First, we evaluate the re-
sults of curvature computation described in Section 3.1.1,
then our implemented methods.

4.1 Discrete mean and maximal curvature

As minimal and Gaussian curvature do not achieve good
results we present only results of mean and maximal cur-
vature (see Figure 9).

a) b)

Figure 9: Detection of features using: a) minimal curvature
from Section 3.1.1, b) Gaussian curvature from Section
3.1.2.

Mean curvature provides very good results on the area
of eyes and ears. We get the border of eyes and ears. On the
lips and nose the results of mean curvature are not very sa-
tisfactory. On a few models we get the border of the lips,
on the nose we get only features around nostrils (see Fi-
gure 10 a).

Results of maximal curvature are similar to the mean
curvature. On the eyes and ears we have also good results
and even on the lips are the results quite good. With nose
we have also problems and have only features around nos-
trils. The results can be seen in Figure 10 b).

a)

b)

Figure 10: Detection of features: a) mean curvature, b) ma-
ximal curvature.

4.2 Mean and maximal curvature computed
using MLS

Let us recall that evaluation computed by this method have
also negative values, therefore, the color of features in fi-
gures is different than before (blue for negative and red for
positive values).

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
52

The result of mean and maximal curvature are very sa-
tisfactory on the area of eyes and ears. On the lips the ma-
ximal curvature is better than the mean curvature. The area
of the nose is complicated. Using maximal curvature one
can detect the bridge of nose on some models. On other
models again only the nostrils are detected. The results can
be seen in Figure 11.

4.3 Cotangent Laplace-Beltrami operator

The definition of cotangent Laplace-Beltrami operator is
very similar to the mean curvature in 3.1.1. Therefore, the
results of these methods are not too different (see Figure
12).

a)

b)

Figure 11: Detection of features: a) mean curvature com-
puted using MLS, b) maximal curvature computed using
MLS.

Figure 12: Features using Laplace-Beltrami operator.

4.4 Detection of important areas

The detection of important areas works on all models very
well. In case that the important areas are too small for the
user’s needs, dilation can be applied (see Figure 13).

Next, we show the result of selection of important areas.
We can see the difference of two methods in Figure 14.
Using the first method, we do not get all necessary vertices
in the area of nose (see Figure 14b). The second method
fixes this failure and we get the whole area of nose in all
models (see Figure 14c,d). It is possible to apply dilation

or erosion on each important area if the user is not satisfied
with the result achieved so far.

a) b) c)

Figure 13: Detection of important areas: a,c) the dilation
is not used, b) dilation in 3-neighborhood.

a) b)

c) d)

Figure 14: Result of selection of important areas: a,b) the
first method, c,d) the second method.

4.5 Automatic detection

Our aim is the automatic detection of features, but for this
we need to know a suitable configuration of parameters. It
is impossible to determine an optimal threshold that will
work on all heads. Therefore, for each area we chose the
method that generally works well on this area for most
tested models.

Our proposed automatic detection is following:

• Eyes: Maximal curvature from MLS approximate

• Ears: Mean curvature from MLS approximate

• Lips: Mean curvature with 5% values truncated

• Nose: Maximal curvature

The results of automatic detection of features are shown
in Figure 15. The automatic detection is very good in 75
percent of models.

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
53

Figure 15: Automatic detection

4.6 Detection of control points

The last group are results of the detection of control points.
Automatic detection of control points after the automatic
detection of features is shown in Figure 16. These results
are very good.

a) b)

Figure 16: Detection of control points.

5 Conclusion

In this paper we have presented methods to detect impor-
tant features on triangulated human head models. The aim
of this work was to propose automatic detection and de-
tection with manuall choice of parameters.

We used three methods. We detected important areas
using the method described in Section 3.1.1. To classif-
cation of vertices we then used Laplace-Beltrami operator
(Section 3.1.3) and estimation curvature computed using
MLS approximate (Section 3.1.2). Then we get the featu-
res by applying thresholding and we could use morpholo-
gical operator to modify the features. We can also detect
the features on each important area. In automatic detection
we used methods which have the best results on the impor-
tant area and the minimal threshold parameter is determi-
ned by an average of evaluation on this area.

The proposed method was tested on several models used
for 3D identikits. The automatic method achieves a good
result on most models. The worst results are in the area of
the nose. Future development should consider other me-
thods working well automatically also in the area of the
nose. Detection of control points has satisfactory results,
but there are based on results of the features.

6 Acknowledgement

I would like to thank Ivana Kolingerová for her sup-
port and excellent leadership in this project and to Petr
Martı́nek for his help and consultations.

References

[1] K. Kubásková, Feature recognition on triangulated
models of human head. Pilsen, 2015. Bachelor thesis,
Faculty of Applied Sciences, University of West Bo-
hemia (In Czech).

[2] L. Karlı́ček, Feature recognition on triangulated mo-
dels. Pilsen, 2014. Master thesis, Faculty of Applied
Sciences, University of West Bohemia (In Czech).

[3] A. Hubeli, K. Meyer, M. Gross, Mesh Edge De-
tection. CS Technical Report. ETH: Institute of Scien-
tific Computing, vcarsko, 2000.

[4] Ch. Rössl, L. Kobbelt, H.-P. Seidel, Extraction of Fe-
ature Lines on Triangulated Surface Using Morpho-
logical Operators. Smart Graphics, AAAI Technical
Report SS-00-04, 2000.

[5] A. Nealen, T. Igarishi, O. Sorkine, M. Alexa, Lapla-
cian Mesh Optimization. GRAPHITE ’06, p. 381-389,
ISBN:1-59593-564-9, 2006.

[6] O. Sorkine, Laplacian Mesh Processing. The Eurogra-
phics Association, p.53-70, 2005.

[7] Y. Ohtake, E. Belyaev, H.-P. Seidel, Ridge-Valley Li-
nes on Meshes via Implicit Surface Fitting. Journal
ACM Transactions on Graphics, 2004, vol. 23, no. 3,
p. 609-612.

[8] S. Yoshizawa, A. Belyaev, H.-P. Seidel, Fast and Ro-
bust Detection of Crest Lines on Meshes. ACM Sym-
posium on Solid and Physical Modeling, 2005, p.227-
232, ISBN: 1-59593-015-9.

[9] S.-K. Kim, Ch.-H. Kim, Finding ridges and valleys
in a discrete surface using a modified MLS approxi-
mation. Computer-Aided Design, 2006, vol. 38, no. 2,
p. 173-180.

[10] M. Meyer, M. Desbrun, P. Schrder, A. H. Barr, Dis-
crete Differential Geometry Operators for Triangula-
ted 2-Manifolds. Visualization and Mathematics III,
2003, p. 35-57, ISBN: 978-3-662-05105-4.

[11] H.S. Kim, H.K. CHoi, K.H. Lee, Feature Detection
of Triangular Meshes Based on Tensor Voting Theory.
Computed Aided Design, 2009, vol. 41, no. 1, p. 47-
58.

[12] M. Raussen, Elementary Differential Geometry:
Curves and Surfaces. Department of mathematical
sciences, 2008, Aalborg University, Denmark.

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
54

Segmentation of Brain Tumors from Magnetic Resonance Images
using Adaptive Thresholding and Graph Cut Algorithm.

Zuzana Bobotová∗

Supervised by: Ing. Wanda Benešová, PhD.†

Institute of Applied Informatics
Faculty of Informatics and Information Technologies

Slovak University of Technology
Bratislava / Slovakia

Abstract

Development of methods for automatic brain tumor seg-
mentation remains one of the most challenging tasks in
processing of medical data. Exact segmentation could im-
prove the diagnostics, as for example the time evaluation
of the tumor volume. However, manual segmentation in
magnetic resonance data is a time-consuming task. We
present a method of automatic tumor segmentation in mag-
netic resonance images which consists of several steps. In
the first step, a high intense cranium is removed from the
image. In the next step, the histogram parameters of the
image are analyzed using the method Mixture of Gaus-
sians. These parameters control the morphological re-
construction (proposed by Luc Vincent 1993). The mor-
phological reconstruction is followed by substraction and
thresholding. It produces a binary mask which is used in
the last step of the segmentation: graph cut segmentation.
First results of this method are presented in this paper.

Keywords: segmentation, brain tumor, Magnetic Res-
onance Imaging, morphological reconstruction, adaptive
thresholding, graph cut algorithm, Mixture of Gaussians

1 Introduction

Medicine and diagnostics work with a large amount of vi-
sual data. Computer vision methods and image processing
can help doctors with analysis. Hence, the doctors save
their time and can focus on other important tasks.

Medical examination includes tests like MRI - Magnetic
Resonance Imaging, CT - Computed Tomography, PET
- Positron Emission Tomography, X-ray scans and other
less known techniques. Test results can be represented by
a single scan or by series of images. Then doctors analyze
images and search for anomalies, damages or symptoms of
the disease. The goal of the research is to replace a man-
ual or semi-automatic analysis by the automatic process-
ing using methods of computer vision. Nowadays, com-

∗bobotova.zuzanka@gmail.com
†benesova@fiit.stuba.sk

puter vision segmentation methods are used in the analysis
of subset of cells, organs or whole systems from the scans.

The aim of our work is to find an appropriate automatic
method to segment brain tumors from magnetic resonance
images (MRI). Output of a 3D MRI scan is a sequence of
images called slices. These MRI data are stored in spe-
cial medical formats such as NIFTI or MHA. Our goal is
to segment the tumor from the 2D image (one slice) auto-
matically. The presumption of the proposed method is that
in the processed image of the brain is a tumor is included.

It is a very interesting area of research, because it is nec-
essary to solve several problems. MR images are scanned
with different contrasts characteristics. In addition to tis-
sue density, tissue relaxation properties contribute to im-
age contrast in MR images. Basic relaxations are T1 and
T2. Next challenge is to deal with different sizes, shapes
and intensity levels of tumors on the images. Intensity lev-
els of the tumor depend on the aggressiveness of the tu-
mor. Aggressive tumors are less intensive and they can
blend with other brain material. The edges of such tumors
are not clear.

2 Related works

Many computer vision segmentation methods have been
developed during the last years. The article by Gordillo
et al. [2] and also the article by Liu et al. [5] list the
most suitable methods for medical imaging and brain tu-
mor segmentation: global and local thresholding, region-
based methods such as region-growing and watershed al-
gorithm, pixel classification methods and clustering such
as Fuzzy C-Means, k-means, Markov Random Fields,
Bayes method and Artificial Neural Networks. Some al-
gorithms implement these methods with various types of
improvements.

Menzein et al. presented article [7] about Multimodal
Brain Tumor Image Segmentation Benchmark (BRATS).
Twenty tumor segmentation algorithms were applied to a
set of 65 multi-contrast MR images. In the research were
implemented several segmentation methods and most of
them were automatic. All methods were tested on the

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)

same dataset. Results of their tests show that different al-
gorithms worked best for different sub-regions. Successes
of methods ranged between 74% and 85%. They found
that no single method performed best for all regions.

Khotanolou et al. presented automatic segmentation al-
gorithm [4] to detect brain tumor in 3D MRI data. In first
phase, initial tumor segment is detected using histogram
analysis, morphological operations and symmetry analy-
sis. Then the tumor is detected using fuzzy classifica-
tion and symmetry analysis again. Their results show that
method is effective and suitable for brain tumor detection.

Prastawa et al. presented framework [9] for automatic
brain tumor segmentation based on outlier detection. At
first, abnormalities were detected using information about
intensities. Secondary, tumor and edema presence is veri-
fied. Finally the spatial and geometric properties are used
for determining proper sample locations. Method was
tested on three datasets.

Havaei et al. presented article [3] about brain tumor
segmentation method last year. They implemented deep
neural networks with two different types of architectures.
First type was two pathway architecture made from two
streams. It allowed follow two aspects - visual details of
the region around that pixel and where the patch is in the
brain. Secondary three types of cascade architecture were
implemented. Results of the methods are very promising.

Another work [8] from the last year published Prajap-
ati and Jadhav. They utilized the following steps in their
method for brain tumor segmentation from MR images:
morphological operations, thresholding and region grow-
ing segmentation. Results of their tests show that region
growing method is suitable for brain tumor detection.

3 Algorithm overview

MR images in our dataset differ in the space resolution
and also in the intensity resolution. Hence, tumor seg-
mentation must reckon with several problems. Intensities
of tumors on the images are different according to tumor
aggressiveness. Tumors have various shapes and localiza-
tion and vary in sizes. Bigger tumors are not problem-
atic for segmentation, but some tumors are very small and
their intensities, sizes and shapes are very similar to other
healthy brain parts. In our research, we develop an auto-
matic method to solve the problems listed above.

The method consists of three steps as shown in Figure 1.
First, the contrast is enhanced by image rescaling. In the
second step, the cranium (skull) should be removed from
the image. It means bones around the brain mass which
protect the brain. The removing of cranium is important
for the further processing, mainly in cases when it is of
high intensity. In fact, the segmentation of a tumor could
be confused by cranium, because a tumor has high inten-
sity too. The final step is the tumor segmentation. The
result is MR image with indicated boundaries of the tumor
counted by two different algorithms.

Figure 1: Steps of algorithm

4 Used methods

Several well-known computer vision methods are used
in the proposed algorithm: Mixture of Gaussians, mor-
phological operations and greyscale morphological recon-
struction, thresholding and graph cut algorithm. Chapters
4.1 – 4.5 contain general explanation of these methods and
chapters 5.1 – 5.3 explain the order, the reasons and the
implementation of the methods.

4.1 Mixture of Gaussians

Gaussian mixture distribution is a multivariate distribu-
tion that consists of a mixture of one or more multivariate
Gaussian distribution components. The number of compo-
nents is fixed as input parameter. Each multivariate Gaus-
sian component is defined by its mean and covariance, and
the mixture is defined by a vector of mixing proportions.

4.2 Morphological operations

Morphology is the study of shape. Mathematical morphol-
ogy mostly deals with the mathematical theory of describ-
ing shapes using sets. In image processing, mathematical
morphology is used to investigate the interaction between
an image and a certain chosen structuring element using
the basic operations of erosion and dilation [6].

In our work, we use basic operations like open and close
as well as more advanced morphological operation. Mor-
phological reconstruction described in the next paragraph.

4.3 Greyscale morphological reconstruction

Greyscale morphological reconstruction is an iterative
process. Input for the algorithm is mask image. Actually
mask image is the processed image. Algorithm also needs
marker image as shown in Figure 2. Greyscale morpho-
logical reconstruction is described in detail in the book by
Šikudová et al. [12].

In basic morphological reconstruction binary dilation or
erosion is applied for the marker image. Then the algo-
rithm calculates the intersection with mask image. The
processing continues until the mask image values stop
changing.

Greyscale morphological reconstruction is based on
similar principles. However, binary dilation or erosion is
replaced with greyscale dilation or erosion and intersec-
tion is replaced with the selection of the minimum value
among the sets of points.

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
56

Method is usually used for removing local maximas of
the image. However, it is important to extract loacal maxi-
mas not remove them in some cases. Hence, reconstructed
image is substracted from the input image as shown in Fig-
ure 2.

Figure 2: Greyscale morphological reconstruction fol-
lowed by substraction [12].

4.4 Thresholding

Thresholding is one of the simplest segmentation meth-
ods. Basic method exchanges each pixel Pi,j in the im-
age for black or white pixel according to intensity I of
the pixel [11]. Thresholding input value is fixed constant
called threshold. If P’i,j is thresholded version of Pi,j ac-
cording to intensity I(Pi,j) and T is threshold then:

P′i, j =
{

1 i f I(Pi, j)>= T
0 otherwice

In the medicine, segmentation by thresholding often
fails, because medical images have very complex distri-
bution of intensities [1]. However, thresholding methods
are often followed by other segmentation methods or com-
bined with other methods. Threshold in our method has
been derived using Mixture of Gaussians method.

4.5 Graph cut segmentation

Graph partitioning methods are efficient for the segmen-
tation. They model the image like a weighted graph as
explained in [13]. In this algorithm pixels are associated
with nodes. Connections between them create weighted
edges. Values of the weights depend on similarities or dis-
similarities between neighboring pixels. The graph cut is a
way how to partition one graph into two regions according
to some characteristics. Edges created between two parti-
tions of the graph are called cut edges. They have weights
depending on the weight values of edges between pixels.
Resulting weight of the cut is the sum of the weights of the
cut edges. Finally, the result is a set of partitions and every
partition is a segment of the image.

There are many partitioning methods. One of them is
GrabCut algorithm from OpenCV library. It was designed
by Rother et al. and described in the article [10].

Originally the algorithm needs user interaction to draw
the input rectangle around the foreground region. The al-
gorithm iteratively segments the foreground using Gaus-
sian Mixture Model. The resulting distribution of pixels
is used to build the graph. Nodes in the graph are pixels
and two next nodes are added, source node as S and sink
node as T. Each pixel in the foreground is connected to
the S node and each pixel in background is connected to
the T node. The weights of edges which connect pixels to
the S or T node are defined by the probability that a pixel
is in the foreground or in the background. The weights
between neighboring pixels are defined by the pixel simi-
larity. The min-cut algorithm is used to divide the graph. It
finds the minimum cut of the weighted graph. Finally, pix-
els connected to the S node become foreground and pixels
connected to the T node become background.

5 Implementation

5.1 Contrast enhancement

The input for the method is an image from magnetic reso-
nance. Background of the image is typically black and tu-
mors have high intensity. However, data are scanned with
various settings which causes differences of the intensities.
It means that on some images background is not black and
tumors are not so intense. For this reason, rescaling is
the first step of the proposed method. It is helpful for fu-
ture processing, because images have similar characteris-
tics. Hence, image is rescaled into the range from 0 to 255.
Figure 3 shows input MRI image and the rescaled image.

Figure 3: Input MR image (left) and the rescaled image
(right).

The scaling results from the minimal and maximal value
of the image. Actually the real minimal and maximal val-
ues of the image could be just some single casual pixels
which are not relevant values for the rescaling. For this
reason, a statistical method is used to count the minimal
and maximal values used in the rescaling process. Hence,
the values of percentile 35 and percentile 99.9 are calcu-
lated. This is because the typical large black background
of MR images area covers at least 35% of the image and

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
57

the relevant high intensity area (cranium) covers at least
0.1% of the image.

5.2 Cranium removal

Before the segmentation, the cranium has to be removed
from the image. Mainly in cases when cranium pixels have
comparable values to the ones of the tumors. High intense
cranium cause errors in the segmentation. Some examples
are shown in Figure 4.

Figure 4: Example of the error segmentation caused by
intesive cranium.

Cranium is removed depending on the mask created dur-
ing the step. Mask creation is derived from the results of
statistical method called Mixture of Gaussians and adap-
tive thresholding.

First, Mixture of Gaussians is done using distribution of
three Gaussians. Three values are the result of the method.
One represents black background and two following val-
ues represent brain pixels. Historam of the image with
Gaussian distribution are shown in Figure 5. Resulting
values are used as input parameter for the next step binary
thresholding.

0 50 100 150 200 250
0

0.01

0.02

0.03

0.04
histogram
1st Gaussian
2nd Gaussian
3th Gaussian

Figure 5: Histogram approximation using Mixture of
Gaussians.

Parameter called threshold is usually fixed constant, but
thanks to the results of Mixture of Gaussians method our
thresholding is adaptive. The result of thresholding is a

mask which marks brain with cranium. It is shown in the
Figure 6. This is an important step for the correct removal
of the cranium. Morphological operations erode and dilate
are used after the thresholding to remove small seeds from
the mask. Results of morphological operation are visible
in Figure 7.

Figure 6: Brain mask created after thresholding.

Next step of the algorithm is graph cut segmentation.
The GrabCut method from the OpenCV library is used.
The method needs input rectangle or a mask which rep-
resents foreground. The rest is background. In this step
rectangle is used as foreground initialization to prevent
removal of the brain mass parts (brain without the cra-
nium). Initial rectangle is created depending on the pre-
vious thresholding as shown in Figure 7. GrabCut is ex-
plained in chapter 4.5. Result is contour which border
brain and also cranium.

Figure 7: Initial rectangle for GrabCut.

Thickness of the contour is enlarged and used as mask
for cranium removal. The mask is shown in Figure 8. The
result is the image with removed cranium as shown in the
Figure 9.

Our testing dataset contains various MR images. Ac-
tually some of them have low and other high intense cra-
nium. Whole images are processed in cranium removal
step. Sometimes cranium is not entirely removed and in-
tensive remnants cause the problem for the segmentation.
On the other side, parts of the brain are removed in some

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
58

Figure 8: Mask for cranium removal.

Figure 9: Brain with removed cranium.

specific cases. However, the second problem does not
cause errors in tumor segmentation, so it is not a priority
to solve.

5.3 Tumor segmentation

Last step is the tumor segmentation. The same statistical
method Mixture of Gaussians is done using distribution of
three Gaussians again. From three resulting values, one
represents black background, the second one represents
high intensive brain parts and last one is the rest of the
brain. Values are used as parameters for the future pro-
cessing.

Next step is greyscale morphological reconstruction. It
is implemented in OpenCV library. The method needs
two parameters. Input image called mask image and a
substraction constant. In our algorithm constant depends
on the results of Mixture of Gaussians method. Constant
is subtracted from the input image and marker image is
created. It is explained in the chapter 4.3 in detail. The
method removes loacal maximas from the image. Result
is shown in Figure 10. However, for our algorithm are im-
portant these maximal values. Hence, resulting image is
subtracted from the input image. The result of the subtrac-
tion is shown in Figure 11.

The next step is binary adaptive thresholding. Constant
for the method depends on the Mixture of Gaussians again.

Figure 10: Result of the morphological reconstruction.

Figure 11: Result of the substraction.

The result is a mask which marks the most intense brain re-
gions as shown in Figure 12. The biggest region is marked
as tumor. If there are a lot of small regions then the most
intensive is marked as tumor.Then morphological opera-
tions erode and dilate remove small seeds from the mask.
The result is a mask (Figure 13) which limits tumor.

Figure 12: Mask of the most intense regions uf the tumor.

Finally, graph cut algorithm detects boundaries of the
tumor. In that case input for the GrabCut method is a
mask. Mask marks foreground, probably background and
background. Foreground is determined by the mask cre-
ated after adaptive thresholding. It is because changes of
the boundaries should not be large. Probably background

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
59

Figure 13: Mask of the tumor.

is a rectangle created from the same mask and the rest is
background. Mask for GrabCut is shown in the Figure 14.

Figure 14: Input mask for the graph cut segmentation.

The last step in our method is the graph cut segmenta-
tion optional with the expectation to improve the quality of
the segmentation. Visualization of the resulting contours
with and without graph cut algorithm is shown in Figure
15. Another segmentations are shown in Figure 16.

Figure 15: Vizualization of tumor segmentation.

Figure 16: Examples of segmentation.

5.4 Implementation details

MATLAB is used to find the statistical minimum and max-
imum for contrast enhancement and also for the Mixture of
Gaussians method. Output of the previous methods is a file
with important statistical values used for the thresholding
and morphological reconstruction. These two mentioned
methods and the graph cut algorithm are implemented us-
ing the C++ programming language and the OpenCv li-
brary which includes all important methods of computer
vision.

6 Results

Algorithm was tested on real MRI data gained of anony-
mous patients acquired in clinical practice. Magnetic res-
onance images came from various apparatus and were
scanned with various settings, so they have different in-
tensities.

The images for our dataset were selected from 3D MRI
data witch were scanned with T1 relaxation. For the eval-
uation of our method, we have used 150 randomly se-
lected 2D images with various measurements and inten-
sities, which include tumors of different areas, shapes and
locations.

Tumor segmentation was tested by two ways to de-
tect advantages and disadvantages of proposed algorithm.
First, it was tested with the algorithm which consists only
of adaptive greyscale morphological reconstruction and
adaptive thresholding without the graph cut algorithm.
Second, it was tested also with the graph cut algorithm.

Algorithm results were compared with manual segmen-
tations of tumors provided by experts. Verification was
based on the per pixel comparison of the segmentation re-
sults and manual segmentations. Resulting segmentation
was transformed to binary image. It is because manual
segmentation was also saved as binary image.

Resulting tumor segmentation was divided on true pos-

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
60

itive (TP), true negative (TN), false positive (FP) and false
negative (FN) regions. TP represents pixels where tumor
was detected and should be. TN means that tumor was
not detected and should not be. FP is when tumor was
detected and should not be. Finally if tumor was not de-
tected, but should be, it is FN. Figure 17 is visualization of
pixel division. Statistical methods were used to evaluate
results:

• true positive rate – sensitivity (TPR):

T PR =
T P

T P+FN

• true negative rate – specificy (TNR):

T NR =
T N

T N +FP

• predictive value positive – precision (PVP):

PV P =
T P

T P+FP

• accuracy (A):

A =
T P+T N

T P+T N +FP+FN

Figure 17: Vizualization of per–pixel division.

Success of the algorithm without graph cut segmenta-
tion is presented in the Table 1. In the Table 2 is presented
success of algorithm with graph cut segmentation.

TPR TNR PVP A
80.91% 99.75% 83.94% 99.28%

Table 1: Results of testing without graph cut agorithm.

Segmentation without graph cut algorithm reached
99.28% accuracy and true positive rate was 80.91%. Seg-
mentation with graph cut algorithm failed in several cases.
It means that no tumor boundaries have been found. It
failed in 23 of 150 images what is 14.77%. Correctness

TPR TNR PVP A
82.12% 99.63% 86.4% 99.24%

Graph cut failed in 14.77% of samples. Therefore, only the
successful segmentations of the graph cut are presented in
the table.

Table 2: Results of testing with graph cut algorithm.

and statistical results was evaluated only on the images
where algorithm worked. Accuracy with graph cut algo-
rithm was 99.24% and true positive rate was 82.12%.

Advantages of proposed algorithm lie in the ability to
handle various data. It can evaluate MR image with
various intensities using adaptive methods which de-
pend on statistical intensity values of the image. Adap-
tive greyscale morphological reconstruction and adaptive
thresholding are crucial for successful segmentation and
correct localization of the tumor. Graph cut segmentation
was also tested to segment the tumors. It increased the pre-
cision and accurancy of tumor detection in specific cases.
However, the results using graph cut segmentation method
are less successful comparing with the method which was
done without the graph cut in summary. Boundaries of
the tumor are not always clear. It is problematic for graph
cut algorithm and causes that sizes of segmentations were
bigger than real tumor.

In some specific cases, tumors were not located because
they do not have the largest intensity so other more inten-
sive areas were detected as tumor. The most errors were
caused by the images which contained eyes or remnants of
the cranium. Examples of the errors caused by the eye are
shown in Figure 18. Solve those errors were not our pri-
ority so images with eyes were removed from our testing
dataset. Necessarity of cranium removal is explained in
chapter 5.2. Sometimes cranium is not removed and then
it causes problems as is shown in Figure 4. Actually, small
and very intensive areas should be filtered, but then small
tumors can be lost.

Figure 18: Example of the segmentation errors caused by
the eyes.

As was mentioned, algorithm is divided into several

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
61

smaller steps and implemented in MATLAB and C++. Ta-
ble 3 shows average time measurements of individual parts
of code for one processed image. Time was counted in
seconds.

Contrast enhancement 0.005 s
Cranium
removal

Mixture of Gaussians 1.761 s
Segmentation and removal 0.129 s

Tumor
segmentation

Mixture of Gaussians 1.189 s
Segmentation 0.125 s

Table 3: Average time measurements.

7 Conclusions and Future work

In this paper, we have presented automatic algorithm for
the segmentation of brain tumors from magnetic resonance
images. The main advantage of the presented algorithm
is its robustness. It is designed with the goal to process
images from various devices for the MRI data acquisition
and with various intensities. It becomes possible using the
adaptive thresholding and greyscale morphological recon-
struction which get parameters according to the results of
statistical method Mixture of Gaussians. It is followed
by the graph cut algorithm. Adaptive thresholding and
greyscale morphological reconstruction are crucial for the
correct results. The graph cut algorithm increases the pre-
cision of the segmentation in some specific cases, but in
summary the results using graph cut segmentation method
are less successful comparing with the method which was
done without the graph cut.

In future work we would like to solve problems with
specific cases where sizes and intensities of tumors are
problematic. We would like to extend method to segment
tumor automatically from 3D MRI data not only 2D im-
ages. Then the algorithm will be tested on bigger dataset
consists of many 3D MRI data of brains with tumors and
compared with another methods.

Acknowledgement: This work was supported by
the Grant VEGA 1/0625/14 and Siemens Healthcare
Bratislava.

Souce code is available: http://vgg.fiit.stuba.sk/2016-
04/segmentation-of-brain-tumors-from-mri-using-
adaptive-thresholding-and-graph-cut-algorithm/

References

[1] M. A. Balafar, A. R. Ramli, M. I. Saripan, and
S. Mashohor. Review of brain MRI image seg-
mentation methods. Artificial Intelligence Review,
33(3):261–274, 2010.

[2] N. Gordillo, E. Montseny, and P. Sobrevilla. State
of the art survey on MRI brain tumor segmenta-
tion. Magnetic Resonance Imaging, 31(8):1426–
1438, 2013.

[3] M. Havaei, A. Davy, and D. Warde-Farley. Brain
Tumor Segmentation with Deep Neural Networks.
arXiv, page 13, 2015.

[4] H. Khotanlou, O. Colliot, J. Atif, and I. Bloch.
3D brain tumor segmentation in MRI using fuzzy
classification , symmetry analysis and spatially con-
strained deformable models. Fuzzy Sets and Systems,
160(10):1457–1473, 2009.

[5] J. Liu, M. Li, J. Wang, F. Wu, T. Liu, and Y. Pan.
A Survey of MRI-Based Brain Tumor Segmenta-
tion Methods. Tsinghua Science and Technology,
19(6):578–595, 2014.

[6] T. Maintz. Digital and Medical Image Processing.
page 341, 2005.

[7] B. H. Menze, A. Jakab, S. Bauer, J. Kalpathy-cramer,
K. Farahani, J. Kirby, Y. Burren, et al. The Multi-
modal Brain Tumor Image Segmentation Benchmark
(BRATS). IEEE, 34(10):1–32, 2014.

[8] S. J. Prajapati and K. R. Jadhav. Brain Tumor De-
tection By Various Image Segmentation Techniques
With Introducation To Non Negative Matrix Fac-
torization. International Journal of Advanced Re-
search in Computer and Communication Engineer-
ing, 4(3):599–603, 2015.

[9] M. Prastawa, E. Bullitt, S. Ho, and G. Gerig. A brain
tumor segmentation framework based on outlier de-
tection. Medical image analysis, 8:275–283, 2004.

[10] C. Rother, V. Kolmogorov, and A. Blake. ”Grab-
Cut”: Interactive foreground extraction using iterated
graph cuts. ACM Trans. Graph., 23(3):309–314, Au-
gust 2004.

[11] M. Sezgin and B. Sankur. Survey over image thresh-
olding techniques and quantitative performanc evalu-
ation. Journal of Electronic Imaging, 13(1):146–168,
2004.

[12] E. Šikudová, Z. Černeková, W. Benešová, Z. Hal-
adová, and J. Kučerová. Počı́tačové videnie. Wikina,
Praha, 1 edition, 2011.

[13] A. S. Torres and F. C. Monteiro. Image segmentation
by graph partitioning. IPB Campus Santa Apolónia,
805:802–805, 2012.

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
62

Classification of built-up areas in LiDAR data based on
second-generation connectivity filters

Robi Cvirn∗

Supervised by: Domen Mongus†

University of Maribor / Slovenia

Abstract

In the recent years, Light Detection and Ranging (LiDAR)
technology has become one of the prime technologies for
spatial data acquisition. By rapid and accurate capturing
of high-resolution 3D point-clouds, LiDAR has moved the
focus of further research in Earth Observations towards
data processing. In this paper, we proposes a new ap-
proach for classification of built-up areas from LiDAR
data. The methodology is based on a special class of mor-
phological filters that rely on so-called second-generation
connectivity. We first provide theoretical background on
connected operators and explain how they can be applied
for LiDAR data processing. Finally, we validate the pro-
posed approach on several testcases.

Keywords: LiDAR, mathematical morphology, second-
generation connectivity, object recognition, algorithms

1 Introduction

Light Detection and Ranging (LiDAR) technology has be-
come one of the prime technologies for acquiring high-
resolution spatial data. By rapidly capturing accurate 3D
point-clouds of the Earth’s surface, it allows for monitor-
ing structures and processes with great precision over vast
geographic areas. Over the past decade, a lot of research
has been directed towards object recognition in LiDAR
data and efficient methods for extracting ground [9, 10],
buildings [8, 13, 20], vegetation [5], and even single tree-
crowns [4, 11] have already been developed. The focus of
further research is now shifting towards situation assess-
ment, where recognized objects are taken into account in
order to establish a wider sense of the current situation. A
particularly important example of situation assessment is
a classification of built-up areas, as it is critical for many
studies of impacts that human developments have on the
natural process [7].

In this paper, a new method for the classification of
built-up areas is presented. In contrast to the related
work, the proposed method has a different approach by ex-
ploiting the height information present within the LiDAR

∗robi.cvirn@um.si
†domen.mongus@um.si

data. This is achieved by connected operators from the
framework of mathematical morphology that are based on
second-generation connectivity.

The related work is described in Section 2. The rele-
vant theoretical background is given in Section 3. Section
4 describes the data structuring needed in order to apply
connected operators for LiDAR data processing together
with the proposed method. The results are discussed in
Section 5. Section 6 concludes the paper.

2 Related work

The classification of built-up areas has up to now been
mostly achieved based on human intuition by consider-
ing the actual size of the area (and its population) in ad-
dition to the the services that a given area offers (e.g. by
the presence of education and medical institutions, train
stops, or sports buildings) [1]. Nevertheless, several ap-
proaches have already been developed that rely on satellite
images for delivering quantitative measurement of built-
up areas for their classification. Pesaresi et. al [17] pro-
posed a method for calculating built-up presence index
from panchromatic satellite images. Tomowski et. al [25]
developed a settlement area detection based on panchro-
matic and multispectral data, while Najab et. al [12] in-
troduced a classification of settlements based on holistic
feature extraction technique using high resolution satellite
images. Van den Bergh [26] proposed a method for clas-
sification of settlements based in their illumination geom-
etry in QuickBird images.

3 Theoretical background

This section describes theoretical basics of connected op-
erators within the context of mathematical morphology.
Let a universal nonempty set E ⊆ Rd (i.e. a definition do-
main), define a d-dimensional dataset (e.g. a binary 2D
image, 3D voxel space, or any higher dimensional discrete
set) is defined by the means of nonempty set S⊆ E, where
si ∈ S is a d-dimensional point. A power-set (i.e. a set of
all subsets of set S) is denoted as P (S), while the connec-
tivity between the elements of S is given by the means of

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)

connectivity class C ⊆ P (S) [15, 22, 23, 24]. For this pur-
pose, C has to satisfy the following two conditions[16]:

• /0 ∈ C and ∀ si ∈ S,s ∈ C and

• ∀ {Ci} ⊆ C ,
⋂

i Ci 6= /0⇒⋃
i Ci ∈ C .

In simple terms, this means that an empty set, any given
singleton, and any set of subsets Ci ⊆ S with non-empty
intersection is connected. Given si ∈ S, the corresponding
connected component of a set S can be extracted by the
connectivity opening Γ. Its formal definition is given as
[16]:

Γsi(S) =
⋃

j

{C j ∈ C | si ∈C j and C j ⊆ S}. (1)

In order to simplify the notation, we refer to the connected
component addressed by a point si as Ci = Γsi(S).

3.1 Connected operators

Connected operators within the framework of mathemati-
cal morphology are edge preserving operators that act di-
rectly on connected components [21]. Attribute filters are
well-known examples of connected operators. They allow
for filtering connected components according to their at-
tributes. Let attribute function of a connected component
Λ (e.g. its area, perimeter or width) and the correspond-
ing attribute threshold λ , a binary attribute opening of an
arbitrary set S is given as [14]:

Γ(Λ,λ)(S) =
⋃

si∈S

{Γ(Λ,λ)(Γsi(S))}, (2)

where attribute opening Γ(Λ,λ)(S) removes those con-
nected components of S that do not satisfy a given attribute
criteria Λ(Ci)≥ λ (i.e. Γ(Λ,λ)(S) = {Ci | Λ(Ci)}).

3.2 Second-generation connectivity

Each connectivity class C can be evolved to its child class
with curtailed or augmented members. This concept is
known as second-generation connectivity and it allows for
manipulation over the connected components that can not
be achieved by regular connected operators. Two types of
second-generation connectivity exist, namely contraction-
based connectivity that allows for braking the connected
components and clustering-based connectivity that allows
for merging them [3]. Due to the specifics of the proposed
method, (see Section 4), only the latter is considered in
this paper.

A cluster can be described as a set of connected com-
ponents for which the mutual distances between them are
smaller than a certain distance criteria. In order to achieve
clustering, a clustering operator ψ needs to be applied that
complies to the following restrictions [19, 23, 3]:

• ψ needs to be extensive and increasing,

• the resulting connectivity class has to be reduced or
equal to the input connectivity class ψ(C)⊆ C , and

• for all subsets of a set {Si} ∈ P (S) it is required that
∀i, ψ(Si) ∈ C , and

⋂
i Si 6= /0⇒ ψ(

⋃
Si) ∈ C .

Let ψ be a clustering operator on P (S) and C a connec-
tivity class in P (S), a clustering-based connectivity class
C ψ ⊇ C within the definition domain E can than be de-
fined as:

C ψ = {S ∈ P (E) | ψ(S) ∈ C }. (3)

By only redefining the elementary connectivity opening,
this allows for applying second-generation connectivity
together with any of the connected operators without
changing their original definitions. A second-generation
connectivity opening Γψ

(Λ,λ)(S), defined in regards to an
arbitrary attribute function Λ with attribute threshold λ is
given as [15]:

Γψ
(Λ,λ)(S) = Γ(Λ,λ)(ψ(S)) ∩S. (4)

Finally, the results of the second-generation connectivity
opening Γψ

(Λ,λ)(S) applied on a binary image S are shown
in Fig. 1.

Figure 1: Second generation attribute opening, where (a)
the original image S is (b) extended by a clustering opera-
tor ψ(S) and (c) attribute opening is applied Γ(Λ,λ)(ψ(S))
in order to obtain (d) the resulting set Γψ

(Λ,λ)(S).

4 Implementation of connected op-
erators on LiDAR data

We denote an input LiDAR point-cloud as P = {Pi} where
pi is an individual LiDAR point. Each pi is associated with
a coordinate triple, given as x(pi), y(pi), and z(pi). Note

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
64

that connected operators, as described in previous section,
can not be directly applied on P, due to the lack of its
topological structure. In order to overcome this issue, we
construct a grid G ⊂ R2 of resolution r (usually r = 0.5m
is sufficient) and the extent that is equal to the bounding-
box of P. A grid-cell is denoted as gi ∈ G, while a set
of LiDAR points that are closer to a given gi than to any
other g j ∈ G are denoted as Pgi ⊆ P. In continuation, we
demonstrate the efficiency of the proposed formulation for
the classification of built-up areas.

4.1 Classification of built-up areas

The main objective of this method is to classify the built-
up areas according to their sizes and heights of the con-
tained buildings. The method uses preprocessed LiDAR
data, where points belonging to buildings are already
classified. In our case, were detected by extracting lin-
early distributed points using Locally Fitted Surfaces and
measuring their geometric properties based on differential
morphological profiles[8]. We can thus define a function
class : P→ [building,not building] that returns a classi-
fication of a LiDAR point. A set of building grid-cells
S ⊆ G is formally defined by Eq. 5, while its meaning is
graphically explained in Fig. 2.

S = {gi ∈ G | ∃ p j ∈ Pgi and class(p j) = building}. (5)

Figure 2: The definition of S ⊆ G, according to the
buildings (colored red) contained within the input LiDAR
dataset.

Each connected component represents a building and
is a set of a 8-connected cells (i.e. Ci ⊂ S). In the next
step, we apply a clustering-based second-generation con-
nectivity on the set of connected components contained
in S. Since spatial distance between buildings within the
built-up areas may vary, spatially-variant clustering oper-
ator is an optimal choice [2]. As shown by the results (see

Section 5), sufficient accuracy is achieved by using a mor-
phological dilation with the size of the structuring element
that is directly proportional to the heights of the build-
ings contained within the corresponding connected com-
ponents Ci ∈ S. Let h : G→ R, be a height function, de-
fined at a given gi ∈ G as:

h(gi) =
∨

g j∈Ci

{h(pl) | pl ∈ Pg j}, (6)

where
∨

denotes supremum (i.e. maximum). In addition,
when Pgi = /0, h = 0. A clustering operator in a form of
morphological dilation with variable window size is then
denoted as δ tSh, where tS is a user defined parameter that
defines the linear relationship between the heights of the
buildings and the corresponding size of the structuring el-
ement. The results of δ tSh(S) are shown in Fig. 3.

Figure 3: The spatially-variable dilation δ tSh, applied on
(a and b) two connected components of different heights
(i.e. 13m and 6m, respectively) and (c and d) the obtained
results.

According to Eq. 4, second-generation connectivity
opening that removes those connected components Ci with

areas A(Ci) < a can now be given as Γδ tSh

(Λ,λ). According
to the literature, built-up areas may be divided into ham-
lets, villages, towns and cities [1]. In order to identify the
correct type, we apply a series of second-generation con-
nectivity openings at an increasing scale and observe those
connected components (i.e. buildings) removed at each of
the scales. This concepts is also known as differential at-
tribute profiles [14]. Let a1 = 50000m2, a2 = 1000000m2,

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
65

and a3 = 5000000m2 be a set of user defined area thresh-
olds that correspond to the areas of particular built-up
types (note that this particular values were intuitively de-
fined, as there is no actual standard definition of the terms
[1]). We may define a set of buildings belonging to each
of them by the following rules:

• Hamlets SH = S \ Γδ tSh

(A,a1)
(S)

• Villages SV = Γδ tSh

(A,a1)
(S) \ Γδ tSh

(A,a2)
(S)

• Towns ST = Γδ tSh

(A,a2)
(S) \ Γδ tSh

(A,a3)
(S), and

• Cities SC = Γδ tSh

(A,a3)
(S).

The obtained results are shown in Fig. 4.

Figure 4: Differential attribute profiles on second-
generation connectivity opening, where (a) the original
S is divided into (b) hamlets SH , (c) villages SV , and (d)
towns ST .

5 Results

The proposed method for classification of built-up areas
was tested on four different LiDAR datasets. Each of them
contained different types of built-up areas as well as dif-
ferent terrain configurations and was acquired at different
data densities. Details about particular test set are given in
Table 1.

5.1 Validation procedure

To verify the quality of classification, the obtained results
were compared with ground truth data. For this purpose,
land cadastral data was rasterized and its actuality was
checked by a domain expert. In this way, we were able

Table 1: Test datasets with description.
Dataset
name Description Terrain

type
Data density
[points per m2]

RA
Rural area
with hamlets
and villages

hilly 7.3

TS
Town and
nearby small
settlements

valley 8.7

CS City and its
suburb flat 12.6

CC Strict city center flat 5.5

to perform a grid-cell to grid-cell comparison, where true
positives (T P), false positives (FP), true negatives (T N),
and false negatives (FN) were measured for each of the
classes. Accordingly, the following measurements of qual-
ity were used for validation [18, 6]:

• Completeness, describing the rate of correctly recog-
nized classes, is defined as:

comp =
T P

T P+FN
, (7)

• Correctness, describing the rate of correct detection,
is defined as:

corr =
T P

T P+FP
, and (8)

• F1-score that is harmonic mean of completeness and
correctness is given by:

F1 = 2∗ comp · corr
comp+ corr

. (9)

5.2 Sensitivity analysis

As explained in Section 4, the proposed method uses one
input parameter tS that defines the linear relation between
the heights of the buildings and the size of the structuring
element in spatially-variant dilation. In order to provide
its optimal definition, we were progressively increasing
the value of tS, while measuring the success rate of the
method. The obtained results are shown in Table 2.

Table 2: Sensitivity analysis of the method in regards to
the parameter tS, presented by F1-score.

Dataset tS

0.5 1.0 1.5 2.0 3.0
RA 50.5 86.3 96.7 35.9 36.3
TS 10.9 18.8 91.4 96.1 94.5
CS 17.7 33.7 43.4 93.2 54.9
CC 73.4 91.2 94.3 94.2 95.2

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
66

As shown by Table 2, the proposed method is sensitive
to the value of tS due to significantly different spacing of
buildings within the different types of built-up areas. This
indicates that, by defining the size of the clustering opera-
tor according to the correspondent height of the building,
the issue can only be mitigated but it cannot be solved.
Still, the proposed method managed to achieve accuracy
of over 93% in all of the cases.

5.3 Validation

A closer look at Table 2 reveals that low tS values are
more appropriate for classifying datasets containing rural
or suburb areas, while large tS values are more suitable for
classifying datasets containing city areas. The main rea-
son for this is that hamlets do not require any clustering
in order to be successfully recognized, while high build-
ings in city areas are often widely spaced with green areas
or parking lots between them. A more detailed analysis
of the method’s quality and accuracy was therefore per-
formed using optimal definition of tS for each particular
test dataset. The obtained results are shown in Table 3 and
Fig. 5.

Figure 5: Examples of classified datasets containing (a) a
city (colored brown), nearby village (colored green), and
hamlets (colored red) and (b) a town (colored purple) with
several nearby hamlets.

As shown by Table 3, the proposed method achieves
average F1-score of over 87% per all classes, with av-
erage completeness as well as correctness close to 90%.

However, large deviations in the results can be noticed
when considering hamlets or villages. The main reason for
this is that these are relatively small types of settlements,
where error in the classification of a single building sig-
nificantly affects the overall accuracy. Nevertheless, most
of the inaccuracies are caused by two characteristic errors.
Namely, isolated low buildings within towns (see an ex-
ample in Fig. 6) and groups of hamlets containing relative
tall buildings that become clustered and recognized as a
town or a village (see example in Fig. 7). Still as shown
in Table 4, the classification of the built-up areas is signif-
icantly more efficient than the traditional approach, where
building heights are not considered in a clustering crite-
rion. In latter case, the used clustering criterion was based
on the area attribute of the regions, while the same tuning
procedure as described in Section 5.2 was used. Although
the proposed approach achieves higher accuracy, the com-
pared method can also be applied on other types of data,
where object heights are not explicitly known (e.g. satel-
lite images [17, 12] or digital orthophoto [26]).

Figure 6: Missclassified low buildings (colored red) within
a town (colored purple).

Figure 7: Missclassified hamlets, clustered into a village
due to the contained high buildings.

6 Conclusions

This paper proposes a new method for the classification
of built-up areas in LiDAR data. The method is based on

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
67

Table 3: Validation results of built-up area classification.

Dataset tS Metric
Built-up area types

SH SV ST SC

RA 1.5
comp 100 96.1 not contained not contained
corr 82.5 100 not contained not contained
F1 90.4 98.0 not contained not contained

TS 2.0
comp 64.5 97.9 100 not contained
corr 95.2 88.7 95.0 not contained
F1 76.9 93.1 97.5 not contained

CS 2.0
comp 96.5 77.8 not contained 98.9
corr 86.2 87.5 not contained 100
F1 91.1 82.4 not contained 99.4

CC 3.0
comp not contained 100 not contained 96.9
corr not contained 0 not contained 100
F1 not contained 0 not contained 98.4

Average -
comp 87.0 93.0 100 97,9
corr 88.0 69.1 95.0 100
F1 86.1 68.4 97.5 98,9

Table 4: Analysis of the method with clustering criterion
based on the area attribute of the regions, presented by F1-
score.

Dataset tS

0.01 0.03 0.05 0.10 1.00
RA 26.9 78.8 93.4 32.5 0.0
TS 17.7 86.9 76.6 58.9 0.0
CS 11.0 93.0 92.4 91.8 85.6
CC 87.8 91.6 93.0 94.1 92.0

mathematical morphology, where connected operators of
second-generation are used for clustering buildings into
groups of built-up areas. As the method uses only one
user defined parameter, its performance can simply be op-
timized, although the method is relatively sensitive to it.
Nevertheless, with the average F1-score of 93%, the pro-
posed method proved to be accurate.

References

[1] M. Aston. Interpreting the landscape. B.T.Batsford
Ltd, 1985.

[2] N. Bouaynaya, M. Charif-Chefchaouni, and
D. Schonfeld. Theoretical foundations of spatially-
variant mathematical morphology part i: Binary
images. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 30(5):823–836, May 2008.

[3] U. Braga-Neto and J. Goutsias. Connectivity on
complete lattices: New results. Computer Vision and
Image Understanding, 85:22–53, 2002.

[4] L. Eysn, M. Hollaus, E. Lindberg, F. Berger, J. M.
Monnet, M. Dalponte, M. Kobal, M. Pellegrini,
E. Lingua, D. Mongus, and N. Pfeifer. A bench-
mark of lidar-based single tree detection methods us-
ing heterogeneous forest data from the alpine space.
Forests, 6(5):1721–1747, May 2015.

[5] S. Hancocka, J. Armston, Z. Li, R. Gaulton, P. Lewis,
M. Disney, F. M. Danson, A. Strahler, C. Schaaf,
K. Anderson, and K. J. Gaston. Waveform lidar over
vegetation: An evaluation of inversion methods for
estimating return energy. Remote Sensing of Envi-
ronment, 164:208–224, July 2015.

[6] C. Heipke, H. Mayer, and C. Wiedemann. Evalua-
tion of automatic road extraction. 3d Reconstruction
and Modeling of Topographic Objects, 32:151–160,
September 1997.

[7] A. Mabogunje. The development process: A spatial
perspective. Routledge, 2015.

[8] D. Mongus, N. Lukac, and B. Zalik. Ground and
building extraction from lidar data based on differen-
tial morphological profiles and locally fitted surfaces.
ISPRS Journal of Photogrammetry and Remote Sens-
ing, 93:145–156, July 2014.

[9] D. Mongus and B. Zalik. Parameter-free ground fil-
tering of lidar data for automatic dtm generation. IS-
PRS Journal of Photogrammetry and Remote Sens-
ing, 67:1–12, January 2012.

[10] D. Mongus and B. Zalik. Computationally effi-
cient method for the generation of a digital terrain
model from airborne lidar data using connected oper-
ators. Selected Topics in Applied Earth Observations

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
68

and Remote Sensing, IEEE Journal of, 7(1):340–351,
January 2014.

[11] D. Mongus and B. Zalik. An efficient approach to
3d single tree-crown delineation in lidar data. IS-
PRS Journal of Photogrammetry and Remote Sens-
ing, 108:219–233, October 2015.

[12] A. Najab, I. Khan, M. Arshad, and F. Ahmad. Classi-
fication of settlements in satellite images using holis-
tic feature extraction. In 12th International Confer-
ence on Computer Modelling and Simulation, 2010.

[13] J. Niemeyer, F. Rottensteiner, and U. Soergel. Con-
textual classification of lidar data and building ob-
ject detection in urban areas. ISPRS Journal of Pho-
togrammetry and Remote Sensing, 87:152–165, De-
cember 2014.

[14] G. K. Ouzounis, M. Pesaresi, and P. Soille. Differen-
tial area profiles: Decomposition properties and ef-
ficient computation. IEEE Transactions on pattern
analysis and machine intelligence, 34(8):1533–1548,
August 2012.

[15] G. K. Ouzounis and M.H.F. Wilkinson. Mask-based
second-generation connectivity amd attribute filters.
IEEE Transactions on pattern analysis and machine
intelligence, 29(6):990 – 1004, June 2007.

[16] G. K. Ouzounis and M.H.F. Wilkinson. Hypercon-
nected attribute filters based on k-flat zones. IEEE
Transactions on Pattern Analysis and Machine Intel-
ligence, 33(2):224–239, February 2011.

[17] M. Pesaresi, A. Gerhardinger, and F. Kayitakire. A
robust built-up area presence index by anisotropic
rotation-invariant textural measure. IEEE Journal of
selected topics in applied earth observations and re-
mote sensing, 1(3):180–192, September 2008.

[18] D. M. W. Powers. Evaluation: From precision, re-
call and f-factor to roc, informedness, markedness &
correlation. Technical report, School of Informatics
and Engineering, Flinders University, Adelaide, Aus-
tralia, December 2007.

[19] C. Ronse. Set-theoretical algebraic approaches to
connectivity in continuous or digital spaces. Journal
of Mathematical Imaging and Vision, 8:41–58, 1998.

[20] F. Rottensteiner. Automation of object extraction
from lidar in urban areas. In Geoscience and Remote
Sensing Symposium, 2010 IEEE International, pages
1343 – 1346. IEEE, July 2010.

[21] P. Salembier and M.H.F. Wilkinson. Connected oper-
ators. IEEE Signal processing magazine, 26(6):136–
157, November 2009.

[22] J. Serra. Image Analysis and Mathematical Mor-
phology. 2: Theoretical Advances. Academic Press,
1988.

[23] J. Serra. Connectivity on complete lattices. Jour-
nal of Mathematical Imaging and Vision, 9:231–251,
1998.

[24] J. Serra. Connections for sets and functions. Funda-
menta Informaticae, 41:147–186, 2000.

[25] D. Tomowski, M. Ehlers, U. Michel, and
G. Bohmann. Decision based data fusion techniques
for settlement area detection from multisensor
remote sensing. In 1st EARSeL Workshop of the
SIG Urban Remote Sensing Humboldt-Universitt zu
Berlin, 2006.

[26] F. van den Bergh. The effects of viewing- and illumi-
nation geometry on settlement type classification of
quickbird images. In Geoscience and Remote Sens-
ing Symposium (IGARSS), 2011 IEEE International,
pages 1425 – 1428, July 2011.

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
69

70

Wavelet-based hierarchical heightmap compression method

Michal Lašan
Supervised by: Martin Kahoun

Charles University in Prague
Faculty of Mathematics and Physics

Prague / Czech Republic

Abstract

In this paper, we present a wavelet-based method for lossy
compression of heightmap terrain data. It keeps the re-
constructed data within a certain absolute per-sample er-
ror bound adjustable by the user. This method accepts
blocks of float samples of dimensions 2nx2n at the input,
for which it can perform progressive mip-maps decom-
pression. The compression of a 256x256 block takes about
30 ms and the decompression about 1 ms. Thanks to these
attributes, the method can be used in a real-time planet
renderer. It is able to achieve the compression ratio of
37:1 on the whole Earth 90m/sample terrain dataset trans-
formed and separated into square blocks, while respecting
the maximum error of 5m.

Keywords: heightmap, lossy compression, wavelet, lift-
ing, guaranteed maximum error bound, real-time planet
rendering, mip-map, progressive decompression, transfor-
mation, quantization, filtering

1 Introduction

Real-time rendering of the whole Earth requires work-
ing with large terrain data, their storage and distribution.
A multiresolution (LOD-ing1) approach is essential in or-
der to reach reasonable frame rates. In literature, a survey
paper summarizing the most common multiresolution ren-
dering methods exists [7]. Some of them also contain data
compression.

For example, in C-BDAM [5] and P-BDAM [2],
the compression takes place in the refinement of a node
of the LOD hierarchy. The values inside a child node are
predicted from the parent node as accurately as possible.
The differences between these predictions and the real val-
ues are called residuals. These residuals are then quantized
and compressed by an entropy codec - thus, the compres-
sion is lossy. Both these methods use a slight modifica-
tion of the wavelet lifting scheme, ensuring that the error
of the reconstructed data is kept within a maximum error
bound adjustable by the user [8].

1LOD is the abbreviation of level of detail - degradation of quality of
the displayed data with the growing distance in order to optimize the ren-
dering

Another paper [6] describes a method based on the same
principle - the residuals required to refine a square node of
the terrain hierarchy are compressed. The computation of
the residuals is based on the JPEG2000 standard, which is
again a wavelet scheme. However, this method does not
support an arbitrary maximum error adjustable by the user
and its rendering pipeline does not handle visual artifacts
between adjacent nodes of different LODs.

In practice, many applications handle the real-time ren-
dering well with LOD schemes tailored to their needs. In
such cases, a compression method tied to a concrete LOD
scheme (which is the case of the mentioned methods) is
not feasible. This method handles only the compression,
so it can be used as a plug & play component in an existing
real-time renderer. Its only job is to compress a block of
terrain height samples sized 2nx2n and to provide fast pro-
gressive decompression of its mip-maps, while respecting
the maximum error bound at every mip-map. The source
code of the method is written modularly, so that any rep-
resentation of the height samples can be compressed -
doubles, floats or even arbitrary structures. It is inspired
by C-BDAM - the compression method is extracted from
the LOD scheme and simplified.

As a case study we have implemented this method as a
plugin into an application, which transforms the heights on
the planet surface into 256x256 blocks of 32-bit float sam-
ples in the unit of meters, which are then stored separately
and during the run fetched into a quadtree-based LOD hi-
erarchy. The mip-maps of the blocks are used while look-
ing at them from a side.

This approach introduces heavy redundancy of the data
- a block corresponding to a certain quadtree node con-
tains simplified blocks of its children and all these blocks
are stored separately. To the contrary, in C-BDAM only
the residuals needed to reconstruct the children from
the parent node are stored.2 However, the reason why this
approach is used is that the user can navigate to any area al-
most immediately - only the data needed for the scene has
to be fetched, without having to reconstruct it by travers-
ing from the root. Moreover, this approach enables the
user to flexibly extend the terrain data by high-resolution
insets. The mentioned redundancy of the data emphasizes
the need for as efficient compression method as possi-

2The LOD structure in C-BDAM is not a quadtree, though

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)

ble, doing only what is required - providing the mip-maps
while respecting the maximum-error bound of the samples
inside each one of them.

In Section 2, we briefly describe the basic theory of
wavelets and link C-BDAM and this method to it, in Sec-
tion 3, we briefly describe the basic outline of the method.
In Section 4, we describe the details of the method. In
Section 5, we compare the core algorithm of this method
to the algorithm of C-BDAM. We present the results in
Section 6 and then discuss them in Section 7.

2 The introduction to wavelets

Basically, two generations of wavelets exist - the first one
which is based on computation with dilated and translated
wavelet function [1] and the second one which is based on
filter banks - high-pass and low-pass filtering [3]. It has
been proven that these two approaches are computation-
ally equivalent [4].

We will describe the second generation of discrete
wavelet transform which is relevant for this work. The ba-
sic step of such transform is called lifting - a decompo-
sition of the input signal samples the count of which is
a power of two into two equally sized parts - low-pass
(the low frequency information) and high-pass (the high
frequency information). This step is then recursively ap-
plied to the produced low-pass part until its length is 1.
The opposite of lifting is reconstruction - enriching low-
pass samples by high-pass information to obtain twice as
detailed set of samples. It is the exact inverse of lifting.
This transform is widely used for compression of data
which can be achieved by quantizing the produced high-
pass parts (often called residuals).

The lifting is performed in the following way: the in-
put samples xk are split into the even ones: x2k = xe and
the odd ones: x2k+1 = xo. Then two operators are intro-
duced: the prediction operator P which is used to produce
the final high-pass part d (residuals) from xo and the up-
date operator U which is used to produce the final low-pass
part s from xe.

The prediction-first methods firstly apply the prediction
operator and then the update operator:

d = xo−P(xe)

s = xe +U(d)

The reconstruction is then the exact inverse:

xe = s−U(d)

xo = d +P(xe)

To the contrary, the update-first methods firstly apply
the update operator and then the prediction operator:

s = xe +U(xo)

d = xo−P(s)

Figure 1: Lifting in C-BDAM - the samples x are separated
into the even ones xe which will become s - low-pass and
the odd ones xo which will become d - high-pass.
Source: C-BDAM [5] (edited)

The reconstruction then looks like this:

xo = d +P(s)

xe = s−U(xo)

C-BDAM uses a slight variation of update-first lifting
when constructing the coarser LOD s from the finer LOD
x. It uses not only xo, but the whole x as the input to
the first update. Moreover, the computation of s cannot
be written as the summation of the product of U and xe
anymore, because xe is multiplied inside U(x):

s =U(x)

d = xo−P(s)

The corresponding reconstruction is:

xo = d +P(s)

xe =U−1(x)

Besides, the samples x are regularly distributed in
the plane, so the decomposition into xe and xo depends
on the position of the samples, no longer on their indices
(Fig. 1). However, the count of xe is still half the count
of x. Note that if the residuals d were simply quantized
after lifting, each step of the reconstruction would make
the maximum absolute deviation from the original values
larger. To ensure the maximum-error bound at each level,
the residuals computed during the lifting are corrected ac-
cording to the actual values in another top-bottom pass
which then turns out to be identical to the reconstruction
(decompression).

The proposed method uses the same main lifting princi-
ple as C-BDAM (update-first and use the whole x as the in-
put of U), but introduces several differences: the count of
xe and thus s is not half the count of x, but one fourth of

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
72

it, as each four neighboring pixels inside x are collapsed
into one inside s (Fig. 2). In addition, the lifting is not
complete, as no prediction and computation of residuals is
performed there. These are let to be performed in the sec-
ond top-bottom pass where also the maximum-error bound
is ensured. Just like in C-BDAM, this pass is identical
to the reconstruction of the data. The prediction operator
is applied more times in the reconstruction which is ex-
plained in Section 4. The reasons for all these differences
are explained in Sec. 5.

3 The outline of the method

Here is how the compression works. We perform two
passes on the input heightmap. In the first bottom-top
pass, we compute the target mip-maps - from the largest
one to the smallest one. In the second top-bottom pass,
we construct the compressed mip-maps from the smallest
one to the largest one with respect to the target mip-maps
in order to preserve the maximum-error bound. For each
constructed mip-map, we store the residuals needed to pro-
duce it from the previous decompressed mip-map.

In more detail, given the input square block of float
height samples Ln sized 2nx2n, n mip-maps L...n− are
constructed from it. The dimension of Li is half the di-
mension of Li+ and Li is computed from Li+ by aver-
aging of pixels - see the details in the next section.

In the second top-bottom pass, with L..n at hand, we
compute L•..n - the final decompressed mip-maps. Li and
L•i are of the same size and the maximum absolute devi-
ation between their corresponding samples is not greater
than D - the parameter set by the user. We will denote this
by:

maxdev(Li,L
•
i)≤D,

where

maxdev(A,B) = argmax
x,y
|A[x][y]−B[x][y]|

We construct these mip-maps with the help of a uniform
quantizer QD respecting this error bound:

maxdev(QD(x),x)≤D,

where x is an arbitrary float sample or block of samples.
L• contains just the quantized sole sample of L

L• =QD(L),

and L•i+ is computed from L•i by quantizing the differ-
ences between the target values Li+ and the predictions
from L•i :

Ei+ =Li+−P(L•i)

E•i+ = QD(Ei+)

L•i+ = P(L•i)+E•i+ (1)

where P is a prediction operator, Ei+ are the differ-
ences and E•i+ are the quantized differences. Note that
thanks to the fact that the quantizer keeps the maximum
absolute error within the bound D and the residuals Ei+

are computed with respect to the target mip-map Li+,
maxdev(L•i+,Li+) ≤D, no matter what values are in
L•i and what is the form of the prediction operator P. All
the quantized residuals E•..n are then compressed with
the help of an entropy codec (Zlib) and saved (E• = L•),
so the more accurate P is, the better the compression ra-
tio is. The details of the prediction operator used in this
method are described in the next section.

During the decompression, the quantized residuals are
read and used to progressively reconstruct the mip-map
levels L•..n (eq. 1).

4 Details of the method

In this section, we describe the details of the method,
namely how the target mip-maps are constructed and what
the prediction operator P looks like.

The down-sampling of the mip-maps can be performed
by any form of averaging. As we saw in the previous chap-
ter, the maximum absolute error does not depend on how
the mip-maps look, as long as they contain valid values.
However, the way the mip-maps are constructed affects
the compression ratio. Moreover, various mip-map con-
structions produce different visual artifacts. In terms of
the visual artifacts, the best way to down-sample a mip-
map is to just average the four neighboring pixels [2n,
2n+1], [2n, 2n+1] at Li+ into [n][n] at Li.

In the previous section, we made a simplification claim-
ing that a decompressed mip-map L•i+ is constructed
from the previous L•i in just one step (eq. 1). We did that in
order to emphasize the fact, that maxdev(L•i+,Li+) <
D. In fact, three such steps happen. Nevertheless,
the residuals are checked after each of these steps and all
the predictions are made from the decompressed values, so
the maximum error bound is still kept. So, when we con-
struct the following decompressed mip-map, every pixel p
from L•i is substituted by four pixels in L•i+ as shown in
Fig. 2.

The first one of them, labeled a, is predicted directly
from L•i by a simple prediction operator Pa(L

•
i) = p. Fol-

lowing this, the residuals Ea and E•a are computed ac-
cording to the target value at in Li+ and a is assigned
the final value a• (eq. 2). It holds that maxdev(a•,at) ≤
D.

Ea = at − p

E•a = QD(Ea)

a•= p+E•a (2)

The second one of them, labeled b, is predicted from
the pixels a• in L•i+ by the straight-oriented order 2

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
73

c

c b

a

p Li•

Li+1•

Figure 2: Substitution of a pixel p from L•i by four chil-
dren in L•i+

b

a•

a• a•

a•

Figure 3: The prediction of b - Pb(L
•
i+) - is the average

of all the displayed a•

Neville interpolating filter (fig. 3), just like the border val-
ues are predicted in C-BDAM. A similar computation of
residuals Eb and E•b then follows according to the target
value bt from Li+ and b is assigned the final value b•
(eq. 3).

Eb = bt −Pb(L
•
i+)

E•b = QD(Eb)

b•= Pb(L
•
i+)+E•b (3)

The cases when the filter comes out of the image are
handled by a specific mirror extension (fig. 4). Unlike C-
BDAM, where the order 4 Neville filter is used for the in-
terior values, in this method, the order 2 filter is used even
for the interior values in order to increase the speed. As
an additional optimization, the interpolation with the order
2 filter can be easily cached during horizontal traversal.
Moreover, using the order 4 filter made the compression
ratio slightly better - probably because it predicts hills and
walleys more accurately, but made the quality of the recon-
structed heightmap worse - it produced sharper artifacts on
the borders of smooth gradient terrain blocks (Fig. 5) and
near sharp terrain changes (Fig. 6).

The reason for these artifacts is that while the predic-
tions are close enough to the real terrain (their quantized
residuals are zeroes), the reconstructed values might be

a1• a2• a2•

b1 b3

b2 b4

a3• a4• a4•

a4•a4•a3•

Figure 4: Handling of border cases in the computation of
Pb(L

•
i+) - the red line represents the border.

Original

Order 2

Order 4

Figure 5: Two examples of different artifacts caused by
order 2 and order 4 filters at the border of smooth gra-
dient terrain - the first row shows the target heightmaps,
the second row shows the same heightmaps compressed
with the order 2 filter, the third row with the order 4 filter.

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
74

Original

Order 2

Order 4

Figure 6: Two examples of different artifacts caused by or-
der 2 and order 4 filters at a sharp terrain change - the first
row shows the target heightmaps, the second row shows
the same heightmaps compressed with the order 2 filter,
the third row with the order 4 filter. The values in the orig-
inal images range from 0 to 16 and the maximum deviation
of the compression is 9.

D

P

Figure 7: The illustration of how an artifact occurs -
the black predictions are within the maximum-error bound
D, so they are equal to the reconstructed values, but
the blue one is not. Because a uniform quantizer is used,
the blue prediction is shifted by 2D−1 to the top, creating
an artifact.

D

P

Figure 8: Another illustration of an artifact - the black
predictions are within the maximum-error bound D, but
the blue one is not. The blue prediction is shifted by 2D−1
to the bottom, creating an artifact.

systematically above/under the terrain. But as soon as one
prediction is a bit further from the terrain than those at
the adjacent pixels, its residual is quantized to a non-zero
value and the reconstructed value might flip to the other
side of the terrain, producing a visual artifact. This of-
ten happens when smooth terrain is followed by a sharp
change. The prediction operator might then predict differ-
ent values near this change, as it reaches out to the area
behind the change (Fig. 7, 8). This spike is then propa-
gated to the next levels, but still within the maximum error
bound. The mirroring at the borders produces such sharp
changes, too, in a different, more complex way. However,
some better form of mirroring might sort this out.

While the prediction of the order 2 filter is the average
of the four neighboring values, the prediction of the order
4 filter tends to differ from the neighboring values more,
so this filter has the tendency to produce more disturbing
artifacts.

The remaining pixels labeled c are predicted from
the pixels a• and b• in L•i+ by the diagonally-oriented
order 2 Neville interpolating filter (fig. 9). The compu-
tation of residuals Ec and E•c then follows according to
the target value ct from Li+ and c is assigned the final
value c• (eq. 3).

Ec = ct −Pc(L
•
i+)

E•c = QD(Ec)

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
75

c

•

•

•

•

Figure 9: The prediction of c - Pc(L
•
i+) - is the average

of all the pixels marked with a dot - •.

a1• a2•

a4• a4•a3•

b1• b1• b2•

b2•b1•

a2•

b1• b2•

Figure 10: Handling of border cases in the computation of
Pc(L

•
i+) - the red line represents the border.

c•= Pc(L
•
i+)+E•c (4)

The cases when the filter comes out of the image are
handled by a specific mirror extension (fig. 10). For
the same reasons as in the prediction of b pixels, the or-
der 2 filter is used for the prediction of all c pixels - both
interior and exterior ones. Similarly, the interpolation with
such filter can be cached during diagonal traversal.

The residuals E•a, E•b and E•c are then encoded by
an entropy codec and stored. The decompression is done
in a similar manner with the only difference that the resid-
uals are not computed anymore, but just decoded and read.
So, we substitute every pixel from L•i by four pixels in
L•i+, the value of which is computed in three passes of
prediction followed by adding the read residual (the last
lines of eq. 2, 3, 4).

5 Functional comparison to C-BDAM
and wavelets

As we already mentioned, C-BDAM contains the whole
rendering pipeline, whereas our method does not. How-
ever, it can be compared to C-BDAM in terms of how lift-
ing is performed. As we already mentioned in the end of
Section 2, C-BDAM omits a half of the samples while con-

structing a coarser LOD, whereas our method omits three
fourths of the samples. This is spatially equivalent to two
steps of lifting in C-BDAM (Fig. 1). The first step removes
the pixels b and the second step removes the pixels c as
seen in Fig. 2. Nevertheless, this equality is only spatial.

In our method, an analogy of the update operator of
lifting is used to construct Li from Li+ (the averaging
of four neighboring pixels - Sec. 4). However, the lift-
ing is not complete in our method as it does not contain
the prediction operator - no residuals are computed there
yet. In C-BDAM, also a prediction operator is used in
the lifting to produce intermediate residuals. However, us-
ing just these residuals would not guarantee any maximum
error bound, so C-BDAM makes another top-bottom pass
to correct the residuals against the real values of samples
produced in the first bottom-top pass. To make this cor-
rection fit into the original wavelet framework, several in-
tricate computations need to be performed, including divi-
sion, which is quite a large performance hit.

Our vision was that once it is needed to perform an ex-
tra top-bottom pass to correct the residuals so that the max-
imum error bound is guaranteed, it is not neccessary to
compute any temporary values of the residuals during
the lifting steps (the construction of the LOD pyramid).
This is why we perform just an analogy of the update
(the averaging of pixels) in the update-first scheme and
let the following top-bottom pass compute suitable val-
ues of residuals. This is obviosly a major deviation from
the wavelet scheme. In the top-bottom pass, we just pre-
dict the values in the finer LOD as accurately as possi-
ble, but these predictions have no linkage to the previous
bottom-top pass, as they have not been used there at all.
Then we directly compute the residuals with respect to
the original values computed in the first bottom-top pass
at the corresponding levels.

All in all, it can be said that the way the residuals are
computed in this method is an extreme simplification of
the way they are computed in C-BDAM. This way of com-
putation does not even conform to the second-generation
wavelet scheme - the lifting is not complete and the recon-
struction is not the inverse of lifting. We think that with-
out the residuals quantization or the per-level correction
of residuals, respecting the wavelet scheme makes sense,
as it ensures computational equivalency with the first-
generation wavelets. However, in case the residuals need
to be corrected at each level, we think that conforming
to a wavelet scheme makes no sense, because this cor-
rection immediatelly destroys the mentioned equivalence
- once a residual is cropped in order to get the resulting
value closer to the actual data, it cannot be said that any
of the following reconstruction is the inverse to the lifting
performed before. Moreover, thanks to the mentioned de-
viation of C-BDAM from the classical update-first second-
generation wavelet discussed in Section 2, we question
its computational equivalency with the first-generation
wavelet even with no residuals quantization or cropping
performed. Because of this, we think that the computa-

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
76

tions made in the second top-bottom pass can be optimized
this way without any cost. Thus, this method would prob-
ably better be called wavelet-inspired than wavelet-based.

6 Results

This method has been applied in the real-time planet ren-
derer mentioned in the introduction on height data of
the whole Earth with the resolution of 90m (SRTM). Due
to the redundancy of data in the applied LOD hierarchy,
the size of the original data was 260GB. With the max-
imum error bound set to 5m, the size of the compressed
data is 7GB, which yields the compression ratio of 37:1.

For a comparison, C-BDAM reached the compression
ratio of 64:1 on the same dataset, but with the maximum
error bound set to 16m. Thanks to the fact that the LOD
hierarchy of C-BDAM contains no redundancy, the size of
the original data was just 29GB and the size of the com-
pressed data just 870MB. Under such circumstances, only
the comparison in terms of the compression ratio is rele-
vant.

In Fig. 11, you can see a part of a heightmap com-
pressed by this method, together with the differences from
the original.

7 Conclusions

In this paper, we described a heightmap compression
method designed to be a plugin into an existing real-
time planet renderer with its own rendering pipeline.
The method proved to be convenient for the purpose, pro-
viding fast decompression (only about 1ms per block of
data). Its compression ratio is comparable to C-BDAM,
which is the method with the best compression ratio
among the methods for the terrain compression, which
guarantee a maximum error bound adjustable by the user.

References

[1] P. M. Bentley and J. T. E. McDonnell. Wavelet trans-
forms: an introduction. Electronics Communication
Engineering Journal, 6(4):175–186, Aug 1994.

[2] Paolo Cignoni, Fabio Ganovelli, Enrico Gobbetti,
Fabio Marton, Federico Ponchio, and Roberto
Scopigno. Planet–sized batched dynamic adaptive
meshes (p-bdam). In Proceedings IEEE Visualization,
pages 147–155, Conference held in Seattle, WA, USA,
October 2003. IEEE Computer Society Press.

[3] Roger L. Claypoole, Geoffrey M. Davis, Wim
Sweldens, and Richard G. Baraniuk. Nonlinear
wavelet transforms for image coding via lifting. IEEE
Trans. Image Processing, 12:1449–1459, 2003.

Figure 11: From the top to the bottom - the original terrain,
the same terrain compressed with the maximum deviation
of 5m, the difference between these two. The brighter
the color, the greater the value. In the difference im-
age, the yellow color means 4.5m, whereas the blue color
means -4.5m.

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
77

Figure 12: Two synthetic test images of size 64x64, each
one containing spiky terrain with the heights ranging from
-16 to 16. On the left, the longitude of spikes is 4, on
the right, it is 16. From the top to the bottom - the original,
compressed with the maximum deviation of 5, the differ-
ence between these two. The brighter the color, the greater
the value. In the difference image, the yellow color means
4.5, whereas the blue color means -4.5.

[4] Ingrid Daubechies and Wim Sweldens. Factoring
wavelet transforms into lifting steps. J. Fourier Anal.
Appl, 4:247–269, 1998.

[5] Enrico Gobbetti, Fabio Marton, Paolo Cignoni,
Marco Di Benedetto, and Fabio Ganovelli. C-BDAM
– compressed batched dynamic adaptive meshes
for terrain rendering. Computer Graphics Forum,
25(3):333–342, September 2006. Proc. Eurographics
2006.

[6] Ricardo Olanda, Mariano Perez, Juan Manuel Orduna,
and Silvia Rueda. Terrain data compression using
wavelet-tiled pyramids for online 3d terrain visualiza-
tion. Int. J. Geogr. Inf. Sci., 28(2):407–425, February
2014.

[7] Renato Pajarola and Enrico Gobbetti. Survey of semi-
regular multiresolution models for interactive terrain
rendering. The Visual Computer, 23(8):583–605,
2007.

[8] Sehoon Yea and W.A. Pearlman. A wavelet-based
two-stage near-lossless coder. Image Processing,
IEEE Transactions on, 15(11):3488–3500, Nov 2006.

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
78

Augmented Reality & Interaction

Foreground Detection and Prototyping of Photographic
Composition on Android

Marek Salat∗

Supervised by: Adam Herout†

Faculty of Information Technology
Brno University of Technology / Czech Republic

Abstract

The goal of the project is to create a new image proto-
typing application. The application enables users to cap-
ture scenes and enhance reality in an innovative way using
an ordinary smartphone. They can replace background
of the captured scene and create collages or new original
images. The creation image can be created and shared
within seconds with minimal interaction. Proper fore-
ground/background detection (image matting) is a vital
process. The solution I am suggesting uses appropriate
computer vision and image processing algorithms, namely
Global Sampling Matting. The application is built for the
Android platform and uses SDK together with NDK. Sec-
tions of the core algorithm are accelerated in the GPU via
an OpenGL ES 3.1 compute shader. One part of my work
focuses on optimizing algorithms and effective image pro-
cessing on Android devices. Another part of the work aims
to create an intuitive user interface that requires minimal
interaction. At the moment, the application is in a pre-
release state (open alpha testing) published on Google Play
– ViralCam1.

Keywords: Image composition, Scene prototyping, Fore-
ground detection, Background extraction, Image matting,
Global sampling matting, Matting, Trimap, Alpha mask,
Android, Compute shader, GPGPU

1 Introduction

Users often have an idea on how to incorporate elements
of one picture into another picture (see Fig. 1, 2 and 4).
However, in many cases, they are not familiar with image
editors (Photoshop, Gimp etc.). Most of the times, the pro-
grams are either too complicated or available for a price
that is prohibitive to this kind of audience. They are not
able to create what they want and they must rely on others
(Fig. 2 and 1). Even if they try to solve the task using
traditional tools it can be an unpleasant task (for example
magic lasso tool in Photoshop). The task gets even more
∗salat.marek42@gmail
†herout@fit.vutbr.cz
1Available for Android 4.1 – 6.0 https://play.google.com/apps/

testing/com.salat.viralcam.app

Figure 1: The example of the image composition. The
iconic iron throne from the Game of Thrones with a person
sitting on it.

difficult when the user has to use a combination of tech-
niques to adjust areas containing hair and semitransparent
objects to achieve a satisfactory result.

The inability to produce own composition or the frus-
tration of doing so are the main issues which led to the
project. With just a little help, these frustrated users them-
selves will be able to produce more creative work. That
is the main reason for building ViralCam. It allows the
user to see in real-time what is being captured and how
this scene fits to the other picture. Combining the images
together requires minimum interaction; the user just se-
lects foreground and places it over a camera preview. The
ViralCam is created for Android platform (Section 4).

Selecting the foreground or background (foreground or
background detection) is a vital task for this project. The
task is more commonly called image or alpha matting and
is described in the following Section 2.

The project uses known image matting algorithms such
as Global Sampling Method for Alpha Matting [6] covered
in Section 3. The algorithm has been implemented in An-
droid NDK. The nature of the algorithm, and the fact that
some newer Android devices are equipped with OpenGL
ES 3.1 Compute Shader, allowed that it has been massively
parallelized and run on GPU (described at Section 4.2).
The GPU parallelization sped up the whole process from
4 – 7 seconds to less then a second which could brought

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 2: Image shows that it does not pay off to ask for
image editing on the Internet. The scene is simple, the user
had a photo and wanted to put his own figure over the first
photo. Request from CollegeHumor [4].

the project closer to a nice-to-have feature real-time scene
visualization.

2 Alpha Matting

Throughout this paper, it is assumed that a color image
I consists of a 3D discrete array of pixels (red, green,
blue). The Alpha matting or the digital matting is associ-
ated with the problem of softly separating an image into a
foreground image F and into a background image B from a
single input image I along with with its opacity mask α . It
means that I is formed by linear blending of F and B using
α . These three images relate by matting Equation (1). Im-
age matting is used in interactive image editing, video seg-

mentation and also in film making.

I = Fα +B(1−α) (1)

The matting problem cannot be solved uniquely since
there are many possible foreground and background expla-
nations for the observed colors [10]. Equation (1) shows
that there are seven unknowns on one hand but only three
equations (three unknowns for foreground color, three for
background color and one for alpha, the only known is im-
age color) solving them.

Despite the fact that the problem is inherently under-
constrained, it could be solved by adding more informa-
tion about the image. The additional information could
take form of a scribble-set or trimaps (see Figure 3). Such
information labels pixels into two groups: the first group
defines pixels which are definitely foreground, the second
group labels pixel which are definitely background. The
remaining pixels are marked as unknown. The alpha value
α is then calculated for unknown pixels only.

Even with a known alpha value and these constraints,
the problem is still ill-posed (the alpha value may be
estimated incorrectly in favour of foreground or back-
ground). Therefore, several solutions proposed other ad-
ditional constraints [15].

2.1 Trimap as a User Input

As mentioned before, the input can be in the form of scrib-
bles [9] or trimaps [8]. I have found scribbles to be unin-
tuitive and most of the times, it was difficult to predict the
result without knowing the principles of the underlying al-
gorithm. Very often, the resulting image was completely
different from the expectations.

In this project, I chose trimap as the input constraint.
Trimap segments the image into three regions: definite
foreground, definite background, and unknown. Alpha val-
ues are calculated only for unknown pixels using knowl-
edge from other regions since theirs alpha values are
known.

The trimap can be easily drawn and with a little help. A
user is then able to create it on a first try in few seconds [8].
More about constructing trimap in the Anroid application
can be found in Section 4.

The trimap quality plays a significant role in the preci-
sion of the resulting alpha mask (or image). Very good
trimap can reduce the number of unknown variables that
imply fewer variables to estimate. The thickness of the
unknown region creates a considerable factor of a good
trimap [13].

The project aims at effective trimap creation requiring
minimal interaction and, at the same time it must be in-
tuitive. Quality of the computed alpha mask and time to
compute trimap are also taken in account.

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
82

Figure 3: Example of the matting problem. From the left first: input image. Second: user-defined trimap (blue for
background, red for foreground and green as an unknown region). Third: computed alpha mask. Fourth: original image
without background (foreground area and unknown region are merged). Last: background is replaced. Figure is borrowed
from book Image and Video Matting: A survey [13].

3 A Global Sampling Method for
Alpha Matting

The algorithm is inspired by Robust matting [12], Knock-
out [3], Shared matting[5]. All these methods collect
nearby (in a certain metric, e.g., Euclidean/geodesic dis-
tance, or nearest on a ray) samples. He et al. [6] proposes
use a global sample set that contains all available samples.
The spatial distance and the color fitness are then consid-
ered simultaneously for selecting the good samples from
this set [6].

The goal is to select a good pair of samples (foreground,
background) for any unknown pixel from all candidate
pairs. The algorithm comprises following steps (the fol-
lowing steps are brief summary of the algorithm, more in-
formation can be found in the seminal work [6]):

Create global sample set – foreground (background)
sample set consists of all known foreground (background)
pixels on the unknown region’s boundary. Global samples
are denoted as FB search space.

Extend global sample set – Add random pixel to global
set. I have chosen to add the same amount of pixels as the
total number of pixels in the global set.

Initialize samples – Each of the unknown pixel has
its own sample. The sample consist of foreground pixel,
background pixel, closest distance to foreground and back-
ground boundary, cost value and alpha. Sample initializa-
tion assigns random boundary pixel from the global set,
cost value is set to infinity. The closest distance is found
by iterating over global set and comparing distances.

Apply SampleMatch algorithm – All pixel from global
set are sorted by intensity (actual sorting criteria does not
matter [6]). The goal is to find a pair (foreground, back-
ground) of points in the FB search space for each un-
known pixel which has the (approximately) smallest cost.
The method iterates over propagation and random search
stages. As He et al. [6] claims, ten iterations are sufficient.

Propagation – For the unknown pixel being scanned,
its cost is updated by considering the current optimal sam-
ple pairs of its neighbouring pixels. I have chosen to
search in 8-neighbourhood.

Random search – Intuitively, the random search step
tests a sequence of random points in the neighborhood (in
the FB space) of the current optimal point. The neighbor-
hood radius decreases exponentially (in each iteration).

4 Android Application

The most important part of the project is to create the ap-
plication that will respect UX and design principles. For
this part I decided to implement an application for An-
droid. According to Gartner, [14] Android shares more
than 84% of the market at the moment. The second place
belongs to iOS.

4.1 Android NDK Utilization

Implementing a real-time image processing application
in interpreted language (Android main programming lan-
guage is Java) can be challenging. Fortunately, Android
offers capabilities of native code via Android NDK. Pro-
grammer can choose from C or C++. All devices are
equipped with standard libraries such as STD for C++.
There are some limitations, but for most cases, it is not
an issue.

Programming in NDK brings significant performance
improvement. The programmer may also target specific
architecture and can compile optimized code for multiple
CPU architectures (x86-x32, arm7, arm8). The current im-
plementation of the A Global Sampling Method for Alpha
Matting for images 800x600 on Nexus 5X takes 4–7 sec-
onds depending on the size of the unknown region.

From my experience, the bottleneck on the Android
platform is usually the memory. It is not recommended
to use more than three images of the same size as the de-
vice screen. Older platforms allow allocating only 16 MB
per application [1]. Furthermore, allocation of more con-
tinuous memory may be an issue; e.g. in case of a bitmap
with dimension of the size of the screen. Other problems
could be caused by reading randomly from a bitmap due
to skipping large chunks of memory which are not cached.
All these things must be considered when porting code to

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
83

android NDK.
My application assumes that users will create photos

quickly, spontaneously and the results will be shared on
social media. The typical image size on Facebook, Twit-
ter, or 9gag is around one mega pixel. On the grounds of
performance reasons and the fact that the image does not
have to be in full resolution I have decided to scale input
images to a lower resolution, somewhere around 0.5 to 1
mega pixel, typically 800×600.

4.2 GPGPU via OpenGL ES 3.1 Compute
Shader

Some older Android devices supported OpenCL. It was
a great tool for massive parallelization. Unfortunately,
Google dropped the support and introduced their own pa-
rallelization library called RenderScript. From my point
of view, the tool is badly documented and the programmer
does not have a good control of whether the code ends up
running on the GPU or just on the CPU. Android 5.0 in-
troduced OpenGL ES 3.1 with compute shaders. At the
moment, compute shaders are supported at least on 7.1 %
devices [2]. It needs to be mentioned that a device running
Android 5.0 or higher may or may not support the feature.

Programmers might take advantage of this technology.
However, compute shaders are still bound to render-
ing pipeline and cannot be used without rendering on
the screen (GLSurfaceView and GLSurfaceView.Renderer
must be used2).

4.3 Implementation of the Compute Shader

The matting algorithm comprises of the following steps:

1. Find the boundary for foreground and unknown
region and boundary for background and un-
known region. Boundary is found by checking
neighbourhood each pixel. If the pixel represents the
foreground and at least one neighbour is labelled un-
known, the pixel is assigned to the foreground set,
similarly for the background pixel. The step is in-
dependent on other pixels. However writing to the
global set must be synchronized in the way that no
value is rewritten or maximal size is preserved. In the
compute shader implementation atomic counters are
used to prevent both issues.

2. Extend the boundary by adding random pixels to
the global set. The step assigns random pixel from
foreground region to the foreground boundary and
analogous to the background pixel. The pixel is not
assigned to the global set if global set is contains

2You can download the fragment I use at GitHub repository. You can
also find there few examples showing how to compile the shader, bind
buffers, textures, pass data through shader and also how to run them.
Please visit https://github.com/MarekSalat for more information.

more than twice the amount of the original bound-
ary size. The step is also independent on other pixels
and can be run in parallel.

3. Initialize samples for each unknown pixel. First,
the initialization, finds the distance to the nearest
foreground and background pixel from the global set
(measured by euclidean distance). Secondly, it as-
signs random foreground and background pixel from
global set. The cost value is set to infinity, the alpha
value is set to zero. The initialization is also indepen-
dent on other samples.

4. Iterate over propagation and random search. The
propagation searches in neighbourhood for better
sample selection. Random search follows immedi-
ately afterwards. It selects random pixel from the
global set by decreasing radius exponentially. Both
propagation and random search update the cost value
and the alpha value. As mentioned above in Section
3, the step is run for each sample (unknown pixel) and
each sample processing is independent from others.

5. Update alpha mask. At this point the algorithm cal-
culated all alpha values for unknown pixels. The
step fills whole alpha mask by corresponding alpha
values (255 for definite background, 0 for definite
foreground and sample alpha value for its unknown
pixel).

Each step must be completed before the next step can
be run; the same applies to the iteration over propaga-
tion and random search. Thus, each step represents one
shader (kernel) which is dispatched only if previous step
has finished. The CPU implementation loops over all pix-
els in the image for in each step; each thread computes one
pixel. The dimension of the workgroup is 32×32 and the
whole problem has the dimension of the image (rounded
and divided by size of the workgroup).

Better performance can be achieved by using texture
units for reading from images. The texture unit caches im-
ages very well for access in neighbourhood around pixel
unlike access in buffer.

Computing alpha mask has been sped up from 4-7 sec-
ond to 300-500 milliseconds. This has been measured on
Nexus 5X.

4.4 User interface

Figure 4 shows application capabilities. When the appli-
cation is started, background is selected first. The Appli-
cation offers several predefined images. The user can also
choose pictures from an image library.

Scene capturing and visualization – At the moment,
for the sake of MVP (minimal viable product) simplicity, I
have chosen to simply overlap the camera output by semi-
transparent background. It turns out that this solution is
sufficient enough for visualizing the scene. The user can

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
84

Figure 4: The first image shows the visualization of scene capturing. The second image shows trimap initialization. The
third image is the result. Last picture contains trimap editing. .

swipe over the image to increase or decrease background
transparency.

Trimap initialization – User roughly marks the object
edge. This does not have to be precise to the pixel. The in-
ner area is automatically marked as definite a foreground.
Outer area is marked as definite a background. If the image
contains larger transparent areas, such as hair or spikes, the
trimap can be edited and these areas can be marked as an
unknown region.

Show result – After trimap initialization, the applica-
tion displays the result. At this step, the user can pinch to
zoom to validate all the problematic parts of the image.

Edit trimap – User can always edit the trimap by
simply drawing a definite foreground, background or un-
known region (application user brush named Clear). In
most of the applications, this step requires switching be-
tween different brushes by the user. To improve the user
experience, I introduced a smarter brush which selects
the brush based on the starting point of the user’s swipe
motion. In other words, if the user starts drawing from
the background, the background brush is selected, other
brushes are initiated by drawing from their respective ar-
eas. The final step is to share the result on social media.

5 Conclusions

At the moment, the published alpha application is using
only the NDK implementation. The compute shader vari-
ant is not ready for production. The performance and
quality has been tested on LG Nexus 5X with a standard
dataset [11]. Provided dataset contains various images
with trimaps with respective true alpha mattes. The date-
set is composed of images from non-transparent to semi-
transparent or even fully transparent images, also images
with short or long hair.

Measured average time per unknown pixel is 0.11 mil-
liseconds which is 7.2 seconds per image (roughly half

megapixel). The 7-seconds processing time it is not close
to the real-time preview goal. However, the compute
shaders seem to be promising. For real-time preview the
quality may be lower and the whole process may be sped
up by scaling the image to a lower resolution. On the
other hand, a significant drawback for the compute shader
is lower support on Android devices (less than 7%).

The average MSE error without pre-processing or post-
processing is 353. For comparison, the Robust mat-
ting [12] MSE is 350 on the same data set and the method
is ranked on alphamatting.com as 36th. The quality could
be better and it will be addressed in future releases, still
it is sufficient enough for MVP (minimal viable product).
The general image quality and composition perception
will be a part of the future user testing evaluation.

There are several ways to increase the matte quality.
First way is trimap pre-processing where colors closer to
the unknown region boundary with similar color properties
(color and spatial distance) are considered to be known de-
pending on other regions. Such a pre-processing reduces
the number of unknown variables and increases overall
matte quality. The other method is the post-processing
as He et al. [6] proposed. They used Fast Guided Filter
[7] which ran 0.3 second per mega pixel, but it could be
estimated to run slower on regular mobile device.

The application is published as an open alpha version
on Google Play – ViralCam1 for download.. Within few
weeks, it is going to be published to the production. The
most common issue so far was a lack of a help which was
added in version 1.3. Other important issue coming from
users were problems with camera focus and, on some de-
vices, also image rotation after capturing a scene. All these
issues have been addressed in last the update. However,
the camera rotation issues still persists on Sony Xperi E4g.
For the production version, Google Analytics will be inte-
grated to gather more precise data about user acquisition
and behaviour within the application.

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
85

References

[1] Android compatibility downloads. http://
source.android.com/compatibility/downloads.html,
2016.

[2] Dashboards. http://developer.android.com/about/
dashboards/index.html, 2016.

[3] A. Berman, A. Dadourian, and P. Vlahos. Method for
removing from an image the background surround-
ing a selected object, October 17 2000. US Patent
6,134,346.

[4] CollegeHumor. 12 people who had pho-
toshop requestsand got just perfect results.
http://www.collegehumor.com/post/6997451/
12-people-who-had-photoshop-requestsand-got-
just-perfect-results, 2014.

[5] Eduardo S. L. Gastal and Manuel M. Oliveira.
Shared sampling for real-time alpha matting. Com-
puter Graphics Forum, 29(2):575–584, May 2010.
Proceedings of Eurographics.

[6] K. He, C. Rhemann, C. Rother, X. Tang, and J. Sun.
A global sampling method for alpha matting. In
Computer Vision and Pattern Recognition (CVPR),
2011 IEEE Conference on, pages 2049–2056, June
2011.

[7] K. He, J. Sun, and X. Tang. Guided image filtering.
IEEE Transactions on Pattern Analysis and Machine
Intelligence, 35(6):1397–1409, June 2013.

[8] C. L. Hsieh and M. S. Lee. Automatic trimap gener-
ation for digital image matting. In Signal and Infor-
mation Processing Association Annual Summit and
Conference (APSIPA), 2013 Asia-Pacific, pages 1–5,
Oct 2013.

[9] A. Levin, D. Lischinski, and Y. Weiss. A closed form
solution to natural image matting. In Computer Vi-
sion and Pattern Recognition, 2006 IEEE Computer
Society Conference on, volume 1, pages 61–68, June
2006.

[10] Richard J. Radke. Computer Vision for Visual Ef-
fects. Cambridge University Press, New York, NY,
USA, 2012.

[11] C. Rhemann, C. Rother, J. Wang, M. Gelautz,
P. Kohli, and P. Rott. A perceptually motivated online
benchmark for image matting. In Computer Vision
and Pattern Recognition, 2009. CVPR 2009. IEEE
Conference on, pages 1826–1833, June 2009.

[12] J. Wang and M. F. Cohen. Optimized color sampling
for robust matting. In Computer Vision and Pattern
Recognition, 2007. CVPR ’07. IEEE Conference on,
pages 1–8, June 2007.

[13] Jue Wang and Michael F. Cohen. Image and video
matting: A survey. Found. Trends. Comput. Graph.
Vis., 3(2):97–175, January 2007.

[14] Meulen R. Woods V. Gartner says emerging markets
drove worldwide smartphone sales to 15.5 percent
growth in third. http://www.gartner.com/newsroom/
id/3169417, 2015.

[15] Y. Zheng and C. Kambhamettu. Learning based dig-
ital matting. In Computer Vision, 2009 IEEE 12th
International Conference on, pages 889–896, Sept
2009.

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
86

Natural interaction with small 3D objects in virtual environments

Irfan Prazina∗

Supervised by: dr. Selma Rizvić†

Faculty of Electrical Engineering Sarajevo
University of Sarajevo / Bosnia and Herzegovina

Abstract

This paper presents a novel solution for natural interaction
with small 3D objects in virtual environments, using Leap
Motion as sensor and WebGL for presenting a virtual hand
and 3D objects. Most current solutions for this type of in-
teraction use gestures as a mean of control. The interaction
will emulate a natural grab-and-move action of a human
hand. The virtual hand will be displayed alongside with a
3D object and will be able to grab and move the object us-
ing Cannon.js physics engine. The virtual hand which em-
ulates real hand should minimize the user’s learning time.

Keywords: natural interaction, virtual reality, WebGL,
user immersion

1 Introduction

Many cultural monuments and artifacts disappear or get
destroyed. One way to preserve them for next generations
is through technology. Preservation is not enough, as even
the best technology if not being used gets forgotten and
obsolete. To keep people interested in virtual heritage the
new ways of immersive interaction must be developed.

Once we have geometric data of virtual objects and en-
vironments, and different ways of presenting them, we
must find means of navigation which will help a user to
get the most information and best experience.There are
different ways of interaction with virtual objects and en-
vironments. Users can be interested in a new technology
and technique, but that interest will be short lived if it is
not easy to use. Our virtual presentations are web based
because we would like to present the selected cultural her-
itage objects to everyone, not just the people who come
to visit museums or archaeological sites. Our experience
shows that online presentations also attract people to phys-
ical locations of monuments.

We will present a way of interaction with virtual objects
using only a hand and Leap Motion. This type of interac-
tion will mimic the movements and dynamics of real hand.
Users will be able to see a virtual representation of their
hand and with very little delay see all the movements they
make.
∗iprazina1@etf.unsa.ba
†srizvic@etf.unsa.ba

The paper is organized in the following way: Sec-
tion 2 presents related work, in Section 3 is description
of our natural interaction’s concept, Section 4 presents a
case study and the interaction implementation, Section 5
presents our user evaluation and a conclusion is given in
Section 6.

2 Related work

Papers [7], [8] and [5] describe the use of the Leap Motion
for a gesture recognition.
In [7] comparison of Kinect and Leap Motion is given.
The authors state that Kinect gives more detailed data, but
is less accurate, while Leap Motion gives high level data
as a set of relevant hand points and pose features.
In [8] Leap Motion is used to recognize sign language ges-
tures. The Sign language gestures recognition can be prob-
lematic when one or more fingers are not in line of sight.
In [5] the authors use the Leap Motion API to detect key
presses and to create a keyboard like musical instrument.
These works show advantages of Leap Motion over
Kinect, like well documented API and user friendly data
structure. As drawback Leap Motion tends to lose track of
some fingers if line of sight is blocked.
In [4] a detailed analysis of the precision and reliability of
Leap Motion is given. The distance from the hand to the
sensor is a parameter that significantly affects Leap Mo-
tion’s consistency and performance. Leap Motion’s accu-
racy significantly drops if the hand is more than 250mm
above the controller. Inconsistent sampling frequency is
stated as an important limitation of the controller perfor-
mance.
In [6] Kinect is used to detect human gestures for inter-
action with 3D objects like moving, opening car doors,
selecting a seat, etc.
Common use of Leap Motion is in recognition of gestures
and using them as triggers for an action. In our paper hand
movements are directly mapped to movement of the virtual
hand and the virtual hand interaction with other objects is
simulated using physics engine. In [9] the autor describes
how a physics engine can be implemented in JavaScript.

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)

3 Our concepts of natural interac-
tion

Natural interaction is often realized with excessive use of
gestures and gesture recognition. In this work we tried to
make interaction with a virtual object as close to the inter-
action with a real object as possible. Users need to learn
very little before interaction. We achieved this by simulat-
ing behavior of a real hand in 3D virtual environment us-
ing physics engine for simulating physics and web browser
as an execution environment. Web technologies are used
because everyone has a web browser, and those who don’t
have Leap Motion can use a mouse for the interaction with
objects.

To simulate the hand behaviour in a virtual environment
we used:

• Three.js – JavaScript library for creating and display-
ing 3D graphics [3], it is based on WebGL,

• Cannon.js – JavaScript library used as physics engine
[1] and

• Leap.js – Leap Motion’s JavaScript library for acqui-
sition of a Leap Motion data [2].

In this type of interaction physics engine has a pivotal
role. If we do not set collisions right, the hand will go
through objects or it will push objects before we even get
close. Cannon.js is chosen because of its simplicity and
speed. Lack of feeling of touch was the problem we an-
ticipated before making this work. When one is interact-
ing in a way described here, grabbing movement can be
tiresome, because in some cases one will grab too fast,
too strong or too weak and the object will slip. To solve
this problem we used Cannon.js lock constraint force. The
constraint mimics glue effects, it makes one object stuck
to another. If the user puts his palm close enough to an
object, the object will stick to the palm and will not slip in
case of fast grabbing, very strong or very weak grip. When
an object is on a palm the user can rotate it by rotating the
palm, as one would rotate it in real life. To make a virtual
hand able to hold an object we need to add collision boxes
to the hand and to the object. The hand is made of boxes,
where one box represents one bone of the hand.

Each finger consists of 4 bones (Figure 1) where the
first bone is in the palm and last three are movable finger’s
bones. Each bone in the hand has a mesh and a body re-
lated to it. The mesh is used for 3D presentation, and the
body is used for physics simulation. The shape of the mesh
is the same as the shape of the body so objects do not go
through visual representation of the fingers or avoid them
at distance (Figure 2). Leap Motion detects bones posi-
tions and orientation data. On each Leap Motion’s loop it-
eration we get new data which are used to move bone bod-
ies; these two steps are done using Cannon.js and Leap.js.
After bone body has been moved, the mesh position must
be updated; this is done in Cannon.js loop. If some bone

Figure 1: Structure of the virtual hand, picture is from de-
veloper.leapmotion.com

Figure 2: Display of the virtual hand

has hit an object Cannon.js will calculate its velocity and
object’s position will be updated accordingly. The final
step in the iteration of Leap Motion’s loop is rendering
changes in the scene (Figure 3).
One of the challenges was to synchronize all coordinate
systems. Each library has its own coordinate systems for
bone positions (Leap.js), body positions (Cannon.js) and
mesh positions (Three.js). Details on coordinate systems
synchronizations will be explained in Section 4.2.

4 Case study

4.1 The White Bastion project

The fortification known as ”White Bastion” is one of the
most impressive and important historical sites in Sarajevo.
It is located on the south-east outskirts of the city, with an
overview of the city valley. Through the history it had a
very significant and strategic position. The fortification is
a part of the dominant defense walls that were surrounding
the old city of ”Vratnik”. The value of the historical site
presents the various strata, starting from medieval until the
present time. During the archaeological excavations re-
mains from medieval fortification from 14th century were
found, Ottomans period (17th century) when the fortifica-
tion was expanded and some new objects were built. Dur-
ing Austro-Hungarian rule the part of the fortification and

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
88

Figure 3: The algorithm diagram

the object inside the walls were demolished and destroyed
and a new group of objects was built. During the early
excavation, a significant number of artifacts was found,
registered and conserved for the purpose of the exhibition
hosted in Museum of Sarajevo. 4D Virtual presentation of
White Bastion aims to present the historical development
of this cultural heritage object through digital stories com-
bined with interactive 3D models of the Bastion in vari-
ous time periods. These models contain digitized findings
from the site and their 3D reconstructions. Structure of the
project is displayed in Figure 4.

4.2 Implementation details

The implementation of the idea required the use of three
libraries: one for physics simulation, one for display and
one for acquiring data. The main challenge of this imple-
mentation was to synchronize all the position and orien-
tation data, and all the coordinate systems. Leap Motion
uses the three dimensional right-handed Cartesian coordi-
nate system which has millimeters as units. The x axis is
placed on the longer side of the device. Leap Motion uses a
rotation matrix to represent bone’s orientation. Cannon.js
will calculate data in any coordinate system, but one coor-
dinate system must be used consistently. Body’s orienta-
tion is represented in the form of the quaternions. Three.js
uses the right-hand coordinate system where z axis is per-
pendicular to the screen oriented toward a user. Leap Mo-
tion coordinate system is used as a reference, mesh and
body positions are set accordingly. Leap Motion uses loop
iterations to update bone position and orientation. We
must update body and mesh positions on each loop iter-
ation. In the first loop iteration we set mesh position di-
rectly to be equal to bone positions. This is the initial-

ization phase in which each mesh gets the position of its
corresponding bone.

mesh
. p o s i t i o n
. s e t (

bone . c e n t e r () [0] ,
bone . c e n t e r () [1] ,
bone . c e n t e r () [2]

) ;

mesh . s e t R o t a t i o n F r o m M a t r i x (
(new THREE . Mat r ix4)

. f romArray (bone . m a t r i x ())
) ;

In the following iterations a mesh position is set using the
body position. The body position is set in a same way as
mesh position with exception of orientation. The orienta-
tion of the body is set using the quaternion helper object.
Helper object is initialized using bone rotation matrix, and
its orientation is adjusted to a base bone rotation. Base
bone rotation is set to Euler angles (Π

2 ,0,0).

q u a t = new THREE . Q u a t e r n i o n () ;
q u a t

. s e t F r o m R o t a t i o n M a t r i x (
(new THREE . Mat r ix4)
. f romArray (bone . m a t r i x ())

) ;
q u a t . m u l t i p l y (b a s e B o n e R o t a t i o n) ;
body . q u a t e r n i o n . s e t (

q u a t . x ,
q u a t . y ,
q u a t . z ,
q u a t .w

) ;

In this way the virtual hand’s movement is solved. Set-
ting the positions of meshes according to the positions of
the bodies ensures that objects underlie the physics simu-
lation. To solve afore mentioned problems of lack of tac-
tile feedback and problem of “slippery” objects we added
lock constraint force which activates when the palm is at
a distance less than 50 units. In that case a new constraint
object is created between small 3D object and palm bone.
The small 3D object will still move inside of the hand and
it will appear as it is stuck with one side to the palm so it
will not slip away if the grip is fast, too strong or too weak.
The constraint is deactivated when user moves away his
hand.

There are two events that must be handled: when a hand
is placed above the sensor and when a hand leaves sensor’s
space. On first event bodies and meshes are created and
the Leap Motion loop starts updating bone positions. On
second event all bodies and meshes must be destroyed.

The described interaction is added to the White Bastion
project. In the White Bastion project there is a web page
for each of the digitalized archaeological findings. The

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
89

web page’s layout is made of two Three.js scenes; in the
first scene 3D model of the excavated object is presented
and in the second scene the reconstruction of the object is
displayed. In the initial version of the project objects can
be viewed from all sides using mouse for movement and
rotation. In the new version the Leap Motion interaction
is added for the museum setup. An example web page is
presented in Figure 5.

5 Evaluation

The Leap Motion interaction is evaluated using qualita-
tive user experience analysis. Participants in the analy-
sis have different educational backgrounds, age and gen-
der. Ten participants have been interviewed. The inter-
view has been structured in such a way that participants
can share their impressions on the Leap Motion interac-
tion implementation and the interaction using a computer
mouse. Users had enough time to experience both inter-
actions. They were asked to look the object using mouse,
and after they explored the object from all sides they were
introduced to Leap Motion. In the Leap Motion interaction
users were asked to look at same object, and how hard was
for them to see all the sides and details using the new inter-
action. Hypotheses that are being checked in the interview
are presented in Table 1. The interview is structured in

H1 Leap Motion interaction is easier to use than mouse
H2 Leap Motion interaction is more engaging
H3 Leap Motion can make people interested in virtual heritage

Table 1: List of hypotheses

form of open questions which participants used as guide-
lines. This type of interview is used to give participants
opportunity to express their opinions. Questions are for-
mulated in a way that one question can give information
about one or more afore mentioned hypotheses. List of
questions is given in Tables 2 and 3. In the interview

Q1 What is your opinion on interaction with a virtual object
using mouse? (What are advantages and disadvantages?)

Q2 What is your opinion on interaction with a virtual object
using Leap Motion?(What are advantages and
disadvantages?)

Q3 What is easier to use and why?

Table 2: Questions for hypotheses H1 and H2

Q4 What is your experience with virtual scenes and virtual
cultural heritage?

Q5 What do you think about virtual heritage and this type of
projects?

Table 3: Questions for hypothesis H3

most of the subjects had similar experience while using
the interaction with Leap Motion. All of them spent more
time using Leap Motion than the mouse interaction, but

they found mouse interaction easier to use so H1 has not
been confirmed. Even though participants found mouse
easier to use, they also found the Leap Motion interac-
tion more interesting and immersive, which proves H2.
Some of them made statements like: “Leap Motion is in-
teresting, has potential, but less precise”, “When using the
Leap Motion all focus is on the 3D object”, “Leap Motion
can make people interested in viewing all these objects”,
etc. (H2) All participants claimed that mouse interaction is
more precise and reliable but dull and less immersive. Par-
ticipants had little experience with virtual cultural heritage
and they stated that projects like this make them interested
in history and cultural heritage, thereby confirming H3.

6 Conclusion

In this paper we presented a novel solution for natural in-
teraction with small 3D objects in virtual environments,
using Leap Motion as sensor and WebGL for presenting
virtual hand and 3D objects. In the qualitative user expe-
rience analysis of this method the participants noticed that
the Leap Motion interaction has precision and reliability
issues in comparison with the traditional mouse interac-
tion. However, they spent more time using the Leap Mo-
tion interaction, and they found that interaction immersive
and interesting. Participants stated that they had more fun
and found new experience more engaging. This type of
interaction could be viable if precision and speed of the
Leap Motion controller is improved. In the current state
Leap Motion can still be used as presented because of its
immersive potential, but improvements are needed.

References

[1] Cannon.js. http://www.cannonjs.org. Accessed: 2016-
02-14.

[2] Leap motion. http://developer.leapmotion.org. Ac-
cessed: 2016-02-14.

[3] Three.js. http://threejs.org. Accessed: 2016-02-14.

[4] Jože Guna, Grega Jakus, and Matevž Pogačnik. An
analysis of the precision and realiability of the leap
motion sensor and its suitability for static and dynamic
tracking. Sensors, 2014.

[5] Jihyun Han and Nicolas Gold. Lessons learned in ex-
ploring the leap motion sensor for gesture-based in-
strument design. Internation Conference on New In-
terfaces for Musical Expression, 2014.

[6] Jong-Oh Kim, Mihye Kim, and Kwan-Hee Yoo. Real-
time hand gesture-based interaction with objects in 3d
virtual environments. International Journal of Multi-
media and Ubiquitous Engineering, 2013.

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
90

Figure 4: Project structure

Figure 5: A 3D object web page from White Bastion project

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
91

[7] Giulio Martins, Fabio Dominio, and Pietro Zanuttigh.
Hand gesture recognition with leap motion and kinect
devices. ICIP, 2014.

[8] Leigh Ellen Potter, Jake Araullo, and Lewis Carter.
The leap motion controller: A view on sign language.
25th Australian Computer-Human Interaction Confer-
ence: Augmentation, Application, Innovation, Collab-
oration, 2013.

[9] Adam Ranfelt. Build a simple 2d physics engine for
javascript games. IBM developerWork, 2012.

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
92

Generation of lecture notes as images from recorded whiteboard
and blackboard based presentations

Ondrej Jaribka∗

Marek Šuppa†

Supervised by: Zuzana Černeková‡

Faculty of Mathematics, Physics and Informatics
Comenius University
Bratislava / Slovakia

Abstract

With raising amount of e-learning materials such as lecture
videos or on-line video courses, we decided to develop an
application, which can help students or content creators in
their effort to prepare study materials. Main goal of our
application is to create slides from given video depicting
a black or white board without any occluding objects such
as lecturer standing in front of this board. Slides will con-
tain valid information from key frames of the given lecture
video. Based on the assumption that the board is static in
the video, this is done by extracting the board from video
frames, which is then segmented into equally sized rectan-
gular cells. These cells are stored and the change of infor-
mation inside them is tracked. Afterwards, the final image
is created from saved cells when all cells are sufficiently
stable.

Keywords: whiteboard, blackboards, lecture, generation
of images, slides, e-learning, video presentation, percep-
tual hashes, board extraction, key frame generation, slide
generation

1 Introduction

With increasing amount of lectures, courses and other e-
learning materials available on-line, it is becoming more
and more apparent that students as the primary consumers
of such content lack tools necessary for its usage in an
effective fashion. Given the rise of massive open on-
line courses [9] a strong push for creation of instructional
videos can also be seen in academic environments. As
stated in [12]: “fast expansion of the Internet and related
technological advancements, in conjunction with limited
budgets and social demands for improved access to higher
education, has produced a substantial incentive for uni-
versities to introduce e-learning courses”. In [11] the au-
thors also claim that “many users stop their on-line learn-

∗o.jariabka@gmail.com
†marek@suppa.sk
‡zuzana.cernekova@fmph.uniba.sk

ing after their initial experience”. They further state that
“instructor attitude toward e-Learning, e-Learning course
flexibility, e-Learning course quality, perceived useful-
ness, perceived ease of use, and diversity in assessments
are the critical factors affecting learners’ perceived satis-
faction”.

It is not difficult to find inefficiencies in the ways in-
structional video content is most often consumed. For
example it is very impractical to always rewind on-line
lecture to get to the exact point where specific detail was
discussed, pause the video, essentially “copy” the infor-
mation from the paused video frame and then continue
watching. Not only does it break the user’s focus but it
also requires additional interaction with the video content,
that might result in undesired increase of the user’s frus-
tration, which is certainly not desired.

For this reason we decided to develop a tool that could
help potential viewers extract information from these pre-
sentations or lectures into a more practical format. This
could also help content creators to prepare and create con-
tent which can be then perceived more easily. As stated in
[11] technology is one of the main factors affecting user
satisfaction.

In our work, we focus on whiteboard and blackboard
based lectures or presentations. The methods we present
select key frames, from which a slide containing the in-
formation previously shown on board is created. Another
requirement we enforce is that these slides should contain
only information that is on the board, and therefore any
occluding objects ought to be removed from the scene and
information behind them should also be shown on our final
slide.

This paper is structured as follows: in the Related work
section we present an overview of academic literature, that
touches the problems our work is designed to solve. Then
we proceed to describe methods for Board extraction, Re-
moval of occluding objects and Change detection. In the
end, we present the results obtained thanks to our imple-
mentation of aforementioned methods in the Results sec-
tion and finally conclude with a short summary of the most
important results and possible directions for future work in

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)

the Conclusions and future work section.

2 Related work

While our work tries to solve a very specific problem, there
are a number of similar projects inspired by the increasing
amount of readily available video-based lecture material.

Visual Transcripts [10] aims to create lecture notes from
blackboard-style videos. Unlike our work, their system as-
sumes that the video only has a blackboard in it, and that
the video is static, except for content which is continu-
ally added and a mouse pointer which is used to highlight
certain parts of the blackboard. The same type of video is
used in another related work [8], in which the authors sum-
marize the input video in form of a single image. Parts of
the image function as links to positions in the input video
and make it very easy to jump to the precise moment where
a specific concept was first introduced.

The focus of many authors is mainly on one or few
methods for specific subtasks, that represent the respective
parts of our system. For example most papers on remov-
ing occlusion events from videos focus on 3D objects or
use multiple cameras to generate the final image, as de-
scribed in [4] and [3]. These methods are quite efficient,
especially when implemented on GPUs. They might also
be called accurate but they are not quite suited for our pur-
pose.

On the other hand, many approaches are focused on cre-
ating fast and efficient methods for recognition of change
in images and search for similar or unique objects in im-
ages. Various methods were designed in order to solve
these tasks, such as using image features to detect simi-
lar objects in images or using perceptual hashes [13] to
detect significant change. In [2], the authors developed a
new method for image hashing, which can be used for fast
look-ups of similar images. The thesis of Christoph Za-
uner [14] focuses on implementation and benchmarking
of various image hashing algorithms and methods. While
the primary aim of these methods was different, they can
be easily adapted for the purpose of searching for change
in information in series of frames generated from a video
sequence.

Algorithms for detecting a change in scenes of video
sequences were also proposed in [6] and [7]. These al-
gorithms search for “drastical” points of change, such as
hard cuts or special editing effects 1. Even though these
methods were quite useful as a model, we could not adapt
them because our work is focused more on fine grained
change between multiple frames and longer lasting se-
quences, where change is being slowly added through the
span of multiple sets of frames.

1An example of thee effects are dissolve or wipe transitions.

3 Board extraction

Creators of instructional videos strive to give their content
(be it on black or white board) the majority of visual space
the video provides. Despite their efforts, often there are
parts of video frames one would not expect to find in a
“presentation slide”. Moreover, variability in these parts
of video frames might cause issues in further stages of the
processing pipeline, as it might be mistaken for the actual
content. It follows, that in order to create a “presentation
slide” from a set of video frames, only the significant parts
of the frame need to be considered.

In this section, we describe main methods used for ex-
tracting board from video sequences. In our research we
focused mainly on videos with one board present in the
video or multiple boards not separated by a bigger gap in
between them (Figure 1a). Before we detect the main re-
gion of interest where the board is located, we have to de-
cide if we are looking at a white or black board. A simple
preprocessing method ran on every input frame is used.
This method first converts RGB image into grayscale and
then computes a histogram. Since we focus only on white
or black boards, the dominant colour from these is selected
under the assumption that the area of a board occupies
wast majority of given frame. This colour is then accen-
tuated by thresholding the image to only extract colours
that are close to our chosen colour. Thresholding value is
different for every channel and it is approximated to pre-
viously found dominant color of our image. The mask
obtained by this method is then used to compute bitwise
AND in separated colour channels in order to boost our
dominant colour (Figure 1b). After this process one of the
proposed method is used to obtain main region of a board.

3.1 Histogram method

This method at first reduces colour spectrum of the image
by thresholding the dominant colour one more time. In
the next step, all the values in every row and column are
summed up separately into two arrays. The first derivation
is then computed on the acquired arrays to identify spikes
in colour change. Extremes of these arrays then specify
corners of the board. Finally, a bounding box around board
is formed from the obtained points.

3.2 Region growing method

This method is based on a simple region growing algo-
rithm. At first we have to select a seed for our algorithm.
This is done by thresholding the main colour with almost
maximum value found from the histogram computed in
advance, as part of the preprocessing step. This highlights
“blobs” of colour with highest values, so that we can be

2We used the video titled "Definite Integration by Parts" by Rob Tar-
rou which can be found at https://www.youtube.com/watch?
v=6rWG5WPysgE

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
94

(a) Original image frame from the video.

(b) Output of the preprocesing function applied on the origi-
nal frame. Note that green colour is accentuated while white
or highly illuminated sections are attenuated.

Figure 1: Images of original video2 frame and the resulting
frame from the preprocesing function

almost sure that we are starting somewhere in the region
of a board and not for example on the person standing in
front of it. Then, we randomly pick one region where we
place our seed. A simple region growing follows, in which
we compare 4 neighbouring pixels to check if they fit our
colour threshold (if they are part of the board). Once this is
done, we obtain mask of a board. We search for contours
and extract the biggest one. This contour is then returned
as the bounding box of our board.

3.3 Processing of output from board extrac-
tion models

Output of every model is then submitted to the last test
which checks if area occupied by the the bounding box
is at least one third of a given image and if its shape is
rectangular. Finally, the image is cropped. If a video or an
image is taken from a slight angle, perspective of cropped
board is then slightly shifted to compensate for this, so
that the resulting slide would look more like an observer is
standing in front of a board.

4 Removal of occluding objects

This section describes algorithms that we design in order
to remove occluding objects from lecture videos. We con-
sider as occluding object anything that is bigger than at
least one third of a board and performs some sort of a
move. An example of such an object can be a student
or a lecturer. The main idea is to segment the board into
smaller sections called cells and then keep track of how in-
formation changes in these cells by keeping a simple count
of on how many frames we saw individual cell. This pro-
cess can be described as a sequence of the following steps:

• Divide board into smaller cells

• Initialize each cell

• Compute mask of occluding objects

• Check each cell to see whether it is occluded by an-
other object

• Change “seen” counter for each cell based on occlu-
sion events

• Stitch individual cell into final slide

4.1 Initialization

We divide our cropped image of the extracted board into
equally sized rectangular cells based on parameters of the
input image. Individual cells are overlapping by values
spanning between 10 to 20 pixels based on the size of a
given frame. Each cell is then initialized by setting “seen”
counter to 0 and its value is stored in an array. When cells
are initialized, then we evaluate each of them to check if it
is partly or fully occluded by another object3. This is done
by computing bitwise AND between section and occlusion
mask (see Section 4.2 and Section 4.3). If there is overlap
detected the counter is not increased, otherwise it is incre-
mented. For obtaining occlusion mask, we proposed two
methods (Figure 2a).

4.2 Region growing based method

The First method is the same as our region growing algo-
rithms since this method only considers pixels that fit our
board condition. Pixels representing skin, person or other
objects are omitted. This can then specify any objects that
are in front of the board. If region growing algorithm was
previously used for board extraction, mask produced by
this method is then considered as mask of the board. This
mask is then inverted and series of dilations and erosions is
performed to remove error areas and to accentuate edges.
Finally, we search for contours and filter out those, that are
smaller than one third of the image.

3Note that if a cell is occluded throughout the whole video we believe
that it is save to assume that there is no valid information behind it. Our
software provides a way to leave out or add such a cell based on user
input.

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
95

4.3 Absolute difference based method

The second one uses the last slide which was saved and
therefore we assume, that this frame contains valid infor-
mation and it is without any occlusion events. First, we
calculate the absolute difference between current frame
and this frame. This generates mask of events that changed
from slide to slide. Then, we threshold this mask to re-
move pixels that arose from slight light changes for exam-
ple person casting a shadow onto a background. Finally,
similarly to the previous method we search for contours
and filter out those, that are not at least one third of given
image.

4.4 Final slide generation

The final slide, shown in Figure 2b, is then “stitched” to-
gether from the last saved slide and currently stored sec-
tions where we threshold each section’s counter with two
values. If the counter value is higher then upper thresh-
old we saw that section enough times to be sowed into
the image. If the value is under lower threshold section
is rejected and part of the old image is used. If the value
is between these two thresholds one of the methods dis-
cussed in the section 5 is used to detected how much old
and new section differ. If this similarity measure is higher
then our threshold then section is rejected because sections
where too similar and old part of the slide is used. If it is
lower, the section changed enough so it can be sowed into
the image.

5 Change detection

This section focuses on how are we actually going to
choose key frames in the lecture or how we detect how
much information in processed slides differ. The Main
problem, that we faced was how we can choose key frame
in the video or presentation. When we can say that enough
information was added or subtracted from a board, so we
can create slide of given board. For this we developed two
main approaches: first one uses feature detection and sec-
ond computes perceptual hash with one of the specified
methods.

5.1 Feature detection

To detect change with this method we used ORB detector
for feature detection. First step is to detect features in both
last saved slide and current slide. Next, brute force match-
ing, between features of these two image, is performed.
Number of matched features is then compared to maxi-
mum of found matches. This value is then returned to be
latter compared as our similarity measure for further tests.

(a) Input image segmented into grid of rectangular cells.
Note that overlap of the individual cells is not shown on the
image.

(b) Output of “stitching” algorithm without any further post-
processing

Figure 2: This images show main steps in objects removal
processing pipeline process.

5.2 Perceptual hashes

Another approach to detect change in our slides is through
perceptual hashes. We implemented and compared proba-
bly three most known functions.

Average hash is a hashing function which computes
hash of a file by firstly converting given image to
grayscale. Then reducing a size of image to small square
usually of size 8x8 to remove high frequencies. Hash is
then created by computing mean value of pixels in trans-
formed image which is then plugged into the thresholding
function 1.

f (x,y) =

{
1 if f (x,y) is > mean
0 otherwise

(1)

Difference hash or dHash, similarly to average hash,
computes its value by firstly reducing a size of given image
and converting into grayscale, then it calculates difference
between adjacent pixels. This identifies relative gradient
direction in the image. After this, it determines resulting
value by using thresholding function.

f (x,y) =

{
1 if f (x,y) is brighter than f(x-1,y)
0 otherwise

(2)

While the first two algorithms are quick and easy they
might be too rigid in comparison. For instance, it can gen-
erate false-misses if there is gamma correction or colour

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
96

histogram applied to a image. To reduce this effect we use
perceptual hash.

Main idea behind perceptual hash, or more commonly
know as pHash, is that it uses discrete cosine transform
(DCT) to reduce high frequencies in the image. Same as
previous hashes initial step is to reduce size of given im-
age and convert it into grayscale. Then it computes DCT
on given image and subsequently reduces it to keep just
lower frequencies of the picture. Next step is to calculate
the mean DCT value while excluding the first term. This
leaves out completely flat image information from being
included. Finally, it further reduces DCT and computes
resulting hash values based on the thresholding function
similar to average hash.

f (x,y) =

{
1 if f (x,y) is > mean DCT
0 otherwise

(3)

These hash functions are used to compute hashes of the
last saved slide and the currently processed slide. Ham-
ming distance is then computed between these hashes. To
unify the output from these functions and feature detection
function we compare length of last hash and hamming dis-
tance.

Output from these similarity functions is then compared
to our similarity threshold. If our measure is lower than
this threshold, slides differ and information on the board
have to be different, so slide is created. If it is greater,
then slides are similar. Current slide is thrown away and
all counters are reset.

This section summarizes the results of the proposed
methods. We created a dataset of videos and presentations
from various on-line lectures and courses. We chose to
implement our methods in Python programming language
using an Open source computer vision library - OpenCV
[1]. The tests run on single desktop workstation, using the
following hardware: NVIDIA Corporation GeForce GT
650M, Intel(R) Core(TM) i7-3610QM CPU @ 2.30GHz.
Preprocesing of every frame in a video, took on average
with 300 method calls - 7.02 ms (+- 0.31 ms). Every
method was tested for performance from 300 method calls
by measuring its individual speed in milliseconds in our
processing pipeline.

5.3 Board extraction results

In this section, we present performance values as well as
precision and recall values for individual methods.

Method name speed in ms sdv
Histogram 4.75 0.65
Region growing 2.03 0.57

Table 1: Average performance values in milliseconds with
standard deviation for individual methods

As we can see in Table 1, the Histogram algorithm was
on average about two times slower than the region growing

algorithm. This is understandable as the histogram algo-
rithm is much more complex and needs to perform more
operations than a simple region growing algorithm.

While this comparison might be interesting it only
shows how fast the respective methods are. In order to
evaluate the system as a whole we are more interested in
their performance: essentially the answer to the question
how well were these two methods able to extract the board
from input images.

In order to answer that question, we used a dataset of
19110 images. For these images the bounding box of the
board was marked by a human expert. This should serve
as the “ground truth” in our experiments [5].

To compare these two methods we compute precision
and recall for both of them. We define precision as:

precision =
true positives

true positives+ f alse positives
(4)

and recall as:

recall =
true positives

true positives+ f alse negatives
(5)

In both of these equations true positives are defined as
the area of the image which was marked by the method
as a board and the “ground truth” agrees with that. False
positives is defined as the area that was marked by the
method as a board but the “ground truth” did not mark it as
a board and false negatives is the area which was marked
by “ground truth” as a board but the method does not agree
with that.

These two values can be put together into a single metric
that is called F1 score that is defined as the harmonic mean
of precision and recall:

F1 = 2 · precision · recall
precision+ recall

(6)

Note that while these methods are traditionally more of-
ten used in information extraction, they are also consid-
ered a well defined metric in computer vision and image
processing [5].

Method name precision recall F1 score
Histogram 0.4245 0.9828 0.5929
Reg. growing 0.9899 0.9356 0.9620

Table 2: Precision, recall and F1 score values of board
extraction methods.

Given these metrics, we can observe some interesting
statistics about the proposed methods in Table 2. We can
see that while the histogram algorithm has a very high re-
call and therefore produced quite few false negatives its
precision is quite low on the other hand. This suggests
that it produced quite a lot of false positives which might
not be desired for the final processing pipeline.

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
97

Figure 3: Output images obtained by running the final processing pipeline on an example video.

The region growing algorithm on the other hand shows
balanced values for both precision and recall. This sug-
gests that it is a robust method, even though it produced
an increased amount of false negatives which might not
be desirable, since it would mean that parts of the board
would be lost.

As we can see from the comparison of F1 scores, the re-
gion growing algorithm seems to be a more robust method
and therefore we can conclude that it might be a better
choice than the histogram based method.

5.4 Object removal results

While in the previous section the metric for performance
comparison of methods was quite straightforward, finding
one for object removal has proven difficult. In the end
we used a hand-curated dataset of 150 images for which
the ground truth (object to be removed) was provided by a
human expert.

Method name precision recall F1 score
Reg. growing-based 0.2531 0.5595 0.3485
Abs diff-based 0.4767 0.9877 0.6430

Table 3: Precision, recall and F1 score values of board
extraction methods.

The precision, recall and F1 score value for both of the
suggested methods can be found in table 3. As we can
see, the scores of the absolute difference-based method are
better. This can be explained by the nature of the region
growing-based method: given its randomized seeding, it
might easily start growing the board’s region from a point
in the middle of the object, that should be removed. This
essentially means, that it does the inverse task and pro-
duces incorrect result. Looking at the performance val-
ues in table 4 we can see that while region growing-based
method is faster, the difference is not substantial. Based
on this analysis we chose the absolute difference-based
method to be used in the final pipeline.

Name speed in ms sdv
Reg. growing-based 160.47 0.91
Abs diff-based 195.68 0.84

Table 4: Average performance values in milliseconds with
standard deviation for individual methods

5.5 Change detection results

It was difficult to design a measure that would express
how well is function performing in terms of selecting key
frames in video. This was due to the fact, that even though
we can have individual frames in sequence tagged the re-
sulting value, if the selected key frame is in the right place,
is very perception dependent.This is why we chose to only
measure how many frames will a method create and how
long will it take the whole pipeline (with a given measure)
to do so.

Name speed in ms sdv
ORB algorithm 13.13 0.85
pHash algorithm 7.52 0.76
dHash algorithm 5.32 0.43
aHash algorithm 3.23 0.59

Table 5: Average performance values in milliseconds with
standard deviation for individual methods

As we can see in Table 5, the ORB algorithm was the
slowest which is understandable as it is also the most
complex algorithm. Performance of hashing methods was
comparable with fastest one being the aHash algorithm4

This can be also closely related to values in Table 6 where,
aHash not only has the best performance values but it also
managed to create most slides. This can be associated
with aHash being one of the the simplest methods that is
very vulnerable to even slight light intensity change in the

4Which is not very surprising since it performs simple mean on given
images.

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
98

scene. In a similar fashion, dHash suffers from the same
problem, as it also created the same number of slides.

Name speed (sec) # of slides
ORB algorithm 1783 7
pHash algorithm 1117 6
dHash algorithm 1115 8
aHash algorithm 1112 8

Table 6: Average performance values in seconds for in-
dividual runs of entire pipeline with given method on the
whole input video and the number of slides created using
these methods.

From values in tables 5 and 6 we can conclude that
pHash is the best choice for detecting change in our video
sequences. It provides the best ratio between speed of in-
dividual methods, speed of the entire run of a pipeline and
number of created slides. While feature detection did rea-
sonably well in comparing images, its performance could
not compare to hashing algorithms.

6 Conclusion and future work

In our work, we present and compare methods for detect-
ing and extracting boards from white or black board video
based presentation. This setup can later be abstracted to
detecting and extracting large scale object in image or
video that matches some sort of a predicate. In our case,
it was colour and shape of an object. We got sufficient re-
sults with regards to board extraction with the best method
being region growing.

We also tested and evaluated functions for comparing
how similar are two images in order to generate key frames
in the video sequence. Finally, we proposed methods for
extracting information from given presentation even with
occluding events present in the sequence. In this category,
we also managed to achieve sufficient results with hashing
functions with the best one being the pHash algorithm.

We proposed two methods for removing objects in front
of our board. The performance of the absolute difference-
based one was found to be better overall and chosen for the
final pipeline. The slides created by our final processing
pipeline can be seen in 3.

Many of these algorithms can be improved. For exam-
ple after function that creates final slide, we can use post
processing method to smooth transition between sections
of the old image and the new one. Or it might be pos-
sible to further shift perspective in order to better fit the
current slide if for instance camera moved during the pre-
sentation. Support for multiple boards with bigger gaps
between them can be added. Also based on colour of a
board, text on slide can be further enhanced for latter used
in OCR algorithm.

Given our focus on simplicity, performance and speed,
we also believe that the proposed algorithms might serve

as a basis for a system, that would produce slides as images
from white and black board based videos in real time.

References

[1] Gary Bradski et al. The opencv library. Doctor
Dobbs Journal, 25(11):120–126, 2000.

[2] Cédric De Roover, Christophe De Vleeschouwer,
Frédéric Lefèbvre, and Benoit Macq. Robust im-
age hashing based on radial variance of pixels. In
Image Processing, 2005. ICIP 2005. IEEE Interna-
tional Conference on, volume 3, pages III–77. IEEE,
2005.

[3] Takahide Hosokawa, Songkran Jarusirisawad, and
Hideo Saito. Online video synthesis for removing
occluding objects using multiple uncalibrated cam-
eras via plane sweep algorithm. In Distributed Smart
Cameras, 2009. ICDSC 2009. Third ACM/IEEE In-
ternational Conference on, pages 1–8. IEEE, 2009.

[4] Byung-Gook Lee, Ho-Hyun Kang, and Eun-Soo
Kim. Occlusion removal method of partially oc-
cluded object using variance in computational inte-
gral imaging. 3D Research, 1(2):6–10, 2010.

[5] Vladimir Y Mariano, Junghye Min, Jin-Hyeong
Park, Rangachar Kasturi, David Mihalcik, Huiping
Li, David Doermann, and Thomas Drayer. Perfor-
mance evaluation of object detection algorithms. In
Pattern Recognition, 2002. Proceedings. 16th Inter-
national Conference on, volume 3, pages 965–969.
IEEE, 2002.

[6] Jianhao Meng, Yujen Juan, and Shih-Fu Chang.
Scene change detection in an mpeg-compressed
video sequence. In IS&T/SPIE’s Symposium on Elec-
tronic Imaging: Science & Technology, pages 14–25.
International Society for Optics and Photonics, 1995.

[7] Takafumi Miyatake, Satoshi Yoshizawa, and Hiro-
tada Ueda. Method for detecting change points in
motion picture images, January 28 1992. US Patent
5,083,860.

[8] Toni-Jan Keith Palma Monserrat, Shengdong Zhao,
Kevin McGee, and Anshul Vikram Pandey. Notev-
ideo: facilitating navigation of blackboard-style lec-
ture videos. In Proceedings of the SIGCHI Con-
ference on Human Factors in Computing Systems,
pages 1139–1148. ACM, 2013.

[9] Laura Pappano. The year of the mooc. The New York
Times, 2(12):2012, 2012.

[10] Hijung Valentina Shin, Floraine Berthouzoz, Wilmot
Li, and Frédo Durand. Visual transcripts: lecture
notes from blackboard-style lecture videos. ACM
Transactions on Graphics (TOG), 34(6):240, 2015.

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
99

[11] Pei-Chen Sun, Ray J Tsai, Glenn Finger, Yueh-Yang
Chen, and Dowming Yeh. What drives a successful
e-learning? an empirical investigation of the critical
factors influencing learner satisfaction. Computers &
education, 50(4):1183–1202, 2008.

[12] Thierry Volery and Deborah Lord. Critical success
factors in online education. International Journal of
Educational Management, 14(5):216–223, 2000.

[13] Tom Yeh, Konrad Tollmar, and Trevor Darrell.
Searching the web with mobile images for location
recognition. In Computer Vision and Pattern Recog-
nition, 2004. CVPR 2004. Proceedings of the 2004
IEEE Computer Society Conference on, volume 2,
pages II–76. IEEE, 2004.

[14] Christoph Zauner. Implementation and benchmark-
ing of perceptual image hash functions. Master’s the-
sis, FH Hagenberg, 2010.

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
100

Modeling & Simulation

Dynamic Simulation of Virtual Agents and Obstacles in Virtual
Cities

Roman Mankovecký∗

Supervised by: Fotis Liarokapis

HCI Lab, Faculty of Informatics
Masaryk University

Brno / Czech Republic

Abstract

The aim of this paper is to investigate a simple model
for simulating virtual crowds for virtual environments and
computer games. This model is based on the Social Forces
model and enhanced using Monte Carlo simulation. The
focus is given on the behavior of the actual simulation. In
this model we can see interactions between virtual agents
(virtual pedestrians) in two scenarios, walking towards a
path and crossroads. In both scenarios, these agents are
avoiding each other, avoiding obstacles and walls in differ-
ent scenarios like crossroad or narrowed street. Moreover,
users can move, scale or rotate these obstacles and place
them interactively into the scene.

Keywords: crowd modeling, social forces model, Monte
Carlo simulation, virtual agents

1 Introduction

Modeling human behavior of crowds is extremely interest-
ing for a wide range of applications, ranging from games,
film effects, simulators, evacuation simulations to urban
planning. Understanding the movement of the crowd can
help us to improve public places, we can expedite and fa-
cilitate the movement of citizens. However, pedestrians in
real-life are reacting to a diverse and complicated stimuli
that cannot be easily reproduced to computer simulations.
As a result, most of the studies that have been up to now
done focus on specific scenarios, such as cross-road cross-
ings or evacuations. On the other hand, simple models can
be computationally efficient. They are really good solution
for simulations of the crowd [1].

Human behavior and interrelationships of humans can
be divided into microscopic, mesoscopic and macroscopic
[2]. In microscopic model, every single pedestrian is a
simple entity, simple agent who is situated in the space in
some specific time [3]. Mesoscopic models is accurately
observing the behavior of individuals while relatively large
number of individuals in the crowd is simulated [3]. On

∗mankoveckyroman@gmail.com

the other hand, in macroscopic models we can observe
flows similar to gas or water flows [3], [18].

This paper aims in investigating the behavior of a meso-
scopic model for agents walking towards a path and for
crossroads. This is done by implementing the social forces
model and agents are represented as cubes. To make their
movement more realistic, the approach is enhanced by
Monte Carlo simulation. Each agent has specific goal, des-
tination, that has to reach. During this journey, the agent
can collide

with different agents (cubes), obstacles (specific cubes
agents cannot walk through) but also walls. The rest of
the paper is structured as follow. Section 2 describes sim-
ple models used for modeling crowds in general. In chap-
ter 3 we discuss implementation of this model in detail.
Section 4 presents results and experiments done with this
model and finally chapter 5 illustrates conclusions and fu-
ture work.

2 Background

One of the first attempts to model crowd behavior was
based on simulation of the motion of a generic population
in a specific environment [4]. The individual parameters
were created by a distributed random behavioral model
which is determined by few parameters.

Nowadays, simple but effective crowd modeling sys-
tems include a decision-making component [5], pathfind-
ing navigation [6], [17], [19] and local steering mechanics
[17]. Another popular approach is the social forces model
[18] or ’agent-based’ model [19], [10], [11] which can be
used to describe the forces of an virtual avatar (agent) to
perform movement.

Monte Carlo method for simulating the dynamics of
crowds has been used previously in different occasions.
In one approach, Monte Carlo dynamics were used for the
rearrangement of the group of agents [12]. The rules for
the combined steps are determined by the specific setting
of the granular flow from stampedes in panic scenarios to
organized flow around obstacles or through bottlenecks.

Numerical simulations based on a Monte Carlo parti-
cle method demonstrated that when applied to crowds it

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)

has the capability to qualitatively depict emerging behav-
iors and to provide a realistic description of the crowd dy-
namics in complex evacuation scenarios [13]. In another
work, computation of escape probabilities using Monte
Carlo method was presented for evacuation simulations in
the context of the fire safety engineering [13].

An evacuation model using game theory combining
the greatest entropy optimization criterion with stochastic
Monte Carlo methods to optimize the congestion problem
and other features of emergency evacuation planning was
also proposed [15].

Moreover, macroscopic models simulate a particular
pattern of moving crowd (Figure 1) [3]. Since the model
is only interested in the overall look of the crowd, not in-
terested in individual attitudes of individuals in the crowd
and their behavior in the crowd, it is possible to simulate
the abstract behavior of the large crowd.

Figure 1: Flow (pattern) of agents [16]

The model uses basic concepts of physics, like the flow
or movement of the particles. It does not include the in-
dividual behavior of the individual, does not deal with its
characteristics and does not address the interaction or col-
lisions with other individuals in the crowd. Thus it is en-
gaged by simulating a large number of individuals in the
crowd, respectively density of the crowd. These models
have the advantage in terms of computational burden be-
cause there is no need to address the logic and behavior of
individuals in the crowd. In particular, mesoscopic models
are accurately observing the behavior of individuals while
relatively large number of individuals in the crowd is sim-
ulated.

Mesoscopic models are based on cellular automata [3].
The area of movement has a regular square grid, where
each cell may contain one or zero individual or an obsta-
cle for one simulation step (Figure 2 on the right). Every
individual has the opportunity to avoid with eight different
directions, which are predefined and fixed (Figure 2 on the
left). This behavior is not so suitable for a realistic simula-
tion, but on the contrary, in this model, the individuals can
move easily everywhere in the area because of pre-defined
directions [16].

Figure 2: On left: Possible movement of one individual,
black cube in the middle is an individual. On right: square
grid, where we can see two individuals and a wall.

3 Implementation

3.1 Social force model

As mentioned earlier, to examine the behavior of the
crowd simulation, the Social forces model was imple-
mented allowing dynamic interactions between obstacles
and agents using other stochastic techniques like Monte
Carlo.

Cubes are representing the agents used in the project
(Figure 3). Each agent has starting point and a point where
it ’dies’, which is the destination. Speed of agent is ran-
domly chosen at start (0.5/ 1/ 1.5).

3.1.1 Speed

Speed is changing in some scenarios when agent has to
slow down, because he has other agent with slower speed
(vp) ahead and he cannot overtake him in that specific
time.

v(t) =

{
vp(t), i f v(t)− vp(t)≤ 0.5
v(t), i f otherwise

(1)

Agents are moving forward with speed v in time t. We
can define the force that is applied to agents FF

(X ,0).

3.1.2 Changing directions

The next step required to add two rays (Figure 4a, red
arrows) which are pointing ahead (leftRay, rightRay), so
they can predict if something is ahead (i.e. other agents or
obstacles). Next, we can define Y from FCH

(0,Y), which rep-
resents force applied while changing direction in specific
time.

FCH
(0,Y)(t)→ Y (2)

Y =

{
1, i f le f tRay 6= null
−1, i f rightRay 6= null

(3)

Because of these rays, agents can change direction: if
the left ray is hitting agent or obstacle and right one is
hitting nothing, that means, agent will change direction to
the right (Y = 1) and vice versa (T = -1).

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
104

Figure 3: a) Blue cube is representing agent in real life,
arrows in this picture are representing rays: red arrows are
checking if something like obstacle or other agent is ahead,
yellow arrows, “obstacle rays”, are checking obstacles and
walls for better orientation and steering, orange arrows are
mainly for checking, if something is around agent, so he
can overtake. b) blue cubes around agent (cube in the mid-
dle) are colliders, they are checking if somebody or some-
thing is really close to the agent, they are creating com-
fortable zone.

3.1.3 Colliders

Agents have colliders as it can be illustrated from Figure
4b. These colliders are situated on the left, right and front
side of each agent. They are checking, if other agents or
obstacles or walls are nearby. Basically, these colliders
are creating area around agents, where they are ’feeling
comfortable’. It is repulsive force FR

(X ,Y) that is applied on
other agents.

3.1.4 Obstacle rays

Secondly, “obstacle rays” were added, with different angle
(1/4π,3/4π), see Figure 7a yellow arrows. These rays are
checking if on the right or left side is obstacle or wall. If
for example an obstacle is on the right side, and agent will
hit the obstacle, the agent will try to avoid it and he will
steer left because right ray was hitting the obstacle. In
cases where both these rays are hitting obstacle, only the
first one is the key one, so the other ray has no function in
these cases.

3.1.5 Overtaking

Each agent has also an overtaking parameter, so faster
agents are overtaking slower ones. For this overtaking
method two more rays were needed (Figure 4a, orange ar-
rows). These rays (Rle f t ,Rright) are checking, if the agent,
obstacle or wall is on the left or right side. Agent will
overtake only in cases he has the speed and space, in cases
agent has the speed but not the space around, he will wait
till there will be some free space. In waiting part he is
checking with these rays, if there is or there is not the free
space around. In cases we do not have speed, they will
slow down only.

FO
(0,Y)(t)→ Y (4)

Y =

1, i f le f tRay 6= null,
Rright = null

−1, i f rightRay 6= null,
Rle f t = null

(5)

3.1.6 Total equation

All these forces influence a agent’s decision at the same
moment, it can be assumed that their total effect is given
by the sum of all forces:

F(X ,Y)(t) = FF
(X ,0)+∑

P
FCH
(0,Y)+

+∑
O

FO
(0,Y)+∑

P
FR
(X ,Y) (6)

3.2 Monte Carlo

Monte Carlo is a stochastic method based on the use
of random numbers and probability statistics to simulate
problems [21]. First, we need to determine the probability
density function, then perform random sampling from this
function. Monte Carlo method allows us to examine com-
plex system. Solutions are imprecise and it can be very
slow if higher precision is desired.

In this work, Monte Carlo method was used to simulate
random motion of agents. Total equation of the movement
in this model is:

F(X ,Y)(t) = F(X ,Y)+FMM
(0,Y) (7)

Here we can see F(X ,Y) which represent movement of
the agent during the time t, FMM

(0,Y) is Monte Carlo force.
Monte Carlo simulation, forces agent to move with

some probability to the left or right or nowhere. This
means that during the time our agent has random move-
ment.

FMM
(0,Y)→ Y (8)

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
105

array[10] ∈ (0,1) (9)

Y =

random(−1,1), i f array[
random(0,Length(array))] = 0

0, otherwise
(10)

Before the start of simulation, it is possible to set the probability
required, in the array. Every single agent is choosing movement
each second, if he moves right (Y = -1) or left (Y = 1) or if he
stays without moving

(Y = 0). So, in the end every frame agent will check and
compare number 0 with a number in the array, if they are
the same, will move to the right or left, if not will stay at
the same position.

3.2.1 Monte Carlo Simulation

In this simulation, a scene with 100 agents with random
speed (0.5 - 1.5) is shown. In first simulation, agents do
not use the Monte Carlo method (Figure 4). The move-
ment is occurring in a straight line, changing direction
only in cases when agent wants to overtake slower ones.
These results are not really realistic. However, in the sec-
ond simulation (see Figure 5) we can see agents walking
with Monte Carlo method. More randomness is in this
case better and more realistic and it is better for overtak-
ing as well.

Figure 4: A scenario without Monte Carlo method. We
can see lines, these lines are paths of the agents.

Figure 5: A scenario with Monte Carlo method. We can
see lines, these lines are paths of the agents. We can also
see the better randomness.

4 Results

In this paper, all these simulations were applied in two spe-
cific scenarios: path and crossroad as shown in Figure 6.
In the path scenario, we can see some specific interactions
(overtaking, grouping) but we can also see interactions be-
tween agents and obstacles. On the other hand, in cross-
road scenario, we can observe interactions between agents
walking from all sides, as well as path choosing.

Figure 6: On left: path scene (with orange obstacles), on
right: crossroad scene.

4.1 Grouping and tracking trajectories

There are various self-organization phenomena that lead
to fascinating collective patterns of motion. For exam-
ple, when agents are entering a corridor on two sides, we
observe the formation of lanes of uniform walking direc-
tion [20]. Agents are grouping together, they are following
each other, because of better movement, faster movement
like we can see in Figure 7. They are avoiding other agents
faster because of repulsive forces. This is classic scenario
we can see during a normal day, walking the crowded
street.

Figure 7: Grouping effect (blue circles), each agent is fol-
lowing the leader. Red agents are going from left to right,
green ones are going from right to left.

With more agents, it is possible to track the trajectories
of the agents. It is necessary to have more agents, so they
can follow each other. As a proof of concept, 100 simu-
lated agents are illustrated in Figure 8. The trajectories of
these agents are shown, as well as the fact that they are
following exactly the same way as the ’first’ agent was
moving. With even more agents, it is possible to observe

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
106

bigger groups (bigger flocks). In conclusion, this model is
showing that flocking is part of our life, we are doing it in
normal crowded situations without notice.

Figure 8: Movement tracking, we can see motion of
agents, red arrows are indicating the motion of agents.

4.2 Frame rate measurements

In this section, the effectiveness of the simulation was
measured. In particular, the aim was to quantify how many
agents this model can simulate. In Figure 9, both tables
are showing us frames per second (FPS) in different cases
(with 50, 100, 500 and 700 agents in scene). Case 1 is
without obstacles, without Monte Carlo method, case 2 is
with obstacles but without Monte Carlo method, case 3
is with no obstacles but with Monte Carlo method and in
the end we have case 4 with obstacles and using Monte
Carlo method. In these measurements I used 2 obstacles.
All these measurements have offset error ± 1 - 10 FPS,
depending how many agents we are simulating.

In conclusion we can see that this model can simulate
big number of agents in different scenarios. It is possible
to observe that interactions with obstacles or using / not
using Monte Carlo method are causing frame drops, but
not so significant. All these measurements were computed
on a laptop computer with specifications: Intel Core i7,
RAM 8GB DDR3L, NVIDIA GeForce GTX 950M 2GB
DDR3.

5 Conclusions

This paper has examined mesoscopic behavior of crowds
for virtual environments and computer games based on the
social forces model. In this model we can see interac-
tions between virtual agents (virtual agents) in virtual city.
These agents are avoiding each other, avoiding obstacles
and walls in different scenarios like crossroad or narrowed
street. In this model, user can move, scale or rotate these
obstacles and place them into the scene.

In the future, it will be certainly useful to implement
better steering. Obstacles can have different shapes, not
only cubes and of course interactions with agents are
sometimes not so realistic. Big bonus can be exchanging
cubes with three-dimensional representations of humans.

Finally, it will be of great importance to perform a user
testing to assess how ’realistic’ the behavior of the simula-
tion is.

Acknowledgements

Authors would like to thank Human-Computer
Interaction (HCI) Lab members for their sup-
port and inspiration. A video that demonstrates
the functionality of the system can be found at:
https://www.youtube.com/watch?v=4QaOdOVeYlk%20

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
107

Figure 9: Framerates in different scenarios (path scenario on top, crossroad scenario on bottom.

References

[1] Stuart O’Connor, Fotis Liarokapis, Jayne Chrisina,
Perceived Realism of Crowd Behaviour with Social
Forces, Proc. of the 19th International Conference on
Information Visualisation (IV 2015), IEEE Computer
Society, Barcelona, Spain, 494-499, 2015.

[2] Dirk Helbing, Models for pedestrian behavior. arXiv
preprint cond-mat/9805089, 1998.

[3] Kiran Ijaz, Shaleeza Sohail, Sonia Hashish, ”A Survey
of Latest Approaches for Crowd Simulation and Mod-
eling using Hybrid Techniques.”

[4] Soraia R. Musse, Daniel Thalmann, A Model of Hu-
man Crowd Behavior : Group Inter-Relationship and
Collision Detection Analysis. Computer Animation and
Simulation 97, Part of the series Eurographics pp 39-
51, 1997.

[5] Rachel McDonnell, Fiona Newell, Carol O’Sullivan,
”Smooth movers: perceptually guided human motion
simulation.”. In Proceedings of the 2007 ACM SIG-
GRAPH/Eurographics symposium on Computer ani-
mation, pp. 259-269. Eurographics Association, 2007

[6] Xiao Cui, Hao Shi, ”A*-based pathfinding in modern
computer games.”. International Journal of Computer
Science and Network Security 11, no. 1, pp. 125-130.
2011.

[7] Craig W. Reynolds, ”Steering behaviors for au-
tonomous characters.”. In Game developers confer-
ence, vol. 1999, pp. 763-782. 1999

[8] Dirk Helbing, Peter Molnar. ”Social force model for
pedestrian dynamics.”. Physical review E 51, no. 5,
4282, 1995.

[9] Xiaoshan Pan, Charles S Han, Kincho H. Law. A
multi-agent based simulation framework for the study
of human and social behavior in egress analysis. In:
Proceedings of the ASCE International Conference on
Computing in Civil Engineering. 2005.

[10] John Funge, Xiaoyuan Tu, Demetri Terzopoulos,
Cognitive modeling: knowledge, reasoning and plan-
ning for intelligent characters. In: Proceedings of the
26th annual conference on Computer graphics and in-
teractive techniques. ACM Press/Addison-Wesley Pub-
lishing Co., 1999. p. 29-38.

[11] Joo E. Almeida, Rosaldo Rosseti, Antnio Lea
Coelho, ”Crowd simulation modeling applied to emer-
gency and evacuation simulations using multi-agent
systems.”. arXiv preprint arXiv:1303.4692 (2013).

[12] Francesco Piazza, A simple Monte Carlo model for
crowd dynamics. Physical Review E - 82, 02611, 2010.

[13] Nicola Bellomo, Livio Gibelli, Behavioral Crowds:
Modeling and Monte Carlo Simulations toward Valida-
tion. Computers and Fluids, 2015, In Press.

[14] Timo Korhonen, Simo Hostikka, Olavi Keski-
Rahkonen, A Proposal For The Goals And New Tech-
niques Of Modelling Pedestrian Evacuation In Fires.
Fire Safety Science 8: 557-567, 2005.

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
108

[15] Wenhui Li, Jinlong Zhu, Huiying Li, Qiong Wu,
Liang Zhang, A Game Theory Based on Monte Carlo
Analysis for Optimizing Evacuation Routing in Com-
plex Scenes. Mathematical Problems in Engineering,
Volume 2015 (2015), Article ID 292093, 11 pages.

[16] Victor Blue, Jeffrey Adler, Cellular automata model
of emergent collective bi-directional pedestrian dynam-
ics. In: Proc. Artificial Life VII. 2000. p. 437-445.

[17] Cherif Foudil, et al, ”Path finding and collision
avoidance in crowd simulation.”. CIT. Journal of Com-
puting and Information Technology 17.3 (2009): 217-
228.

[18] Penny Marno, ”Crowded-macroscopic and micro-
scopic models for pedestrian dynamics.”. (2002).

[19] Miho Asano, Takamasa Iryo, Masao Kuwahara, ”Mi-
croscopic pedestrian simulation model combined with
a tactical model for route choice behaviour.”. Trans-
portation Research Part C: Emerging Technologies 18.6
(2010): 842-855.

[20] Dirk Helbing, SOCIAL FORCES: Revealing
the causes of success or disaster. Available from:
http://futurict.blogspot.sk/2014/12/social-forces-
revealing-causes-of.html/, Accessed at: 30/01/2016.

[21] Investopedia.com, Monte Carlo Simulation, [online].
Available: http://www.investopedia.com/terms/m/
montecarlosimulation.asp, [Accessed: 3-January-
2016].

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
109

110

Procedural Generation using Grammar based Modelling and
Genetic Algorithms

Karl Haubenwallner∗

Supervised by: Markus Steinberger†

Institute of Computer Graphics
Graz University of Technology / Austria

Procedural modeling with shape grammars is a powerful
tool to create complex 3D models, but the results are often
difficult to control. In this paper we investigate the use of
Genetic Algorithms as an optimization algorithm to find
a suitable solution for a given target shape. We present a
genome representation, a crossover-operator and mutation
operators for shape grammars. Furthermore, we demon-
strate the feasibility of this approach, using a grammar for
spaceships and a volumetric evaluation method, and eval-
uate the parameters for the genetic algorithm.

Keywords: Procedural Generation, Genetic Algorithms,
Shape Grammar, Computer Graphics

1 Introduction

The last years have seen an increasing use of vast open
worlds in games such as The Elder Scrolls series, the
Fallout series and Grand Theft Auto, among others.
Such worlds can increase the immersion during game-
play immensely, but creating such large worlds is a time-
consuming and mostly tedious task for artists.

Procedural generation and shape grammars offer the
possibility to create arbitrarily large and complex worlds
and models algorithmically from a small set of rules, thus
allowing artists and designers to focus on the narrative
and compelling aspect of those worlds. Unfortunately
shape grammars are notoriously difficult to control, and
small changes in the rules can produce huge differences in
the outcome, which only changes the task of creating the
world to the equally time-consuming task of finding the
right rules and parameters.

Recently there has been some progress in using various
methods from machine learning to control the result of
procedural generation, where an algorithm takes a shape
grammar and a high-level specification, e.g. a sketch or
volumetric shapes, as input and generates a derivation tree
for the grammar to produce a model that best matches the
specification.

While existing work mostly uses Markov Chain Monte
Carlo (MCMC) methods and variations thereof, we

∗karl.haubenwallner@student.tugraz.at
†markus.steinberger@mpi-inf.mpg.de

present an alternative method using Genetic Algorithms
(GA), which have the advantage of creating many equally
viable solutions, and therefore providing access to a cre-
ative solution process.

1.1 Shape Grammars

One possible approach when creating 3D models is to start
with a basic shape (e.g. a cube) and deform and modify it
until it resembles the desired model. This is done by ap-
plying various operations to the basic shape like transla-
tion and rotation or more involved ones like extrusion or
splitting, which results in a complex model that bears only
a slight resemblance to the initial shape.

Shape grammars try to codify this approach by defin-
ing an initial state (called axiom), assigning symbols to the
shapes and defining production rules, which declare how
to generate symbols and how apply the different opera-
tions. This allows them to define a complex model with
an initial axiom and a sequence of production rules only.
By passing the axiom and the rules to a production system,
which applies the operations defined in the rules, an actual
model is generated. Since the operations can create new
shapes, and the resulting model depends on the sequence
of operations applied to certain shapes, the sequence is
usually stored as a tree structure, called a derivation tree.

1.2 Genetic Algorithms

Genetic Algorithms, a subset of Evolutionary Algorithms
(EA), are iterative optimization algorithms with the ability
to generate many different, equally viable solutions for any
given problem, and therefore provide access to a creative
solution process.

The method is inspired by evolution and natural selec-
tion, where traits and characteristics of individuals of a
species are encoded as genes and chromosomes, and in-
dividuals with successful traits get more chances to pass
on their genes to future generations, while less successful
traits tend to disappear, thus leading to a better adapted
population.

GAs follow this process by introducing a genome rep-
resentation, which is a indirect encoding of the problem
space. These genes, traditionally symbols of a bit-string,

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)

are then assembled into a chromosome, which form an in-
dividual that represents one possible solution for a given
problem. They then go on to create a random set of indi-
viduals, which form the initial population, and explore the
problem space by evaluating the individuals and assigning
each a fitness value, and by selecting the fittest individuals
and combining them to form a new generation of possible
solutions, which in turn serve as the parents for the next
generation.

2 Related work

Shape Grammars Shape grammars were first intro-
duced by Stiny [20], and Lindenmayer [7] used them to
create plant models using algorithms. They were ex-
panded with various operators by Stiny [21] and Wonka
et. al. [23] among others. Muller et al. [9] introduced
the shape grammar CGA Shape to generate architectural
models on a large scale by iterative refining shapes from
a basic vocabulary, and Schwarz et al [15] expanded CGA
Shape with CGA++ by introducing boolean operators, and
simultaneous operations on groups of shapes.

Procedural modeling There have been several works
with procedural modeling using shape grammars, such as
generating road networks [12], or generating and render-
ing architecture and cities on the GPU [6, 19], and sev-
eral works using inverse procedural modeling, such as
recreating trees with biological models [18], or creating
derivation trees for shape grammars using MCMC meth-
ods [14, 22], or using constraint systems [8].

Genetic Algorithms and evolutionary computing GAs
were introduced by Holland in [5], and in turn have been
adapted to a wide range of problems, several of which
make use of the inherent creativity, such as creating and
evolving simulated lifeforms (Sims, [16]), or designing
radar antennas (DeJong et. al. [3]). There have also been
some applications using GAs to evolve shape grammars in
2D (O’Neill et. al. [11]), or improve the structure of power
pylons (Byrne et. al. [2]).

3 Approach

In this paper we use GAs as a method to stochastically
explore all possible derivation trees for a given grammar
and select those that best fit a given criteria.

The GA requires only minimal explicit knowledge
about the rules of the grammar and can optimize towards
any criteria that can be used to rank the derivation trees,
and can provide many different viable solutions.

To illustrate our approach we focus on a grammar
that creates spaceship models by accumulating geometric
shapes, and use the volume of a target model as an opti-
mization criteria. To ensure the volume of the target model

is possible to reach, we generate it using the same pro-
duction system and a fixed derivation tree, but any target
volume could be used.

3.1 Genetic Algorithm

Key points for the functionality of GAs are the distinc-
tion between genome encoding (genotype) and the expres-
sion of the genomes in the problem space (phenotype),
and genetic operators. Operators modify the chromosomes
of individuals without necessarily having any information
about how the modifications affect the solutions. This dis-
tinction allows the GA to operate on a variety of problems,
but requires the definition of genome representation and
genetic operators for each specific problem. In this chap-
ter we specify the genome representation and the genetic
operators, and give details about the implementation of the
GA.

3.1.1 Genome Representation

The genome representation should encode complex oper-
ations in the problem space in a way that allows the GA to
identify and combine building blocks for good solutions,
while being as simple as possible, to keep the chromo-
somes manageable. At the same time, since the fitness
evaluation of a given individual usually requires a transla-
tion of the genes into their expression, they should also be
easy to decode.

For shape grammars, the traditional approach of using
bit-strings of fixed size is somewhat limited, but the struc-
ture of the derivation tree facilitates these features, so we
use it as our genome representation. This representation is
similar to the ones used by [10, 16, 22], where a tree struc-
ture is encoded within a chromosome in various ways.

In our representation a single gene consists of a produc-
tion symbol and it’s parameters, and a reference to the par-
ent gene within the tree structure. A vector of genes form a
chromosome, which can be expressed as a derivation tree
and used by a production system to generate a model.

This structure also allows for a variable length of the
chromosomes and easy insertion of new genes into the
chromosome without changing the already existing en-
tries.

To allow the operators to keep the generated or modi-
fied chromosomes within the confines of a valid derivation
tree, each possible type of gene is defined by a symbol
descriptor (Fig. 1), which contains the possible child sym-
bols, how likely they are to be generated during mutation
and a description of the parameters. The information in
these descriptors is inferred from the rules for the given
grammar.

3.1.2 Crossover Operator

The crossover operator produces a viable pair of children
given a pair of parents. The simplest form is the single-

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
112

Figure 1: Structure of the symbol descriptor.

point-crossover, which selects a random crossover point
in both parent-chromosomes and creates the offspring by
swapping the genes after the crossover points. The number
of possible different children given the same set of parents
is limited by the number of valid crossover points.

Our operator uses a variation of the single-point-
crossover operator, adapted to tree structures. It selects a
random gene connection from the first parent, and chooses
another random connection from all compatible connec-
tions in the second parent, and exchanges the genes at
these connections. This operation is outlined in Fig. 2,
and presented in more detail at Algorithm 1.

3.1.3 Mutation Operator

Mutation allows the GA to explore the problem space out-
side the already existing population by introducing ran-
dom changes in ways that are very unlikely to occur by
using crossover operators alone. Our operator uses the fol-
lowing changes that arise intuitively from the tree structure
of the chromosomes:
• Grow: Adds a suitable gene as child of a random

gene and initializes the parameters. This doesn’t re-
place already existing genes.
• Cut: Removes a random gene and all child-genes.
• Permutate: Change the parameter values of a ran-

dom gene.
When the operator is applied, one of these changes is cho-
sen at random.

3.1.4 Selection Methods

The selection method is one of the central parts of GAs, as
it allows the algorithm to select good parents for the new
generation, while at the same time denying bad solutions
the chance to reproduce. This is usually done by selecting
the individuals according to their fitness values, with some
margin for error.

With a purely deterministic selection method the same
parents would be selected again and again, thereby lim-
iting the exploration of the problems space to the prox-
imity of the fittest individual of the initial population,
whereas a purely random method would lead to an entirely

Figure 2: The crossover operator. For a random connec-
tion in the first parent, a fitting connection in the second
parent is selected, and the offspring is generated.

undirected exploration, which decreases the probability of
finding a good solution considerably. There are several
possible selection operators, as compared by [1], but the
ones most widely used are roulette wheel selection and k-
tournament selection.

Roulette Wheel selection calculates the probability pi
that the individual i is chosen such that it is proportional to
it’s fitness value fi in relation to the overall fitness of the
population:

pi =
fi

N
∑
j=1

f j

(1)

The name stems from the informal description of the
method as a roulette wheel, where the size of each pos-
sible spot relates to the fitness of the individual occupying
it.

k-tournament selection consists of selecting k individ-
uals at random from the population, and choosing the indi-
vidual with the highest fitness value, i.e. letting them fight
in a tournament. This method is quite fast, and the selec-
tion pressure can be increased by increasing the size of the
tournament.

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
113

Algorithm 1 Crossover operator

procedure CROSSOVER(parent1, parent2)
while tries < Max Retries do

Point1 ← Random connection from parent1
C← SELECTPOSSIBLE(parent2, Point1)
if C is empty then tries← tries+1
else

Point2 ← random connection from C
child1 ← CLONEUNTIL(parent1, Point1.start)
child1 ← CLONEFROM(parent2, Point2.end)
child2 ← CLONEUNTIL(parent2, Point2.start)
child2 ← CLONEFROM(parent1, Point1.end)
return child1, child2

procedure SELECTPOSSIBLE(parent2,Point1)
for all Connections C in parent do

if C.end is possible Child of Point1.start then
// Count siblings, including the current one
S← Number of siblings with type of C.end
// Check if there can be more genes of this type
Dc ← PossibleChild (Fig. 1) of C.end
if DC.maxSiblings == S then

connections.add(C)
else

P← random percentage value
if P < Replace probability then

connections.add(C)
else

Cnew ← new connection
Cnew.start ←C.start
Cnew.end ← none
connections.add(Cnew)

return connections

3.1.5 Implementation Details

There is a large variety in the details of GAs, which differ
slightly in each implementation. The variants used for this
paper are as follows:

The Initial Population is created by repeatedly apply-
ing the grow-mutation operator to initially empty chro-
mosomes. The GA converges faster if the chromosome-
length of the initial population is comparable to the desired
target, but the length is self-correcting to a large extent.

A new generation is created by selecting two individu-
als from the population, and either applying the crossover-
operator or the mutation operator to both individuals.

Additionally we use elitism, whereby some individuals
with the best fitness values are copied unchanged to the
new generation, but are still used as parents for crossover.
This ensures that the quality of the solution never de-
creases, and can also improve the quality of the solution,
since good individuals are preserved and produce more

offspring. But if the population size is too small, this can
lead to stagnation.

3.1.6 Fitness function

The fitness function evaluates the quality of a single in-
dividual and assigns a fitness value to it. Since the GA
only optimizes the fitness value, the used fitness function
very much defines the visual quality of the solutions. It
also should not be defined too restrictive, to allow the GA
to explore non-optimal solutions. Additionally one has to
pay attention to the complexity of the function, since the
fitness calculation is often the most time consuming task of
a GA. There are many possible different fitness functions
for shape grammar, like evaluating the silhouette from a
certain perspective, or several volume-based approaches,
such as filling or avoiding a given volume.

We use a volume-based fitness function, where we gen-
erate the model using the derivation tree defined by a chro-
mosome, and compare the volume of the model to a given
target volume. The comparison is done by converting
the generated model into voxels using a basic ray-based
voxelisation method and counting the voxels. Then, with
vtarget as the number of voxels of the target volume, vinside
as the number of generated voxels that fall inside the tar-
get volume, voutside the number of voxels outside the target
volume, and voverlap as the number of voxels that are self-
overlapping within the generated model, the fitness value
f is calculated with

fgood = step(vinside,0,vtarget) (2)
fbad = step(voutside + voverlap,0,2 · vtarget) (3)

flength = step(l, lopt , lmax) (4)
f = α · fgood−β · fbad− γ · flength (5)

with α,β ,γ as weights. Furthermore l is the length of the
chromosome, and lopt and lmax are given parameters, since
it has been shown by [17] that including the length of the
chromosome in the fitness calculation is a good way to pre-
vent it from growing considerably, which would increase
the evaluation time.

Finally we use a step - function to provide a normal-
ization of the fitness value, based on the smooterhstep -
function defined in [13].

step(x,min,max) =

1 if x≥ max
0 if x≤ min

6t5−15t4 +10t3 t = x−min
max−min

(6)

This is the most time-consuming step of our implementa-
tion, but by using an efficient implementation on the GPU
and an variant of CGA-Shape previously used by [19], we
were able to keep the calculation time manageable.

4 Evaluation

To evaluate the method presented in this paper, we imple-
mented a framework using C++ and CUDA.

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
114

Figure 3: Basic symbols of the grammar and the generated
model using fixed values for the parameters.

4.1 Spaceship Grammar

The implemented grammar is inspired by [14], and is de-
signed to produce simple spaceships with wings. It pro-
duces axis-aligned boxes of varying sizes, and consists of
a start symbol S, and three terminal symbols B, W and T.
The rules are not explicitly required for this method, but
can be outlined as follows:

S → B
B → BB | BW | BT | ε
W → WW | ε
T → TT | ε

The three basic symbols relate to the following shapes:

• B: central spaceship-body, attached to the parent
symbol along the main axis.
• W: wings, mirrored at the main axis and attached

along the secondary axis.
• T: top, attached along the third axis.

A basic example is shown in Fig. 3.

4.2 Parameter Selection

The selection of parameters for a GA is a very compli-
cated task, since the parameters are interdependent, e.g. a
high mutation rate can produce good results, but only if the
population size is large enough. There have been various
attempts to optimize this selection, such as using statistical
models [4], or even using other optimization algorithms to
find the best set of parameters, which introduces the prob-
lem of finding parameters for that algorithm. Since the
execution time of our implementation is manageable, we
were able to find a good set of parameters by changing
one parameter at a time and comparing the results. The
parameters during our evaluation are fixed to the follow-
ing baseline, unless stated otherwise:

Population size: 50 individuals
Initial length: 10 symbols

Max. generations: 50
Elitism: 1 individual

First selection: roulette wheel
Second selection: k-tournament, size 10

Mutation prob: 30%
Mutation operator: cut/grow/perm. uniform distr.
Crossover retries: 3

Due to the simplicity of the grammar, the crossover op-
erator was able to produce an offspring reliably, with only
about 0.2% of all cases requiring at most two tries.

The parameters for the fitness calculation do alter the
look of the generated models, but do not alter the behavior
of the GA significantly. They were set to the following
values:

α = 1 β = 0.8 γ = 0.2
lopt = 40 lmax = 100

While the target can be an arbitrary volume, to ensure it
is reachable we created it using the same grammar with
a fixed derivation tree. The random number generator
(RNG) was the uniform distributed mersenne-twister im-
plementation provided by c++11 (mt19937). All the gen-
erated values are averaged over three discrete runs.

4.2.1 Selection method

The available selection methods are a roulette wheel se-
lection, a k-tournament selection of size 10, and random
selection. As shown in Fig. 4, using a semi-stochastic
method for at least one parent produces better results than
purely random selection, with tournament selection per-
forming better. The best results were produces by a com-
bination of tournament and roulette wheel selection, al-
though initially tournament selection for both parents in-
creases the fitness values slightly faster.

0 10 20 30 40 50
Generations

0.5

0.6

0.7

0.8

0.9

1.0

Fi
tn

e
ss

Selection Method

Tournament/Tournament
Tournament/Random
Roulette/Tournament
Roulette/Roulette
Roulette/Random
Random/Random

Figure 4: The fitness values with different selection meth-
ods.

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
115

4.2.2 Population size

Since the GA recombines parts of already existing solu-
tions, a bigger population increases the chance to com-
bine two good parts to create a better solution, and it also
increases the probability that an individual already has a
good fitness value from the beginning, therefore increas-
ing the fitness of the solution immediately. Unfortunately,
an increase in the population size also increases the execu-
tion time significantly, which requires finding a trade-off
between speed and fitness. When increasing the popula-
tion from 10 to 500 individuals, as shown in Fig. 5, the
fitness increases as well, but after a size of 200 individ-
uals the increase is negligible compared to the increased
execution time.

0 10 20 30 40 50
Generations

0.5

0.6

0.7

0.8

0.9

1.0

Fi
tn

e
ss

Population Size

Size 10
Size 50
Size 100
Size 200
Size 500

Figure 5: The fitness values with increasing population
size.

4.2.3 Mutation probability

If the mutation rate is too low, the probability to pro-
duce beneficial changes is low as well, while a high mu-
tation rate can introduce disadvantageous changes to al-
ready good solutions. This can be mitigated to some ex-
tend with elitism, which can introduce another set of prob-
lems. When the mutation rate is increased from 0% (only
crossover) to 100% (only mutation) (shown in Fig. 6), the
fitness increases as well, although the difference is only
significant in later generations.

Using only mutation produces good results, but we
found in further evaluation that the effect diminishes with
a higher population size.

4.2.4 Elitism

Elitism allows the GA to explore the problem space sur-
rounding good solutions by keeping them unchanged from
one generation to the next, while still using them as par-
ents. A small elitism rate in a large population can lead
to a replacement of the elite in every turn, thus having no
impact at all, while a large elitism rate can lead to stagna-
tion. By changing the elitism rate from 0 to 45 individuals

0 10 20 30 40 50
Generations

0.5

0.6

0.7

0.8

0.9

1.0

Fi
tn

e
ss

Mutation Rate

0% Mutation
1% Mutation
10% Mutation
30% Mutation
50% Mutation
100% Mutation

Figure 6: The fitness values with increasing mutation rate.

(90%), as shown in Fig. 7, we find that the use of 10 to 15
individuals (20 - 30%) produces the best results, although
the impact is not very significant. It does, however, ensure
a steadily increasing fitness value. We also found in fur-
ther evaluations that the impact of elitism is highest with
small populations, and diminishes with increasing popula-
tion sizes. And, as expected, keeping a large part of the
population as elite does decrease the quality of the result
significantly, and also leads to periods of stagnation.

0 10 20 30 40 50
Generations

0.5

0.6

0.7

0.8

0.9

1.0

Fi
tn

e
ss

Elitism Rate

No Elitism
2% Elitism
20% Elitism
60% Elitism
90% Elitism

Figure 7: The fitness values with increasing elitism levels.

4.2.5 Initial length

The length of the initial population was increased from 10
symbols up to 100 symbols (Fig. 8). Due to the influence
of the length on the generated model, this significantly al-
ters the fitness of the initial population, which in turn im-
pacts the performance of the algorithm. But we found that
the impact diminishes with increased generations.

4.2.6 Final parameters

Overall we found that the population size and the use of
any selection method other than random selection have the

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
116

0 10 20 30 40 50
Generations

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Fi
tn

e
ss

Initial Length

Length 10
Length 20
Length 30
Length 50
Length 100

Figure 8: The fitness values with an increasingly compli-
cated initial population.

largest impact on the quality of the result, while other pa-
rameters have the most impact during the first few gener-
ations. Thus we were able to generate good results using
the following parameters:

Population size: 200 individuals
Initial length: 20 symbols

Max. generations: 50
Elitism: 30 individuals

First selection: roulette wheel
Second selection: k-tournament, size 10

Mutation prob: 30%
Mutation operator: cut/grow/perm. uniform distr.

0 10 20 30 40 50
Generations

0.5

0.6

0.7

0.8

0.9

1.0

Fi
tn

e
ss

Fitness Values

Final Parameters
Baseline Parameters

Figure 9: The fitness values for the baseline and final pa-
rameters.

The results of the baseline and the final parameters are
very similar (shown in Fig. 10), since the baseline parame-
ters already produce good results, but the final parameters
tend to perform more reliably. But because the bigger pop-
ulation creates a longer execution time, the parameters can
be optimized with regards to time for specific targets.

(a) (b) (c)

(d) (e) (f)

Figure 10: Targets and results of various runs: a and d are
targets, b and e were generated using the baseline parame-
ters, and c and f were generated with the final parameters.

Population Evaluation
(avg)

Crossover
(avg)

total

50 0.25sec 2ms 12.38sec
200 0.9sec 11ms 45.63sec

Table 1: Average evaluation and reproduction times per
generation, and the total duration for one run.

4.3 Performance

The results of the performance evaluation are shown in ta-
ble 1. Most time is spent calculating the fitness values,
while the time for generating a new generation is minimal.
But since most of the evaluation time is spent on generat-
ing the model from the derivation tree, this time could be
improved by moving the production system to the GPU,
and exploiting the inherent parallelism of GAs.

These values were achieved on an Intel Core i5-5200U
CPU @ 2.20GHz with 8 GB of RAM and a Nvidia
Geforce 840M.

5 Conclusion and Future Work

We presented a genome representation and genetic oper-
ators that are suitable for an application of GAs to con-
trol the derivation tree for shape grammars. Furthermore
we demonstrated the basic viability of this approach by
presenting the implementation for a specific grammar for
simple spaceships and a volume-based fitness function,
and evaluated the influence of the parameters required for
GAs.

A clear opportunity for future work is the evaluation of
this method with different, more complicated shape gram-
mars, since GAs generally tend to perform worse when the
complexity of the problem space increases.

Also is the volume-based fitness function very restric-
tive and limits the creative capabilities of GAs, therefore
a different approach for the fitness calculation might be

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
117

preferable, such as a image-based evaluations, as used suc-
cessfully by [14, 22].

Furthermore could an implementation of the algorithm
on the GPU improve the performance considerably, since
GAs and shape grammars are inherently parallel in nature.

References

[1] T. Blickle and L. Thiele. A Comparison of Selection
Schemes Used in Evolutionary Algorithms. Evolu-
tionary Computation, 4(4):361–394, 1996.

[2] J. Byrne, M. Fenton, E. Hemberg, J. McDermott, and
M. O’Neill. Optimising complex pylon structures
with grammatical evolution. Information Sciences,
316:582–597, 2015.

[3] C. M. De Jong Van Coevorden, A. R. Bretones, M. F
Pantoja, F. J. García Ruiz, S. G. García, and R. G.
Martín. GA design of a thin-wire bow-tie antenna for
GPR applications. IEEE Transactions on Geoscience
and Remote Sensing, 44(4):1004–1009, 2006.

[4] O. François and C. Lavergne. Design of evolutionary
algorithms - A statistical perspective. IEEE Transac-
tions on Evolutionary Computation, 5(2):129–148,
2001.

[5] J. H Holland. Adaptation in natural and artificial
systems. 1992.

[6] L. Krecklau, J. Born, and L. Kobbelt. View-
dependent realtime rendering of procedural facades
with high geometric detail. In Computer Graphics
Forum, volume 32, pages 479–488. Wiley Online Li-
brary, 2013.

[7] A. Lindenmayer. Mathematical models for cellular
interactions in development ii. simple and branching
filaments with two-sided inputs. Journal of theoreti-
cal biology, 18(3):300–315, 1968.

[8] P. Merrell and D. Manocha. Model synthesis: A gen-
eral procedural modeling algorithm. IEEE Trans-
actions on Visualization and Computer Graphics,
17(6):715–728, 2011.

[9] P. Müller, P. Wonka, S. Haegler, A. Ulmer, and
L. Van Gool. Procedural modeling of buildings.
ACM Transactions on Graphics, 25(3):614, 2006.

[10] E. Murphy, M. O’Neill, E. Galván-López, and
A. Brabazon. Tree-adjunct grammatical evolution.
In Evolutionary Computation (CEC), 2010 IEEE
Congress on, pages 1–8. IEEE, 2010.

[11] M. O’Neill, J. M. Swafford, J. McDermott, J. Byrne,
A. Brabazon, E. Shotton, C. McNally, and M. Hem-
berg. Shape grammars and grammatical evolution for
evolutionary design. Proceedings of the 11th Annual

conference on Genetic and evolutionary computation
- GECCO ’09, page 1035, 2009.

[12] Y. I. H. Parish and P. Müller. Procedural Model-
ing of Cities. 28th annual conference on Computer
graphics and interactive techniques, (August):301–
308, 2001.

[13] K. Perlin. Improving noise. In Proceedings of the
29th Annual Conference on Computer Graphics and
Interactive Techniques, SIGGRAPH ’02, pages 681–
682, New York, NY, USA, 2002. ACM.

[14] D. Ritchie, B. Mildenhall, and P. Goodman, N.
D .and Hanrahan. Controlling procedural model-
ing programs with stochastically-ordered sequential
monte carlo. ACM Transactions on Graphics (TOG),
34(4):105, 2015.

[15] M Schwarz and P. Müller. Advanced procedu-
ral modeling of architecture. ACM Transactions
on Graphics, 34(4 (Proceedings of SIGGRAPH
2015)):107:1–107:12, August 2015.

[16] K. Sims. Evolving virtual creatures. In Proceedings
of the 21st annual conference on Computer graph-
ics and interactive techniques, pages 15–22. ACM,
1994.

[17] T. Soule, J. A. Foster, and J. Dickinson. Code Growth
in Genetic Programming. GECCO ’96 Proceedings
of the 1st annual conference on genetic and evolu-
tionary computation, pages 215–223, 1995.

[18] O. Stava, S. Pirk, J. Kratt, B. Chen, R. Měch,
O. Deussen, and B. Benes. Inverse procedural mod-
elling of trees. In Computer Graphics Forum, vol-
ume 33, pages 118–131. Wiley Online Library, 2014.

[19] M. Steinberger, M. Kenzel, B. Kainz, J. Mueller,
W. Peter, and D. Schmalstieg. Parallel generation of
architecture on the GPU. Computer Graphics Forum,
33(2):73–82, 2014.

[20] G. N. Stiny. Pictorial and Formal Aspects of Shape
and Shape Grammars and Aesthetic Systems. PhD
thesis, 1975.

[21] G. N. Stiny. Spatial Relations and Grammars. En-
vironment and Planning B: Planning and Design,
9(1):113–114, mar 1982.

[22] J. O. Talton, Y. Lou, S. Lesser, J. Duke, R. Měch, and
V. Koltun. Metropolis procedural modeling. ACM
Transactions on Graphics, 30(2):1–14, 2011.

[23] P. Wonka, M. Wimmer, F. Sillion, and W. Rib-
arsky. Instant Architecture. ACM Trans. Graph.,
22(3):669–677, 2003.

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
118

Guided 2D Modeling of 3D Buildings using Oriented Photos

Lisa Kellner∗

Supervised by: Michael Schwärzler†

VRVis Research Center
Vienna / Austria

Figure 1: Modeling operations taking both oriented images and point cloud data into account. Left: Point Cloud-supported
Single Shot sketching, exploiting planar structures in the data. Middle: Multi-View Shot View sketching. Right: Texturing
the generated polygons using an interactive brushing method

Abstract

Capturing urban scenes using photogrammetric methods
has become an interesting alternative to laser scanning in
the past years. For the reconstruction of CAD-ready 3D
models, two main types of interactive approaches have be-
come prevalent: One uses the generated 3D point clouds
to reconstruct polygonal surfaces, while the other focuses
on 2D interaction in the photos to define edges and faces.

We propose a novel interactive system that combines
and enhances these approaches in order to optimize cur-
rent reconstruction and modeling workflows. Our main
interaction target are the photos, allowing simple 2D in-
teractions and edge-based snapping. We use the under-
lying segmented point cloud to define the 3D context in
which the sketched polygons are projected whenever pos-
sible. An intuitive Visual Guiding interface gives the user
feedback on the accuracy to expect with the current state of
modeling to keep the necessary interactions at a minimum
level.

Keywords: 3D-Modeling, Guidance, Photogrammetry

1 Introduction

The use of three-dimensional point cloud data of build-
ings gathered with different sensors is becoming part of the
standard workflow in surveying and mapping – may it be
from tachymetric devices, laser scans, or photogrammetry.
While solutions for acquisition, storage and viewing of the
generated point clouds have become commercially avail-

able, the derivation of low-polygonal, CAD-ready models
still poses a mostly unsolved challenge.

Only recently, researchers have started tackling this
problem by not only using meshing algorithms to triangu-
late the point cloud, but to detect and use underlying struc-
tures first in order to use geometric primitives to repre-
sent the building (see Section 2). By doing so, the emerg-
ing 3D models correlate a lot more to the way a human
artist would reconstruct a building in a 3D modeling tool:
Not only is the number of polygons usually considerably
lower, they also contain sharp edges and hierarchical def-
initions, and are therefore a lot easier to manipulate inter-
actively.

Still, reconstructing complete data sets is often hardly
possible due to limitations in the point data: Laser scan-
ners cannot be arbitrarily positioned, so that it is com-
mon that parts of the data are missing. Tachymetric point
clouds are too sparse for reconstruction, and photogram-
metric point clouds often have large holes caused by uni-
formly colored areas in them (see Section 3). This short-
coming in photogrammetric point clouds can be partly
compensated by considering the source photographs as
well, making it possible to identify and model sharp build-
ing edges using line features that can be identified in im-
ages more easily.

In this paper, we pursue the concept of using both point
cloud and photo data together, but combine it with the
approaches from Sinha et al. [18] or Arikan et al. [2]
of simplifying interactive 3D modeling to a 2D problem
whenever possible: We propose an interactive modeling
approach based on oriented photos, in which the user

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)

sketches the desired geometry directly on the image using
simple 2D operations, supported by an edge-based snap-
ping feature. Based on the available data quality of the
underlying point cloud, the 2D polygon is either directly
projected to 3D space whenever possible, or the user is re-
quired to define the polygon geometry in multiple further
photos, until a unique mapping to 3D space can be de-
fined. This interactive process is supported and guided by
providing suggestions for potential polygon candidates in
neighboring images, as well as by giving visual feedback
on the estimated accuracy for the projection to 3D space.
This allows the user to make use of both point cloud and
image data, while relying on an optimal, flexible workflow
with minimal manual intervention.

2 Related Work

The field of urban reconstruction has gained a lot of scien-
tific attention in the last years. A complete overview is out
of scope for this paper, and we refer the interested reader
to the recent state-of-the-art report by Musialski et al. [14].
Instead, we put our focus on methods that incorporate pho-
tos in the geometric reconstruction pipeline, or that try to
simplify the 3D modeling by either reducing the interac-
tion dimensions or providing suggestions to the user.

From a user-oriented perspective, our novel system is
most closely related to systems presented by Debevec et
al. [5] or Sinha et al. [18]: These interactive tools also rely
on image-based modeling operations, and use photogram-
metric data sets to calculate geometric correspondences in
order the reconstruct 3D geometry. While operations like
snapping to edges in images or multi-view texture gener-
ation have been integrated in these tools as well, neither
of them exploits the availability of the underlying pho-
togrammetric point cloud in order to simplify the sketch-
ing progress as in our method. Furthermore, we introduce
an additional guiding indicator in the graphical user inter-
face that operates as a feedback provider to give the user an
easy-to-grasp preview on how much more modeling work
is needed (see Section 5.3).

The derivation of polygonal meshes from point clouds
has been intensively studied in recent years [11, 3, 10, 1,
16], Wang et al. [20] use additional image-based data in
their interactive tool in order to regularize the building by
proposing a scaffold-like structure. Still, especially in the
domain of urban reconstruction, the resulting 3D build-
ings differ significantly from typical models designed with
CAD tools: While human users construct building models
consisting primarily of geometric primitives with exact in-
tersections, meshed point clouds are inherently noisy and
contain holes. Additionally, the absence of hierarchical re-
lations makes operations like geometric editing or seman-
tic classification cumbersome.

To tackle these problems, Arikan et al. [2] have pro-
posed an interactive method that first identifies the basic
planar shapes in a point cloud, on which initial coarse

polygons are created. Holes between the polygons are au-
tomatically closed by an optimization step whenever pos-
sible. In unclear cases, the user can edit, fix or add poly-
gons using simple 2D operations on the corresponding
segmented plane. Unfortunately, this approach relies on
point clouds that resemble nearly the whole surface, and
especially in the case of photogrammetrically generated
data, the often-occurring large holes cannot be accurately
reconstructed. Reisner-Kollmann et al. [15] proposes us-
ing image information for filling holes in the surface in
an automatic method. In our approach, we employ the
ideas of both these approaches: planar surfaces in the point
cloud are identified and used as a sketching plane for 2D
modeling interaction – but by using the photos as addi-
tional input in the 2D domain, the sketched polygons can
additionally snap to image edges, and polygons for which
no point cloud data is available can be accurately recon-
structed.

Our novel work is therefore a combination and exten-
sion of the before-mentioned interactive modeling tools,
striving for simplicity in terms of modeling operations
(2D image-based sketching and snapping) and exploiting
structural information (planar point cloud segments, im-
age edges) from all data sources available – while helping
and guiding the user through the process and leaving all
decisions to his artistic freedom.

3 Photogrammetric Data

Figure 2: Photogrammetric Network (bottom), consisting
of a 3D point cloud and photos (top), for which their rel-
ative positions and orientations have been computed. We
refer to them as Shots in this work.

As this work focuses on interactive modeling using pho-
togrammetric data, we describe the properties and distinc-
tive characteristics of this input type: A Photogrammetric
Network consists of a 3D point cloud and images, which
are overlapping photos of an object or – like in our case –
buildings. By applying Structure from Motion (SfM) tech-
niques, the relative positions (i.e. the location and the ori-

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
120

entation) on which the photos were taken from, as well as
a 3D point cloud, consisting of matching image features
that have been reprojected to 3D space, can be computed
(see Figure 2). The point cloud can be further densified
using algorithms proposed by Furukawa et al. [8, 7], but
since these points have not been measured, but were cal-
culated using image features, photogrammetrically gener-
ated points may not be as dense and – more important
– not as uniformly distributed as point clouds from laser
scans, leading to more holes in the data. For example, it
is difficult to extract robust features and therefore closely
spaced 3D points from completely flat, featureless walls.
We therefore strive for compensating this missing infor-
mation by defining polygons in multiple photos, see Sec-
tion 4.1.

The oriented photos – we refer to them as Shots – in the
Photogrammetric Network are positioned around the point
cloud. By having access to intrinsic and extrinsic camera
parameters, transformations from the 2D image space to
the 3D world space and vice versa can be achieved. In the
case of our work, this is necessary for simple 2D editing
and sketching steps and their according impact on the 3D
world space, see Section 5.

Another advantage of the availability of Shots is their
use in further reconstruction steps, as for interactive line
snapping or texture generation. Furthermore, the acqui-
sition process can be done with a consumer-level photo
camera and freely available SfM-Tools, making it a cheap
and easy solution compared to other methods.

4 Definition of Polygons using Shots

The primary interaction and sketching target in our frame-
work is a Shot, selected from a photogrammetric network
as described above. Sketching directly in a Shot photo for
the purpose of creating 3D geometry has two major advan-
tages in terms of usability:

• The user immediately grasps the scene to reconstruct,
as a photo is a very close approximation of what one
perceives when looking at an object.

• The interaction is performed in a 2D environment.
This does not only make the modeling tools less com-
plex to handle – humans are usually used to sketching
or drawing on a flat sheet of paper since their early
childhood.

While defining the approximate outline of a flat polygon
in 2D space is therefore comparably easy to achieve, the
derivation of the corresponding representation in 3D space
requires additional information: The 3D plane on which
the 2D outline has to be projected from the photo is com-
pletely unknown at first, but can be calculated by taking
additional constraints into account. We therefore propose
three methods to estimate this needed information in an in-
tuitive way with the least possible user effort, and without
having to leave the 2D sketching domain.

4.1 Multi Shot Sketching

One method to obtain the 3D positions for the vertices of
a sketched polygon in 2D image space is to define it not
only in one, but in multiple photos. Since the orientation
of the Shots is known in 3D space, each pixel on the image
plane can be used to define a ray from the focal point of
the camera through the pixel position in world space. If
this is done for a polygon vertex in multiple images, the
intersection point of the corresponding rays defines its 3D
position (see Figure 1, middle). This is repeated for all ver-
tices, and the unknown plane can then be estimated using
the least-squares method.

We implemented these ray intersections using the linear
triangulation method based on homogenous direct linear
transformation (DLT) as described by Hartley and Zisser-
man [9] resulting in a least squares optimal solution. This
approach is just one possible solution to this intersection
problem. We opted for it as the authors state, that the “ho-
mogenous linear method [...] often provides acceptable re-
sults. Furthermore, it has the virtue that it generalizes eas-
ily to triangulation when more than two views of the point
are available”. We take this into account during our guided
sketching feedback, where we encourage the user to define
the polygon in more than 2 shots (see Section 5.3).

4.2 Point Cloud Supported Single Shot
Sketching

Even though the multi-view approach described above is
an algorithmically well-working solution, a human user
would prefer to minimize ones efforts and wants the sys-
tem to “understand” what one intended to do after sketch-
ing a polygon in a single Shot, and reproject it into 3D
space. This can in fact be made possible by exploiting the
point cloud data: Similar to Arikan et al. [2], we segment
the point cloud into planar segments using the RANSAC
algorithm by Schnabel et al. [17]. After an initial polygon
has been sketched, we transform the points of each seg-
ment from 3D world space into 2D image space, and test
which points of each segment lie inside the polygon. Note
that in our current implementation, we perform this test
for all segments, which could be easily optimized by per-
forming a culling step (e.g. by using the bounding boxes
of the segments).

We compute a heuristic h ∈ [0,1] which gives us an es-
timation of how well a polygon fits a planar segment. We
use the number of points lying inside the 2D polygon as
well as the uniformity of the distribution of these points,
i.e. whether the projected point cloud segment has “holes”
in it. The uniformity is estimated by rasterizing all points
as splats over the polygon and then determining a fill ratio
r, where 1 means fully filled and 0 not filled at all.

h =
mr
n

where n is the total number of points of the segment and
m is the number of points inside the polygon.

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
121

Splat size q is based on the average point distance,
where di is the distance between point i and its nearest
neighbor.

q =
1
n

n

∑
i=1

di

If there is at least one segment that passes the (ad-
justable) acceptance threshold, we choose the one with the
highest result as the potential candidate, and inform the
user about the outcome (see Section 5.3). If the user de-
cides to make use of it, the polygon is projected onto the
plane that has been fit to the point cloud segment (see Fig-
ure 1). Otherwise, the user continues sketching the poly-
gon in further views, and the Multi-view Shot Sketching
algorithm is applied. Nevertheless, the initially found can-
didate segment can still be helpful: if the normal of the
polygon calculated using the multi-view method differs
only 10 degrees from the segment plane normal, the poly-
gon is adjusted to it accordingly.

4.3 Sketching Using the Plane of Existing
Polygons

Since it is obviously possible for a human user to assign a
semantic meaning to polygons that are being sketched, it
is often an easy task to recognize that some elements lie
on the same plane in 3D space. This is especially the case
for elements like windows, doors or balconies on a facade.
We therefore allow the user to simply define the polygon
of an existing element as the 3D sketching plane for the
next polygon, and can therefore reproject the 2D outline
to 3D space immediately.

5 Guided Polygon Creation

After providing information on the theoretical background
on the View-based Shot Sketching in the previous Section,
we describe how we integrated these concepts in interac-
tive workflows that are designed to give the user an optimal
modeling experience. All interactive concepts described in
the following Sections only guide and support the user –
despite all suggestions of our system, the assume that the
“user knows best” what his intentions are. Every sugges-
tion and guidance step in our system can therefore also be
safely ignored by the user.

5.1 Shot View Navigation

As described above, all shot view sketching operations
are performed in the 2D photos of the Shots for reasons
of simplicity. Although the sketching takes place in the
images, it is of utter importance that the user implicitly
always knows about the current view location in the 3D
world, so that the spatial context can be used to sketch
polygons in multiple Shots and not mix them up.

During sketching, the user is presented a 2D view of the
current photo. Nevertheless, since the corresponding Shot

incorporates 3D information, we allow the opacity value to
be changed arbitrarily, so that the 3D content (e.g. already
modeled polygons or even the point cloud) can be made
visible. Furthermore, the navigation between the shots
has been designed to help to retain the information of the
current user position: Instead of changing the displayed
photo immediately, the camera starts a flying animation to
show where the user is going. We also allow the user to
leave the “Shot View” at any time and fly around in the
3D scene, and fly back to the current shot or the next shot
with a smooth transition later on. For these reasons, the
shots needs to be internally sorted according to their spa-
tial neighborhood relation and not according to the time
the photo was taken or even the file name. We therefore
decided to sort the shots with a Traveling Salesman algo-
rithm with the distance between the shot centers as weight
function, resulting in an order that humans would intu-
itively describe as the proper natural way of describing the
neighborhood relations.

5.2 Sketching and Snapping in Shot View

Once the user decides to start modeling a new polygon in a
selected Shot, the initial polygon only needs to be sketched
roughly on the photo, as we allow it to snap to near edges
in the image. For this, we use an implementation of the
Line Segment Detector described in the work of von Gioi
et al. [19] to find edges in the underlying image. The out-
line of the initially sketched polygon is compared to the
line set of the image. Two lines of these sets are matching
if they are nearly parallel and spatially close. If no match-
ing image line to a polygon edge is found, the initial edge
will be used. To conclude the snapping process, the match-
ing lines are intersected with each other, and the intersec-
tion points are the vertices of the new, snapped polygon.
Figure 3 shows the polygon snapping workflow.

Figure 3: Polygon Snapping: sketched 2D polygon on an
image (left), extracted image lines with matchings in blue
(middle), snapped polygon (right)

If the user opts for using the Multi-View Shot Model-
ing mode, the modeling workflow requires the same poly-
gon to be available in different images. Instead of having
to sketch the corresponding polygon again, the proposed
system tries to minimize the needed efforts: As soon as
the user switches to the next Shot, the initial polygon is
not only projected into the other image, but it is positioned
to “fit the same sketched object”. For example, if the poly-
gon snapped to window edges in the initial image, the pro-

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
122

jected polygon in the neighbor image also tries to find and
snap to the same window edges.

To achieve this, we transform the edges of the initial
polygon outline into the underlying photo and compute
normalized color histograms of them. Then the polygon
outline histograms are compared with histograms of edges
found in the target image to find matching lines. A match
is a pair of lines, one from the polygon outline and its cor-
responding edge in the target image. The best polygon-
outline image-edge pair is the basis of the polygon in the
other shot. Further adjacent edges are stepwise added to
the polygon depending on histogram matches, or approxi-
mated if no match was found.

Especially in the case of buildings, it becomes obvi-
ous why an interactive approach with minimized input that
mostly consists of deciding on proposed suggestions is im-
portant: Architectural objects often consist of extremely
similar and repetitive patterns, and an initially found win-
dow can be found multiple times on the next photo, re-
sulting in the same amount of candidates for the corre-
spondence. Since the user is able to retain a global spatial
overview more easily, the correct window can be picked
with a single click.

5.3 Visual Guidance Feedback

As stated before, we want to minimize the needed user
interaction while keeping the possibility to influence any
design decision at the user level. It is therefore important
for the user to be provided with feedback on whether the
polygon should be sketched in further views, or if enough
information on the needed 3D plane is available to com-
pute the world space position of the object.

During each polygon creation process, the user gets per-
manent feedback via our novel Visual Guidance interface
to realize this: In the user interface, a state bar appears
as soon as the initial polygon is sketched. The states can
switch between red (not enough information), yellow (the
system can suggest a 3D polygon, but it may be inaccurate
or ambiguous) and green (an accurate polygon can be pro-
vided, and no other plane candidates can interfere). See
Figure 4 for a visualization of the guidance element in the
user interface.

Concretely, we use the red state whenever an initial
polygon has been sketched, and no plane to project the 2D
outline onto is available. This is the case when no neigh-
boring 3D polygon has been selected (see Section 4.3)
and no fitting planar point cloud segment can be found
(i.e. the metric returns no value above a certain user-
definable threshold for all point cloud segments, see Sec-
tion 4.2). The yellow state is used when either two or
more potential planar point cloud segment candidates that
are of equal quality are available, or, when using Multi-
view Shot Sketching mode, the polygon has only been de-
fined in two Shots yet (which may be inaccurate, see Sec-
tion 4.1). The user can stop sketching anytime this quality
estimator is not in red state, and a 3D polygon is created –

Figure 4: The Visual Guidance interface shows whether
enough polygons have already been sketched to compute
a 3D polygon, or if the user should continue sketching.

but has to be aware that the result may not be as accurate
as needed when he stops too early.

6 Additional Photo-based Modeling

Apart from sketching the initial polygons, we have inte-
grated further possibilities that demonstrate the combined
use of photo data, point clouds and geometry in a single
environment.

6.1 Model refinement

All ordinary 3D polygon-modeling tasks in our system can
also be performed via the Shot view. This is especially true
for existing polygons that have not been modeled in this
particular view, but can be reprojected and edited in the
corresponding photo anyway. Following the same princi-
ple, polygons snap to edges, and can be aligned according
to the image content: Model refinement through the shot
view is more intuitive and accurate for a user than, for in-
stance, fitting a polygon to the point cloud.

Figure 5: Left: By defining hierarchical relations, holes
and side faces are automatically extracted. Right: Interac-
tive removal of occluding objects from the texture by over-
laying the photo semi-transparently using the Shot view.

In addition to the Shot-based sketching operations de-
scribed in the previous Sections, our framework supports
regular manipulation and polygon creation known from
other 3D modeling packages. This comes handy in cases
when not the whole building has been photographed, but

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
123

the surface needs to be closed (even though this can-
not be seen as part of the reconstruction anymore). We
also included an optimization-based snapping approach to
close the small gaps between the polygons as proposed
by Arikan et al. [2], which moreover takes further con-
straints like parallelism or orthogonality of edges into ac-
count – an often-needed requirement for CAD-ready mod-
els. Moreover, we allow the definition of hierarchical re-
lations: This makes it easily possible to define “holes” for
windows and doors in the facades (the corresponding side
faces are added automatically), like in Figure 5, left.

6.2 Texture Brushing

The Shots can furthermore be used to generate textures
for the created polygons by reprojecting the photos onto
the 3D plane. We employed the technique proposed by
Musialski et al. [13], where the texture is a composition
of the photos, and each pixel gets colored according to the
image of the best fitting shot. While the initial source shot
of each pixel is initially selected automatically based on
angle and distance, arbitrary parts of the texture can be
“repainted” with the content of a user-selected shot photo
in order to remove occluders or artifacts. Figure 6 shows
textures with different coloring according to shots.

Figure 6: Top left: The initial texture containing occlud-
ers. Bottom Left: The associated Shots, visualized using
a false color mask. Top right: The cleaned texture after
interactive brushing. Bottom right: The correspondingly
modified mask.

We extended the original method, in which the user
could brush a polygon only directly in 3D view, to be also
used via the Shot view, in which the transparency can be
adjusted interactively. This way, the user simultaneously
has access to the current state of the textured polygon in
the 3D world, and the 2D Shot photo. In the Shot view
brushing mode, the brush paints over the texture with the
content of the shot image the user is actually looking at,
so that the user can easily find the proper image part for
a specific texture position (see Figure 5, right). Switching
between Shots and leaving the Shot view is possible at any
time as described in Section 5.1.

7 Implementation

Our novel modeling and reconstruction framework has
mainly been implemented using an internal rendering
framework based on the .NET framework and OpenGL.
The Visual Guidance feedback element has been realized
using a web-based overlay that was created using HTML5
and the D3.js toolkit [4]. The interactive texture brush-
ing method makes use of a Poisson solver implemented in
OpenCL. For the polygon snapping, we were given access
to the original implementation of Arikan et al. [2].

The tool currently supports photogrammetric data sets
generated with either the PMVS/CMVS toolkit [6] or with
the commercially available software Agisoft Photoscan
[12]. During the import process, the Shot neighborhood
relations as described in Section 5.1 are computed, and
the image edges for snapping are extracted in preprocess-
ing steps.

We believe that our proposed workflows and interac-
tion methods can technically be integrated into existing
3D modeling packages, but it has to be carefully evalu-
ated whether the interactions described in this paper con-
flict with the standards established there.

8 Results

We have evaluated our novel modeling framework by try-
ing to reconstruct several buildings from photogrammetric
data sets. All operations can be performed completely in-
teractive once the data set is imported, and the real-time
frame rates allow fluent work on a consumer-level com-
puter.

As can be seen in Figure 7, the targeted goal of creat-
ing low-polygonal, textured, CAD-ready 3D buildings in
just a few minutes could be reached: The modeling times
for the buildings lie between five and fifteen minutes – in-
cluding the generation of textures for the polygons. It is
important to notice that especially the side parts of the
buildings, where no complete point cloud was available
due to the limited access for the photographer to the area,
could be accurately reconstructed using our image-based
approach. The front facades, where the point cloud is usu-
ally quite dense, could be successfully modeled with the
single Shot method described in Section 4.2. Once a sin-
gle window of a certain type was modeled, all the others
on the same facade could be created using the same plane
and the edge-based snapping feature within seconds.

8.1 Limitations

Even though we have shown that using both photos and
point clouds from photogrammetric data sets in an interac-
tive workflow makes it possible to reconstruct more areas
accurately, our approach still suffers from the fact that ob-
jects that are hidden, occluded or only visible in a single

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
124

Figure 7: Three textured 3D building models generated with our approach. In the left column, the photogrammetric point
cloud is visualized, followed by the geometric reconstruction including hierarchical definitions in the middle column. In
the right column, the final model with textures generated from multiple photos and using interactive occluder removal are
shown. While parts that are not depicted in the point cloud could be reconstructed using the photos, that the backsides
of the houses were modeled freely, as they were not accessible for the photographer. Modeling time including texture
generation: Top row 5 minutes, seconds row 15 minutes, third row 10 minutes, fourth row 20 min.

photo require manual, inaccurate modeling steps. Further-
more, we are (similar to the methods proposed by Arikan
et al. [2] and Sinha et al. [18]) limited to the reconstruction
of planar surfaces. Even though curved surfaces can be ap-
proximated using multiple polygons, the handling of such
primitives is more challenging than it is for planar shapes.

9 Conclusion & Future Work

We have demonstrated how to combine interactive tech-
niques from both image-based and point cloud-based
methods to reconstruct CAD-ready 3D models of build-
ings within a few minutes. 3D planes, on which sketched
2D polygons are reprojected, can not only be computed
from multiple views, but also from planar segments de-
tected in the corresponding point cloud. Image-based
snapping features and suggestions further improve the
sketching workflow.

Our novel method is a natural extension of these related
techniques, and does not interfere with their concepts, but
improves them. By introducing an intuitive Visual Guid-
ance Indicator, users can take shortcuts during the image-
based modeling steps, while being aware of the quality im-
pact this has.

As this project is ongoing work, we have to especially
evaluate and fine-tune user-oriented interaction methods in
the future. Not only will a decent user study be performed
and more data sets be used, but we will also investigate if
we can use learning algorithms to replace currently user-
defined parameters and thresholds, as they may vary de-
pending on input data. As we already managed to sim-
plify and minimize the interactions to a level that allows
reconstruction of a building with just a few mouse clicks,
we will evaluate if these concepts can be used on a touch-
based interface as well, opening the door for the use on
mobile devices.

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
125

Acknowledgements

We wish to express our thanks to Thomas Ortner and Ste-
fan Maierhofer from the VRVis Research Center for their
valuable feedback. This work was supported by the Aus-
trian Research Promotion Agency (FFG) through the FIT-
IT project Replicate, project no. 835948. The compe-
tence center VRVis is funded by BMVIT, BMWFJ, and
City of Vienna (ZIT) within the scope of COMET Com-
petence Centers for Excellent Technologies. The program
COMET is managed by FFG.

References

[1] Pierre Alliez, David Cohen-Steiner, Yiying Tong,
and Mathieu Desbrun. Voronoi-based variational re-
construction of unoriented point sets. In Proceed-
ings of the fifth Eurographics symposium on Geome-
try processing, pages 39–48, Aire-la-Ville, Switzer-
land, Switzerland, 2007. Eurographics Association.

[2] Murat Arikan, Michael Schwärzler, Simon Flöry,
Michael Wimmer, and Stefan Maierhofer. O-snap:
Optimization-based snapping for modeling architec-
ture. ACM Transactions on Graphics, 32:6:1–6:15,
January 2013.

[3] Jean-Daniel Boissonnat and Steve Oudot. Provably
good sampling and meshing of surfaces. Graph.
Models, 67:405–451, September 2005.

[4] Michael Bostock, Vadim Ogievetsky, and Jeffrey
Heer. D3 data-driven documents. Visualization
and Computer Graphics, IEEE Transactions on,
17(12):2301–2309, 2011.

[5] Paul E. Debevec, Camillo J. Taylor, and Jitendra Ma-
lik. Modeling and rendering architecture from pho-
tographs: A hybrid geometry- and image-based ap-
proach. SIGGRAPH, pages 11–20, 1996.

[6] Yasutaka Furukawa. Clustering views for multi-view
stereo (CMVS). http://www.di.ens.fr/cmvs/. Ac-
cessed: 2016-02-29.

[7] Yasutaka Furukawa, Brian Curless, Steven M. Seitz,
Richard Szeliski, and Google Inc. R.: Towards
internet-scale multiview stereo. In In: Proceedings
of IEEE CVPR, 2010.

[8] Yasutaka Furukawa and Jean Ponce. Accurate,
dense, and robust multiview stereopsis. IEEE Trans.
Pattern Anal. Mach. Intell., 32(8):1362–1376, Au-
gust 2010.

[9] R. I. Hartley and A. Zisserman. Multiple View Ge-
ometry in Computer Vision, chapter 12.2, page 312f.
Cambridge University Press, second edition, 2004.

[10] Michael Kazhdan, Matthew Bolitho, and Hugues
Hoppe. Poisson surface reconstruction. In Proceed-
ings of the 4th Eurographics symposium on geome-
try processing, SGP ’06, pages 61–70, Aire-la-Ville,
Switzerland, 2006. Eurographics Association.

[11] Leif P. Kobbelt, Mario Botsch, Ulrich Schwanecke,
and Hans-Peter Seidel. Feature sensitive surface ex-
traction from volume data. In Proceedings of the
28th annual conference on Computer graphics and
interactive techniques, SIGGRAPH ’01, pages 57–
66, New York, NY, USA, 2001. ACM.

[12] Agisoft LLC. Photoscan. http://www.agisoft.com/.
Accessed: 2016-02-29.

[13] Przemyslaw Musialski, Christian Luksch, Michael
Schwärzler, Matthias Buchetics, Stefan Maierhofer,
and Werner Purgathofer. Interactive multi-view
façade image editing. In VMV 2010, pages 131–138,
November 2010.

[14] Przemyslaw Musialski, Peter Wonka, Daniel G.
Aliaga, Michael Wimmer, Luc van Gool, and Werner
Purgathofer. A survey of urban reconstruction. Com-
puter Graphics Forum, 32(6):146–177, September
2013.

[15] Irene Reisner-Kollmann, Christian Luksch, and
Michael Schwärzler. Reconstructing buildings as
textured low poly meshes from point clouds and im-
ages. In Nick Avis and Sylvain Lefebvre, editors, Eu-
rographics 2011 - Short Papers, pages 17–20, April
2011.

[16] Nader Salman, Mariette Yvinec, and Quentin
Merigot. Feature preserving mesh generation from
3D point clouds. Computer Graphics Forum,
29(5):1623–1632, 2010.

[17] Ruwen Schnabel, Roland Wahl, and Reinhard Klein.
Efficient ransac for point-cloud shape detection.
Computer Graphics Forum, 26(2):214–226, June
2007.

[18] Sudipta N. Sinha, Drew Steedly, Richard Szeliski,
Maneesh Agrawala, and Marc Pollefeys. Interactive
3d architectural modeling from unordered photo col-
lections. ACM Trans. Graph., 27(5):159, 2008.

[19] Rafael Grompone von Gioi, Jrmie Jakubowicz, Jean-
Michel Morel, and Gregory Randall. Lsd: A fast
line segment detector with a false detection control.
IEEE Transactions on Pattern Analysis & Machine
Intelligence, 32(4):722–732, 2010.

[20] Jinglu Wang, Tian Fang, Qingkun Su, Siyu Zhu,
Jingbo Liu, Shengnan Cai, Chiew-Lan Tai, and Long
Quan. Image-based building regularization using
structural linear features. Transactions on Visualiza-
tion and Computer Graphics, 1(99):1, 2015.

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
126

Perception

Preferred Speed of Visual Adaptation to Darkness
in Computer Games

Marek Wernikowski∗

Supervised by: Radosław Mantiuk †

West Pomeranian University of Technology
Szczecin / Poland

Abstract

The human visual system has the ability to adapt to var-
ious lighting conditions. Models of this visual adapta-
tion process are applied to increase the attractiveness of
graphics while playing computer games. The main goal
of this work is to implement the light adaptation process
in a test game framework and evaluate the perceptual im-
pact of adaptation to darkness on the gameplay. We take
care of the reliability and physical correctness of the sim-
ulation but also artificially modify the adaptation speed to
test the player’s preferences. The results reveal that faster
visual adaptation to darkness is more preferable than an
approach which follows the natural behaviour of the hu-
man visual system.

Keywords: visual adaptation, adaptation to darkness, vi-
sual adaptation in computer games, perception, tone map-
ping, real time rendering

1 Introduction

Lighting conditions vary significantly depending on the
environment in which we are located so a mechanism,
which allows the humans to see objects in both bright and
dark conditions is indispensable to survival. This process
within the human visual system (HVS) is called visual
adaptation - it allows HVS to adjust to various light con-
ditions ranging from very dark scenes lit by the stars to
bright environments illuminated by millions of candelas.

The main focus of this work is adaptation to darkness.
This is the process which takes place when we switch from
well lit environment to a darker one. The adaptation to
darkness proceeds with a constant and rather slow speed.
It takes tens of seconds to fully adapt from a bright en-
vironment to a very dark one. In contrary, adaptation in
the opposite direction from darkness to brightness is very
fast and strongly non-linear. At first people are blinded
by the light but after a short time they begin to see the
objects. During this time, human is adapting to the adap-
tation luminance - the average luminance HVS adapts to

∗mwernikowski@wi.zut.edu.pl
†rmantiuk@wi.zut.edu.pl

considering an arbitrary gaze direction. By measuring the
brightness in two separate situations, it is possible to cal-
culate the required time for full adaptation. Therefore, the
bigger the difference between current and previous lumi-
nance is, the shorter it takes to adapt to the new setting.

The adaptation is gaze-dependent which means it takes
into consideration the gaze point of the observer. Humans
frequently change their gaze direction and try to adapt to
different regions. As a result, HVS is in the maladapta-
tion state, in which the adaptation luminance is changing
towards a target value but never reaches this value because
in the meantime the target is changed.

Models of visual adaptation are used in computer games
to make the graphics more realistic and plausible. A
noticeable example is the ”Uncharted 2” game in which
the tone mapping with visual adaptation is implemented.
In this game temporal adaptation is applied by assigning
fixed spots on the floor, in which the eye should adapt to
light or dark. Depending on a place the player has stepped
into, view was properly configured. The advantage of this
solution is the simplicity of calculations. However, any
dynamic light source cannot be used, which can be essen-
tial for the realistic simulation [5]. The other technique
worth mentioning is the one used in Unreal Engine. Here
adaptation is based on the average luminance of the scene.
It is also possible to adjust the time needed to adapt to light
and dark separately. It is an accurate way of simulation, al-
though it does not take into consideration the actual place
where the observer is looking - the gaze point. Example
screenshots from Unreal Engine are presented in Fig. 1.

A main goal of this work is to model the visual adapta-
tion process in a correct way in terms of the human percep-
tion, so that it could reflect the actual behaviour of HVS.
However, the adaptation to darkness lasts even tens of min-
utes and, from a computer game perspective, it often does
not make sense to model this process in the same way as it
happens in nature. This adaptation would be too slow for
fast modern games.

In this paper, we evaluate whether using the perceptu-
ally correct visual adaptation operators is practically justi-
fied. We perform an experiment, in which people choose
a preferred speed of the adaptation to darkness. To mimic
the behavior of HVS, we model the adaptation to bright-
ness based on the perceptual formulas, while the adapta-

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)

tion to darkness is simulated by the linear luminance trans-
formation. To find the target speed of the adaptation to
the dark environment, we vary the adaptation time and ask
people to choose the most plausible approach.

Section 2 gives background information how the adap-
tation process works for different lighting conditions. Sec-
tion 3 is focused on our game framework and shows how
we simulate the visual adaptation mechanisms. Section 4
presents the results of the perceptual experiment evaluat-
ing the adaptation to darkness. The paper is concluded in
the last Section.

Figure 1: A screenshot generated by the Unreal Engine
during (left) and after (right) adaptation to the bright envi-
ronment [2].

2 Background

In this Section we give basic information on the human
visual system and visual adaptation process.

2.1 Rods and cones

Human vision is based on two types of photoreceptors rods
and cones that absorb the light from the environment [18].
The cones allow for colour vision under appropriate light-
ing conditions, while the rods are responsible for recogniz-
ing shapes and monochrome vision in low light conditions.

The colour vision is activated when light interacts with
the chromophore inside the visual pigment (opsin) which
can be found on top of the cone. There are three kinds of
opsin (L, M and S) related to three colours they produce
(red, green and blue). The chromophore changes shape
and triggers a cone. If at least two kinds of cones are trig-
gered, a signal is sent to the photoreceptor, in which light
is converted into an electrical signal, and later transferred
to the brain. There are between 6 and 7 million cones with
the majority of them being L (64%) or M (32%) types [11].
The ”blue” cones (S) represent just 2% of all cones. In
comparison to L and M, the S cones are much more sensi-
tive to light and reside outside the fovea.

The rods are activated in low light conditions and are
responsible for the scotopic vision, in which people do
not see colour but are very sensitive to contrast changes
(a thousand times more sensitive than cones) [18]. There
are about 120 million of rods and they can be triggered
with just individual photons. They adapt to shorter wave-
lengths than cones, therefore, people see blue objects quite
clearly in the dark, while red objects might even be com-
pletely invisible. Since all rods are outside the fovea and

the highest acuity area, it is sometimes impossible to see
an object at which we are directly looking in the dark, e.g.
when we want to observe stars in the night. The only way
to improve this vision is to look at a star ”out of the cor-
ner of the eye”. Then, it is observed with the part of retina
containing mostly rods. The scotopic vision is possible be-
cause of the rhodopsin pigment on top of the rod. This pro-
cess is very similar to the one in the cones: when light (at
least one photon) strikes the rod, the chromophore changes
shape and triggers an electrical signal sent to the brain.

2.2 Visual adaptation

The human eye is able to adapt to luminances which dif-
fer greatly, even 14 orders of magnitude - from moon-
light (10−6 cd

m2) up to sunlight (108 cd
m2) [15]. The visual

adaptation process takes place when the lighting condi-
tion, to which the observer is currently adapted, changes.
For example, this happens as a results of someone enter-
ing a darker room, turning on the light, or walking out-
side. The time for the eye to adapt to the new environment
depends on whether the cones or the rods are being acti-
vated/deactivated.

In the case of increasing the ambient luminance, the
photopigment in rods gets bleached [1]. For a few seconds,
they are completely blind and the sensitivity of cones be-
gins to increase. The whole adaptation takes up to 5 min-
utes but the vision might be fully clear in less than one
second [8]. During this short period the vision is heav-
ily impaired - the colours are barely visible and all objects
seem to be too bright.

During adaptation from bright to dark, a reverse process
takes place - at the beginning it is hard to see anything [3].
It is caused by the fact that cones are currently in the low
sensitivity state and rods are bleached. Then, cones regain
their sensitivity and rods are regenerated. When cones
achieve highest sensitivity, rods begin to increase their sen-
sitivity until they are fully adapted.

The adaptation to darkness is a sustained process - de-
pending on the amount of light it could take from 10 min-
utes to 2 hours, sometimes even more [8]. This process is
presented in Fig. 2. From obvious reasons in simulations
and computer games this time has to be shortened, so that
the observer would not need to wait minutes to see any
information.

2.3 Maladaptation

The human eyes mainly adapts to an area covering approx-
imately 2-4 degrees of the viewing angle around the gaze
direction [17]. Other areas of the scene, observed not in
foveal but in para-foveal and peripheral regions, have sig-
nificantly less impact on the adaptation level, although,
a human frequently changes gaze direction (even a hun-
dred times per second) and tries to adapt to different re-
gions [10]. As the process of the luminance adaptation is

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
130

Figure 2: The dark adaptation process (after Gordon et
al. [3]).

slower than changes of gaze direction, the HVS is perma-
nently in the maladaptation state, in which the adaptation
luminance is changing towards a target value but never
reaches this value because in the meantime the target is
changed.

2.4 Previous work

Visual adaptation has been a topic of several articles. In
1996, the model of visual adaptation was described in [4].
The model discussed in this paper is used for realistic im-
age synthesis which takes into consideration threshold vis-
ibility, colour appearance, visual acuity, and sensitivity. It
is however only usable in static pictures. Another article,
published in 2000, uses much simpler equations [13]. The
RGB is created using the adaptation model with very ef-
ficient technics. This makes it possible to use in dynamic
scenes. The main disadvantage of this method is the fact,
that it does not consider the gaze point of the observer.
Another article, published in 2004, operates on High Dy-
namic Range images [8]. It models rods and cones sep-
arately, and the local adaptation is computed using Gaus-
sian function. This method is very precise and performs
very well in simulations and static images, however in our
work we want to produce effects of similar quality with
lower performance impact.

3 Test game framework

In this Section we present our prototype game framework.
The main goal of this approach is to implement the lu-
minance adaptation models and provide a testbed for the
perceptual experiments.

3.1 Implementation

The framework has been implemented in C++ based on the
OpenGL library (version 4.0) supported by GLFW for in-
put/output operations, Assimp for loading 3D models, and
FreeImage for loading textures. The lighting computations
are based on the Phong shading model. We built a scene
consisting of 15 objects and approximately 18.000 trian-
gles, which presents the interior of an office. The scene
contains very bright object (lamp on the ceiling) and a
number of dark objects with a luminance that is lower by
almost four orders of magnitude. An example rendering is
presented in Fig. 3.

Figure 3: An example screenshot from our test game
framework.

3.2 Visual adaptation module

A core module in our framework is the visual adaptation
mechanism presented in Fig. 4. We do not use an eye
tracker, so the gaze location is assumed to be at the cen-
tre of the screen. We compute the weighted average of
the pixel luminance from the whole image, wherein the
weights are delivered as a texture mask (see Sect. 3.3). The
whole process is repeated for each frame taking into con-
sideration the maladaptation mechanism (see Sect. 3.4).
The obtained temporary adaptation luminance is used to
tone map the image based on the sigmoidal tone curve (see
Sect. 3.5). The actual visual adaptation is implemented by
varying the global luminance level of the rendered image.

3.3 Spatial extent of visual adaptation

In HVS, the highest impact on the vision has the high-
acuity area, the 8-degrees surrounding of the gaze point.
Recently Vangorp et al. [17] proposed an adaptation
model, in which the local adaptation luminance is based on
the pixel values in this area. However, in our framework
we apply a simpler approach based on the gaze-dependent
contrast sensitivity function [14]. This function roughly
follows distribution of the cones in the retina. The spa-
tial cutoff frequency is the way of measuring the smallest
visible object. It is measured in cycles per milimeter. As
the number of cones decreases with the eccentricity, we
assume that adaptation luminance is affected mostly at the
areas of the highest frequency [9].

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
131

Figure 4: The diagram of the visual adaptation module.

The below equation models the spatial cutoff frequency
fc of the human retina, i.e. the highest frequencies that are
still visible for the eccentricity d:

fc = 43.1∗ E2

E2 +d
, (1)

where E2 denotes the eccentricity at which spatial fre-
quency drops to half (we use a value of 43.1 cpd). The
graph of this function is presented in Fig. 5. The mask
based on this equation is shown in Fig. 6.

eccentricity d # 104
0 2 4 6 8 10sp

at
ia

l c
ut

of
f f

re
qu

e
nc

y
(f

c)

0

10

20

30

40

50

Figure 5: Graph of the fc function.

3.4 Temporal adaptation

The adaptation luminance changes over time because ob-
servers moves their gaze location. As the adaptation time
can last longer than the animation frame, the maladapta-
tion state should be considered. For this task we use a
shader, which receives the luminance value from the pre-
vious and current frames. These values are used to modify
the adaptation over time [7]:

L̂new
a = L̂a +(L̂HDR− L̂a)(1− e−

T
τ), (2)

Figure 6: The mask used to approximate the adaptation
luminance.

where X̂ = log10(X), Lnew
a denotes a new adaptation lu-

minance, La is the adaptation luminance from the previous
frame, LHDR - luminance of the input HDR image, T is the
time which elapsed between the display of the current and
previous frame, and τ is the adaptation speed. The above
exponential function gives the accurate results, however
we simplified this approach to a formula:

Lnew
a =

{
min(La +

T
τrod

,LHDR), if La < LHDR

max(La− T
τcone

,LHDR), if La ≥ LHDR
(3)

where τrod and τcone indicate rod and cone adaptation
time, respectively (τrod = 9.0s, τcone = 0.1s). The above
equation gives a rough approximation of the exponential
formula. Apart from that, it is much simpler and more
appropriate for real-time rendering.

As shown in Fig. 7, switching off the lamp starts the
slow adaptation to dark (top row). When the lamp is
switched on, this process is interrupted and the adaptation
to bright begins before the eyes become fully adapted to
dark (middle row). After switching off the lamp again, the
observer can fully adapt to the darkness (bottom row).

3.5 Tone compression

In our test framework we implemented the sigmoidal tone
compression proposed for the gaze-dependent tone map-
ping in Mantiuk and Markowski [10]. The shader used
for this compression converts colour to luminance using
the formula: L = cr ∗ 0.212656 + cg ∗ 0.715158 + cb ∗
0.072186, where cr, cg, and cb are the red, green, and blue
components, respectively.

The tone compression is based on the Naka-Rushton
equation [12]:

LLDR =
LHDR

LHDR + s
, (4)

where s denotes the momentary adaptation luminance
Lnew

a .
The output colour values of the rendered image are com-

puted based on the formula [16]:

cnew = (
cHDR

LHDR
)s ∗LLDR. (5)

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
132

Figure 7: Top row: observer is fully adapted to the bright environment, then the lamp is switched off and slow adaptation
to dark begins. Middle row: the lamp is switched on, the eye is blinded by the bright environment but it quickly adapts to
the bright environment. Bottom row: the lamp is switched off again, after some time observer adapts to the darkness.

We chose the colour desaturation factor equal to 1.2. Fi-
nally, the output image is gamma corrected and presented
on the display calibrated to the sRGB colour profile.

Example images rendered for different values of the
adaptation luminance are presented in Fig. 8.

Figure 8: Images rendered for observer adapted to the
bright areas (top) and dark area (bottom). The orange
cross depicts the gaze location.

4 Experimental Evaluation

We performed a pilot experiment, in which game players
were asked to assess the most suitable speed of the visual
adaptation to darkness.

4.1 Stimuli and procedure

During the experiment observers sat in front of the display
in a 60 cm distance. They were asked to observe an anima-
tion sequence. At the beginning, the grey background with
the experiment instruction was displayed. Then, a scene
presenting the interior of the room was rendered (see ex-
ample in Fig. 3). The camera was looking at the bright
lamp for 5 seconds, which caused the adaptation to high
brightness. Next, the camera smoothly moved from the
lamp to the desk, whose luminance was one order of mag-
nitude lower than that of the lamp. The camera remained
in this position until the adaptation to dark was finished.
The whole procedure was repeated again but for differ-
ent times of adaptation to dark. Then, the observer had to
decide, which adaptation speed was more plausible - the
exact question he had been given was ’Which adaptation
speed do you like more?’. The answer was provided by
moving the slider on the bar which was scaled from -1
(’definitely first’) through 0 (’I do not see a difference’) to
1 (’definitely second’). The bar was continuous, so that the
observer could answer as precisely as possible.

We tested every combination of 2, 8, 16, 25, and 33

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
133

seconds, while the pairs were chosen randomly. Each ob-
server repeated the experimental session three times for
each pair of the adaptation times.

The experiment was performed in a darkened room. Im-
ages were displayed on a 27 LCD display with a native
resolution of 2560 x 1440 pixels and a screen width and
height of 62.4 cm and 40.1 cm, respectively. The com-
puter was equipped with a Geforce 780 Ti GPU.

Participants

The experiment was performed on a group of 13 volunteer
observers (age between 17 and 50 years). They declared
normal or corrected to normal vision and correct colour
vision. The participants were aware that the visual adapta-
tion is tested, but they were naı̈ve about the purpose of the
experiment.

4.2 Results

Fig. 9 presents a bar plot with the results of the experiment,
which shows the preference as a function of the speed of
adaptation to the dark environment. This preference is a
number of votes cast for the adaptation time normalised
by a number of times this time has been tested.

The best score was obtained for 2 seconds, however for
longer adaptation of 8 seconds the observers’ preference is
very close to this result (0.7647 and 0.7639 respectively).
The obtained results suggest that players prefer shorter
adaptation times in comparison with the natural HVS be-
haviour.

2 8 16 25 33

0

0.2

0.4

0.6

0.8

1

Adaptation time in [s]

N
or

m
al

is
ed

 p
re

fe
re

nc
e

Figure 9: Results of the perceptual experiment studying
speed of the adaptation to darkness.

5 Conclusions and future work

In this work, we conducted an evaluation of the preferred
speed of the visual adaptation to darkness. We imple-

mented a test game framework supporting the adaptation
to both dark and bright environments. In this framework
the output rendering is tone mapped using the global com-
pression curve, whose shape is modified based on the
adaptation luminance value. This value is computed using
the weighted average luminance of the scene. The adapta-
tion luminance is changed over time to simulate the mal-
adaptation conditions.

We performed an objective experiment, in which a num-
ber of adaptation times to darkness were compared. The
results revealed that the most favourable is adaptation last-
ing 2 and 8 seconds, which is in contrast to the physical
model of the human visual adaptation suggesting much
longer timings.

Our study approaches the problem of the adaptation
speed from a perspective of computer games. Even though
we proved that the users prefer quicker adaptation, it might
not be true for every game time. Our solution is well-
suited for the games based mainly on exploration and the
analysis of the environment. Games which require higher
level of realism, like simulators, would look better with
longer adaptation. Long adaptation could be also used as
an obstacle of some sort, e.g. in the First Person Shooter
games - the adaptation time could make it harder to spot
enemies and it would be necessary to adapt new tactics.

In future work we plan to conduct perceptual experi-
ments that assess the game player’s preferences towards
a model of the adaptation to brightness. We would like
to check whether a complex non-linear mechanism is re-
ally needed during the gameplay. Also, we plan to im-
plement gaze-dependent adaptation controlled by an eye
tracker and evaluate if this local adaptation is more prefer-
able than the simplified approach based on adaptation to
the screen centre. Another implementation worth investi-
gating are the human saliency models [6] that do not re-
quire an eye tracker and could point out direction of the
observer attention.

References

[1] Hugh Davson. Physiology of the Eye. Elsevier, 2012.

[2] Epic Games, https://docs.unrealengine.
com/l. Unreal Engine documentation, 2004-2016.

[3] Gordon L Fain, Hugh R Matthews, M Carter Corn-
wall, and Yiannis Koutalos. Adaptation in vertebrate
photoreceptors. Physiological reviews, 81(1):117–
151, 2001.

[4] James A Ferwerda, Sumanta N Pattanaik, Peter
Shirley, and Donald P Greenberg. A model of vi-
sual adaptation for realistic image synthesis. In Pro-
ceedings of the 23rd annual conference on Computer
graphics and interactive techniques, pages 249–258.
ACM, 1996.

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
134

[5] John Hable. Filmic tonemapping. In Uncharted 2
- HDR Lighting, http://filmicgames.com/
Downloads/GDC_2010, 2010.

[6] Jonathan Harel. Saliency map algorithm.
http://www.vision.caltech.edu/

˜harel/share/gbvs.php. 2012.

[7] G. Krawczyk, K. Myszkowski, and H.P. Seidel. Per-
ceptual effects in real-time tone mapping. In Proc. of
the 21st Spring Conference on Computer Graphics,
Budmerice, Slovakia, pages 195–202, 2005.

[8] Patrick Ledda, Luis Paulo Santos, and Alan
Chalmers. A local model of eye adaptation for high
dynamic range images. In Proceedings of the 3rd
international conference on Computer graphics, vir-
tual reality, visualisation and interaction in Africa,
pages 151–160. ACM, 2004.

[9] Radosław Mantiuk and Sebastian Janus. Gaze-
dependent ambient occlusion. Lecture Notes in Com-
puter Science (Proc. of ISVC 2012), 7431:523–532,
2012.

[10] Radosław Mantiuk and Mateusz Markowski. Gaze-
dependent tone mapping. Image Analysis and Recog-
nition, pages 426–433, 2013.

[11] E. Montag and R.M. Boynton. Vision Research, vol-
ume 27. University of California, 1897.

[12] K.-I. Naka and W. A. H. Rushton. S-potentials from
luminosity units in the retina of fish (cyprinidae). J.
Physiol., 185:587–599, 1966.

[13] Sumanta N Pattanaik, Jack Tumblin, Hector Yee, and
Donald P Greenberg. Time-dependent visual adapta-
tion for fast realistic image display. In Proceedings
of the 27th annual conference on Computer graph-
ics and interactive techniques, pages 47–54. ACM
Press/Addison-Wesley Publishing Co., 2000.

[14] Eli Peli, Jian Yang, and Robert B Goldstein. Image
invariance with changes in size: The role of periph-
eral contrast thresholds. JOSA A, 8(11):1762–1774,
1991.

[15] E. Reinhard, W. Heidrich, P. Debevec, S. Pattanaik,
G. Ward, and K. Myszkowski. High Dynamic Range
Imaging, Second Edition: Acquisition, Display, and
Image-Based Lighting. Morgan Kaufmann (2nd edi-
tion), 2010.

[16] Christophe Schlick. Quantization techniques for
visualization of high dynamic range pictures. In
Photorealistic Rendering Techniques, pages 7–20.
Springer, 1995.

[17] Peter Vangorp, Karol Myszkowski, Erich W. Graf,
and Rafał K. Mantiuk. A model of local adapta-
tion. ACM Transactions on Graphics (Proceedings
of ACM SIGGRAPH Asia), 34(6):166:1–13, 2015.

[18] Samuel J Williamson and Herman Z Cummins. Light
and color in nature and art. Light and Color in
Nature and Art, by Samuel J. Williamson, Herman
Z. Cummins, pp. 512. ISBN 0-471-08374-7. Wiley-
VCH, February 1983., 1, 1983.

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
135

136

Using Perception-Based Filtering to Hide Shadow Artifacts

Felix Kreuzer∗

Supervised by: Michael Hecher†

Institute of Computer Graphics and Algorithms
TU Wien / Austria

Abstract

Combining filtering techniques with shadow mapping is a
common tool to simulate soft shadows in real-time appli-
cations. A positive side-effect of such approaches is that
the filtering also blurs aliasing artifacts caused by low res-
olution shadow maps, thereby improving the visual quality
of the shadow. In this work we investigate the correlation
between filter radius and shadow map resolution to opti-
mize computational performance while mostly preserving
the visual quality of the soft shadow. We present the re-
sults of a user study and offer a ready-to-use function to
compute for shadow map aliasing artifacts a respective fil-
ter size that makes it unrecognizable.

Keywords: Soft Shadows, Shadow Mapping

1 Introduction

Shadows are crucial for identifying spatial relations be-
tween objects. In real-time graphics shadows are fre-
quently implemented by using shadow maps [9]. A
shadow map stores distances of the visible points in the
scene from the point of view of the light source. When
the scene is rendered from the camera viewpoint, those
values can be compared to the respective distances of the
points visible to the camera. If they are farther away form
the light source the point is shaded. This basic approach
produces hard shadow silhouettes and would theoretically
need a sampling density that matches the size of the texel
drawn on the screen. Modern implementations commonly
average multiple shadow map samples per texel in order to
produce softly blurred shadow transitions called penum-
brae. Such soft shadows provide a higher degree of visual
quality and increased artistic freedom.

Real-time rendering applications require shadow maps
to be generated and filtered for every frame and con-
sume lot of performance on the Graphics Processing Unit.
Keeping the shadow map’s resolution to a minimum re-
duces memory transfers and generation costs, and in-
creases cache hits.

Our aim is to find a perceptually sound method to de-
termine a minimal shadow map resolution. We exploit the

∗falichs@gmail.com
†hecher@cg.tuwien.ac.at

low-pass filtering property of soft shadow penumbrae and
introduce a linear function which allows shadow map res-
olutions and aliasing artifacts to be reduced to a minimum.

We can summarize our contributions to real-time soft
shadowing as follows:

• We investigate the relatively complex problem of ar-
tifacts generated by arbitrary aligned shadow maps in
soft shadow algorithms and break down the huge pa-
rameter space, which can be hardly investigated in a
user study, into a simplified version.

• A novel approach to dynamically adjusting shadow
map sizes for real-time soft shadowing algorithms.
By reducing the number of depth samples in a shadow
map we can increase performance in shadow map
generation since there are less fragments to process
and fewer texture lookups. This also improves cache-
efficiency because shadow samples are tightly packed
and redundant samples are being avoided.

• Our method is flexible and can be applied to several
existing soft shadow mapping algorithms.

2 Related Work

Shadow mapping was first introduced by Williams [9] in
1987 and has evolved ever since.

Nowadays a variety of filter based extensions to the tra-
ditional shadow mapping algorithm exist such as the fol-
lowing:

• Percentage Closer Filtering (PCF) [6] addresses the
problem of anti-aliasing in shadow maps. Traditional
shadow maps contain depth information, hence pre-
filtering cannot be achieved directly. The solution is
a screen space averaging approach. By increasing the
filter size it can be used to simulate soft shadows with
a constant penumbra.

• Variance Shadow Maps [3] approximate the depth
values by storing mean and variance of the depth
distribution. Instead of averaging multiple samples
like in PCF, the probability of a fragment being lit
is calculated through the moments using Chebshev’s
inequality. Storing mean and variance of the depth

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)

distribution instead of actual depth values allows pre-
filtering of the shadow map.

• Convolution Shadow Maps [1] use Fourier expansion
to store and reconstruct depth values. This approach
allows shadow maps to be pre-filtered but requires a
lot of memory and expensive memory transfers to re-
trieve the Fourier coefficients.

• Exponential Shadow Maps [2] adopt an exponential
function to approximate the shadow test. The main
benefits are pre-filter-ability and cheap memory and
computational costs.

• Percentage Closer Soft Shadowing (PCSS) [4] ex-
tends the capabilities of PCF by evaluating the filter
radius for each fragment based on the distance from
shadow occluder to receiver. This approach features
a more plausible penumbra behavior in regions where
occluder and receiver merge (contact hardening).

Hecher et al. [5] present a comparison of some of these
algorithms using a comprehensive perceptual study.

In this article we will focus on PCF and PCSS as rep-
resentative examples of filter based methods, but our find-
ings can be applied to any of the above.

3 Investigating Shadow Map Sam-
pling and Filtering

Our first goal is to find a relation between depth sampling
resolution and shadow map filtering. We will further in-
vestigate this relation in Section 4 and propose a formula
for practical use in Section 6.

Shadow maps are generated per frame by sampling
depth values of a scene from the light sources perspective.
The sampling process makes use of the hardware graphics
pipeline by transforming scene geometry into the perspec-
tive view space of the light source and storing the nearest
depth values per viewport fragment.

Later, when the scene’s per-pixel lighting is calculated,
the fragment shader projects each fragment to light-space
and queries the shadow map to compare depth values. In
case of soft shadows multiple queries are performed in the
neighboring vicinity of the fragment in question and fil-
tered by averaging in order to achieve a penumbra effect
on shadow borders.

This blurring filter hides high frequency detail on the
shadow boundary, leading us to the hypotheses that with
increasing softness of the shadow (i.e., a bigger filter size)
a less detailed shadow map resolution is required to pro-
duce visually sound results. Figure 1 demonstrates this ob-
servation by comparing the visual impact of varying filter
sizes with different resolutions of the same shadow silhou-
ette. We can see that the resolution required for displaying
a perceptually sound soft shadow seems to be directly ef-
fected by the filter size.

We will take a closer look on this relation between res-
olution and filter size in the following sections. Our fi-
nal goal will be to exploit filtering in order to minimize
the shadow map’s resolution. This would not only poten-
tially reduce a shadow map’s memory footprint, but also
improve memory transfer performance during Percentage
Closer Filtering, since the probability of hitting the right
samples in a cache-segment will be higher.

Fi
lte

r
R

ad
iu

s
R

el
at

iv
e

to
 th

e
Im

ag
e

Pl
an

e

Resolution

In
cr

ea
si

ng
 f

ro
m

 T
op

 to
 B

ot
to

m

256x256 512x512 1024x1024

Figure 1: By doubling the penumbra radius we can re-
duce the shadow map’s resolution by half without notice-
able negative impact on the visual quality.

4 Study Design

Our goal is to hide shadow artifacts by finding an optimal
parameterization for shadow mapping based algorithms.
This means we need to consider several potentially im-
portant parameters related to viewer, light source, shadow
map, shadow casting objects and shadow receiving ob-
jects. Additionally, because the major target of this re-
search are real-time applications, we also need to take per-
formance into account. In this section we discuss how we
can map this relatively complex task to a simple 2D setup
which reduces the parameter space greatly and allows us
to find a solution to this problem.

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
138

Figure 2: A comparison of soft shadow iso-contours pro-
duced by an artifact-free shadow map (left) and a shadow
map with a regular artifact pattern (right).

4.1 Reducing the Parameter Space

Looking at all the factors involved in computing soft shad-
ows, we find that naively sampling this huge parameter
space in a user study would be next to impossible. Too
many configurations are necessary to allow for a meaning-
ful evaluation of all the setups that produce perceptually
artifact-free images. We therefore need to reduce the com-
plexity of the problem.

Let’s continue our investigation from the previous sec-
tion and take a closer look at the factors influencing the
visibility of artifacts. Our first observation from Section
3 is that by increasing penumbra size the visibility of ar-
tifacts can be reduced and increasing the resolution of the
shadow map has the same effect. Changing any of the
other parameters mentioned above might impact the per-
ceivability of shadow artifacts, as they can influence the
projected shadow map pixels in the scene (by changing
light source, shadow caster and/or shadow receiver posi-
tion), the projection of the artifact onto the viewer’s image
plane (by changing the viewer’s position) or the contrast
of the produced artifacts (by changing the surface color
and/or intensity of the light source). So the problem can
be separated into three parts. The first part involves the
artifact projected from the light source into the scene, the
second part how the artifact is projected onto the image
plane of the viewer and the third part the contrast and color
of the artifact.

Looking at the first part from an analytical standpoint,
we make the following observation: The result of comput-
ing the soft shadow from a shadow map using filter-based
approaches, can be basically seen as a set of iso-contours
representing the filtered hard shadow (see Figure 2). These
iso-contours form patterns depending on the angle of the
light source and the structure of the shadow receiving sur-
face. Artifact-prone and artifact-free solutions will have
different contour patterns and we argue that the user eval-
uates the dissimilarity in their curvature and slope to iden-

Figure 3: An illustration of the two silhouette artifact pat-
terns used in our user study. The left image shows a single
step, the right image a regular stair pattern. The red lines
represent the actual silhouette of the sampled geometry.

tify artifacts. Because changing the scene setup (viewer,
lights source, objects) can only effect these two factors
(curvature and slope), we can simplify the parameter space
to said variables. Hence, the problem becomes a simple
2D evaluation of filtering differently sized artifacts with
increasing filter size. So we do not have to consider the
scene setup at all. The question then is when do these dif-
ferences become indistinguishable to users?

4.2 Selecting the Stimuli

Now that we were able to greatly simplify the problem, we
have to sample the remaining parameters in a meaningful
way.

Filter Size We treat the filter size as the dependent vari-
able in our experiments. Our goal is to understand how
much an artifact has to be blurred so users cannot recog-
nize it anymore.

Artifact Size Selecting meaningful artifact sizes is actu-
ally not that trivial, as we have to consider that the moni-
tors the experiments will be conducted on have a specific
pixel resolution. Choosing the artifact size too big or too
small can bias the user in his or her decision in whether
the original stimulus actually was an artifact (e.g. if the ar-
tifact is below pixel size or so big that the filter necessary
to hide it needs to be bigger than the screen). We therefore
choose the minimal artifact size to be at least five pixels on
the screen and at most 5% of the screen size (in out case 30
pixels). In-between we set two additional sample points at
10 and 20 pixels.

Silhouette Patterns The patterns formed by the shadow
map depend on the angles of the object silhouette on the
shadow map. If a silhouette is horizontally or vertically
aligned with the shadow map, artifacts are not visible. In
the case of diagonal 45 degree silhouette artifacts are vis-
ible at regular intervals, to which we will refer to as stair
pattern. Cases in-between result in irregular or a mixture

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
139

0 2 4 6 8 10 12 14 16 18 20

100

200

50

150

Fi
lte

r
R

ad
iu

s

Artifact Size

Maximum Contrast
Re

fe
re

nc
e

(S
te

p
A

rti
fa

ct
)

Reference (Stair Artifact)

Perceptual (Step Artifact)

Perceptual (Stair Artifact)

Figure 4: A comparison between reference filter size and
perceptual filter size for the investigated artifact patterns
(stair and step). The filter size necessary to hide artifacts
from users (perceptual filter) is significantly lower than for
the reference filter size.

of irregular and regular patterns. We decided to investi-
gate cases where a single artifact (which we will call step
pattern) is generated and the 45 degree case.

Light-Shadow Contrast The last independent variable
we want to investigate is the contrast between lit and
shaded areas. We decided to include the worst case sce-
nario, which is the contrast between completely black and
white screen pixels. Additionally we reduce the intensity
of the lit part by 50% to have an additional sample case.

To summarize, we need to find the right filter size for
all artifact size, artifact pattern and light-shadow contrast
combinations, resulting in a total of 24 stimuli.

4.3 Task

We decided to use the QUEST procedure [8] to find the
threshold at which users can no longer infer from the fil-
tered stimuli whether the original had artifacts in it or not.

We used the Matlab Psycho Toolbox to control the
QUESTs. The threshold guess was set to 3% of the artifact
size, which is also used as an initial guess and the standard
deviation guess. As a probability threshold we used 0.82.
The gamma parameter was set to 0.5 and the delta param-
eter to 0.01. As beta parameter we used 3.5, which was
optimized using data obtained by one of the authors per-
forming a beta analysis over 60 trials of the experiment.

5 Evaluation

Due to limited time and resources the study was conducted
with a relatively small population of ten users (nine male,
one female), all of them were experts in computer-graphics
aged 28.2 years on average(standard deviation 3.1 years).

0 2 4 6 8 10 12 14 16 18 20

100

200

Refe
ren

ce
(Step

 A
rtif

act
)

Reference (Stair Artifact)Perceptual (Step Artifact)

Perceptual (Stair Artifact)

50

150

Fi
lte

r
R

ad
iu

s

Artifact Size

50% of Maximum Contrast

Figure 5: Reducing the contrast makes it slightly harder to
spot artifacts as can be seen in comparison to the results
in Figure 4.

Based on the user study’s results we can observe the im-
pact of the different parameters on the optimal filter size.

Impact of Artifact Size As already indicated by our ob-
servations conducted in Section 3, the artifact size propor-
tionally corresponds to the filter radius that is required to
hide them. Figure 4 shows a dependence between filter
size and artifact size that is nearly linear. While the stair-
artifacts of size 10 are hidden using a filter size of ∼ 25
pixels or larger, the 20 pixel artifacts on the other end re-
quire a filter of at least 50 pixels.

Impact of Patterns The study shows that the single arti-
fact pattern needs a larger filter size in general to be hidden
from the user. Figure 4 shows that the stair patterns of size
10 pixels are perceived as a straight contour when the filter
size is at or above 25 pixels. Using the same filter size sin-
gle step-artifacts of the same size are still identifiable by
the users. We assume that the regularity of the 45 degree
pattern is beneficial to the user’s perception of a straight
contour.

Comparison to Reference Filter Size In order to mea-
sure the actual benefits of the perceptual approach, we
need to compare it to a reference solution. We decided
to use the same setup we employed in our user study, with
the assumption that in the worst case artifacts will be no-
ticed if at least one pixel differs from the expected out-
come. In other words if the rasterization of two filtered
solutions, one with and one without artifacts, produces the
same image (assuming a typical 8 bit representation for
intensities), the perfect user will not be able to spot any ar-
tifacts. This corresponds to finding the minimal filter size
where this condition is met. We will refer to this filter size
as the reference filter size.

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
140

Impact of Light-Shadow Contrast Reducing the con-
trast between the lit- and the umbra region makes it
slightly harder for the user to identify artifacts as can be
seen in Figure 5.

In the next section we will use the data gathered by the
user study to fit a linear function which describes the per-
ceptually optimal relation between filter- and artifact size.

6 Applications

While the previous Sections investigated the impact of
changes of given parameters on the optimal filter radius,
real-time shadowing setups need to approach the problem
from the opposite direction, that is, to calculate the optimal
parameters for a certain filter radius.

Given an arbitrary scene, we have to assume the worst
case of artifact pattern and the worst case of light-shadow
intensity to appear, hence the only parameter left to find
is the right artifact size which is governed by the shadow
map’s sampling resolution.

Fitting a linear function to the results shown in Figure 4
(blue line) we get Equation 1, which allows us to calculate
the optimal filter radius r to a shadow map by multiplying
the pixel size a (artifact size) with the slope c of the linear
function.

r = a · c (c = 3.47) (1)

In order to conduct a practical evaluation of our observa-
tions, we implemented a real-time rendering environment
and applied Equation 1 to dynamically resize the resolu-
tion of a shadow map. We demonstrate the effectiveness of
reduced shadow map resolution by applying PCF as well
as PCSS filtering. In the case of PCF the filter always
needs to have a radius of 3.47 times the pixel size. To
use or findings for PCSS we first need to map the penum-
bra onto the shadow map of the light source to obtain the
filter radius. Then the optimal shadow map can be com-
puted by dividing the shadow map with the maximally al-
lowed artifact size. Because the penumbra size can differ
within parts of the scene and shadow map artifacts should
be avoided, we need to use the maximum shadow map size
calculated for each surface point visible for the viewer that
lies in shadow.

These rendered results are shown in Figure 7. For
each filtering method we show two situations in particular,
small and large filter size and compare the reduced shadow
map resolution rendering to the unreduced reference ren-
dering side-by-side. While the results look almost iden-
tical, we observe an increase in frame-rates on a Geforce
GTX 960 GPU by up to 100%.

Poisson Disc Sampling A common approach to reduce
the amount of shadow map samples needed to compute
soft shadows is to utilize randomly rotated Poisson disc
kernels. We will shortly discuss why we expect our find-
ings to be usable in Poisson disc based algorithms as well.

Let’s first consider that Poisson disc sampling intro-
duces noise in the soft shadow, which makes it harder
for the user to perceive the iso-contours discussed in Sec-
tion 4.1 (the noise obfuscates the contours). We therefore
expect our findings to be compatible with such algorithms,
as artifacts should be even less noticeable when they are
used.

7 Limitations And Future Work

Although our implementations show promising results
there are some noticeable limitations: In cases where the
penumbra width is large, high frequency geometry details
might be omitted. An example is shown in Figure 6. One
solution to overcome this problem, would be to use a sec-
ond shadow map dedicated for high frequency geometry.

In cases where the penumbra width is very small, i.e.
for hard shadows or contact shadows, the penumbra width
has to be enlarged, because the required resolution would
tend to be infinitely large. Schwärzler et al. describe a pos-
sible solution to this problem in their adaptive light source
subdivision approach [7].

Due to limited resources we conducted our user study
on a small group of ten expert users. We expect to further
reduce the shadow map’s footprint by questioning inexpe-
rienced users.

Figure 6: Lowering the resolution might have the un-
wanted side-effect of detail being omitted.

8 Conclusions

We investigated how soft shadow filtering can be exploited
to hide shadow mapping related artifacts. Reducing the

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
141

complex feature space of shadow perception allowed us to
design a user study to find out at which point filtered ar-
tifacts become unnoticeable to users. By interpreting the
results of the user study we were able to describe the con-
nection between shadow filter width and shadow map reso-
lution from a perceptual point-of-view with a function that
can be used in practical shadow mapping setups. When
we applied this function to common shadow filtering al-
gorithms, we were able to save resources by using percep-
tually optimized algorithms (as can be seen by comparing
the shadow map resolutions and fps-timings in Figure 7).

Our findings can be used to dynamically adjust shadow
map resolution in real-time, or to calculate a feasible
shadow map resolution tailored to a desired penumbra
width.

References

[1] Thomas Annen, Tom Mertens, Philippe Bekaert,
Hans-Peter Seidel, and Jan Kautz. Convolution
shadow maps. In Proceedings of the 18th Eurograph-
ics conference on Rendering Techniques, pages 51–60.
Eurographics Association, 2007.

[2] Thomas Annen, Tom Mertens, Hans-Peter Seidel,
Eddy Flerackers, and Jan Kautz. Exponential shadow
maps. In Proceedings of graphics interface 2008,
pages 155–161. Canadian Information Processing So-
ciety, 2008.

[3] William Donnelly and Andrew Lauritzen. Variance
shadow maps. In Proceedings of the 2006 symposium
on Interactive 3D graphics and games, pages 161–
165. ACM, 2006.

[4] Randima Fernando. Percentage-closer soft shadows.
In ACM SIGGRAPH 2005 Sketches, page 35. ACM,
2005.

[5] Michael Hecher, Matthias Bernhard, Oliver Mat-
tausch, Daniel Scherzer, and Michael Wimmer. A
comparative perceptual study of soft shadow algo-
rithms. ACM Transactions on Applied Perception,
11(5):5:1–5:21, June 2014.

[6] William T Reeves, David H Salesin, and Robert L
Cook. Rendering antialiased shadows with depth
maps. In ACM Siggraph Computer Graphics, vol-
ume 21, pages 283–291. ACM, 1987.

[7] Michael Schwarzler, Oliver Mattausch, Daniel
Scherzer, and Michael Wimmer. Fast accurate soft
shadows with adaptive light source sampling. In
Proceedings of the 17th International Workshop on
Vision, Modeling, and Visualization (VMV 2012),
pages 39–46. Eurographics Association, November
2012.

[8] Andrew B. Watson and Denis G. Pelli. Quest: A
bayesian adaptive psychometric method. Perception
& Psychophysics, 33(2):113–120, 1983.

[9] Lance Williams. Casting curved shadows on curved
surfaces. In ACM Siggraph Computer Graphics, vol-
ume 12, pages 270–274. ACM, 1978.

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
142

(a) PCF 2048×2048, 193.4 fps (b) PCF 598×1244, 294.2 fps

(c) PCF 2048×2048, 157.4 fps (d) PCF 199×414, 290.5 fps

(e) PCSS 2048×2048, 192.4 fps (f) PCSS 582×1211, 307.5 fps

(g) PCSS 2048×2048, 163.2 fps (h) PCSS 190×395, 303.4 fps

Figure 7: Side-by-side comparison of the same scene rendered with large and reduced shadow map resolution. The
shadow map resolutions and achieved frame-rates can be seen in the respective captions.

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
143

144

Acceptable System Latency for Gaze-Dependent
Level of Detail Rendering

Michał Chwesiuk∗

Krzysztof Wolski†

Supervised by: Radosław Mantiuk ‡

West Pomeranian University of Technology
Szczecin / Poland

Abstract

The human visual system is unable to perceive all details
in the entire field of view. High frequency features are
noticeable only at a small angle of 1-2 degrees around the
viewing direction. Therefore, it is a reasonable idea to ren-
der a coarser object representations for the parafoveal and
peripheral visions. A core problem of this gaze-dependent
level-of-detail rendering is the minimisation of the system
latency. In this work we measure how fast the whole pro-
cess of rendering and visualisation should be to prevent
that a level-of-detail change will be visible for human ob-
servers. We noticed that even for distant periphery, the
change from coarser to fine object representation should
take less than 24 ms. It can be obtained only in systems
equipped with the high-end eye tracker and a display with
a refresh rate of 120 Hz or faster.

Keywords: system latency, gaze-contingent display,
level-of-detail, LOD, eye tracking, real time computer
graphics

1 Introduction

One goal of the level-of-detail (LOD) technique is to
quickly change between coarse and fine representations of
the object geometry [3]. Objects with smaller number of
polygons can be rendered faster than their fine represen-
tation. Therefore, if an object occupies limited number of
pixels in the final rendering or it is merely visible, it is
more efficient to use its coarser representation. The goal
is to find a proper level of detail for an object, taking into
account its visibility on the screen.

The human visual system (HVS) is unable to perceive
all details in the entire field of view. High frequency fea-
tures are noticeable only at a small angle of 1-2 degrees
around the viewing direction, otherwise details are imper-
ceptible. Areas outside foveal are called parafoveal and
peripheral regions. This nonlinear sensitivity of the eye

∗mchwesiuk@wi.zut.edu.pl
†krwolski@wi.zut.edu.pl
‡rmantiuk@wi.zut.edu.pl

is defined by the gaze-dependent contrast sensitivity func-
tion (CSF) [15], which models the sensitivity to contrast
as function of eccentricity (i.e. distance from the gaze di-
rection).

In order to increase performance of rendering, it is a rea-
sonable idea to render the coarser object representations
for the parafoveal and peripheral visions. In the gaze-
contingent graphics systems, information about the gaze
direction must be delivered to the rendering engine. The
angular distance between momentary gaze location and
position of the object in the screen space, will be a de-
terminant of the model simplification.

A core problem with the implementation of such sys-
tems is the minimisation of the system latency. The gaze
direction must be captured by the eye tracker, the image
must be rendered, and finally the display device needs
some time to present the image on the screen. If the to-
tal processing time would be too long, the observer could
see the object changing between the coarse and fine repre-
sentation. In this work we investigate how short the system
latency should be to make LOD modifications impercepti-
ble to a human observers.

We perform a perceptual experiment, in which two geo-
metric objects are rendered on one side of the screen. The
first object consists of a large number of polygons and acts
as the reference (or fine) representation. The second object
is its simplified (or coarse) version with a reduced number
of polygons. We asked observers to look at the marker lo-
cated on the opposite side of the screen. The eye tracker is
used to detect the moment, in which observer turns his/her
eyes to look at the objects. In this moment, the image is
redrawn with both objects using the fine representation.
The task of the observer is to identify which of the objects
were rendered with the reduced number of polygons. Dur-
ing the experiment we changed the display refresh rate to
differentiate the system latencies.

In Section 2 of this paper we provide basic information
regarding the human peripheral vision, eye tracking, and
latencies of the gaze-dependent rendering systems. We
present our gaze-dependent LOD rendering environment
and review the previous work related to similar systems in
Section 3. Section 4 presents details of the conducted ex-

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)

periment and we discuss acceptable latencies of the gaze-
dependent LOD rendering in Section 4.4. The paper ends
with conclusions and propositions for future work in Sec-
tion 5.

2 Background

2.1 Visual resolution

The visual resolution of the human eye is measured in
terms of contrast sensitivity [8]. A stimulus consisting of
the alternating bars of a grating (e.g. Gabor pattern) is pre-
sented to observers. They decide what contrast is needed
to see the bars at each frequency, while the contrast is de-
fined as the difference in brightness between light gray and
dark gray bars. The threshold contrast values as a function
of spatial frequencies form the contrast sensitivity function
(CSF, [2]).

However, people can see details with the frequency de-
fined by the CSF only in a small viewing angle, which
subtends 1-2 degrees around the gaze direction. The loss
of visual resolution increasing of viewing angle is caused
by decreasing number of cones (light-sensitive cells) in
the parafoveal and peripheral regions of the retina. This
trait is described by a gaze-dependent contrast sensitivity
function, which shows how contrast sensitivity varies as a
function of distance from the fovea [15, 8]. Fig. 1 presents
a plot of the perceptible signal frequency as a function of
eccentricity . This frequency defines the highest frequency
of the Gabor pattern, which is still recognized by human
observer. An important observation is that the visual reso-
lution decreases rapidly for higher spatial frequencies and
e.g. for a eccentricity of 20 degrees it becomes one-tenth
of the maximum resolution. A typical 22-inch LCD dis-
play is seen in a viewing angle of 40 degrees, therefore,
the geometry of the object located at the screen corner can
be significantly reduced if the observer does not look di-
rectly at it.

0 5 10 15 20 25 30 35 40 450
5

10
15
20
25
30
35
40
45

eccentricity (E) [deg]

fre
qu

en
cy

 (f
) [

cp
d]

Figure 1: Visible spatial frequencies as a function of view-
ing angle (the plot is based on the formulas delivered
in [8]). The dashed line shows the maximum frequency
of a typical LCD display.

2.2 Eye tracking

The principle of eye tracking is based on the observation
that the pupil follows the gaze direction during eye move-
ment [4]. Therefore, the location of the pupil centre can be
used to estimate the gaze direction. A popular technique
employed to localized the pupil center is the modeling of
the iris shape (for an excellent review of models for the
eye detection we refer to Hansen and Ji work [5]). The
eye tracker camera captures an image of the eye. The lo-
cation of the pupil centre is detected in this image. This lo-
cation must be transformed from the camera space to the
screen space to estimate the gaze position on the screen.
This is done using a polynomial transformation as a map-
ping, which parameters are determined during eye tracker
calibration. During calibration, people are asked to look
at the target points displayed on the screen. Then, known
locations of the target points and data captured by the eye
tracker are used to compute the polynomial coefficients.
Finally, this polynomial is applied to transform the pupil
centre from the camera to screen space.

The human visual system scans the surrounding withits
eyes to build a complete view of the environment. The
rapid repositioning of the pupil (called saccadic move-
ment) can reach up to 900◦/sec. To capture this move-
ment, the eye tracker should work with a latency less than
5 ms [12], which is equivalent to a frequency of 200 Hz. In
practical systems, this frequency needs to be even higher,
because of the additional time needed to render and dis-
play the image.

2.3 System latency

The gaze-dependent rendering system uses the gaze direc-
tion captured by the eye tracker to control the image ren-
dering process. For example, an object’s geometry can
be simplified if the object is positioned far away from the
gaze location. Gaze-dependent systems work in real time,
i.e. the image redrawing (including its visualisation) must
be imperceptible to the human. According to Loschky and
McConkie [12, 9], the latency of such systems should be
less than 22 ms (5 ms for gaze capture and rendering, and
additional 17 ms for visualisation on a 60 Hz display).

As shown by Saunders and Woods [17], the latency of
the gaze-dependent rendering system ranges from 12 ms
for CRT display, 18 ms for DLP projectors, to over 30 ms
for low quality LCD displays. However, high-end LCDs
with a short display lag can speed-up this process to about
18 ms, which is enough for the gaze-dependent LOD sim-
plification. Loschky et al. [10] measured the system la-
tency using a technique proposed in [1]. They report mean
latency of 20 ms for the 1000 Hz EyeLink eye tracker
working with a 85 Hz CRT display .

In this work, we use a LCD display, which has a maxi-
mum display frequency of 144 Hz (or a display latency of
less than 7 ms).

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
146

2.4 Previous work

An early work on the gaze-dependent level-of-detail was
presented by Mark Levoy [6]. The complexity of the volu-
metric data was reduced to speed-up the volume rendering
method. The author used a precomputed pyramid of 3D
texture volumes to skip some complex data structure that
were far away from the viewing direction.

In Ohshima et al. [14] a concept for the visual acuity
was proposed. This model examines the central/peripheral
vision, kinetic vision, and fusional vision to cluster objects
of low acuity and render them using simplified versions.
The model was tested using a head tracker.

Reddy [16] investigates the perceptual content of a
computer-generated image in terms of spatial frequency.
The level-of-detail of each object is based on a screen-
based measure of the degree of spatial detail which the
user can perceive at different distance, angular velocity,
and the degree to which it exists in the peripheral field.
The author reports a factor 4.5 improvement in frame rate.
Reddy also proposes a polygon simplification framework
to complement the use of perceptually modulated LOD.
However, it is not clear how this framework was used and
whether a eye tracker was applied during experiments.

Watson et al. [18] studied the effect of peripheral LOD
degradation on the visual search performance. He used
a head mounted display to show a high resolution inset
within a low resolution display field. The obtained results
indicate that the area of the high detail central inset is a
significant factor in search performance. However, Watson
suggests that visual spatial and chrominance complexity
can be reduced by almost half without degrading perceived
quality.

A remote monocular eye tracker was used in [11] to
measure the viewers real- time gaze location. The authors
developed a classic LOD technique, in which objects ge-
ometry is simplified according to eccentricity.

In Murphy and Duchowski [13] objects degradation is
applied nonisotropically, i.e. only a parts of large object
are smoothly reduced. A three-dimensional spatial degra-
dation function is obtained from human subject experi-
ments and applied directly to object geometries prior to
rendering. The technique was implemented in the render-
ing system integrated with a binocular eye tracker. The
results indicate a frame rate improvement ranging from a
factor of at least 2, up to a 15-fold gain in performance
over full resolution display.

Players perception to level of detail (LOD) changes
while playing a computer game is investigated in Lopez
et al. [7]. The simplified models were unrelated to the
task assigned to the player and located away from the area
in which the task was being accomplished. Thus, a per-
ception of LOD modification was tested under the inatten-
tional blindness. The results show that players were able to
detect only about 15% of LOD changes during the game.

In this work we implemented the LOD simplification
approach similar to Luebke [11] technique. However, our

main goal is to investigate a perception of the LOD change
in a real time rendering application. Therefore, we used
apparatuses and techniques that enable the fastest render-
ing and visualisation of an image possible.

3 Gaze-dependent LOD

3.1 Implementation

Fig. 2 illustrates a gaze-dependent rendering and visual-
ization system. The observer looks on the display. Her/his
gaze direction is captured by the eye tracker, which com-
putes the gaze point location on the screen. The graphics
engine uses this gaze location to render the scene. The
scene contains objects whose complexity depends on the
eccentricity. The object close to the gaze point consists
of a larger number of triangles than its simplified version
seen from a high angle.

Figure 2: Diagram of the gaze-dependent rendering sys-
tem.

3.1.1 Eye tracker

In our rendering system we use the Mirametrix S2 eye
tracker equipped with a 60 Hz camera. The S2 is a portable
device, which should be placed under the display in front
of the observer. Before each session the eye tracker must
be calibrated. After successful calibration the software

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
147

sends gaze locations to our eye tracker communication
server using the TCP/IP protocol (see Fig. 3), which col-
lects the gaze data and send them to the rendering engine
using the shared memory. We obtained an accuracy of Mi-
rametrix S2 close to 1 degree of visual angle, which is
sufficient for our experimental application.

Figure 3: Hardware and software architecture.

3.1.2 Rendering framework

We developed a test framework for fast visualisation of the
complex objects. This application is able to render objects
consisting of more than 4k triangles in less than 1 ms. It
was implemented in C++ and is based on the OpenGL li-
brary supported by GLEW and GLFW extensions. The
application applies Phong shading and 16-samples multi-
sample antialiasing.

Figure 4: Example screenshot from our application. The
green cross on the left side depicts location of the gaze
point captured by the eye tracker.

In Fig. 4 an example screenshot from our application
is presented. The Stanford Bunny models are rendered in
0.89 ms. The object at the top was reduced to 100 trian-
gles, while the bottom one consists of 4k triangles.

3.1.3 Visualisation

The rendered images are displayed on the fast LCD with a
display lag of 1 ms and the maximum screen refresh rate

Figure 5: Hardware setup used in the experiment.

of 144 Hz. This display is equipped with the G-Sync elec-
tronic, which has a positive impact on the gaze-dependent
LOD systems that works on slower hardware. However,
we do not use this feature because our rendering appli-
cation is fast enough to finish the calculations in the re-
quired time interval. The main advantage is that G-Sync-
supported displays were the fastest commercially available
LCD display at the time when we performed our experi-
ments (recently, 165 Hz displays were issued).

4 Experiment

The main goal of the experiment was to find the acceptable
system latency, i.e. how fast the object should be redrawn
on the display after changing the LOD level to avoid that
a human observer would notice this change.

4.1 Procedure

The observer sat in front of the display and used the chin-
rest adopted from an ophthalmic slit lamp to stabilise
her/his eyes in 75 cm distance from the screen (see Fig. 5).
The experiment started with a 9-point calibration of the
eye tracker. This procedure took about 20 seconds and
involved observation of the markers displayed in differ-
ent areas of the screen. The data processing related to the
calibration and further gaze location computation was per-
formed by the proprietary eye tracker software.

During the actual experiment the observer was asked to
look at a red cross presented on a 18% grey background
(see Fig. 6, top row). After half a second two objects were
shown on the left side of the screen in 10◦, 20◦, or 35◦

angular distances from the red cross (see Fig. 6, middle
row). One of the objects was composed of a large number
of polygons and considered as a reference. We reduced the
mesh complexity of the second object to a number of poly-
gons that prevent distinguishing this object from the refer-
ence. This simplification depends on the angular distance
between the observer’s gaze point and the object (based on
the lower resolution of the human eyes in the periphery).
The objects were displayed above each other. Each time it

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
148

was randomly chosen whether the high or low resolution
mesh would be displayed at the top.

Then, the observer’s task was to look at the objects and
decide which one was a simplified version. She/he pressed
the up/down cursor buttons to indicate the choice. As the
observer’s gaze were captured by eye tracker, we could
replace the simplified version of the object with the ref-
erence consisting of 4000 polygons as soon as the gaze
moved away from the initial position (see Fig. 6, bot-
tom row). More precisely, we switched the level-of-detail
when the gaze location moved by 4 degrees from the initial
position.

Our eye tracker operates at a 60 Hz frequency, i.e. we
were able to replace objects not earlier than after a 17 ms
delay. Additional latency derived from the display. We
tested the display working at 30 Hz, 60 Hz, 120 Hz, and
144 Hz, which corresponds to the delays of 33 ms, 16 ms,
8 ms, and 7 ms, respectively.

The experiment was repeated for 3 angular distances
and 4 display frequencies resulting in 12 trials per ob-
server. Additionally, we repeated each trial 30 times in
random order to obtain averaged results. The experiment
was performed in a darkened room. We used 22 ASUS
ROG SWIFT PG278Q LCD display with native resolution
of 2560 x 1440 pixels. The rendering was performed on a
PC equipped with NVIDIA 780 GTX graphic card.

4.2 Stimuli

We generated simplified versions of the Stanford Bunny
geometric model using the Quadric Edge Collapse Deci-
mation algorithm in MeshLab 1. The degree of simplifi-
cation has been chosen in a separate pilot experiment. We
searched for a minimum number of polygons, which do
not cause the perceptual difference in comparison with the
reference model consisting of 4,000 polygons. The ex-
periment was repeated for 3 angular distances because, as
we noticed, smaller distances require more precise mod-
els. The results of this pilot experiment show that object
consisting of 2000, 1600, and 1000 polygons are suitable
for 10◦, 20◦, and 35◦, respectively (see Fig. 7).

4.3 Participants

We performed the experiment for a group of 10 volunteer
observers (age between 20 and 23 years, 2 females and 8
males). They declared normal or corrected to normal vi-
sion and correct color vision. The participants were aware
what they should do, but they were naı̈ve about the pur-
pose of the experiment. An average experimental session
lasted approximately 12 minutes.

4.4 Results

The results of the experiment are presented in Fig. 8. The
plot shows the normalised ratio of correct answers (correct

1http://meshlab.sourceforge.net/

Figure 6: Succeeding phases of the experiment. The green
spot depicts the observer’s gaze location.

Figure 7: Stanford Bunny reference object (4000 poly-
gons) and its simplified versions with 2000, 1600, and
1000 polygons.

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
149

indications on simplified objects) as a function of the dis-
play frame rate. The ratio of 0.5 (horizontal dashed line
in Fig. 8) is equivalent to the random choice, i.e. indi-
cates inability to distinguish between reference and sim-
plified models. In our study only for the display refresh
rate of 144 Hz and the angular distance of 35◦ the results
are close to this line. In all other cases the system latency
was to long to ensure imperceptible change of the level-of-
detail. Especially, for smaller viewing angles the redraw-
ing is clearly visible.

30 60 120 1440.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Display frame rate [Hz]

Ab
ilit

y
to

 n
ot

ic
e

re
dr

aw
in

g

10 degrees
20 degrees
35 degrees
random choice

Figure 8: Results of the perceptual experiment. The error
bars show the standard error of the mean.

5 Conclusions and Future Work

In this work we conducted a comprehensive evaluation of
the acceptable system latency for the gaze-dependent LOD
rendering. Our study included a psychophysical experi-
ment which allowed us to evaluate perception of the LOD
change for various display refresh rates, ranging from 33
to 7ms, and for different viewing angles. In the experiment
we used a fast 144 Hz display but also slow a 60 Hz eye
tracker, which introduced additional 17 ms delay. The re-
sults of the experiment show that the total system latency
in our gaze-contingent system is too long for the imper-
ceptible LOD change. Only for the angular distance of
35◦ and the latency close to 24 ms (17 ms for eye tracker
and 7 for display), the LOD redrawing was unnoticeable
for observers.

In future work we plan to test faster eye trackers, which
captures the gaze location in less than one refresh cycle of
the display (less than 7 ms in our case). We also plan to
develop a technique of the LOD blending instead of imme-
diate switching object’s geometry from coarse to fine. This
solution would increase the acceptable system latency. Fi-
nally, we would like to perform a user study of the gaze-
dependent level-of-detail rendering in a complex computer

game environment.

References

[1] Jean-Baptiste Bernard, Scherlen Anne-Catherine,
and Castet Eric. Page mode reading with simulated
scotomas: A modest effect of interline spacing on
reading speed. Vision research, 47(28):3447–3459,
2007.

[2] Fergus W Campbell and JG Robson. Application of
fourier analysis to the visibility of gratings. The Jour-
nal of physiology, 197(3):551–566, 1968.

[3] James H Clark. Hierarchical geometric models for
visible surface algorithms. Communications of the
ACM, 19(10):547–554, 1976.

[4] Andrew T. Duchowski. Eye Tracking Methodology:
Theory and Practice (2nd edition). Springer, Lon-
don, 2007.

[5] Dan Witzner Hansen and Qiang Ji. In the eye of the
beholder: A survey of models for eyes and gaze. Pat-
tern Analysis and Machine Intelligence, IEEE Trans-
actions on, 32(3):478–500, 2010.

[6] Marc Levoy and Ross Whitaker. Gaze-directed vol-
ume rendering. ACM SIGGRAPH Computer Graph-
ics, 24(2):217–223, 1990.

[7] Francisco Lopez, Ramon Molla, and Veronica Sund-
stedt. Exploring peripheral lod change detections
during interactive gaming tasks. In Proceedings of
the 7th Symposium on Applied Perception in Graph-
ics and Visualization, pages 73–80. ACM, 2010.

[8] Lester Loschky, George McConkie, Jian Yang, and
Michael Miller. The limits of visual resolution in nat-
ural scene viewing. Visual Cognition, 12(6):1057–
1092, 2005.

[9] Lester C Loschky and George W McConkie. Investi-
gating spatial vision and dynamic attentional selec-
tion using a gaze-contingent multiresolutional dis-
play. Journal of Experimental Psychology: Applied,
8(2):99, 2002.

[10] Lester C Loschky, Ryan V Ringer, Aaron P Johnson,
Adam M Larson, Mark Neider, and Arthur F Kramer.
Blur detection is unaffected by cognitive load. Visual
cognition, 22(3-4):522–547, 2014.

[11] David Luebke and Carl Erikson. View-dependent
simplification of arbitrary polygonal environments.
In Proceedings of the 24th annual conference on
Computer graphics and interactive techniques, pages
199–208. ACM Press/Addison-Wesley Publishing
Co., 1997.

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
150

[12] George W McConkie and Lester C Loschky. Per-
ception onset time during fixations in free viewing.
Behavior Research Methods, Instruments, & Com-
puters, 34(4):481–490, 2002.

[13] Hunter Murphy and Andrew T Duchowski. Gaze-
contingent level of detail rendering. EuroGraphics
2001, 2001.

[14] Toshikazu Ohshima, Hiroyuki Yamamoto, and
Hideyulu Tamura. Gaze-directed adaptive render-
ing for interacting with virtual space. In Virtual Re-
ality Annual International Symposium, 1996., Pro-
ceedings of the IEEE 1996, pages 103–110. IEEE,
1996.

[15] Eli Peli, Jian Yang, and Robert B Goldstein. Image
invariance with changes in size: The role of periph-
eral contrast thresholds. JOSA A, 8(11):1762–1774,
1991.

[16] Martin Reddy. Perceptually modulated level of de-
tail for virtual environments. PhD thesis, University
of Edinburgh. College of Science and Engineering.
School of Informatics., 1997.

[17] Daniel R Saunders and Russell L Woods. Di-
rect measurement of the system latency of gaze-
contingent displays. Behavior research methods,
46(2):439–447, 2014.

[18] Benjamin Watson, Neff Walker, and Larry F Hodges.
Managing level of detail through head-tracked pe-
ripheral degradation: a model and resulting design
principles. In Proceedings of the ACM symposium
on Virtual reality software and technology, pages 59–
63. ACM, 1997.

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
151

152

State of the Art

State of the Art in Real-time Registration of RGB-D Images
Patrick Stotko∗

Supervised by: Tim Golla†

Institute of Computer Science II - Computer Graphics
University of Bonn
Bonn / Germany

Abstract

3D reconstruction gained more and more interest in the last
years due to low-budget depth scanning devices and high-
performance graphics hardware. Several approaches were
developed in order to get accurate reconstructions in real-
time at high frame rates and opened up new applications
in the field of augmented reality (AR) and 3D scanning
by providing immediate feedback to the user. But since
measurements are corrupted with noise, registration of the
captured RGB-D images needs to be very accurate to get
high quality results. In this state of the art report, we will
review several registration algorithms that were developed
in the last years and compare their performance.

Keywords: State of the Art, Real-time, Registration,
RGB-D, GPU, Kinect, 3D Reconstruction, Comparison

1 Introduction

During the last years, increasing effort was spent in the
field of 3D reconstruction using depth cameras. The origin
of this rising interest lies in the availability of low-budget,
high-resolution depth sensors like the Microsoft Kinect.
One of the first and most prominent systems in this field
was KinectFusion, a 3D reconstruction framework devel-
oped by Izadi et al., (2011) and Newcombe et al., (2011).
This system is capable of producing highly detailed 3D
models from RGB-D images in real-time by integrating
the captured data into the volumetric data structure of Cur-
less and Levoy, (1996) in parallel on the GPU.

However, it has several limitations. In KinectFusion,
Izadi et al., (2011) and Newcombe et al., (2011) used a
full 3D volumetric grid to store the reconstruction. Since
GPU memory is quite limited, creating large scale recon-
structions was not possible. To overcome this issue, several
techniques to reducememory consumptionwere developed
including Moving Volume approaches (Roth and Vona,
2012; Whelan et al., 2012), fast data structures (Laine and
Karras, 2010; Zeng et al., 2012; Zeng et al., 2013) and
streaming algorithms (Chen et al., 2013). Recent work

∗stotko@cs.uni-bonn.de
†golla@cs.uni-bonn.de

done by Nießner et al., (2013) came to the result that by us-
ing hash tables only relevant regions of the volume needed
to be stored leading to great advances in terms of perfor-
mance and efficiency.

The other major drawback of the initial KinectFusion
system is its registration algorithm. Before the captured
data can be integrated into the volume, it must be trans-
formed into the global coordinates system in which the
volume is specified. Therefore, an estimate of the six-
dimensional camera pose is needed. Unfortunately, even
small errors in the estimation cause significant drift in the
final reconstruction since those errors accumulate rapidly.
The origin of this problem lies in the uncertainty of the data
that is captured by the sensor. Usually, these data contain
noise whose exact nature is still unknown. So a perfect
registration is not possible and much effort has been spent
to obtain good reconstructions in the end.

The purpose of this state of the art report is to review
current approaches that tried to solve this problem. We
also investigate how well the solutions fit into our recon-
struction pipeline (Stotko and Golla, 2015) that is based on
the VoxelHashing framework of Nießner et al., (2013). In
particular, we will focus on:

1. Reviewing several approaches and explaining their
strengths and weaknesses

2. Analyzing how efficient they can be implemented on
the GPU

3. Comparing the different algorithms in terms of accu-
racy and efficiency

2 Problem Statement
Before we start to present and compare the different al-
gorithms, we first need to formally state the problem that
should be solved.

2.1 Preliminaries
In our settings, we want to reconstruct 3D geometry au-
tomatically and in real-time using a low-cost depth sen-
sor. Such sensors have been becoming popular in the past
years because they offer moderate reconstruction quality

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 1: Example of an RGB image (left) and a depth image (right) captured by a RGB-D camera, taken from Henry
et al., (2012).

at a cheap price. The probably most prominent one is the
Kinect from Microsoft. Besides a depth image Id , it also
captures an RGB image IRGB at a particular resolution,
e.g. 640 × 480 in case of the Kinect:

IRGB : Ω ⊂ N2 → N3 (1)
Id : Ω ⊂ N2 → R (2)

We require these two maps to be time-synchronized and
aligned. Since the cameras have a small offset, some
sensor-specific transformations for aligning them may be
performed in a preprocessing step. Figure 1 shows an ex-
ample of such an RGB-D image. The 3D position v ∈ R3

of a pixel p ∈ Ω can then be computed by back-projection
as

v(p) =
(

px − cx
fx

Id (p) ,
py − cy

fy
Id (p) , Id (p)

)>
(3)

using the focal length f = (fx , fy) and the principal point
c = (cx , cy) of the camera. On the other hand, the pixel p
into which the point v falls is computed as the projection

p(v) =
(

fx vx
vz
+ cx ,

fy vy
vz
+ cy

)>
(4)

These two transformations can also be written compactly
by considering the intrinsic camera calibration matrix of
the sensor

K =
*.
,

fx 0 cx
0 fy cy
0 0 1

+/
-

(5)

and the projection operator

Π
(
(x , y , z)>

)
= (x/z , y/z)> (6)

Then, we can express the two projections by

v(p) = K−1 · Id (p) · (p , 1)> (7)
p(v) = Π (K · v) (8)

2.2 The Registration Problem

Our reconstruction pipeline is based on the system devel-
oped by Nießner et al., (2013). Like in their work, we
use an efficient hash table on top of a set of voxel blocks
to reconstruct the captured scene in a sparse volumetric
grid. To perform registration, we use ray-casting to extract
the implicitly stored isosurface from the volume and use
the resulting RGB-D image as an estimate of the model.
This image can further be processed for rendering by some
shading kernels.

Now, the only missing part is the registration algorithm.
Given newmeasurements

[
I

(t+1)
RGB

, I (t+1)
d

]
at time step t+1,

we wish to find the new camera transformation matrix

T (t+1) =

[
R(t+1) t (t+1)

0> 1

]
∈ R4×4 (9)

consisting of a rotation R(t+1) ∈ R3×3 and a translation
t (t+1) ∈ R3. Since we also know this transformation
from the previous time step t, namely the current model[
Î

(t)
RGB

, Î (t)
d

]
, this problem can be reduced. We only need

to align the two images to get our desired result. A success-
ful alignment will give us the incremental transformation
∆T . This optimization might be performed in global co-
ordinates which is usually done when dealing with points
clouds. But since we are trying to align measurements
from a camera, the local camera coordinates system at
time step t is the better choice and also used in some of the
approaches. Notice that the local system at time step t + 1
is moving and thus not very appropriate as a reference. In
this context, we have the following relation:

T (t+1) = T (t) · ∆T (10)

So we first move the new measurements by ∆T such that
they are aligned with the previous data in their respective
coordinate system and then transform them to global co-
ordinates using T (t) . Defining the transformation in this

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
156

way, we get an intuitive meaning of the incremental trans-
formation by rearranging the equation:

∆T =
(
T (t)

)−1 · T (t+1) (11)

For any newly measured point given in the local camera
coordinate system at time t+1, we can infer its coordinates
in the local system at time t by applying the incremental
transformation.
In the following, we will discuss three families of regis-

tration algorithms: Iterative Closest Point, Normal Distri-
bution Transform and Sparse Methods.

3 Iterative Closest Point

Westart our discussingwith some popular approaches from
the family of the Iterative Closest Point algorithms.

3.1 KinectFusion ICP

The original registration algorithm used in KinectFusion
is a variant of the popular Iterative Closest Point (ICP)
algorithm (Besl and McKay, 1992; Chen and Medioni,
1992). In our setting, the vertex maps obtained by back-
projection of the depth maps describe the scene in the local
camera coordinate system at time t:

v̂
(t)
i

:= v̂(t) (pi) (12)

v
(t+1)
j

:= ∆T · v(t+1) (p j) (13)

For simplicity, we omit the conversion to homogeneous
coordinates.
In KinectFusion, the newly captured RGB-D image at

time step t + 1 is now aligned to the current model at
time step t. It is rather important to distinguish between
frame-to-frame and frame-to-model tracking. The latter is
much more robust against noise since the model is very
smooth and contains much less noise than an input image.
Therefore, frame-to-model tracking is used in the ICP error
function:

Eicp =
∑

i

∑

j

wi j

〈
T · v(t+1)

j
− v̂

(t)
i

��� n̂
(t)
i

〉2
(14)

This formulation is the general point-to-plane error func-
tion which describes the quadratic distance of the point
T · v(t+1)

j
to the tangent plane of v̂

(t)
i

that is defined by
its normal n̂(t)

i
. The coefficients wi j describe the level

of correspondence between each pair. To find the global
minimum of this error function, the weights wi j and the
transformation T need to be optimized jointly. Unfortu-
nately this is an NP-hard problem, so in the ICP algorithm
the weights and the transformation are optimized sepa-
rately. The cost of this simplification is the loss of the
global optimum, only a local one can be guaranteed.

3.1.1 Finding Correspondences

Optimizing the weights wi j is further simplified using the
heuristic ICP performs. It is assumed that there exists a set
of correspondence pairs between the two points sets. From
this assumption, it follows that the weights are binary and
the error function can be simplified by using only one sum
over the correspondence set:

Eicp =
∑

i

〈
T · v(t+1)

i
− v̂

(t)
c(i)

��� n̂
(t)
c(i)

〉2
(15)

This has the great advantage that the complexity is drasti-
cally reduced of being only linear instead of quadratic.

The initial objective was to optimize the general error
function with respect to the weights. For our simplified
formulation, this problem has an intuitive solution. Each
term of the error is minimal if we choose for each point
v

(t+1)
i

the closest point v̂(t)
c(i) as the corresponding point.

KinectFusion further exploits the fact that these points
are generated from a camera with known intrinsic parame-
ters. Computing the correspondences is therefore done by
the projective data association algorithm (Blais and Levine,
1995). Here, the definition of closest point is not related
to being close in the three-dimensional space. Instead, for
each vertex v(t+1) (pi), which is defined in the local coor-
dinate system at time t + 1, we compute the vertex v̂

(t)
c(i) at

time t that is at the same line of sight in the local system at
time t. This means, we first need to know the coordinates
of vertex v(t+1) (pi) in the other coordinate system by ap-
plying ∆T , then project it to pixel coordinates and use this
pixel pc(i) as a look up for the corresponding vertex:

v̂
(t)
c(i) = v(t) (p(∆T · v(t+1) (pi))) (16)

An example of this procedure is shown in Figure 2. If
the two point sets are already perfectly aligned, then the

Figure 2: The Projective Data Association Operator. Cor-
respondence pairs are found by projection to the previous
camera coordinate system.

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
157

correspondence coincides with the input vertex and thus it
is also the closest point in space.

3.1.2 Optimizing the error function

After having calculated the correspondences, the actual
error function can be optimized. So we wish to find a
rigid transformationT thatminimizes the error between the
correspondences. However, the rotation R of T has three
degrees of freedom but nine unknown values to optimize
for. In order to have aminimal representation, the following
one is commonly used:

ξ =
(
ω> , t>

)> ∈ R6 (17)

This vector can be transformed to the original matrix by

T = ξ̃ , ξ̃ =

[
exp [ω]× t

0> 0

]
(18)

For consistency with further approaches, we only consider
the exponential mapping of the rotation and directly model
the translation. Thiswill help us to compare the approaches
and will not affect the accuracy.
Since only small rotations are assumed, the exponential

mapping can be approximated linearly:

exp [ω]× =
∞∑

n=0

([ω]×)n

n!
≈ I + [ω]× (19)

By plugging this approximation into the error function and
rearranging the terms, one gets similarly to the derivation
of Low, (2004) the following result:

Eicp =
∑

i

*
,

v
(t+1)
i

× n̂
(t)
c(i)

n̂
(t)
c(i)

>
ξ +

〈
v

(t+1)
i

− v̂
(t)
c(i)

��� n̂
(t)
c(i)

〉+
-

2

(20)

=
Jicp ξ + ricp

2
2

(21)

This is a standard equation system that can be solved by the
normal equation. The main advantage of such an equation
system here is the independence between the pairs of ver-
tices. Each row of the Jacobian and the residual can thus
be calculated separately in parallel which makes it very
suitable for a GPU implementation. In such an implemen-
tation, one would directly compute the components of the
normal equation:

J>icp Jicp =
∑

i

j>i · ji , J>icp ricp =
∑

i

j>i · ri (22)

ji =

v
(t+1)
i

× n̂
(t)
c(i)

n̂
(t)
c(i)

>
, ri =

〈
v

(t+1)
i

− v̂
(t)
c(i)

��� n̂
(t)
c(i)

〉

(23)

Each summand is thus be computed independently in par-
allel and the total sum is then be obtained by a tree reduc-
tion. Since the memory cost is only linear in the number of

correspondences, the total memory consumption is man-
ageable. This property is very important since GPU’s have
only a very limited amount of memory compared to CPU’s.
Minimizing the footprint of such an algorithm is therefore
a very important task and is also indirectly a criterion for
being able to run in real-time.

In order to prepare for the next steps, we multiply both
the Jacobian and residual by −1. This does not change the
result but results in a nice notation:

ji = −

v
(t+1)
i

× n̂
(t)
c(i)

n̂
(t)
c(i)

>
=

(
−n̂(t)

c(i)

)> ·
[
[−v(t+1)

i
]× I

]

(24)

ri = −
〈
v

(t+1)
i

− v̂
(t)
c(i)

��� n̂
(t)
c(i)

〉
=

〈
v̂

(t)
c(i) − v

(t+1)
i

��� n̂
(t)
c(i)

〉

(25)

Later we will come back to this point and show what this
reformulation actually means how it can be used.

The final step is to solve the equation system. Both com-
ponents of the normal equation are only six-dimensional
so this step is performed very efficiently on the CPU by a
Cholesky decomposition. Finally, the estimated parame-
ters ξ can be used to update the incremental transformation:

∆T ←
[
exp [ω]× t

0> 0

]
· ∆T (26)

As mentioned at the beginning, these steps must be per-
formed iteratively until either the error falls below a thresh-
old or a maximum number of iterations is reached. To
improve the result, typically a three-level coarse-to-fine
scheme is used where the images are step-wise filtered
and down-sampled to lower resolutions. During the opti-
mization, one starts at the coarsest level and then refines
the solution until reaching the finest level. This helps to
avoid local minima and guides the optimization towards
the global optimum. However, there is still no guarantee
to reach it.

3.2 Photometric ICP
The KinectFusion system was tested in several scenarios
and while the accuracy is quite high in smaller scenes, it
drops significantly on larger ones. Especially if the amount
of characteristic features is low, e.g. on walls, only using
the depth information is not sufficient to compute the cam-
era pose. Steinbrücker et al., (2011) andKerl et al., (2013b)
used the color information to overcome this.

Themain idea here is that if the camera has onlymoved a
little bit like it is shown in Figure 3, the appearance of scene
is the same on both images. Physically, thismeans the color
of an object is the same and therefore its reflectance be-
havior does not change. This results in the assumption
the whole scene mainly reflects perfectly diffuse and that
specular parts can be neglected. For mirror-like objects,
this assumption would of course fail, but usually walls, ta-
bles and most other objects can be approximately modeled

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
158

(a) First input image (b) Second input image (c) Warped first image

Figure 3: Example of warping, taken from Steinbrücker et al., (2011).

in this way. So based on this assumption, the so called
photometric error can be formulated as

Ergbd =
∑

i

(
I (t)
g (w(ξ, pi)) − I (t+1)

g (pi)
)2

(27)

where I
(t)
g , I (t+1)

g are the intensity images computed from
the RGB images at time steps t and t + 1. Special care
about the choice of the coordinate system has to be taken
here. As we will see later, we need to use the same system
as in the KinectFusion ICP. So unlike in the original paper,
we use this formulation to describe the error. The vector
w(ξ, pi) is the warped pixel and defined according to the
incremental transformation ξ :

w(ξ, pi) = Π (K · ξ̃ · ∆T · v(t+1) (pi)) (28)

Intuitively, the warp takes a vertex from time step t + 1
and transforms it into the local camera coordinate system
at time t. Then, it is moved according to the optimization
parameters and finally projected to pixel coordinates. A
correct alignment would move the vertex in such a way
that after projection the intensity value at the corresponding
pixel is the same as the one of the starting pixel.
Figures 3 and 4 show an example of this idea. Note that

the RGB image of the model is not used here since it is not
as precise as the captured one and therefore frame-to-frame
tracking is performed for the color values. To prepare for
the next step, the warped point is written as a mapping:

v(ξ, pi) = ξ̃ ·
(
∆T · v(t+1) (pi)

)
= ξ̃ · v(t+1)

i
(29)

One important note has to bementioned at this point. v(t+1)
i

is the same point as in the KinectFusion ICP error and the
warping functionw is essentially themapping used to com-
pute the correspondences. Knowing this, the Photometric
ICP is in fact an ICP that operates on intensity images. The
error can now be rewritten as

Ergbd =
∑

i

(
d(ξ, pi)

)2 (30)

d(ξ, pi) = I (t)
g (Π (K · v(ξ, pi)) − I (t+1)

g (pi) (31)

Like in KinectFusion, one wants to apply the Gauss-
Newton method to solve the problem iteratively. This re-
quires that the error function needs to be linearized which
is done by a Taylor series of the parameters ξ :

d(ξ, pi) ≈ d(0, pi) +
∂d
∂ξ

(0, pi) · ξ (32)

=
(
I (t)
g (Π (K · v(t+1)

i
) − I (t+1)

g (pi)
)
+
∂d
∂ξ

(0, pi) · ξ
(33)

The first term is the current residual ri and states the dif-
ference in the intensity values under the current alignment.
The other term is the derivative of the energy with respect
to ξ , an 1× 6 matrix and the i-th Jacobian ji . By using the
chain rule the Jacobian can be is given as

∂d
∂ξ

(0, pi) =
∂I (t)

g

∂Π
· ∂Π
∂K
· ∂K
∂v
· ∂v
∂ξ

(0, pi) (34)

= ∇ I (t)
g ·

∂Π

∂(x, y, z)>
· K · ∂v

∂ξ
(0, pi) (35)

Thus, one needs to compute the image gradient

∇ I (t)
g =

*
,

∂I (t)
g

∂x
,
∂I (t)

g

∂y
+
-
∈ R1×2 (36)

the derivative of the dehomogenization

∂Π

∂(x, y, z)>
= *

,

1
z

0 − x
z2

0 1
z
− y

z2

+
-
∈ R2×3 (37)

and the derivative of the moving point ∂v
∂ξ ∈ R3×6 we

are optimizing for. We found that there exists a compact
formula for computing the last derivative. Gallego and
Yezzi, (2015) showed a nice derivation of this formula and
also considered the important case with ξ = 0:

∂v

∂ωi

(0, pi) =
∂ ξ̃

∂ωi

(0) · v(t+1)
i

(38)

=
∂ exp [ω]×

∂ωi

(0) · v(t+1)
i

(39)

= [ei]× · v(t+1)
i

(40)

= [−v(t+1)
i

]× · ei (41)

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
159

∂v

∂ti
(0, pi) =

∂ ξ̃

∂ti
(0) · v(t+1)

i
(42)

=
∂ t

∂ti
(43)

= ei (44)

Here, ei is the i-th basis vector of the standard basis of R3.
More compactly, these derivatives can be written in matrix
form by

∂v

∂ξ
(0, pi) =

[
[−v(t+1)

i
]× I

]
∈ R3×6 (45)

And here we see the great similarity to the final formula for
the normal equation components of the KinectFusion ICP
given in equation (24). Also the residual term coincide
with the one given in equation (25). In both cases, we were
able to reformulate the problem such that it can be solved by
the Gauss-Newton method and thus calculate a Jacobian.
Here, the Jacobian is obtained directly by using the chain
rule while in the KinectFusion ICP setting it is derived
by using the small angles assumption. Now, we can also
state what the last reformulation means. The derivative
∂v
∂ξ (0, pi) of the moving point is also be present there and
the term before it, namely the negative transposed normal(
−n̂(t)

c(i)

)>
, is the derivative of the point-to-plane error.

To sum this up, the photometric energy can now also be
written like the point-to-plane energy:

Ergbd =
Jrgbd ξ + rrgbd

2
2

(46)

So we can solve it by the Gauss-Newton method in ex-
actly the same way as before. As mentioned before, Kerl
et al., (2013b) use a slightly different approach in the first
iteration of their DVO SLAM system. While the Jacobian
matrix is the same as here, they additionally weight it us-
ing some statistical distributions. The weights come from
the Maximum-A-Posteriori formulation and help to im-
prove the results. In their approach, this is a t-distribution.
Its covariance matrix is used for weighting but must be
computed beforehand. In addition, a motion prior is used

Figure 4: The warping function w shown here for a pixel x
is essentially a correspondence mapping, taken from Kerl
et al., (2013b). Note that in our setting the roles of two
images are changed meaning that red indicates the new and
green the previous measurements.

guiding the optimization to prefer small motions. So while
this variant can also be implemented efficiently, the au-
thors already state that approximately twice the run-time is
needed.

3.3 Combined ICP

So far, we showed two different approaches and their sim-
ilarities. While the photometric variant of the ICP avoids
the use of noisy depth data, it suffers from the assumption
that the surfaces reflect ideally diffuse. Fortunately, both
error functions use the same correspondences, are solved
in the same way, defined in the same coordinate system and
their limitations do not affect each other. Whelan et al.,
(2013) used these observations and combined the two er-
ror function so that all given information is used, the depth
and the RGB image. Basically, the two error functions are
weighted by a factor and then summarized to a combined
Jacobian matrix and residual vector:

Ecombined = Eicp + λ Ergbd (47)
(
J>icpJicp + λJ

>
rgbdJrgbd

)
ξ = J>icp ricp +

√
λJ>rgbd rrgbd

(48)

The computation costs are of course higher than using
only one of the error terms. However, both have linear
complexity in time andmemory consumptionwhichmeans
that the total cost increases only by a constant factor. On
the other hand, one can exploit the similarities between the
two errors and speed-up the computation of the Jacobians.

This idea was further used in Kintinuous (Whelan et al.,
2015b) and ElasticFusion (Whelan et al., 2015a). Kintin-
uous is an extension of the KinectFusion system that use a
moving volume to allow large scenes to be reconstructed.
ElasticFusion drops the volumetric structure and uses sur-
fels for reconstruction. However, it still fuses measure-
ments and therefore combines the fusion principle from
the KinectFusion world with the surfel structure that is
typically used in the family of the Normal Distribution
Transform. Kerl et al., (2013a) also tried to combine both
error metrics. In the second and current iteration of their
DVO SLAM system, the Maximum-A-Posteriori approach
is again used to solve the problem. In a post-processing
step, all three systemperform loop closure to achieve global
consistency of the reconstructed model.

3.4 Generalized ICP

We continue our review of registration algorithms in the
family of the ICP approaches by some probabilistic vari-
ants. As already introduced, Kerl et al., (2013b) con-
verted the ICP energy into a Maximum-A-Posteriori prob-
lem. Similarly, Segal et al., (2009) presented a probabilistic
variant which they called Generalized ICP. The basic idea
is that the two sets of measurementsA,B, which we want

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
160

Figure 5: Influence of the covariancematrices on the plane-
to-plane error, taken from Segal et al., (2009).

to align, are drawn from underlying sets Â, B̂ probabilis-
tically according to the normal distributions

v
(t+1)
i

∼ N (v(t+1)
i opt

, Σ (t+1)
i

) (49)

v̂
(t)
j
∼ N (v̂(t)

j opt
, Σ (t)

j
) (50)

This allows to model uncertainty in the measurements.
Therefore instead of minimizing an energy, a Maximum-
Likelihood estimate is computed:

T ∗ = arg max
T

∏

i

p(d (T)
i

) = arg max
T

∑

i

log
(
p(d (T)

i
)
)

(51)

with distances

d (T)
i
= v̂

(t)
c(i) −T · v(t+1)

i
(52)

Now it is assumed that both points are drawn from inde-
pendent normal distributions, it follows that

d (T)
i
∼ N (0 , Σ (t)

c(i) +T Σ (t+1)
i

T) (53)

Using this observation, the optimization problem can be
formulated as

T ∗ = arg min
T

∑

i

(d (T)
i

)> · (Σ (t)
c(i) +T Σ (t+1)

i
T)−1 · d (T)

i

(54)

To solve this, one first needs to know what the covariance
matrices Σ (t)

c(i), Σ
(t+1)
i

are. If we use for example the config-
uration Σ (t)

c(i) = I, Σ (t+1)
i

= 0, the error functions reduces
to the point-to-point distance where the square of the Eu-
clidean distances between all point pairs is considered. In
a similar way, also the point-to-plane distance can be con-
structed from this formulation. Therefore, this approach
can be seen as a generalization of the standard ICP.
In order to define the so called plane-to-plane distance,

the covariance matrices are chosen in a way such that the
variance in the tangent plane is constant in every direction
but small along the normal direction. For a normal that
points along the x-axis, the covariance matrix would thus
be

Σi =
*.
,

ε 0 0
0 1 0
0 0 1

+/
-

, ε ∈ [0, 1] (55)

Other covariances can be created from this one by using
rotation matrices that map the normal to the x-axis. This is
also shown in Figure 5. Here, the covariance matrices are
visualized using ellipses and indicate uncertainty that is
high in the tangent plane but quite low in normal direction.

Generalized ICP only changes the energy formulation
and keeps the other steps unchanged. This means that the
correspondences can be computed in the same way as for
the other variants . However, the optimal transformation
must now be computed using the Conjugate Gradient al-
gorithm. Fortunately, there exist GPU implementations of
this algorithm and those only need to operate on the cor-
respondence set. Therefore Generalized ICP should also
be quite efficient and fast enough to be included in our
reconstruction pipeline. Since its optimization method is
different from the other ones, the performance in terms of
accuracy will be interesting, so we will compare this later
more carefully.

3.5 Direct Volume Matching
Another quite interesting variant of doing frame-to-model
tracking is to use the volumetric data structure of our 3d re-
construction framework directly. So instead of ray-casting
the model from the volume and matching the new RGB-D
image to it, one directly matches the incoming image to the
volume. Bylow et al., (2013) and Canelhas et al., (2013) in-
vestigated this possibility and adjusted the Gauss-Newton
solver to operate on the implicitly stored surface.

This surface is stored in the volumetric data structure
and represented by a function

Dt : Z3 → [−1 , 1] (56)

that maps voxels to truncated signed distance values. The
three-dimensional space is therefore discretized and a
signed distance field is constructed by this function. The
surface itself is encoded as the zero-set of this function. Ev-
ery time a new depth map gets integrated into the volume,
the signed distance function Dt is updated:

Dt+1(x) =
Dt (x) Wt (x) + dt+1(x) wt+1(x)

Wt (x) + wt+1(x)
(57)

Wt+1(x) = Wt (x) + wt+1(x) (58)

To align the new data, an energy based on the signed dis-
tance can now be formulated:

Evolume =
∑

i

(
Dt (ξ̃ · v(t+1)

i
)
)2

(59)

Here, the fact is exploited that the signed distance not
only gives a distance to the surface but also a direction.
Thus, one is able to distinguish whether the current voxel
is inside or outside the object. Like in the Photometric ICP
this distance can now be linearized by a Taylor expansion

Dt (ξ̃ · v(t+1)
i

) ≈ Dt (v
(t+1)
i

) + ∇Dt (v
(t+1)
i

) · ξ (60)

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
161

So we again can express the error in terms of a Jacobian
and a residual:

Evolume = ‖Jvolume ξ + rvolume‖22 (61)

Unfortunately, this formulation has several drawbacks in
contrast to the previous ones. It is of course directly de-
signed for our pipeline and exploits it but from the compu-
tational point-of-view it is not very efficient.
First, we consider the formulation more carefully. The

signed distance is defined on discrete coordinate while in
the error function, the actual 3D position v

(t+1)
i

of a point
is inserted. This means that the signed distance must be
estimated using trilinear interpolation which requires eight
look-ups in the volume. In a full volume, this operation
would be very fast at the cost of the infeasible memory re-
quirements. To do this in our scenario, we need eight hash
table look-ups followed by eight access to the volume. One
could sacrifice accuracy by speed when only the distance
of the nearest voxel is used. However since drift is very
critical in this application, this is also not an option. Even
worse, the gradient of the signed distance function has to be
computed. Usually, this is done by finite differences. But
here, these are differences of trilinear interpolated values
so the cost is even higher.
We also see a general limitation of this approach. It

can only operate perfectly on full volumes. However, our
pipeline exploits the facts the empty space is not needed for
reconstruction and thus only stores a small region round
the actual surface, called the truncation region. Only if the
gradient and the residual are evaluated inside this region,
they are correct. Otherwise, we would have to prune them.
If the camera however moves quite fast, some important
parts may get out of this region and the performance of the
tracker would decreases rapidly. Therefore, we believe that
this approach will not give the best performance neither in
accuracy nor in run time.

4 Normal Distribution Transform

Up to now, we showed several approaches in the family of
the ICP algorithm. In the following, we will consider an-
other family of algorithms, the Normal Distribution Trans-
form (NDT) invented by Biber and Straßer, (2003). While
ICP algorithms directly align the two point sets, NDT
changes the representation of one point set to a mixture
of normal distributions and then tries aligns the other set
to this model.

4.1 3D-NDT

Whereas the original NDT algorithm only operated on 2D
data, Magnusson et al., (2007) extended the framework to
3D. Like in the 2D version, the data is subdivided into
smaller sets by a regular volumetric grid. In each cell Ci ,

the points falling in it are modeled by a normal distribution
N (µ j, Σ j):

µi =
1
K

K∑

k=1
v̂

(t)
k

(62)

Σi =
1

K − 1

K∑

k=1

(
v̂

(t)
k
− µi

) (
v̂

(t)
k
− µi

)>
(63)

where K is the number of points in the current cell Ci .
For a given point, thew likelihood that it is observed in the
model can be expressed by the probability density function

pc(i) (xi) ∝ exp *
,
−

(xi − µc(i))> Σ−1
c(i) (xi − µc(i))

2
+
-

(64)

Since the task is to align the two point sets, the likelihood
of all points of the new measurement should be high. Thus
a score function can be defined in the following way:

sp2d (ξ) = −
n∑

i=1
pc(i)

(
ξ̃ · v(t+1)

i

)
(65)

The advantage of this formulation is that analytic deriva-
tives of the score function exist. Finding the optimal pose
ξ that minimizes this function is actually finding a pose
where the first derivative of the score function is zero.
Like in the original paper, Magnusson et al., (2007) also
suggest to use the Newton method and solve the following
equation system:

H ξ = −g (66)

Here, H ∈ R6×6 denotes the Hessian and g ∈ R6 the gradi-
ent of sp2d . In their paper, Magnusson et al., (2007) used
the axis-angle representation of a rotation where the angle
is considered separately and the axis is always normalized.
In this case, they optimized seven instead of six parameters.
However, this only leads to a slightly different Hessian and
gradient. To be consistent with the other approaches, we
use this formulation.

Now, we discuss the strengths and weakness of the 3D-
NDT. As a preprocessing step, the normal distributions
have to be constructed. Thus, all points need to be asso-
ciated to their corresponding cells in the regular grid and
the mean and covariance of each cell must be calculated.
Computing nearest neighbors might be problematic since
building search structures such as KD-Trees on the GPU is
complicated. Furthermore, the projective behavior of the
points is not further considered or exploited which makes
the model more general. On the other hand, some op-
timization potential is lost making the approach possibly
slower than others.

As stated in their paper, this representation is mush more
compact than storing and using all points. So from the com-
putational point of view, the change in the representation
introduces additional complexity but fortunately this only

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
162

has to be performed on the fixed data set that is not mov-
ing. Nevertheless, we have to take this preprocessing into
account. Most computation steps including preprocessing
and matching can be performed in parallel on the GPU.
Like in the ICP approaches, a tree reduction can be used to
compute the Hessian and the gradient.

4.2 Color 3D-NDT
One big advantage of using normal distributions is that
they can be modeled in any dimension. That was the rea-
son for the extension to 3D and it is also the reason to
extend it to incorporate colors. Huhle et al., (2008) de-
veloped this extension. A straightforward extension would
be to convert colors to the L∗a∗b∗ color space, where per-
ceptual differences coincide to the L2-distance, and use a
6D feature vector consisting of the 3D position and the
color. Then, only the Hessian and the gradient have to
be adjusted and the solution is again found by the Newton
method. However, Huhle et al., (2008) observed that a
single normal distribution per cell is not able to model the
color distribution accurately.
To construct a better model, the authors suggest to use a

Gaussian Mixture Model (GMM):

pi (x∗) =
M∑

j=1
α j N (µ∗i, j , Σ

∗
i, j) (67)

Here, x∗ refers to the color and x to the 3D position of a
point. So for each cell Ci , M normal distributions are com-
puted using ExpectationMaximization (EM)with an initial
guess calculated from k-means. These color distributions
are then used as weighting functions to the 3D-NDT algo-
rithm:

wi j (x∗i) = exp *
,
−

(x∗
i
− µ∗

c(i), j)
> Σ∗−1

c(i), j (x∗
i
− µc(i), j)

2
+
-

(68)

Having these weights, the mean and the covariance of the
3D positions of each color distribution are computed. Note
that in contrast to the standard 3D-NDT algorithm M nor-
mal distributions N (qi j, Σi j) are computed for each cell
Ci . The score function is then given as

sp2d,color (ξ) = −
n∑

i=1

M∑

j=1
wi j pc(i), j

(
ξ̃ · v(t+1)

i

)
(69)

where the probability density function is now defined as

pc(i), j (xi) ∝ exp *
,
−

(xi − µc(i), j)> Σ−1
c(i), j (xi − µc(i), j)

2
+
-

(70)

As in 3D-NDT, the score can be optimized by the Newton
method.

This approach inherits most of the properties of the un-
derlying 3D-NDTalgorithm. However, the amount ofwork
per cell is now much higher than before. Huhle et al.,
(2008) suggest to use M = 3 mixture models to guarantee
unique poses which requires 2 · 3 = 6 normal distribu-
tions per cell. However, these normal distributions have to
be computed by Expectation Maximization and k-means
which both can run in parallel on subsets of the data on the
GPU. Since the number of iterations varies for each subset,
some performance of the GPU might be lost. In addition,
the preprocessing step is much more costly and the com-
pactness of the model is also lower than before because
now 6 normal distributions per cell are used.

4.3 D2D 3D-NDT

Some years later, Stoyanov et al., (2012) came up with an
idea that is similar to the Generalized ICP. In the standard
ICP, the point-to-plane distance between two point clouds
is minimized and this was generalized to what Segal et al.,
(2009) called the plane-to-plane distance. Consequently,
the question arose whether it was possible to extend the
3D-NDT in the same way meaning that two sets of normal
distributions should be registered. The task is therefore to
find a transformation that aligns the two models

T (M (t+1)
NDT

) = {N (T (µi),T (Σi))} (71)

M (t)
NDT

= {N (µ j, Σ j)} (72)

Distances between two probability density functions can
be defined in different ways. However, the standard L2-
distance between all possible points is a simple but reason-
able choice:

dL2 =

∫ (
p(x | M (t)

NDT
) − p(x | T (M (t+1)

NDT
))

)2
dx (73)

After rearranging the terms and applying some identities
of normal distributions, the L2-distance simplifies to

dL2 ∼
∑

i

∑

j

p(0 | T (µi) − µ j,T (Σi) + Σ j) (74)

A new score function can now be defined:

sd2d (ξ) = −
∑

i

∑

j

p(0 | T (µi) − µ j,T (Σi) + Σ j) (75)

As a consequence of this formulation, the optimization can
be performed exactly in the same way as for the original
3D-NDT algorithm. Only the mean and the covariance
differ. Like Magnusson et al., (2007), the score function
is approximated by only considering the nearest normal
distribution for each of the transposed ones. Thus, the
matching here is faster than the standard 3D-NDT if the
size of the model is significantly smaller than the size of
the scan data. On the other hand, two models have to
be constructed in a preprocessing step resulting in some

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
163

overhead. Similar to the ICP optimization, a coarse-to-
fine scheme improves the results by optimizing in different
levels of details to hopefully avoid local minima. While in
the ICP setting this can be done cheaply by calculating the
first levels of the Gaussian pyramid of the RGB-D images,
here all points have to be considered in each level making
the construction slower. Stoyanov et al., (2012) already
recognized that this step is more costly than the actual
registration so we have to consider this in our comparison.

4.4 Multi-Resolution Surfel Maps

More work was done to develop a model that allows cheap
matching like the D2D 3D-NDT and also incorporate color
information as in Color 3D-NDT. The result of this work
were Multi-Resolution Surfel Maps invented by Stückler
and Behnke, (2014). In their work, the authors extend the
probabilistic framework of the Normal Distribution Trans-
form by adding additional information.
First, a mean µ ∈ R6 and a covariance matrix Σ ∈ R6×6

on the shape and color are calculated for each cell. Inspired
by the Fast Point Feature Histograms (FPFH) by Rusu et
al., (2009), a descriptor h ∈ R12 is constructed and used
as an additional source of information for correspondence
finding. To achieve high frame-rates, the authors state that
the neighborhood relations between the cells are stored
explicitly, so the 26 neighbors can be found in constant
time. The surfel maps also provide a multiple resolution
structure by using octrees to implicitly support a coarse-
to-fine scheme.
In the registration stage, a score function is optimized

by first using the Levenberg-Marquardt method to get an
initial coarse pose estimate and then refining this estimate
by the Newton method. In particular, Stückler and Behnke,
(2014) used the same score function as inD2D3D-NDTbut
only considered correspondences with sufficiently small
L2-distance between the shape-texture descriptors. In a
post-processing step, they detect loop closures to further
reduce accumulated drift and improve results. We will
later discuss this concept more carefully later.

Figure 6: 2D illustration of the shape-texture descriptor,
taken from Stückler and Behnke, (2014).

So in principle, Multi-Resolution Surfel Maps are a con-
sequent evolution in the family of the Normal Distribution
Transform. Since they inherit most properties from their
predecessors, we only need to evaluate how efficient their
construction on the GPU can be. Originally, this approach
was developed and implemented on the CPU and the au-
thors already argue that they gained significant speed-ups
by using all cores of the CPU. However, to use the full
potential of GPU’s the whole process must run fully in
parallel. The only challenging part is the octree structure.
In the literature, there are many papers on GPU octrees
but the explicitly stored neighbors here are somehow prob-
lematic. While they are allowing us to get a constant time
lookup, they introduce a randomness in the memory look-
ups and additional memory costs. And since GPUmemory
is still quite valuable and GPU’s typically operate on co-
herent data, it is not directly clear how well a GPU imple-
mentation of Multi-Resolution Surfel Maps will perform.
However, we highlight again that this approach introduces
a lot of complexity. That is probably because this family of
algorithms can be easily extended to a full reconstruction
algorithm and is therefore more than a simple registration
algorithm.

5 Sparse Methods

Algorithms that are more oriented in the field of Computer
Vision use features to estimate the camera pose. So instead
of using all the data and minimizing an error function, one
only considers parts of the scene which are informative
and characteristic. This is reasonable since only very few
points in an image are characteristic enough to describe
the transformation like border points or points with a very
strong gradient. More generally, these points can be seen as
features and the task is to detect enough of them to robustly
estimate the camera pose. An example of detected features
is shown in Figure 7.

In the following, we will consider the approaches of En-
dres et al., (2012) and Huang et al., (2011). While the
basic idea is the same in both systems, they made different
decisions on the kind of features and how they are matched.
In particular, the RGB-D SLAM system by Endres et al.,
(2012) use the combination of SIFT, SURF and ORB fea-
tures. Since they argue that especially the SIFT features are
computationally demanding, a GPU-accelerated version is
used. After the features are matched, RANSAC is used to
compute the best rigid transformation. To reduce acciden-
tal accumulation of drift, the registration is performed on
the last three recent frame and seventeen randomly sam-
pled earlier frames. Finally, they detect loop closures and
optimize the pose graph to further reduce drift.

A similar technique is used by the fovis algorithm of
Huang et al., (2011). But they only rely on FAST fea-
tures and use a different inlier detection method. In-
stead of RANSAC, the problem is formulated in a graph
of consistent features. To get the best transformation, a

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
164

Figure 7: Extracted features shown on the RGB image and the 3D point cloud, taken from Henry et al., (2012).

Maximal-Clique-Problem needs to be solved. Unfortu-
nately, Maximal-Clique is NP-complete, so the exact solu-
tion can not be determined efficiently. The authors there-
fore suggest to use a greedy approximation to solve the
problem in less time. To reduce drift, the registration
is performed against a reference key-frame instead of the
previous frame. It is a common technique and also used
in other approaches like in Multi-Resolution Surfel Maps.
For global consistency, loop closures are detected.
Unlike all previously discussed algorithms, sparse meth-

ods can not so easily be implemented on the GPU. Basi-
cally, that class of algorithms can be split into three steps.
First, features are computed. This can be done on the
CPU if they are fast to evaluate. For computationally more
demanding descriptors, like the SIFT descriptor, a GPU
version has to be used. In case of the SIFT descriptor,
there is such an implementation publicly available (Wu,
2007). Second, the features have to be matched to get a list
of pairs. Since the features are independent of each other,
this can be parallelized and speeded-up by only considering
a reasonably small search window. Third, the best trans-
formation from the pairs has to be found. While RANSAC
search the solution by randomly testing candidates, the
greedy approximation of Maximal-Clique iteratively im-
prove the found solution. Furthermore, the solver for the
transformation parameters ξ must be implemented on the
GPU in this case. This is non-trivial and special care has
to be taken here to avoid numerical instabilities. But since
this method is sparse, CPU versions can also be very fast.

6 Loop Closure
The last point we want to discuss are loop closures. In a
few previously considered algorithms, the authors try to
achieve global consistency by explicitly modeling this as a
loop closure detection problem. This is rather important
to prevent implausible reconstructions like it is shown in
Figure 8. The basic idea is to build a graph where the nodes
represent the camera poses ξi of some selected key-frames

and edges between them the incremental transformations
∆Ti j . In order to optimize the graph, the corresponding re-
construction representations of the key-frames are attached
to them. The optimization itself is usually performed by
the generic graph optimization framework of Kümmerle
et al., (2011) by minimizing a cost function based on the
key-frames.

In the DVO SLAM system of Kerl et al., (2013a) this
framework is used. Stückler and Behnke, (2014) also con-
sidered loop closures to improve their results. Fusion sys-
tems using loop closures that are closer to our pipeline
are the Kintinuous (Whelan et al., 2015b) and ElasticFu-
sion (Whelan et al., 2015a) system. While in Kintinuous a
moving volume approach is used and the pose graph con-
sisting of cloud slices of this volume is optimized after
detecting a loop closure, ElasticFusion uses a surfel-based
map representation and also overcomes the need of a pose
graph.

However, our VoxelHashing pipeline strongly exploits
the fact that the scene is static and thus culls all empty parts
of the volume away. This assumption is very restrictive and
even the loop closure systemofKintinuous can not be easily
used since it would require to deform at least a part of the
volume. Therefore, large parts of the hash table have to be
changed since voxel blocks are moving. This is a drawback
of our pipeline and nevertheless we include this strategy
into our evaluation to see how much results improve when
considering global consistency.

7 Comparison
In this part, we compare the discussed algorithms. For-
tunately, most of them use the RGB-D SLAM benchmark
by Sturm et al., (2012) to show their performance. The
measurements of the scenes contained in this benchmark
are real-world data and also ground truth trajectories are
available. In addition, they also define useful error metrics
like the absolute and relative pose error and provide a tool
for evaluation.

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
165

Figure 8: Drift accumulates and gets visible if a loop is closed, taken from Kähler et al., (2015).

However since the benchmark contains many different
test scenes, each author of the presented papers have cho-
sen different subsets of the provided scenes making a direct
comparison impossible. Thus, we decided to compress the
collected results. So instead of simply listing and com-
paring the error values measured by the authors directly,
we use Won-Lost-Tables which are commonly used in the
field of Machine Learning to compare the performance of
learning algorithms. The main advantage is that they are
abstracting from the absolute results and only measure the
relative performance between two algorithms for the whole
dataset. In particular, for each paper we construct a table
that summarizes the results in a way that we can compare
each pair of algorithms and decide which one performs
better on the test set. Note that we have only done this
for papers where the respective authors have tested their
approach against more than one of the other approaches
we have mentioned in this report and also used enough test
scenes.

Constructing these tables is done in the following way.
First, we compute the mean error of each algorithm L:

ME(L) =
1
n

n∑

i=1
ei (L) (76)

From these means, one can now compute the quotient
ME(L1) /ME(L2) which states the relative mean error of
algorithm L1 compared to L2. This is our first measure-
ment and it is built for all pairs of algorithms. It compresses
the performance across all test cases and tells us howmuch
L1 is better or worse than L2.
The second measurement is constructed by evaluating

which algorithms was better at which test case. This means
that for each scene one determines if L1 has won, lost or
was equally good against L2 and accumulates this infor-
mation. As a result, one gets the number of wins, losses
and ties of L1 against L2 in the complete test set. Using
that information helps to interpret the relative mean error
since one large deviation can influence this value quite sig-
nificantly. On the other hand, the won/lost/ties statistic is

not affected from such deviations and thus helps us to give
better interpretations. The number of scenes on which the
approaches are evaluated is also implicitly encoded in these
tables by summing the wins, losses and ties.

In Table 1 we show the results of our comparison. Here,
the ICP variants KinectFusion ICP (Izadi et al., 2011; New-
combe et al., 2011; Nießner et al., 2013), Photometric
ICP (Steinbrücker et al., 2011), Combined ICP (Whelan
et al., 2013), Kintinuous (Whelan et al., (2015b)), Elastic-
Fusion (Whelan et al., (2015a)), Generalized ICP (Segal
et al., 2009) and DVO SLAM (Kerl et al., 2013a) are com-
pared. The NDT approaches are D2D 3D-NDT (Stoyanov
et al., 2012) and Multi-Resolution Surfel Maps (Stück-
ler and Behnke, 2014) and from the sparse methods fovis
(Huang et al., 2011) and RGB-D SLAM (Endres et al.,
2012) are chosen. To ensure an objective comparison, all
results are weighted equally.

First, we focus on the results of Whelan et al., (2013).
They introduced the Combined ICP and compared its per-
formance against the geometric and the photometric vari-
ant. In addition, they also evaluated the fovis system. From
the table, one can infer that the Combined ICP is much
stronger than the KinectFusion ICP and Photometric ICP.
This result is quite intuitive since the motivation of it was
that the strengths and the weaknesses of the two approaches
were different and a combination would help both parts to
perform better. Furthermore, Photometric ICP seems to
be also much better than the standard KinectFusion ICP
approach. Here, the much lower noise in the RGB images
allows the algorithm to be more precise. fovis performs
also very well and is on par with the Combined ICP while
having a slightly lower mean error. Experiments of Whe-
lan et al., (2013) also showed that especially in cases where
only few or no visual and geometric features are available,
like in corridor scenes shown in Figure 9, the combination
of depth and color data stabilizes the camera pose estima-
tion process and makes it very robust in such scenarios.

Next, we analyze the results of Multi-Resolution Surfel
Maps. Interestingly, this approach is considered to be

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
166

Table 1: Won-Lost-Tables. If Lc and Lr indicate the column and row algorithms, then the lower triangle shows the number
of win-loss-ties of Lc versus Lr whereas the upper triangle indicates the quotient of the average errors ME(Lr) /ME(Lc).

(a) Results built from Stückler and Behnke, (2014) using relative pose error (RPE) median

Multi-Resolution
Surfel Maps Photometric ICP Generalized ICP D2D 3D-NDT fovis

Multi-Resolution
Surfel Maps 0.667 0.646 0.699 0.859

Photometric ICP 18-3-1 0.968 1.049 1.288

Generalized ICP 19-3-0 12-10-0 1.083 1.331

D2D 3D-NDT 20-2-0 15-7-0 9-13-0 1.229

fovis 18-4-0 17-4-1 9-13-0 5-17-0

(b) Results built from Kerl et al., (2013a) using absolute trajectory error (ATE) root-mean-square error (RMSE)

DVO SLAM RGB-D SLAM Multi-Resolution
Surfel Maps KinectFusion ICP

DVO SLAM 0.629 0.791 0.114

RGB-D SLAM 8-2-0 1.256 0.182
Multi-Resolution
Surfel Maps 8-2-0 3-7-0 0.145

KinectFusion ICP 10-0-0 9-1-0 9-1-0

(c) Results built from Whelan et al., (2013) using relative pose error (RPE) root-mean-square error (RMSE)

Combined ICP KinectFusion ICP Photometric ICP fovis

Combined ICP 0.233 0.726 1.289

KinectFusion ICP 4-0-0 3.117 5.537

Photometric ICP 4-0-0 0-4-0 1.224

fovis 2-2-0 0-4-0 1-3-0

(d) Results built from Whelan et al., (2015b) using absolute trajectory error (ATE) root-mean-square error (RMSE)

Kintinuous DVO SLAM RGB-D SLAM Multi-Resolution
Surfel Maps

Kintinuous 1.494 1.010 1.024

DVO SLAM 0-10-0 0.676 0.685

RGB-D SLAM 4-6-0 6-4-0 1.014
Multi-Resolution
Surfel Maps 5-5-0 10-0-0 6-4-0

(e) Results built from Whelan et al., (2015a) using absolute trajectory error (ATE) root-mean-square error (RMSE)

ElasticFusion ElasticFusion
(no deformation) Kintinuous Multi-Resolution

Surfel Maps RGB-D SLAM DVO SLAM

ElasticFusion 0.236 0.355 0.053 0.358 0.356
ElasticFusion

(no deformation) 7-0-1 1.506 0.224 1.517 1.509

Kintinuous 6-2-0 5-3-0 0.148 1.007 1.002
Multi-Resolution
Surfel Maps 8-0-0 7-1-0 7-1-0 6.786 6.750

RGB-D SLAM 6-2-0 3-5-0 4-4-0 0-8-0 0.995

DVO SLAM 8-0-0 4-4-0 4-4-0 1-7-0 6-2-0

a reference algorithm in the literature since most of the
papers evaluated their approaches against it. Here, this has
the great advantage that if we assume that its performance
is the same across the papers, we are able to compare the

algorithms across this boundary. Stückler and Behnke,
(2014), the inventors of the Multi-Resolution Surfel Maps,
compared it to the Generalized ICP, the Photometric ICP,
fovis and D2D 3D-NDT on which it is based on. It is

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
167

also not very surprising that Multi-Resolution Surfel Maps
outperform its competitors quite significantly in the number
of wins and also in relative accuracy. The main reason for
this is that none of the other algorithms explicitly model
a loop closure. So indeed the performance is better but
the algorithm is not a pure registration algorithm anymore.
We can also see that the Photometric ICP achieves very
good results and is most of the time better than the other
algorithms. This is again due to its design, it is the only
one except fovis andMulti-Resolution SurfelMapsthat uses
color information and is therefore better than the non-color
registration algorithms.
If we now compare Multi-Resolution Surfel Maps

against other algorithms implementing a loop closure sys-
tem, we see that its dominance is gone. A bit surpris-
ing are the results from Whelan et al., (2015a). Here,
the approach of Stückler and Behnke, (2014) totally fails
against all other algorithms by at least one order of magni-
tude. This is simply caused by two of the eight tests where
Multi-Resolution Surfel Maps probably computed totally
wrong poses resulting in a very high error. But even if we
only count the other six tests, the results are still not very
good. On the other hand, DVO SLAM seems to be very
robust and is either on par with or better than the other ap-
proaches. Its main advantage is the usage of both color and
depth data combined in a robust Maximum-A-Posteriori
formulation. However Kintinuous, which also used all the
available data, is accurate enough to be on par with it.
Here, we see another interesting effect. Even though the
Maximum-A-Posteriori model is much more general and
allows to weight each Jacobian and residual to be weighted
individually, this advantage can somehow be compensated
if a fused model that is much smoother and contain less

Figure 9: Reconstruction results of another data set, taken
from Whelan et al., (2013). From top to bottom and in
colors red, yellow, blue, green: KinectFusion ICP, Photo-
metric ICP, fovis, Combined ICP.

noise is used. While in KinectFusion, this seems to have
not a great impact, Kintinuous uses the advanced Com-
bined ICP and also models loop closures by deforming the
reconstruction. In that way, its performance is quite well.
However, further tests by Whelan et al., (2015b) showed
that DVO SLAM is in fact better and achieves better re-
sults. Nevertheless, it is interesting to see how a fused
model helps to find better poses.

Across all papers, KinectFusion ICP performs very bad
and is outperformed by all other algorithms. This is not
very surprising because most of its competitors have mod-
els that are more complex and use the data in a better way.
The sparse methods RGB-D SLAM and fovis also achieve
very good results and especially fovis is more accurate than
Generalized ICP, D2D 3D-NDT and the Photometric ICP.
ElasticFusion, probably the most advanced approach, beats
every other algorithm quite significantly and even with dis-
abled loop closure mechanism its performance is still very
good. This is in fact very surprising. Disabling loop clo-
sure detection removes the possibility to correct drift that
was accumulated during registration. Only if the estima-
tion of the camera pose is very accurate, loop closures get
less important. But in our scenario, the noise produced
by depth sensors is really problematic and thus we don not
expected such impressive results. The hybrid model that is
somehow in-between the classic volumetric approach and
the probabilistic NDT model seems to perform very well
and combine the strengths of both worlds.

7.1 Conclusion
Summarizing all results we can conclude that the most
powerful pure registration algorithm for our pipeline is the
Combined ICP approach. It is fast, accurate and achieve
very good results. If we consider all approaches, Elastic-
Fusion achieves the overall best performance and is still
good even if deformations are disabled. Its model also
seem to be better and more flexible than ours.

The main drawback of our pipeline is the dependence
on static scenes which makes it inflexible against defor-
mations. This includes the mentioned loop closures and
also dynamic scenes. Recently, Newcombe et al., (2015)
extended KinectFusion in this way to reconstruct moving
and deformable objects. ElasticFusion is also an example
of a more flexible system. All in all, we have discovered
interesting registration and reconstruction algorithms and
we hope that the report will help researchers to find new
ways to solve this hard problem.

References
[1] P. J. Besl and N. D. McKay. “A Method for Reg-

istration of 3-D Shapes”. In: IEEE Trans. Pattern
Anal. Mach. Intell. 14.2 (1992), pp. 239–256.

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
168

[2] P. Biber and W. Straßer. “The normal distributions
transform: A new approach to laser scan match-
ing”. In: Intelligent Robots and Systems, 2003.(IROS
2003). Proceedings. 2003 IEEE/RSJ International
Conference on. Vol. 3. IEEE. 2003, pp. 2743–2748.

[3] G. Blais and M. D. Levine. “Registering multi-
view range data to create 3D computer objects”. In:
Pattern Analysis and Machine Intelligence, IEEE
Transactions on 17.8 (1995), pp. 820–824.

[4] E. Bylow, J. Sturm, C.Kerl, F. Kahl, andD. Cremers.
“Real-time camera tracking and 3d reconstruction
using signed distance functions”. In: Robotics: Sci-
ence and Systems (RSS) Conference 2013. Vol. 9.
2013.

[5] D. R. Canelhas, T. Stoyanov, and A. J. Lilienthal.
“SDF Tracker: A parallel algorithm for on-line pose
estimation and scene reconstruction from depth im-
ages”. In: Intelligent Robots and Systems (IROS),
2013 IEEE/RSJ International Conference on. IEEE.
2013, pp. 3671–3676.

[6] J. Chen, D. Bautembach, and S. Izadi. “Scalable
Real-time Volumetric Surface Reconstruction”. In:
ACM Trans. Graph. 32 (2013), 113:1–113:16.

[7] Y. Chen and G. Medioni. “Object Modelling by
Registration of Multiple Range Images”. In: Image
Vision Computing (IVC) 10.3 (1992), pp. 145–155.

[8] B. Curless and M. Levoy. “A Volumetric Method
for Building Complex Models from Range Images”.
In: Proceedings of the 23rd Annual Conference
on Computer Graphics and Interactive Techniques.
SIGGRAPH ’96. 1996, pp. 303–312.

[9] F. Endres, J. Hess, N. Engelhard, J. Sturm, D. Cre-
mers, and W. Burgard. “An evaluation of the RGB-
D SLAM system”. In: Robotics and Automation
(ICRA), 2012 IEEE International Conference on.
IEEE. 2012, pp. 1691–1696.

[10] G. Gallego and A. Yezzi. “A compact formula for
the derivative of a 3-D rotation in exponential coor-
dinates”. In: Journal of Mathematical Imaging and
Vision 51.3 (2015), pp. 378–384.

[11] P. Henry, M. Krainin, E. Herbst, X. Ren, and D.
Fox. “RGB-D mapping: Using Kinect-style depth
cameras for dense 3D modeling of indoor environ-
ments”. In: The International Journal of Robotics
Research 31.5 (2012), pp. 647–663.

[12] A. S. Huang, A. Bachrach, P. Henry, M. Krainin, D.
Maturana, D. Fox, and N. Roy. “Visual odometry
andmapping for autonomous flight using an RGB-D
camera”. In: International Symposium on Robotics
Research (ISRR). 2011, pp. 1–16.

[13] B. Huhle, M. Magnusson, W. Straßer, and A. J.
Lilienthal. “Registration of colored 3d point clouds
with a kernel-based extension to the normal distri-
butions transform”. In: Robotics and Automation,
2008. ICRA 2008. IEEE International Conference
on. IEEE. 2008, pp. 4025–4030.

[14] S. Izadi, D. Kim, O. Hilliges, D. Molyneaux, R.
Newcombe, P. Kohli, J. Shotton, S. Hodges, D. Free-
man, A. Davison, and A. Fitzgibbon. “KinectFu-
sion: Real-time 3D Reconstruction and Interaction
Using aMoving Depth Camera”. In: Proceedings of
the 24th Annual ACM Symposium on User Interface
Software and Technology. UIST ’11. ACM, 2011,
pp. 559–568.

[15] O. Kähler, V. A. Prisacariu, C. Y. Ren, X. Sun, P.
Torr, and D. Murray. “Very high frame rate vol-
umetric integration of depth images on mobile de-
vices”. In: Visualization and Computer Graphics,
IEEE Transactions on 21.11 (2015), pp. 1241–1250.

[16] C. Kerl, J. Sturm, and D. Cremers. “Dense visual
slam for rgb-d cameras”. In: Intelligent Robots and
Systems (IROS), 2013 IEEE/RSJ International Con-
ference on. IEEE. 2013, pp. 2100–2106.

[17] C. Kerl, J. Sturm, and D. Cremers. “Robust odom-
etry estimation for RGB-D cameras”. In: Robotics
and Automation (ICRA), 2013 IEEE International
Conference on. IEEE. 2013, pp. 3748–3754.

[18] R. Kümmerle, G. Grisetti, H. Strasdat, K. Konolige,
and W. Burgard. “g2o: A general framework for
graph optimization”. In: Robotics and Automation
(ICRA), 2011 IEEE International Conference on.
IEEE. 2011, pp. 3607–3613.

[19] S. Laine and T. Karras. “Efficient Sparse Voxel
Octrees”. In: Proceedings of the 2010 ACM SIG-
GRAPH Symposium on Interactive 3D Graphics and
Games. I3D ’10. 2010, pp. 55–63.

[20] K.-L. Low. Linear Least-Squares Optimization for
Point-to-Plane ICP Surface Registration. Tech. rep.
Chapel Hill, University of North Carolina, 2004.

[21] M.Magnusson, A. Lilienthal, and T. Duckett. “Scan
registration for autonomous mining vehicles using
3D-NDT”. In: Journal of Field Robotics 24.10
(2007), pp. 803–827.

[22] R. A. Newcombe, D. Fox, and S. M. Seitz. “Dynam-
icFusion: Reconstruction and Tracking of Non-rigid
Scenes in Real-Time”. In: Proceedings of the IEEE
Conference on Computer Vision and Pattern Recog-
nition. 2015, pp. 343–352.

[23] R. A. Newcombe, S. Izadi, O. Hilliges, D.
Molyneaux, D. Kim, A. J. Davison, P. Kohli, J. Shot-
ton, S. Hodges, and A. Fitzgibbon. “KinectFusion:
Real-Time Dense Surface Mapping and Tracking”.
In: IEEE ISMAR. IEEE, 2011.

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
169

[24] M. Nießner, M. Zollhöfer, S. Izadi, and M. Stam-
minger. “Real-time 3D Reconstruction at Scale Us-
ing Voxel Hashing”. In: ACM Trans. Graph. 32.6
(2013), 169:1–169:11.

[25] H. Roth and M. Vona. “Moving Volume KinectFu-
sion”. In: Proceedings of the British Machine Vision
Conference. BMVA Press, 2012, pp. 112.1–112.11.

[26] R. B. Rusu, N. Blodow, and M. Beetz. “Fast point
feature histograms (FPFH) for 3D registration”. In:
Robotics and Automation, 2009. ICRA’09. IEEE In-
ternational Conference on. IEEE. 2009, pp. 3212–
3217.

[27] A. Segal, D. Haehnel, and S. Thrun. “Generalized-
ICP.” In: Robotics: Science and Systems. Vol. 2. 4.
2009.

[28] F. Steinbrücker, J. Sturm, and D. Cremers. “Real-
time visual odometry from dense RGB-D images”.
In:Computer Vision Workshops (ICCV Workshops),
2011 IEEE International Conference on. IEEE.
2011, pp. 719–722.

[29] P. Stotko and T. Golla. “Improved 3D Reconstruc-
tion using Combined Weighting Strategies”. In:
Proceedings of CESCG 2015: The 19th Central
European Seminar on Computer Graphics. 2015,
pp. 135–142.

[30] T. D. Stoyanov, M. Magnusson, H. Andreasson,
and A. Lilienthal. “Fast and accurate scan reg-
istration through minimization of the distance be-
tween compact 3D NDT representations”. In: The
International Journal of Robotics Research (2012),
p. 0278364912460895.

[31] J. Stückler and S. Behnke. “Multi-resolution surfel
maps for efficient dense 3Dmodeling and tracking”.
In: Journal of Visual Communication and Image
Representation 25.1 (2014), pp. 137–147.

[32] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and
D. Cremers. “A benchmark for the evaluation of
RGB-D SLAM systems”. In: Intelligent Robots and
Systems (IROS), 2012 IEEE/RSJ International Con-
ference on. IEEE. 2012, pp. 573–580.

[33] T. Whelan, M. Kaess, M. Fallon, H. Johannsson,
J. Leonard, and J. McDonald. “Kintinuous: Spa-
tially Extended KinectFusion”. In: RSS Workshop
on RGB-D: Advanced Reasoning with Depth Cam-
eras. Sydney, Australia, 2012.

[34] T. Whelan, S. Leutenegger, R. F. Salas-Moreno, B.
Glocker, and A. J. Davison. “ElasticFusion: Dense
SLAM without a pose graph”. In: Proceedings of
Robotics: Science and Systems (RSS). 2015.

[35] T. Whelan, M. Kaess, H. Johannsson, M. Fallon,
J. J. Leonard, and J. McDonald. “Real-time large-
scale dense RGB-D SLAMwith volumetric fusion”.
In: The International Journal of Robotics Research
34.4-5 (2015), pp. 598–626.

[36] T. Whelan, H. Johannsson, M. Kaess, J. J. Leonard,
and J. McDonald. “Robust real-time visual odom-
etry for dense RGB-D mapping”. In: Robotics and
Automation (ICRA), 2013 IEEE International Con-
ference on. IEEE. 2013, pp. 5724–5731.

[37] C. Wu. “SiftGPU: A GPU implementation of scale
invariant feature transform (SIFT)”. In: (2007). url:
http://cs.unc.edu/~ccwu/siftgpu/.

[38] M.Zeng, F. Zhao, J. Zheng, andX.Liu. “AMemory-
Efficient KinectFusion Using Octree”. In: Compu-
tational Visual Media. Springer, 2012, pp. 234–
241.

[39] M. Zeng, F. Zhao, J. Zheng, and X. Liu. “Octree-
based Fusion for Realtime 3D Reconstruction”. In:
Graph. Models 75.3 (2013), pp. 126–136.

Proceedings of CESCG 2016: The 20th Central European Seminar on Computer Graphics (non-peer-reviewed)
170

Sponsors of CESCG 2016

VRVis Zentrum für Virtual Reality und Visualisierung Forschungs‐GmbH, Donau‐City‐Strasse 1, 1220 Wien, Austria

VRVis Zentrum für Virtual Reality und

Visualisierung Forschungs‐GmbH

The VRVis Research Center is a joint venture in
research and development for virtual reality and
visualization. VRVis was founded in 2000 as part of
the Austrian Kplus program to bridge the gap
between academic research and commercial
development as well as to supply the necessary
transfer of knowledge between the academic
community and industry. The competence center
VRVis is funded by BMVIT, BMWFW, and the
Vienna Business Agency within the scope of
COMET – Competence Centers for Excellent
Technologies. The program COMET is managed by
FFG.
This mission is mirrored in a variety of academic
and industrial partners. The research center is
currently conducted by five academic institutes
and numerous industrial partners. Leading‐edge
innovations and down‐to‐earth business style
characterizes VRVis as a valued partner for high‐
level research.
The company is located in Vienna, Austria. Today,
around 60 researchers together with about 20
students do high‐level applied and basic research
in three different areas.

The Team

VRVis consists of internationally experienced
researchers in the areas of visualization, rendering
and visual analysis. Their outstanding experience
and knowledge in these topics qualify them for the
innovative research they are performing. The
research areas are headed by key researchers who
manage these areas, define goals and projects for
this area, and conduct the defined research
together with their staff. Most members of the
research teams are young researchers, whose
creativity and ingenuity is the key to the success.
VRVis is always looking for young, talented, and
motivated researches in the fields of research to
extend its research work or to support partner
companies.

Research Program

The scientific research program consists of three
research areas (Visualization, Rendering and Visual
Analysis) in which thematically matching research
projects are conducted. Each research area realizes
application projects on the one hand and basic
research for these application projects on the
other hand.

Working at VRVis

VRVis is always looking for students, junior and
senior researchers who want to join the VRVis
team. VRVis is offering internships, diploma the‐
ses and PhD theses in cooperation with the TU
Wien and regular positions. For more information
or search for job opportunities in the field of Visual
Computing visit our webpage at www.vrvis.at.

Selection of Partners

Scientific Partners:
• Vienna University of Technology
• Graz University of Technology
• University of Vienna

Industrial Partners:
• AVL List GmbH
• AGFA Healthcare GesmbH
• Austria Power Grid AG
• Geodata Ziviltechniker GmbH
• Imagination Computer Services GesmbH
• ÖBB‐Infrastruktur AG
• Zumtobel Lighting GmbH
• and many more

Currently, VRVis is again extending its industrial
base with new partners from several new fields.

Additional Information and Contact

Please visit our webpage for detailed information
about the research program or current projects at
www.vrvis.at or contact us at office@vrvis.at or via
phone +43 (1) 20501 / 30100.

	Invited Talks
	Realistic rendering in the ArchViz and visual effect industries: When academic research meets practice
	Visual data science – Advancing science through visual reasoning

	Real-time Rendering
	Rendering high detail models from displacement maps
	Real-time cast shadow contours
	Configurable rendering effects for mobile molecule visualization

	Visualization
	Sonoco: Interactive visual comparison of filtering operations on time-dependent medical imaging data
	Interactive visual analysis of animal trajectories in a T-Maze

	Image Processing & Vision
	Recognition of important features of triangulated human head models
	Segmentation of brain tumors from magnetic resonance images using adaptive thresholding and graph cut algorithm
	Classification of built-up areas in LiDAR data based on second-generation connectivity filters
	Wavelet-based hierarchical heightmap compression method

	Augmented Reality & Interaction
	Foreground detection and prototyping of photographic composition on Android
	Natural interaction with small 3D objects in virtual environments
	Generation of lecture notes as images from recorded whiteboard and blackboard based presentations

	Modeling & Simulation
	Dynamic simulation of virtual agents and obstacles in virtual cities
	Procedural generation using grammar based modelling and genetic algorithms
	Guided 2D modeling of 3D buildings using oriented photos

	Perception
	Simulation of the luminance adaptation of the human visual system to varying background illumination
	Using perception-based filtering to hide shadow artifacts
	Acceptable system latency for gaze-dependent level of detail rendering

	State of the Art
	State of the art in real-time registration of RGB-D images

	Sponsors of CESCG 2016

