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Welcome to CESCG 2015!

This book contains the proceedings of the 19th Central European Seminar on
Computer Graphics, short CESCG, which continues a history of very successful
seminars. Again this year, CESCG proceedings have an ISBN (978-3-9502533-7-5)
and will therefore remain retrievable as long as there are libraries!

The long history of CESCG has started in 1997 in a medium-sized lecture room
in Bratislava, bringing together students from Bratislava, Brno, Budapest, Graz,
Prague, and Vienna. The idea found wide appraisal and the seminar moved to the
beautiful castle of Budmerice, where it was held for 8 consecutive years, constantly
growing in size and attraction. It was just in the 10th anniversary year 2006 that
CESCG had to take a detour to move to Častá-Papiernička Centre, while it was
back in Budmerice castle in 2007. Unfortunately, since 2011 the Budmerice castle
is not available for scientific activities. After spending the one year in Viničné, in
2012 we moved to the beautiful castle in Smolenice.

Who are the CESCG heroes who made this year’s seminar happen? In no partic-
ular order – because many people were involved equally – we would like to thank
the organizers from Vienna: Michael Wimmer, Anita Mayerhofer, Katharina
Krösl, and Werner Purgathofer. Special thanks goes to Martin Ilč́ık for taking
care of the complete reviewing process and scientific program preparation. We are
very thankful to the CESCG organizers from Bratislava, mainly Andrej Ferko,
always an inspiration to CESCG; Ela Šikudová, and Michal Ferko for the excellent
preparations and on-site organization.

The main idea of CESCG is to bring students of computer graphics together
across boundaries of universities and countries. We mainly focus on sustainable
academic and research development in the field of Computer Graphics in Visegrad
Countries and Austria. Our mission is to support undergraduate talents in their
future careers. Therefore, we are proud to state that we have achieved again a very
high number of 19 participating institutions and a very tight time schedule of 21
valuable student works, 3 specialized interactive workshops, a discussion panel and
two invited talks. We welcome groups from Bratislava (UK and STU), Slovakia;
Brno (VUT and MU) and Prague (CTU), Czech Republic; Budapest (BME),
Hungary; Bonn, Germany; Graz and Vienna (TU and VRVis), Austria; Szczecin,
Poland; Maribor, Slovenia; and Sarajevo (UnSa), Bosnia and Herzegovina.

We assembled an International Program Committee of 13 members, allowing us
to have each paper reviewed by three IPC members during the informal reviewing
process. We would like to thank the members of the IPC for their contribution to
the reviewing process. The IPC of CESCG 2015 consists of:

Jǐŕı Bittner Jǐŕı Sochor
Andrej Ferko Markus Steinberger
Ivana Kolingerová László Szirmay-Kalos
Rados law Mantiuk Ania Tomaszewska
Selma Rizvić Michael Wimmer
Michael Schwärzler Borut Žalik
Pavel Zemč́ık



The reviewing process was further supported by: Thomas Auzinger, Zuzana Berger
Haladová, Michael Birsak, Pedro Boechat, Peter Borovský, Pavel Chalmovianský,
Daniel Cornel, Roman Ďurikovič, Pavol Fabo, Michal Ferko, Michael Hecher,
Michael Kenzel, Christian Luksch, Przemyslaw Musialski, Stefan Ohrhallinger,
Reinhold Preiner, Mohamed Radwan, Elena Šikudová, Stanislav Stanek, Bern-
hard Steiner, Ivana Uhĺıková, Ivana Varhańıková, and Károly Zsolnai.

The first invited talk “Computational Challenges in Designing Virtual Mod-
els for Fabrication” will be held by Bernd Bickel from the Institute of Science
and Technology, Austria. The second invited talk by Tamás Várady from the De-
partment of Control Engineering and Information Technology of the Budapest
University of Technology and Economics, Hungary, will be about “Challenges in
Digital Shape Reconstruction”. The workshop “What makes a great talk?” will
be held by Károly Zsolnai. Martin Ilč́ık will guide the students in the second
workshop called “The Hero Journey in Science”.

The seminar co-organized with the Spring Conference on Computer Graphics
(SCCG), which takes place right after. For the first time we created an overlapping
day with a joint program. On Wednesday morning a panel on “Computer Graphics
Education in Visegrad Countries“ will be hosted by Dr. Michael Wimmer. In the
afternoon, four CESCG papers which managed to be promoted to the SCCG will
be presented:

Marek Galvánek: Automated Facial Landmark Detection, Comparison and Vi-
sualization

Márton Vaitkus: A General Framework for Constrained Mesh Parameterization
Gergely Rácz: Tomographic Reconstruction on the Body-Centered Cubic Lat-

tice
Martin Sattlecker: Reyes Rendering on the GPU

Please refer to the SCCG proceedings for the full-text of the promoted papers.
The organization of a seminar where there are only low expenses for the stu-

dents requires funding. We are very thankful to the sponsors of CESCG 2015:

– International Visegrad Fund, http://visegradfund.org,
– NVidia, The Way It’s Meant to Be Played,
– VRVis, Research Center for Virtual Reality and Visualization,
– OCG, The Austrian Computer Association,
– SISp, Slovak Society for Computer Science,
– Eurographics, The European Association for Computer Graphics.

Please note that the electronic version of these proceedings is also available at
http://www.cescg.org/CESCG-2015/.

April 2015, Michael Wimmer
Jǐŕı Hlad̊uvka

Martin Ilč́ık
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Computational Challenges in Designing Virtual Models for
Fabrication

Bernd Bickel

Institute of Science and Technology
Austria

Abstract

3D printing is considered a disruptive technology with potentially tremendous socioeconomic im-
pact. In recent years, additive manufacturing technologies have made significant progress in terms
of both sophistication and price; they have advanced to a point where devices now feature high-
resolution, full-color, and multi-material printing. Nonetheless, they remain of limited use, given
the lack of efficient algorithms and intuitive tools that can be used to design and model 3D-printable
content. My vision is to unleash the full potential of 3D printing technology with the help of com-
putational methods. In our research, we are working to invent and develop new computational
techniques for intuitively designing virtual 3D models and bringing them to the real world. Given
the digital nature of the process, three factors play a central role: computational models and ef-
ficient representations that facilitate intuitive design, accurate and fast simulation techniques, and
intuitive authoring tools for physically realizable objects and materials. In this talk, I will present
several projects that demonstrate our recent efforts in working toward this goal, structured according
to basic object properties, and the lessons learned from working over several years with various 3D
printers.

Bibliographical Details

Bernd Bickel joined IST Austria in early 2015 as Assistant Professor. He is a computer scientist
interested in computer graphics and its overlap into animation, biomechanics, material science, and
digital fabrication. His main objective is to push the boundaries of how digital content can be effi-
ciently created, simulated, and reproduced.

Bernd obtained his Master’s degree in Computer Science from ETH Zurich in 2006. For his
PhD studies, Bernd joined the group of Markus Gross who is a full professor of Computer Science
at ETH Zurich and the director of Disney Research Zurich. From 2011-2012, Bernd was a visiting
professor at TU Berlin, and in 2012 he became a research scientist and research group leader at Dis-
ney Research, where he investigates approaches for simulating, designing, and fabricating materials
and 3D objects.

Bernd’s work focuses on two closely related challenges: (1) developing novel modeling and
simulation methods, and (2) investigating efficient representation and editing algorithms for materi-
als and functional objects. Recent work includes: theoretical foundations and practical algorithms
for measuring and modeling the deformation behavior of soft tissue; simulating and reproducing
fundamental properties, such as elasticity, surface reflectance, and subsurface scattering; and com-
putational design systems for efficiently creating functional artifacts such as deformable objects and
mechanical systems.
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Challenges in Digital Shape Reconstruction

Tamás Várady

Budapest University of Technology and Economics
Hungary

Abstract

Digital Shape Reconstruction is a rapidly expanding new technology to produce complex digital
models from measured data. A wide variety of applications emerges in mechanical engineering,
medical sciences, and preserving the cultural heritage of mankind.

This talk focuses on reproducing engineering objects and investigates the limits of creating per-
fect CAD models in a semi-automatic manner. It gives an overview of the whole DSR process
from 3D data acquisition through algorithms to reproduce the original design intent to 3D printing.
Intermediate geometric processing steps include merging point clouds, repairing and simplifying
meshes, segmentation, classifying surface regions, fitting surfaces and perfecting the final models
before these are exported into CAD/CAM systems. Some interesting algorithmic details will also
be discussed. The talk will be supplemented with lots of short videos that will help to gain some
practical insight into this highly complex, interdisciplinary area.

Bibliographical Details

Dr. Tamás Várady led the Geometric Modeling Laboratory at the Computer and Automation Institute
of the Hungarian Academy of Sciences for 20 years (1984 - 2003). He acted as Chief Technology
Advisor for Geomagic, Inc., USA, and partly directed the development of their flagship product,
Geomagic Studio (2003 - 2010). Currently he is a full professor at the Budapest University of
Technology and Economics; his research interest includes digital shape reconstruction and surface
modeling based on general topology curve networks. Dr. Varady has published more than 90 re-
search papers, and his work is highly cited (2500+). He is an associate editor of Computer-Aided
Geometric Design (Elsevier).
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Accelerated gSLIC for Superpixel Generation used in Object
Segmentation

Robert Birkus∗

Supervised by: Ing. Wanda Benesova, PhD.†

Institute of Applied Informatics
Faculty of Informatics and Information Technologies STU

Bratislava

Abstract

The goal of our work is to create a robust object segmen-
tation method which is based on superpixels and will be
able to run in real-time applications.

The SLIC algorithm proposed by Achanta et al. [2] is a
superpixel segmentation algorithm based on k-means clus-
tering , which efficiently generates superpixels. It seems
to be a good trade-off between the time consumption and
robustness. Important advancement towards the real time
applications using superpixels has been proposed by the
authors of the gSLIC - a modified SLIC implementation
on the GPU (Graphics Processing Unit) [11].

In this paper, we present a significant acceleration
of this superpixel segmentation algorithm gSLIC imple-
mented for the GPU. A different strategy of the implemen-
tation on the GPU speeds up the calculation time twice
and more over the presented GPU implementation. This
implementation can work in real-time even for high res-
olution images. We also present our method for merging
of similar superpixels. This method uses an adaptive de-
cision procedure for merging of superpixels. Accelerated
gSLIC is the first part of this proposed object segmentation
method.

Keywords: Superpixel, Image segmentation, GPU,
SLIC, gSLIC, Region merging, Real-time

1 Introduction

Superpixels are produced by a deliberate oversegmenta-
tion of an image with the goal to generate segments which
can serve as basic units in the further image process-
ing. Superpixels are able to increase calculation efficiency
viewed from the next processing task because of the re-
duction of the redundancy in the image. Superpixels are
expected to be regular sized as often as possible but on
the other hand, they should follow the saliency edges in
the image. To distinguish between a high salience and a
low salience edge is quite a complicated task, mainly if the

∗rbirkus@gmail.com
†vanda benesova@stuba.sk

processing is performed on a small local area in the image.
Hence, the development of a robust superpixel segmenta-
tion algorithm, which could run in the real-time applica-
tions, remains a challenge in the computer vision tasks. In
many areas of application, the effort involved in comput-
ing in real-time is of high importance.

Typical real-time applications are from the area of video
processing using superpixels, where several approaches
could be combined with frame-based superpixel segmen-
tation as, for example, the approach which has been pre-
sented in the paper by Chang et al. [3]. A reduction of
the time consumption in the superpixel segmentation is
needed also in applications based on still images, espe-
cially if we need to process large images.

One of the further image processing tasks after super-
pixel segmentation is the object segmentation. Automatic
universal object segmentation is one of the most common
problems in computer vision. To achieve object segmen-
tation using the superpixels, superpixels, which belong to
the same object must be merged. This seems to be a simple
task, but in fact it is a big challenge. The real difficulties
are already open in the implementation. The basic idea is
to merge similar superpixels together, but the real ques-
tion is: which superpixels are similar? There are lots of
features and variables to consider.

In this paper we firstly summarize some selected al-
ready published methods of superpixel segmentation. We
focus on the SLIC algorithm. Further, we also summa-
rize some GPU implementations of superpixel segmenta-
tion algorithms. The focus is predominantly on the paral-
lel implementation of the SLIC algorithm on GPU, called
gSLIC. Our main contribution is the acceleration of the
gSLIC implementation using parallel reduction. We de-
scribe our implementation in detail and discuss different
key points of our implementation, specially those which
are important from the point of view of efficiency. We
also describe our CPU implementation of our superpixels
merging algorithm, which merges the superpixels based
on an adaptive threshold according to the color difference
of the most similar neighbor. We also show some results
of the merging procedure. The paper contains detailed re-
sults of the segmentation quality of SLIC and gSLIC and
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also the speedups of our implementation compared to the
gSLIC implementation. At the end of this paper we briefly
discuss our achieved results and present our future work.

2 Related work

Selected already published methods of superpixel segmen-
tation and region merging are briefly summarized in this
section.

2.1 Superpixel segmentation

In Spatially Coherent Clustering using Graph Cuts [14],
Zabih and Kolmogorov propose a method with the goal to
overcome the absence of spatial coherence in segmenta-
tion while a clustering in feature space is used. An energy
function which consists of a term representing the energy
in the spatial space and a term representing the energy in
the feature space has to be minimized using graph cuts.

Veksler and Boykov [13] formulate the superpixel par-
titioning problem in an energy minimization framework,
and optimize with graph cuts. The presented energy
function explicitly encourages regular superpixels and this
method is also suitable for 3D supervoxel segmentation.
An image is covered with overlapping square patches of
fixed size. Hence, each pixel is covered by several patches,
and the task is to assign a pixel to one of them. Tur-
boPixels [8] is an iterative algorithm which starts by evo-
lution from seeds placed regularly in the image. The al-
gorithm then iterates until no further evolution is possible,
i.e., when the speed at all boundary pixels is close to zero.
The iteration loop involves: an evolution of this boundary,
estimation of the skeleton of the unassigned region and up-
dating of the speed of each pixel on the boundary and of
unassigned pixels in the immediate vicinity of the bound-
ary.

Shi and Malik [12] propose a graph-theoretic criterion
for measuring the goodness of an image partition - the nor-
malized cut. The authors showed that the minimization
of this criterion can be formulated as a generalized eigen-
value problem. A computational method based on this idea
has been developed and presented by the authors and ap-
plied to segmentation of brightness, color, and texture im-
ages.

Felzenszwalb and Huttenlocher [5] define a predicate
for evaluating two regions of an image whether or not there
is evidence for a boundary between two components in a
segmentation. This predicate is based on measuring the
dissimilarity between elements along the boundary of the
two components relative to a measure of the dissimilarity
among neighboring elements within each of the two com-
ponents.

2.1.1 SLIC algorithm

R. Achanta et al. introduced the Simple Linear Itera-
tive Clustering (SLIC) [1] method for producing compact
and nearly uniform superpixels. The efficiency, simplic-
ity and the performance of the algorithm makes it widely
used and often modified with the goal to achieve even bet-
ter performance. Yuheng Ren and Ian Reid introduced a
parallel implementation of the SLIC superpixel segmenta-
tion [11], called gSLIC. The gSLIC implementation uses
GPU and the NVIDIA CUDA framework and is able to
achieve speedups of about 10x to 20x over the native SLIC
sequential implementation.

The SLIC algorithm is based on the k-means clustering
principles. Each pixel is associated with a 5-dimensional
feature vector [L*a*b x y], where L*a*b are color coordi-
nates in CIE L*a*b space and x,y are spatial coordinates.
L*a*b color space was designed, so that color differences
measured as Euclidean distance in the L*a*b space corre-
spond with color differences given by human perception.
Although the used conversion from RGB to L*a*b in-
cludes conversion errors due to missing information about
the spectral characteristics of the used camera, this error
seems to be irrelevant and using L*a*b coordinates better
results could be achieved than with using RGB color coor-
dinates. In the initialization step, positions of all seeds are
defined in a regular grid step S, up to a small shift to avoid
image edges. The grid size is calculated as in Equation 1,
where N is the number of pixels in the given image and k
is the required number of segments.

S =

√
N
k

(1)

The rough size of each superpixel is then given as a
square of the grid size S. After the mentioned initializa-
tion step the k-means clustering will be calculated for each
seed and subsequently the position of the seed will be it-
eratively updated - shifted into the center of the newly de-
rived cluster. More iterations (typically 5 to 20) are nec-
essary for the useful segmentation result. Finally, in the
last step named enforce connectivity, extremely small su-
perpixels will be removed - included within another super-
pixel. For a balance between a regular form of the super-
pixels and a form of superpixels given by the color differ-
ences, a compactness constant has to be defined and used
in the distance measure definition as a weighting factor.

2.2 Superpixels - GPU implementations

Brian Fulkerson and Stefano Soatto introduced a parallel
GPU implementation of Quick Shift: they called it Really
Quick Shift [6]. This implementation is able to achieve
speeding up of 10x to 50x over the original CPU version of
Quick Shift. Quick Shift operates on each pixel in the im-
age independently of its distant surroundings. Hence, the
GPU implementation basically follows the steps of native
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Quick Shift because the Quick Shift is a good paralleliz-
able algorithm. Fulkerson et al. first built a simple GPU
version of Quick Shift that simply copies the image to the
device and breaks the computation of the density and the
neighbors into blocks for the GPU to process. This sim-
ple GPU version is faster than the CPU version. However,
Quick Shift needs many memory accesses and the global
memory of the GPU is slow. Memory latency is a bot-
tleneck for this GPU version. To avoid memory latency
they used the advantage of GPUs shared memory. They
load an apron of pixels surrounding the block into shared
memory. However, this operation is not easily separable
and the shared memory is quickly exhausted. So, instead
of this solution they map the image and the estimate of
the density to a 3D and 2D texture. This GPU version is
faster than the previous one. They evaluated both GPU im-
plementations and the CPU implementation as well. This
GPU implementation of Quick Shift provides a 10 to 50
times speedup over the CPU implementation, resulting in
a super-pixelization algorithm which can run at 10Hz on
256x256 images.

2.2.1 gSLIC implementation

Parallel implementation of the Simple Linear Iterative
Clustering (SLIC) superpixel segmentation (gSLIC) is
proposed by Carl Yuheng Ren and Ian Reid [11]. The
implementation was applied and tested using GPU and
NVIDIA CUDA framework. The authors have presented
speedups of 10x to 20x on a single graphics card com-
pared with the CPU sequential implementation. The pre-
sented gSLIC algorithm differs from the originally pro-
posed SLIC algorithm in the way in which the clustering
is carried out. Whereas the SLIC algorithm uses a cluster-
ing procedure based on an evaluation in the surrounding of
each seed in the 2S x 2S region of pixels, gSLIC algorithm
is running in the opposite way. Each pixel is associated
with the 9 nearest cluster centers and the search is running
for the nearest of the nearby 9 cluster centers. Therefore,
the pixel will be labeled with the nearest cluster’s index.

Hence, gSLIC has been modified in order to carry out
the reasonable part of the parallel computing on GPU by
one-thread-per-pixel computing. In general, gSLIC can be
split into two parts: CPU and GPU. The image has to be
acquired by the host function running on the CPU, then
it can be transferred to the GPU device memory. Hence-
forth, the main part of the algorithm: color space transfor-
mation (RGB to L*a*b) and clustering will be carried out
on the GPU. Subsequently the derived segmentation mask
will be transferred back to the host function again, where
a recursion-based post processing function runs to enforce
the connectivity of all superpixels.

The color space transformation part is naturally pixel-
wise parallelizable, so gSLIC uses one thread per pixel on
16 x 16 blocks. Then one thread per cluster will be used
to initialize cluster centers. Next in the assignment step
each thread takes care of one pixel. However, the block

assignment is a little more complex. The initial size of
each cluster is determined by S, where S is the grid inter-
val calculated as in Equation 1. In most cases, the size of
each cluster is larger than the thread block size, thus clus-
ters consist of multiple thread blocks. This block assign-
ment guarantees that all threads of the thread block need
to search the same set of cluster centers in the neighbor-
hood for the nearest one. Thus gSLIC pre-load the cluster
centers’ information into local shared memory for higher
efficiency. In each iteration after all pixels have been as-
signed with a label (which is the index of the nearest cen-
ter), gSLIC uses one thread per cluster to update the clus-
ter center. After the k-means iteration has converged, the
labeled image will be transferred back to the host as a seg-
mentation mask. The post-processing to enforce connec-
tivity is the same implementation as in SLIC.

2.3 Region merging

J. Ning et al. [10] present a region merging based inter-
active image segmentation method. The image is initially
segmented by mean shift segmentation and the users only
need to roughly indicate the main features of the object and
background by using some strokes, which are called mark-
ers. With the similarity-based merging rule, a two-stage it-
erative merging algorithm was presented in the paper [10]
to gradually label each non-marker region as either object
or background.

H. Dunlop et al. [4] propose a detection and seg-
mentation method incorporating features from multiple
scales. This method was tested for the identification of
rock appearances and has been evaluated on represen-
tative images from the Mars Exploration Rover catalog.
This method uses a superpixel segmentation followed by
region-merging to search for the most probable groups
of superpixels. The authors believe that the method pro-
vides promising results for object identification in natural
scenes.

3 Our contributions

In this section we summarize all of our contributions in
detail.

3.1 Accelerated gSLIC

Our main contribution is a different strategy of the im-
plementation which has been done in the cluster centers
updating part. It is also mentioned by the authors of
gSLIC [11] that this part could be accelerated by using a
parallel reduction algorithm. Based on the technical report
by Mark Harris [7] using all of the optimization techniques
a significant improvement of the time consumption has
been achieved. We also optimized the color space conver-
sion (RGB to Lab) using floating-point constants instead
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of double-precision constants. This optimization elimi-
nates the redundant conversions from double to float.1

The principle of our implementation does not differ
from the principle of gSLIC. The only difference is in the
work management of threads. To calculate the new cluster
center gSLIC searches over a 2S x 2S region around the
current cluster center with one thread. The reason why
the authors of gSLIC used only one thread to calculate
the mean value of this region of pixels is to avoid atomic
operation. To avoid both the atomic operation and using
only one thread an implementation of parallel reduction
is needed. In contrast to gSLIC, our implementation also
works with the 2S x 2S region of pixels around the cur-
rent cluster center, but instead of one thread we are using
a block of threads to do the mean value calculation.

In most cases the size of the 2S x 2S region is larger
than the size of thread block. To maximize the number of
threads working on one region we could use more thread
blocks than gSLIC did at the k-means iteration. However
in parallel reduction the threads need to share some data.
To efficiently share data between threads we have to use
the shared memory of CUDA, even if we can use only one
block of threads per region due to the shared memory’s
block restriction. We also considered using the global
memory to share data between multiple blocks of threads,
but it is much slower than the shared memory and even
with L1 cache memory it cannot compete with the shared
memory in this task. However, in case of extremely large
regions, maybe the solution with multiple thread blocks
using global memory would be better. We have not tested
it yet.

In the first step of our implementation due to the larger
region size as the block size each thread of the thread
block calculates preliminary results from multiple pixels
and stores it in the shared memory. When the amount of
data is reduced to the number of threads per block the par-
allel reduction begins.

3.1.1 Occupancy

The occupancy can be defined as a proportion of active
threads and maximum active threads. To hide the latency
and gain maximum efficiency we must have as many ac-
tive threads as possible. Let us consider Kepler GK104
architecture in the following calculations. Its limitations
are shown in the Table 1.

In our implementation we need 24 bytes of shared mem-
ory per thread to store the temporary results. So, on
GK104 architecture we can have 48kB/24B = 2048 active
threads per multiprocessor, which is the maximum. That
means the shared memory usage does not degrade our ef-
ficiency. However, if we would need, we can decrease the
usage of shared memory by using short int variables in-
stead of int variables. We decided to set the block size to
128. This block size gives us occupancy equal to 1. If we

1The source code will be available on the web site
http://vgg.fiit.stuba.sk/image-segmentation-on-gpu/

KEPLER
GK104

Compute Capability 3.0
Threads / Warp 32
Max Warps / Multiprocessor 64
Max Threads / Multiprocessor 2048
Max Thread Blocks / Multiprocessor 16
32-bit Registers / Multiprocessor 65536
Max Registers / Thread 63
Max Threads / Thread Block 1024
Shared Memory Size (bytes) 48K

Table 1: Limitations of Kepler GK104 architecture

would choose a smaller block size, for example 64, due to
the maximum number of blocks per multiprocessor (16)
we could have only 64∗16 = 1024 active threads per mul-
tiprocessor. However, we could choose larger block sizes
up to 1024 and the occupancy would be still equal to 1.
The reason why we chose the block size 128 is explained
in the next section. The most efficient block size for our
implementation is architecture-dependent. The register us-
age does not affect the efficiency of our implementation
because each thread can use up to 65536/2048 = 32 reg-
isters without decreasing the occupancy and in our imple-
mentation each thread uses only 28 registers.

3.1.2 Parallel reduction optimization

After the amount of data is reduced to the number of
threads per block we make a parallel reduction in shared
memory. We are using almost all of the optimization tech-
niques by Mark Harris [7]. We are avoiding using % oper-
ator wherever it is possible because it is very slow.

To achieve high memory bandwidth for concurrent ac-
cesses, shared memory is divided into equally sized mem-
ory modules, called banks, that can be accessed simultane-
ously. To avoid bank conflicts we are using sequential ad-
dressing instead of interleaved addressing. In Figure 1 we
show the two types of addressing. Let us consider mem-
ory banks of size 4 bytes. To access four elements sequen-
tially we need only one transaction because all of the ac-
cessed elements are in the same memory bank. However,
using the interleaved addressing we need two transactions
because those four accessed elements are situated in two
different memory banks.

Figure 1: Sequential addressing (left) and interleaved ad-
dressing (right)

In parallel programming to achieve high efficiency we
have to avoid idle threads as much as we can. Thankfully
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for the cases in which the region size is larger than the
block size, each thread has to handle multiple pixels and
there are no idle threads. Mark Harris also mentioned in
his technical report [7] based on Brent’s theorem that it is
beneficial for each thread to do more sequential work and
this is the reason why we chose the smallest block size
(128), which give us occupancy equal to 1. If we would
choose larger block sizes then the sequential work for each
thread would be less and there could be idle threads.

To save useless work in all threads of the thread block
we unrolled the for loop by putting #pragma unroll direc-
tive right before the loop. #pragma unrolls is a compiler
optimization which unroll the loop. However, the number
of iterations of the loop have to be known in compile time.
In our case the number of iterations is determined by the
block size, which is defined as a macro constant. With-
out unrolling the for loop, all threads would do additional
operations every iteration of the loop.

3.2 Superpixel merging

Accelerated gSLIC is the first part of the object segmenta-
tion algorithm proposed as bottom-up segmentation using
superpixels. The main idea can be briefly described as the
merging of similar superpixels. Despite this quite simple
and native approach, more challenges are already open in
the implementation. The first one is a decision about the
similarity of two superpixels. This is quite a complicated
task which is a crucial part of our research. The second
one is time optimization of the whole segmentation proce-
dure using GPU.

In this paper we present the results of our CPU imple-
mentation of the presented merging algorithm using the
metric:

∆DLab =
√
(L∗2−L∗1)

2 +(a∗2−a∗1)
2 +(b∗2−b∗1)

2 (2)

where (L∗1,a
∗
1,b
∗
1) is the mean L∗a∗b∗ of the first super-

pixel and (L∗2,a
∗
2,b
∗
2) is the mean L∗a∗b∗ of the second

superpixel. The whole merging algorithm is presented in
Figure 2.

Fast superpixel oversegmentation has been imple-
mented by accelerated gSLIC as presented in the previous
section.

The goal of the next section is to label all similar neigh-
bor superpixels of each given superpixel. As mentioned,
the decision about the similarity is a complicated task. We
wanted to avoid a fixed threshold in the decision about the
similarity because of the low invariance of such a thresh-
old. Our decision is based on the relative threshold in re-
lation to the superpixel whose distance ∆DLab is the least
of all neighboring superpixels. The decision about the ac-
cepted similar superpixels is the following:

The neighboring superpixel will be labeled as similar if
it satisfy the condition:

Dist <C ∗Distmin (3)

Figure 2: Merging algorithm

(a) orginal (b) C = 2.0

(c) C = 2.3 (d) C = 2.5

Figure 3: First example of merged superpixels

where Dist is distance between the superpixels and C is
a constant. Our results have been evaluated for C = 2.0,
C = 2.3 and C = 2.5.

In last step ”Merging”, all superpixels labeled as similar
will be recursively merged into one segment.

Examples of merged superpixels can be seen in Figure 3
and Figure 4. Merging using a higher constant C produces
less new segments, but the undersegmentation error will
be probably higher.

4 Results

The time needed for the superpixel calculation using mod-
ified gSLIC in comparison with the gSLIC [11] has been
evaluated. Table 2 gives the profiling of the clustering part
of the algorithm calculated on the NVIDIA GT 740m. The
table gives the evaluation of the clustering part of the SLIC
algorithm. Time profiling using the NVIDIA GTX 770 for
the SLIC clustering is presented in the Table 3. The trans-
fer times between host and GPU memory are not consid-
ered in the presented results.
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(a) orginal (b) C = 2.0

(c) C = 2.3 (d) C = 2.5

Figure 4: Second example of merged superpixels

Image size gSLIC Accelerated gSLIC Speed-up
CC 1.0 CC 1.0 CC 3.0 CC 1.0

320x240 7.06 [ms] 1.69[ms] 1.61 [ms] 4.18x
640x480 17.08 [ms] 6.72 [ms] 6.45 [ms] 2.54x
1280x960 66.16 [ms] 27.89 [ms] 26.31 [ms] 2.37x

Table 2: Time evaluation on the NVIDIA GT 740m.

As mentioned, SLIC and gSLIC clustering work differ-
ently. Actually the gSLIC is limited in the searching area
of every pixel. Although this limitation is marginal, the
question is, if this limitation has influence on the quality
of the clustering. Therefore, we have evaluated the quality
of the segmentation using SLIC and gSLIC and also the
modification of the post-processing using the Superpixel
Benchmark Toolbox [9] in order to achieve comparable
results. The evaluation requires a ground truth segmen-
tation made by humans, available in the dataset. Bound-
ary recall (BR) is the fraction of hand-segmented edges
which lie within a threshold distance k of any superpixel
edge (in our experiments, k = 2). Since there can be multi-
ple ground truth images for a single input image, they are
added together using the OR operation.

The true positives (TP) count is the number of pixels
in hand-segmented image, for which there is a superpixel
boundary pixel in range k. The false negative (FN) count
is the number of pixels in the hand-segmented image for
which there is no superpixel boundary pixel in range k.
Given these, we can calculate the boundary recall BR as in
Equation 4:

BR =
T P

T P+FN
(4)

The disadvantage of this metric is that it does not take
into account the direction of the edges. Superpixel borders
which intersect hand-segmented edges also contribute to
the boundary recall. This metric also does not distinguish
between superpixel edges which are off by 0, 1 and 2 pix-
els they all contribute to the boundary recall equivalently.

Results of the evaluation are presented in Figure 5. The

Image Size gSLIC Accelerated gSLIC Speed-up
320x240 5.326 [ms] 0.426 [ms] 12.5x
640x480 8.0 [ms] 1.539 [ms] 5.20x
1280x960 19 [ms] 6 [ms] 3.17x

2560x1920 87.68 [ms] 24.12 [ms] 3.63x

Table 3: Time evaluation on the NVIDIA GTX 770 (using
Compute Capability 1.0).

number of iterations was 5 and 10 and the compactness
constant was set to 10 and 20. More detailed compari-
son for the nominal number of superpixels 150 is shown
in Figure 6 and Figure 8. From Figure 5 it can be seen
that with the rising number of segments the boundary re-
call results are better. We also can see that the increased
number of iterations have not improved the quality of the
segmentation that much. However, the compactness con-
stant has a much bigger impact on the segmentation qual-
ity. Compactness constant 10 gives much better results
than the compactness constant 20. From the evaluation of
boundary recall on multiple images in Figure 6 we can see
that results are unequivocal. In some of the images SLIC
has better results and in others gSLIC has better results,
but in average gSLIC gives us better results in boundary
recall than SLIC.

Figure 5: Boundary recall

Figure 6: Comparison of the boundary recall for 73 images
(No. of superpixels:150)

The undersegmentation error (UE) describes how much
area of superpixels crosses the hand-segmented edges.
Please refer to the original paper [9] for more information
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Figure 7: Undersegmentation error

Figure 8: Comparison of the undersegmentation error for
73 images (No. of superpixels:150)

on its calculation. The evaluation of the undersegmenta-
tion error is presented in Figure 7 and Figure 8. From Fig-
ure 7 it can be seen that with the rising number of segments
the undersegmentation error evaluation is better. We can
also see that the different number of iterations or different
compactness constants have very little impact on the re-
sults of the undersegmentation error evaluation. From the
evaluation of undersegmentation error on multiple images
in Figure 8 we can see that in some images SLIC is better
and in others gSLIC is the better one. However, in average
SLIC gives better results in undersegmentation error than
gSLIC.

The goal of the merging of the superpixels is to reduce
the number of segments while the boundary recall is high.
The best possible value of boundary recall is the value at
the original number of superpixels. In our case the original
number of superpixels is 1027 as presented in the Figure 9.
Boundary recall values of merged segments are remark-
ably better compared to the original SLIC segmentation.

5 Conclusions

We have presented modifications in the clustering part of
the gSLIC algorithm. We implemented a parallel reduc-
tion and achieved significant acceleration as you can see
above in Table 2 and Table 3. The modification does not
have impact on the quality of the segmentation. We have
also presented a comparison between SLIC and gSLIC.

Figure 9: Boundary recall of the merged SLIC superpixels
(C = 2.0, C = 2.25 and C = 2.5) in comparison with original
SLIC and gSLIC

The results of the comparison is in average the same, de-
pending on the evaluation method. SLIC has better results
in undersegmentation error, in Boundary recall gSLIC is
the better one. Finally, we have also presented in this pa-
per a bottom-up method of segmentation using superpix-
els. The achieved results in boundary recall values are bet-
ter than with using the orginal SLIC segmentation.

6 Future work

The gSLIC image segmentation algorithm consists of two
parts. We successfully accelerate the clustering part, but
the ”enforce label connectivity” part is hardly paralleliz-
able because it is a recursive function. We tried a com-
pletely different strategy based on the morphological pro-
cessing. We achieved some small acceleration, but it was
at the cost of segmentation quality. In our future work we
would like to continue in this task to achieve acceleration
without any quality degradation.

We presented an algorithm of merging superpixels. In
the future we would like to accelerate the presented algo-
rithm using the GPU implementation.

Our future work also contains research of features and
decision-making procedures about the similarity of two
superpixels. Our next experiments will include texture de-
scription and advanced classifications.
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Abstract

When rendering large bodies of water in real-time an effi-
cient method is required to model water waves. This ar-
ticle describes a method for real-time interactive gener-
ation of such waves. We use the wave particle method
to describe wave propagation in a fluid medium. The
method allows to simulate interactions of water with gen-
eral shaped rigid bodies in real-time. We present a GPU
implementation of the method and show results in scenar-
ios such as open ocean waters or pools with water bound-
aries.

Keywords: Wave particle, GPU algorithm, interactive,
realtime simulation, waves, water rendering

1 Introduction

In real-time applications such as video games it is crucial
that all the computations are fast enough to be computed
in a plausible frame rate, so both the rendering and the
simulation stages should be fast. In general lots of compu-
tationally complex tasks can be measured or pre-computed
and then used later on. On the other hand user interaction
cannot be simply predicted so the computation must run
on-line. For these reasons we usually need to settle for
approximate solutions meaning the rendering and the sim-
ulation step is not necessarily physically correct but offers
reasonable results.

Animation of large bodies of water such as lakes or
oceans is important part of computer graphics and it is still
an open challenge since 3D volumetric simulations are too
computationally complex for mentioned scenarios.

In this article, we focus on a real-time water simula-
tion of large bodies of water with local surface waves. We
address height field representation to describe the water
surface. In our simulation we use wave particles as a spa-
tial information about the water surface deformation. The
simulation utilizes the graphic hardware to efficiently dis-
tribute the wave particles onto the water plane according
to the motion of the rigid body in the water medium.

This articles is based on the work of Yuksel et al. [12].
They presented the original wave particles method which

∗dm.mikes@gmail.com

Figure 1: Real-time water simulation running on the GPU.
Open ocean scenario with boat interaction (left, 290 FPS),
Pool scenario with falling object (right, 270 FPS).

is briefly described in section 3. In contrast to their work,
we address using wave particles specifically on the GPU.

2 Related Work

Raveendran et al. [10] proposed a method for preserving
uniform particle density in SPH. Onderik et al. [8] pre-
sented a SPH method improvement with small scale de-
tails such as splashes and foam. A method which uses Eu-
lerian approach to simulate 3D water volume with a grid
cell reduction was described by Irving et al. [7].

Chen et al. [2] used height field representation with spa-
tial domain waves using shaders and bump mapping to cre-
ate small ripples on the water surface.

Chou et al. [3] described a simple method for ocean
simulation with one-way interaction between the water
surface and rigid bodies.

Galin et al. [5] presented a real-time interactive water
simulation method. They address special type of waves
created by the engine of the boat, which also creates foam
on the water surface. Therefore this method is usable only
for specific type of rigid bodies. In contrast to the wave
particle method they use a 2D grid to represent the waves
instead of particles, therefore the performance is depen-
dent only on the grid size and independent of the number
of wave fronts. They are also able to handle the diffraction
effect but the overall performance is lower, compared to
the wave particle method.
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δδ

Figure 2: Wave front generation from particles. Source
particles (left) and generated wave front (right) from the
top view. Dispersion angle δ of the parent particle is de-
picted yellow.

3 Wave Particles

The wave particle method uses a particle system for rep-
resenting surface deviation. Position x of each particle is
used for localizing the deviation function dv(x, t) and they
are totally independent of each other. Unlike Lagrangian
methods wave particles move in a plane which is coplanar
with the water surface. The wave particles do not repre-
sent elements of the water mass, but only a deformation
on water surface.

Set of local deviation function is synthesized to the
global deviation function

Dv(x, t) = y0 +∑
i∈P

dvi(x, t) , (1)

where x is the position on the water surface, t is the
time, dvi(x, t) is the local vertical deviation function of the
i-th particle, y0 is water base level, and P is a set of all
particles.

The local deviation function can be expressed as

dvi(x, t)=
Ai

2

(
cos
(

π|x−xi(t)|
ri

)
+1
)

Π
( |x−xi(t)|

2ri

)
,

(2)
where Ai is the amplitude of i-th particle, ri is the wave

particle radius, x represents a point of the water surface,
xi(t) is a the position of the i-th wave particle in time t and
Π is a box function, which limits cosine function over a
finite region in 3D domain.

Π(x) =

{
1, − 1

2 ≤ x≤ 1
2

0, otherwise
(3)

3.1 Longitudinal Waves

The motion of the water surface is not limited only to the
vertical deviation. In reality water particles propagate in
circles which creates sharper peaks on the surface waves
as shown in figure 3.

dhi(x, t) = dvi(x, t)
(
−vi sin

(
πu
ri

)
Π
(

u
2ri

))
, (4)

dh

dv

Figure 3: The horizontal (dh) and vertical (dv) deviation
function. Original wave (green), the final wave (red), and
the vertical deviation (dashed blue).

t2

t1

t0

Figure 4: Dispersion angle partitioning after particle sub-
division operation at different time steps (t0, t1, and t2).
Dispersion angle of each particle (blue circle with an iden-
tifier) is marked by different colour to enhance clarity.

where u= |x−xi(t)|, the propagation direction vi and Π
is the box function. This model can introduce undesirable
self intersections if riA > 1. The problem is addressed by
a new parameter which affects the strength of longitudinal
wave.

3.2 Particle Subdivision

An expanding wave front arises when a wave is created in
one point and distributes further in all directions in a 3D
domain as shown in figure 2. The local deviation func-
tion does not allow changing the size of the wave particle
in time. This causes that wave particles are getting fur-
ther from each other while the wave front propagates. We
need to cover the whole size of propagating wave front by
placing one particle next to each other, so that even with a
constant particle size the wave front is continuous. This is
achieved by particle subdivision routine shown in figure 4.

If the distance between two neighbouring particles is
larger then a defined threshold, a new particle is created
on each side of the parent wave particle. The amplitude
of the parent particle is distributed to the child particles in
order to conserve energy.
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Since the particle velocity is constant we can compute in
advance at which time the distance between neighbouring
particles will be beyond this threshold:

wt = w0 +δv|t− t0|, (5)

where δ is the dispersion angle, w0 is the distance be-
tween neighbouring particles in the current time t0, and v
is the particle velocity.

The threshold is set proportionally to the particle radius
ri and it ensures that adjacent particles will never be further
from each other than the threshold parameter.

3.3 Wave Particle Properties

Besides the actual position x, each wave particle stores the
propagation angle α , dispersion angle δ , origin o and the
amplitude A.

The propagation angle represents the wave particle di-
rection in the 2D plane, dispersion angle δ is introduced to
describe a spatial range in which new particles appear after
subdivision process. The wave particle origin is the posi-
tion of the particle at time t = 0 and it is fixed as the wave
particle propagates. Amplitude represent the energy of the
wave particle. Particles with low amplitude have also low
contribution to the deviation function. In some scenarios
it is also useful to model waves with negative amplitudes.

3.4 Creating new Wave Particles

After particle is subdivided two new particles are added to
the system. Important property of the convincing physi-
cal simulation is the energy conservation criterion. There-
fore the amplitude is evenly distributed to the newly cre-
ated particles. The dispersion angle also changes because
each particle now describes one third of the original range.
Children particles are placed in the same distance rδ from
the origin. Descendants also inherit the origin of the parent
particle.

3.5 Water Boundary

Scenarios such as pools require a model for reflecting in-
coming wave fronts off of the water boundary. The bound-
ary represents the container which holds the simulated wa-
ter.

The distance from the particle to the origin rδ is im-
portant for the particle subdivision since it tells us when
subdivision occurs. To handle particle reflection, the ori-
gin has to be mirrored over the boundary in order to persist
the subdivision criterion. Since the distance between adja-
cent particles w does not change during the reflection, the
dispersion angle may change owing to the curvature of the
boundary as shown in figure 5.

o′i

oi

Figure 5: Wave particle (blue circle) reflection off of a
curved boundary with origin oi. The grey area represents
the boundary with the new mirrored origin o′i. The dotted
sector represents the dispersion angle before reflection and
the yellow sector is the dispersion angle after reflection.

w′ = w (6)

δ ′ = δ
rδ
r′δ

, (7)

where δ is the dispersion angle immediately before re-
flection and δ ′ is the dispersion angle immediately after
reflection; the same notation is used for other symbols.
The curvature influences δ ′ indirectly via the origin o′.

4 Wave Particles on the GPU

In our particle system it is essential to preserve the data
on GPU memory without unnecessary data transfers from
main memory to GPU buffer and vice versa. We use at-
tribute data with point geometry to represent particles in
OpenGL.

OpenGL Transform Feedback Buffer (TFB) allows us to
capture the output of vertex or geometry shader inside the
GPU memory. Location of TFB in the OpenGL pipeline
is shown in figure 6. In each draw step the GPU fetches
vertices1 and pushes them in the vertex shader, where at-
tribute properties can be modified or simply passed further
in the pipeline. After that, the points can be stored in the
TFB meaning that the data are persistent in one draw step.

The actual buffer where the primitives are stored can
have different types. We use Vertex Buffer Object (VBO)
as the destination of Transform Feedback operation be-
cause we reuse captured vertices in the next frame.

Therefore, we use two Transform Feedback Buffers and
we chain them together in a way that output of the first
buffer is the input of the second buffer as shown in figure
7. The TFBs are connected in the other way respectively.
Two buffers are used due to the fact that OpenGL does

1Point is a 1D primitive and can be represented by one vertex. There-
fore, terms point, vertex and particle are interchangeable in this context.
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TessellationpEvaluationpShader

Primitivepassembly TessellationpControlpShader

VertexpShader

TransformpFeedback

Rasterization

Framebuffer

WPppropagation

WPpreflection

GeometrypShader

WPpsubdivision

WPpdeletion

FragmentpShader

WPppersist

Figure 6: Simplified OpenGL pipeline. Yellow coloured
boxes represents the programmable stages, blue are the
fixed stages, and violet represents output buffers.

not allow reading from and writing into the same Vertex
Buffer Object.

Wave particle propagation is done on the vertex shader.
Only limitation in the vertex shader stage is that there is
only one vertex in the input and one vertex on the out-
put for one shader invocation. That means we cannot use
vertex shaders for particle subdivision. For this purpose
we can use tesselation shader or geometry shader, which
is able to emit new vertices. Newly created vertices are
then also stored in TFB. Figure 6 also shows which of the
main tasks are performed in current stage of the OpenGL
pipeline.

Vertex 1
Vertex 2
Vertex 3

Vertex n

Vertex Buffer Object A

Trasform Feedback Buffer A

buffer base = A;

Vertex 1
Vertex 2
Vertex 3

Vertex n

Vertex Buffer Object B

Trasform Feedback Buffer B

buffer base = B;

store
datastore

feedback
data

store
data

Figure 7: Illustration of Transform feedback buffer swap-
ping. The output of first TFB is used as an input of the
second TFB.

vec4 a_Pos2_Orig_Size

vec4 a_Ampl_Prop_Disp_Spee

Size

Dispersion angle

Position.x Position.y Origin distance nBrdFrm 

sgnA SpeedPropagation angleAmplitude

Figure 8: Wave particle structure encoded for the use on
the GPU. Each field represents one floating point number.

4.1 Particle Data Structure

In order to avoid large memory consumption, we need to
efficiently represent vertex attribute data.

Vertex attributes are internally packed and aligned into
a multiple of vec42 in OpenGL[1]. This means that it
is beneficial to use vec4 data type and fit all necessary
information to it as few member variables as possible.

Figure 8 shows the GPU packing of wave particle struc-
ture.3 The wave particle structure is packed into 32 bytes.

Propagation routine The entry point for the simulation
process is in the vertex shader, where particles are properly
moved according to the propagation angle. If the particle
should be subdivided or discarded, respective flag is set
and the particle is passed further into the pipeline.

Subdivision and deletion routine Vertices are passed
to the geometry shader, where the vertex can be either dis-
carded or emitted. The particle is discarded if the ampli-
tude is lower than a defined threshold and the influence of
the wave particle is neglectable.

Particle generation routine Particle generation is the
process of creating new particles based on the object to
water interaction. The result of the interaction step is
stored in the wave particle distribution texture. Wave par-
ticle distribution texture obtains information about spatial
distribution of direct and indirect wave effect which is con-
verted into particles in this step. Propagation direction is
also part of the texture. The process of obtaining distribu-
tion texture is described further.

Each texel represents a potential wave particle. There-
fore, we create a vertex buffer and fill it with vertices orga-
nized into 2D grid with the same resolution as the texture.
Consequently we set the wave particles properties to the
vertices from the texels and we convert the wave effect to
the amplitude. Particles with non-zero amplitude are emit-
ted and eventually captured by the TFB.

Wave particle reflection For performance purposes we
represent boundaries as a texture. Normal vector of the
boundary is encoded into each texel in order to compute

2GLSL representation of 4-dimensional 32-bit floating point number.
3nBrdFrames refers to number of consecutive frames behind border

and is used for error correction in wave particle reflection routine.
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the reflection. Discrete step collision detection can pro-
duce errors when the object is moving too fast and the ob-
ject passes through the boundary in one frame. We adjust
the texture mapping with respect to the particle speed to
handle these situations.

4.2 Particle Filtering

Particles are rendered as circles with the radius equal to
particle size. The final deviation of the water surface can
be obtained by rendering all the particles with additive
blending from a top orthographic view similarly to the
texture splatting. Instead we use smaller points to repre-
sent the information about the particle presence and render
them into texture. The wave particle render texture is fil-
tered and the contribution of each wave particle in a local
distance is accumulated. This is similar to the texture gath-
ering process.

In this step wave particle deviation function is applied.
The contribution of each wave particle in the filtering step
is weighted by the deviation function in equation 2. Note
that the function can be converted into separable filter.
This means we can perform 1D filtering process consec-
utively for each axis and compose the final result.

The filter function can be denoted as

dX
h (p) =

1
2

(
cos
(π p

r

)
+1
)
, (8)

dY
h (p) =

1
2

(
cos
(π p

r

)
+1
)
, (9)

where dX
h (x) is a X-axis horizontal deviation filter func-

tion, r represents the radius (kernel size), and p = [−r,r]
is the distance of a pixel to the kernel centre. The same
notation is valid for Y .

4.3 Water to Object Interaction

We address four types of forces, all of which have similar
implementation details: buoyancy, drag, lift and collision
force.

Common feature of these forces is that they are com-
puted for each face rendered from a top view orthographic
camera into a texture. Blending must be turned on so that
the information from some faces is not overridden. In or-
der to efficiently sum the texture on the GPU and transfer
only the result, we implement parallel reduction.

Buoyancy force In order to compute the buoyancy force
we need to know the volume of the object’s submerged
part. The volume is obtained as the depth difference of the
front and back faces of the rigid body. More specifically,
it is obtained by an orthographic projection with blending
and summed together.

Figure 9: Upper image row represents a water tank seen
from side view. We show different positions of a sphere
relatively to the water level. Note that the sphere is green
on the top (positive z-coordinate of the normal) and red on
the bottom (negative normal). The bottom row shows the
same object seen from a top view without the part which
is above the water level.

Drag and lift force Drag and lift force [12] are computed
for each face centroid and rendered into a texture similarly
to the buoyancy force.

Water-object collision This force is calculated from the
wave particle render texture. In addition of height value
we also render wave particle propagation direction and
speed in the remaining colour channels. Again we sum the
texture in order to obtain the final force. While summing
the forces we use buoyancy texture as an object silhouette
stencil to precisely select which particles are affecting the
object.

4.4 Object to Water Interaction

We have covered the process of the particle generated
based on the wave particle distribution texture in section
4.1. This section denotes the distribution texture genera-
tion.

In order to create wave particle distribution texture we
have to find out the silhouette of the submerged part of the
floating object when looking from a top orthographic view
and then distribute the wave effect (water volume) to the
contour of that silhouette.

Figure 9 shows an example of such case. The silhouette
is the union of the green and red part while the contour is
the outer border of the red part.

The direction of the created wave is dependent on the
direction of the object motion as shown in figure 10.

Important step of the object to water interaction stage is
distributing the indirect wave effect to the object contour.
This routine also smooths out the contour normals in order
to uniformly cover the circular area around the object by
the wave particle propagation angles.

Similarly to a parallel reduction approach we sum up
neighbouring pixels into one. In each step we merge four
adjacent pixels into one pixel. After few iterations when
the texels are summed together the process is reversed and
we reconstruct the original silhouette while using the tex-
tures from the intermediate steps. While descending to
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I1 I2

Figure 10: Different cases of wave propagation with re-
spect to the position and the motion of the floating object.
Striped line represents the object position in the previous
time step. Cases I1 and I2 (inside) show the influence of
both direct and indirect wave effect inside the volume.

higher texture resolutions we distribute the total indirect
wave effect pixels recognized as contour pixels.

5 Results

To enhance the perception of the water surface, we render
the surface with an approximative method [4] for light re-
flection and refraction. For reflection, the method uses a
render of the flipped scene and modifies texture lookups
according to the surface normal. We also use adaptive tes-
sellation and tillable Perlin noise [6] as a height function
to add high frequency details to water surface. Longitudi-
nal waves are added in form of deformation of the x and z
axis of the water plane similarly to Gerstner waves [11].

We have tested the performance of each simulation step
in several testing cases.

Test case A In the first test case, particles are added
to the buffer until it is full. This test cast measures the
performance of the wave particle propagation procedure.
Note that in the wave particle method the number of par-
ticles is not directly proportional to the quality of visual
result. Especially when most of the particles in the sys-
tem have low amplitudes. We have compared the per-
formance of the wave particle routine to the performance
mentioned in the original article. They mention three test
cases with different maximal number of wave particles.
Since the wave particle generation routine is part of our
wave particle propagation routine, we have measured both
of those steps at once. Therefore, in our comparison we
have also summed corresponding columns from the orig-
inal article. Our test ran on the following configuration:
Intel Core i5-4590 3.30GHz, GIGABYTE GTX970 4GB,
8.0 GB RAM, Visual C++ compiler 18.00. We also show
the computing power of the processor used in the original
article (3.19 Gflops [9]) compared to our processor (12.5
Gflops [9]) to demonstrate the hardware difference. 4

4Both values are measured on the same benchmark test.

Implementation 10k 600k 8M
CPU approach[12] (2007) 1.430 3.87 200.04
our GPU approach 0.196 1.94 22.50

Table 1: Comparison of the wave particle method imple-
mentation with varying number of particles (ms).

Figure 11: Test case A: ocean environment (left). Pool test
case (right).

Test case B The second test case is a single boat floating
in the ocean scene (figure 11). We created two modifica-
tions of this test case. In the first run we test the influence
of the rigid body complexity on the performance of each
phase. For example computation of drag and lift force is
done per each face of the rigid body. Figure 12 shows the
testing results. Simulations steps which are not dependent
on the variable parameter are omitted.

Similarly we measured the influence of the wave par-
ticle render texture resolution (figure 12) on the perfor-
mance. Note that this parameter affects not only the tex-
ture resolution, but also indirectly affects the number of
fragment shader invocation etc.

Test case C The purpose of test case C is to show the
usage of the wave particle method in a real simulation sce-
nario. We have placed the boats in the scene in order to
maximize the number of interaction between nearby float-
ing object. Once the main boat moves, it creates wave
front which pushes away the other floating objects. We
measure the performance for different number of boats in
the scene.

Test case D The fourth test case captures a scenario with
high number of boats. Unlike the test case C, all the boats
are moving.

Table 5 shows the average frame rates for test case C
and D.

Ship count 1 2 4 8 16 32
Test case D 199 144 93 60 35 18
Test case C 145 136 97 60 33 24

Table 2: Average frame rate for the test case C and D.
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Figure 12: Mesh complexity (number of faces) influence
on the simulation performance in ms (top). Particle render
texture resolution complexity (bottom).

5.1 Limitations

We have developed such structure that each floating ob-
ject contains its own render cameras, render textures, and
wave particle buffers. This means that each boat in our
simulation is independent and has every piece of local-
ized information needed for the simulations. On the other
hand, there is a structure using a single render texture with
a single wave particle buffer shared for each floating object
similarly to the implementation of Yuksel et al.

Our approach offers higher flexibility in terms of the
floating object setup e.g. positions are not limited by the
render texture resolution. Another advantage is that we

Figure 13: Test case C (left), and test case D (right).
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Figure 14: Result of the test case C (left), and case D
(right).

can address only particles created by a concrete floating
object, which is beneficial e.g. in LOD approach when we
render only particles which come from a visible floating
object.

On the other hand this approach has a limitation in the
number of floating object in the simulation. Table 5 show
significant performance drop for a large number of floating
objects. Moreover, because we render the water surface
in one step, all the vertical deviation functions are added
at once to the global deviation. And since the number of
GPU texture units is limited, we cannot apply all deviation
function in one rendering step.

6 Conclusions

We have described theoretical background behind wave
particle method for the purpose of real-time water simu-
lation. We have showed how wave particles form contin-
uous waves and that it can be used in an interactive envi-
ronment. Consequently, we have implemented the wave
particle method on the GPU. Part of our implementation is
also the interaction between the water surface and a gen-
eral shaped floating rigid body which can be controlled by
user. We have measured and evaluated the performance
of our GPU approach and showed that it offers plausible
results at interactive frame rates.
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Abstract

The majority of computer applications employ numerical
data types with a fixed amount of precision for their com-
putations. Their limited numerical range and precision are
sufficient for most use cases. However, for some purposes,
such as cryptography or geometrical computations, the re-
quired range and precision can become arbitrarily large.
Numerical types that can handle such demands have higher
memory requirements and are not natively supported by
common hardware, which leads to increased computational
complexity. In this paper, we examine how basic arithmetic
operations on arbitrary-precision integers can be adapted to
many-core architectures in the form of graphics processing
units, which are widely available as commodity hardware.
Apart from a detailed description of our method, we show
superior performance characteristics of our implementation
in comparison to state-of-the-art CPU libraries for high
computational loads.

Keywords: gpu, cuda, integer arithmetics, parallel,
arbitrary-precision

1 Introduction
Fixed-Precision Number Formats Arithmetic computa-
tions in most programs are performed using number for-
mats with a fixed precision. These types allocate a constant
amount of memory for each number to store its value and,
therefore, only a limited amount of different values is avail-
able. A set of fixed precision formats is natively supported
by common processing hardware, usually given by power-
of-two binary lengths, e.g., 8-64 bits. Other arbitrary but
fixed lengths have to be mapped to the hardware capabili-
ties by software means.

Two main types of numbers can be differentiated: Fixed-
precision integers are mostly used for counting or address-
ing purposes and are limited to a specific numerical range.
Arithmetic operations on such numbers can result in an
under- (resp. overflow), where the result of a computation
is larger than the largest (resp. smaller than the small-
est) possible value of the given data type. Fixed-precision
floating-point numbers are used to represent approxima-
tions of real numbers and are limited both in precision
and range. Consequently, rounding errors are a common
downside, with implications depending on the application
scenario.

Arbitrary-Precision Number Formats In some cases,
fixed-length number types are not sufficient; for example,
if the largest occurring value of an integer is not known
prior to execution or if rounding errors of floating point
arithmetics cannot be tolerated. In these cases, we can
make use of arbitrary-precision number formats, for which
the numeric range and precision are chosen dynamically.
Arbitrary-precision arithmetics are essential to many appli-
cations, such as geometric algorithms or public-key cryp-
tography [4].

Standard number formats are part of every major pro-
gramming language, however only few of them provide
arbitrary-precision number types (e.g., Lisp, Erlang, Java,
Perl). For other languages, third party libraries have been
developed to support such formats, such as the GNU Multi-
Precision library (GMP) [8] or the Library for Efficient
Data types and Algorithms (LEDA) [1]. Note that they
explicitly target CPU hardware architectures.

Such computations are more complex when compared
to regular hardware-supported 32/64-bit arithmetics. Basic
addition/subtraction has a cost of O(n) with n being the
length in bits, while multiplication ranges between O(n2)
and the conjectured optimum of O(n log(n)) [5, 7, 10, 18].

To combat these performance issues, our overall goal
in this paper is to leverage the capabilities of many-core
hardware architectures to speed up arbitrary-precision com-
putations. Specifically, we will make use of Graphics Pro-
cessing Units (GPUs) by designing suitable data types and
parallel algorithms. We present an implementation using
a general and widely used GPU framework, the Compute
Unified Architecture Framework (CUDA).

2 Related Work

Since General Purpose Computing on Graphics Process-
ing Units (GPGPU) is a relatively new field, the major-
ity of the work on arbitrary-precision arithmetics targets
CPUs, which spawned several libraries. We already men-
tioned LEDA [14] and GMP [6] in the previous section
and another established library is ARPREC [3] which it-
self is based on MPFUN [2], a multiple precision library
for Fortran. Although many of them already provide a
rich set of different data-types and operations, our goal
is to accelerate the underlying computations for the use
in time-critical applications. To our knowledge, there is
no arbitrary-precision library for GPUs available and we
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cover the existing works on fixed-precision arithmetics in
the following.

GPU Multiple-Precision library (GPUMP) In 2010 Kaiy-
ong Zhao and Xiaowen Chu created the GPUMP [23], a
multiple-precision library for CUDA. GPUMP performs
its operations on integer types with an arbitrary but fixed
length. The functionality of GPUMP includes operations
such as (modular) addition and subtraction, multiplication,
division, Montgomery reduction/multiplication, exponenti-
ation as well as comparators. GPUMP applies sequential
arithmetic algorithms on pairs of numbers in parallel. It
fails if the number grow beyond the predefined length limit
and becomes inefficient for small numbers in terms of both
computation time and memory usage. Since GPUMP is
only applicable on integers with fixed length, its use in
areas like geometry is very limited, whereas our work is
based on arbitrary-precision integers.

Multi-Precision Floating-Point on GPUs A multiple-
precision library for floating-point number types, the
CUDA Multi-Precision library (CUMP), was presented by
Takatoshi Nakayama and Daisuke Takahashi in 2011 [15].
Additional work has been done by Andrew Thall [22], Mian
Lu et al. [13], as well as Mioara Joldes et al. [11].

2.1 Algorithms

In this section, we shortly review relevant parallel algo-
rithms for our setting.

Parallel Algorithms in CUDA The use of parallel primi-
tives on graphics hardware architectures was pioneered by
Mark Harris and colleagues. We build on these concepts
and refer to them [9, 19] for a detailed overview on the nec-
essary considerations for algorithms to map well to GPUs
and CUDA in particular, such as the usage of shared mem-
ory buffers, optimal memory access schemes and issues
with code path divergence.

Integer Multiplication While integer addition is rather
straightforward, their optimal multiplication is still an open
problem. We use the standard school method with complex-
ity O(n2). More advanced approaches, such as the divide-
and-conquer approach by Anatolii Karatsuba [12] have
lower complexity of O(3nlog2 3), the conjectured optimum
of O(n log(n)) is most closely reached by methods employ-
ing the Fast Fourier Transformation (FFT) [7, 18]. Such
methods either show their advantage only for huge numbers
(>103 decimal digits) or they are hard to efficiently map to
graphics hardware. We show that our simple approach still
runs significantly faster than current state-of-the-art CPU
implementations.

3 Methodology

Arbitrary-precision arithmetics can be performed on var-
ious different number types such as integers, rationals or

algebraic. The fundamental number type is the unsigned
integer type, additional signs can be handled separately. As
arbitrary-precision rational numbers are usually composed
of a sign and two integers, we target the unsigned integer
type in this paper. Our arbitrary-length integer representa-
tion format is based on an array of unsigned sub-integers of
fixed length, which we denote as words. The word length
should be chosen to map well to the underlying arithmetic
hardware and in the following, we assume that common
arithmetic operations (e.g., +,−,×) are natively supported
on words. Furthermore, we expect such operations to ‘wrap
around’ in case of an overflow, i.e., all operations are com-
puted modulo the largest representable value of a word plus
one. Note that this is the standard behavior for unsigned
integers in all common languages. While theoretically un-
bounded, the amount of available memory will limit the
number of words that can be stored and will act as a prac-
tical limit on the maximal size of our arbitrary-precision
integers, which we will simply denote as numbers.

According to standard literature, the many-core process-
ing hardware (i.e., the graphics card in our implementation)
is referred to as device, while host refers to the CPU (plus
the standard system memory). Furthermore, the part of
the program executed on the device will be referred to as
kernel [17].

3.1 Parallelization Strategy

While we target graphics hardware in particular, our work
generalizes to most common many-core architectures (e.g.
Intel Xeon Phi), which exhibit Single Instruction, Multiple
Data (SIMD) computation units as their atomic elements.
Each unit computes `SIMD-many data elements in parallel
in each execution cycle. Our algorithmic design is strongly
motivated by the observation that instruction divergences
are costly if they happen inside a SIMD unit but incur no
additional cost when different SIMD units follow diverging
code paths.

A key assumption is that we expect the word count of the
numbers, which we operate on, to be larger than the SIMD
units’ length. For smaller numbers, the parallel extensions
of CPUs (e.g., SSE or AVX) can be efficiently used. In
our case, we employ a two-level parallelization strategy.
First, we distribute each issued computation to one SIMD
unit and compute them independently and in parallel. As
different computations generally handle input numbers of
different lengths and employ different operators (+,−,×),
significant instruction divergence is expected between them.
All associated downsides are negated since SIMD units act
independently from each other on our targeted architectures.
Each SIMD unit itself operates on `SIMD-many words in
parallel and we rely the provided intra-SIMD synchroniza-
tion capabilities to handle sequential sections of the algo-
rithms. After a computation is finished, the responsible
SIMD unit fetches the next item from the computation pool
until its depletion. Note that this approach is only efficient
on large data set, where more computations than SIMD

Proceedings of CESCG 2015: The 19th Central European Seminar on Computer Graphics (non-peer-reviewed)
26



Input1

Array of words

Input2 Output

0 44 11 15 12

Computation Array

+

Type

}}}

Input1 Input2 Output Type

...

Computation1 Computation2

...

4 11 12

Figure 1: Memory layout of our numbers showing one ex-
ample computation with two input and one output numbers
as well as the operation type (+,−,×) to be performed.
The computation array holds the offset and size of the cor-
responding words in the global array of words.

units are issued.

3.2 Memory Management

A global array stores all words and the numbers can be
identified by their offset into this array and their size (see
Figure 1). A separate array holds all the computations that
are issued. For each computation, the offset and length
are stored for two input and one result number as well as
the type of operation to be performed. As the offset and
size of the results is generally not known in beforehand, we
supply the functionality to reserve additional space in the
global array of words. We keep a sophisticated memory
allocator [20] as future work and just point to the first free
memory location. Note that if host and device manage
separate memory spaces (as is the case with graphic cards),
data transfers have to be issued.

3.3 Addition

Sequential Addition Before moving to parallel algo-
rithms, we first take a look on how two numbers X and Y
are added by a sequential method. As already mentioned,
the numbers are composed of several words, which we enu-
merate as x0, . . . ,xm and y0, . . . ,yn with x0 and y0 holding
the Least-Significant-Bits (LSBs). We assume without loss
of generality that n ≤ m holds for the word counts of the
two numbers.

As addition is natively supported on words, we still have
to account for potential carries. We will add each word-pair
xi, yi sequentially and in case of an overflow due to the
finite range of the numeric type of the words, we pass a
carry ci to the next addition. This can be achieved with a
simple loop over all words. In each iteration, we compute
the sum si = xi + yi + ci−1. In case of an overflow, we rely
on the wrapping behavior for si and issue a carry ci = 1
(instead of ci = 0) for the next addition. Note that for
iterations i > n, we set xi = 0 and terminate with the last
iteration i = m+1, where xm+1 = ym+1 = 0.

Parallel Addition with Word Counts < `SIMD While one
can trivially add the corresponding words (i.e., each xi +yi)
in a parallel manner, synchronization issues arise from the
carry propagation due to its sequential nature. In this sec-
tion and the next, we describe the addition of numbers
whose word count is smaller than the width `SIMD of the
SIMD units. We generalize for numbers of arbitrary length
afterwards. All m < `SIMD additions of the terms are exe-
cuted in parallel by a SIMD unit. Each addition potentially
issues a carry that has to be propagated to the more signifi-
cant words.

1 1 9 9

1 9 0 0

2 0 9 9

X

Y

Sum before

carry prop. 

C

N G G P

N G G G

LSW MSW

2 0 0 0
Sum after

carry prop. 

Carry out

N G P P

Figure 2: Illustration of the carry propagation with decimal
number type as words: We compute the sum of numbers X
and Y with lengths n = 4 for each word separately and
perform the parallel carry propagation using the additional
array C with values G for generation, P for propagation
and N for no carry. The numbers are ordered from Least-
Significant-Word (LSW) on the left to Most-Significant-
Word (MSW) on the right. The carries are propagated in
log(n) = 2 many steps and added to the sums to obtain the
final result (bottom).

Parallel Carry Propagation To perform the carry prop-
agation in parallel, we will use the prefix scan algorithm
illustrated in Figure 2. Since we perform the addition of X
and Y in parallel, we will store these carries in a temporary
array C, where each addition xi+yi can produce a carry that
is stored in ci. A carry ci−1 can only be propagated if xi+yi
is the maximum value vmax of a single word. A little con-
venient detail is that carry propagation and generation can
not occur at the same time. Even if xi and yi are at the high-
est value, we have vmax +vmax mod (vmax +1) = vmax−1.
Thus it is possible to store both cases (propagation and
generation) in the same carry array C. We denote the three
distinctive values in this array with G for generation, P for
propagation and N for no carry.

Now we have to find a generalized associative opera-
tion ⊗ that can perform this propagation. Given a pair of
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Ci Ci−1 Ci⊗Ci−1 Ci Ci−1 Ci⊗Ci−1

N N N G P G
N G N P N N
N P N P G G
G N G P P P
G G G

Table 1: Results for carry propagation function ⊗. G for
carry generation, N for no generation and P for possible
carry propagation

carry values, it computes the resulting behavior and when
iteratively applied to all pairs, it correctly adds carries to
the relevant values. We list all possible combinations in
Table 1. In the case that ci is already set to N or G it does
not matter which value ci−1 has as the initial value remains
the same. In the last three cases, where ci is set to P , it
will inherit the value from ci−1, therefore P is our identity
element.

Parallel Addition with Word Counts≥ `SIMD For longer
numbers, we can use a simple loop as described above for
a sequential addition algorithm. The only difference is,
that we do not iterate over every single word but instead
over chunks of `SIMD-many words. Thus, each SIMD unit
performs chunk-wise addition sequentially. For additional
work parallel approaches are suggested.

3.4 Parallel Multiplication

We employ a parallel version of the school algorithm to
multiply two numbers. Again, we assume two numbers X
and Y , each composed of m and n words x0, . . . ,xm and
y0, . . . ,yn. In contrast to addition, where the upper bound on
the length of the result is max(m,n)+1, for multiplication
it is m+ n and we thus store the result in an array P of
words p0, . . . , pm+n.

Multiplication with Word Counts ≤ `SIMD For sim-
plicity, we will first take a look at multiplication
of two numbers with a maximum length of lSIMD
words each. Again, a single SIMD unit performs
this computation, with all others running in parallel.

5 1 2
1 2 8

4 0 9 6
1 0 2 4
5 1 2
6 5 5 3 6

×

The basic idea is to compute each line
of the example on the right sequentially,
while the workload of a single line is dis-
tributed across the processing elements
of a SIMD unit. Note that in this exam-
ple one word corresponds to one decimal
place with 10 possible values. We start by
multiplying x0, ...,xm with y0 and writing
the result in p0, ..., pm+1. Keep in mind
that the first sub-product is of the length ≤ m+ 1. Then
we compute the second sub-product of x0, ...,xm with y1,
which is added to the previous result but shifted by one
word to the left, i.e., we add it to p1, ..., pm+2 using our

addition algorithm from before. We will continue this until
the last sub-product of x0, ...,xm with yn that will reside in
the result array in pn−1, ..., pm+n.

Sub-Products We now take a look at how to perform
the jth line of the example. Within the SIMD unit, each
element i will perform the multiplication xiy j. Although
we assume that the multiplication of two single words is
supported, we cannot directly apply it, as the result will be
two words long.

Alternatively, we will split the numbers xi and y j in two
words of half size each, with xhigh being the most significant
bits and xlow being the least significant bits of xi. Then
we will perform four multiplications xhighyhigh, xhighylow,
xlowyhigh, xlowylow and store the (shifted) results in the two
words phigh and plow. Each processing element i adds its
result plow to the result array at pi+ j in parallel. After that,
we perform a carry propagation. Finally, each element adds
its result phigh to the result array at pi+ j+1 where another
carry propagation is performed.

Multiplication with Word Counts > `SIMD If we only
increase the length of Y , the algorithm works just fine,
since the limitation given by the SIMD length `SIMD only
concerns the length of X . For longer X , we split it into
chunks of `SIMD words each and process them sequen-
tially. For the k-th chunk of X and the j-th word of Y ,
for example, the SIMD unit would compute the product
(xk `SIMD , ...,x(k+1)`SIMD−1)y j.

4 Implementation in CUDA

In our implementation we mapped our parallel algorithms
to CUDA [16]. The natively supported integer data type
has 32 bits while the length of a SIMD unit – called warp –
is also 32. Thus, both our word length (in bits) and SIMD
length `SIMD are set to 32, making a SIMD-sized chunk
1024 bits long. Carry propagation was performed with intra-
warp prefix scans using shared memory, while result space
reservation employed global and shared memory atomics.
At kernel start, we spawned as many warps as the device
supported in blocks of integer size and terminated them
only after the computation pool was depleted. No intra-
block synchronization primitives were used as we rely on
the implicit intra-warp synchronization.

5 Results

For different test cases, we compare the timings of code
execution on the CPU with the timings on the GPU on
a test system with an Intel Core i7 4700MQ CPU and a
nVidia K2100M GPU. We organize the test cases according
to computation type (+,−,×) and the amount of compu-
tations that are issued. The length of our numbers are
randomly sampled from a normal distribution with mean µ
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Figure 3: Addition benchmarks. Integer lengths in multiples of 1024 bits with deviation σ are shown on the x-axis. The
timing of our GPU implementation is shown with and without data transfer to and from the device on the y-axis. For small
computational loads, the GPU is not sufficiently occupied, while for a sufficiently large amount of computations, superior
performance is obtained.
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Figure 4: Multiplication benchmarks. Integer lengths in multiples of 1024 bits with deviation σ are shown on the x-axis.
Due to the higher complexity of the multiplication, the GPU outperforms the CPU already at 256 multiplications and the
advantage grows slightly as we raise the computation count.

and standard deviation σ to reveal possible code divergence
issues.

Benchmarks We compute our benchmarks for the opera-
tions +, − and ×. For each of these operations we instruct
the GPU and CPU to perform a predefined number of oper-
ations. We create a pool of 1024 randomly generated large
integers sampled from the standard distribution with µ and
σ and each operation is performed on two randomly chosen
numbers from this pool. The benchmark results shown in
the plots are the averaged timings of 32 executions. The
GPU benchmarks are computed with our own framework,
while we generate the CPU benchmarks with the state-of-
the-art LEDA library [14] as an objective reference and
leave optimizations on the CPU as future work.

Addition and Subtraction Comparison The operation
types addition and subtraction perform almost identically,
since they use the same algorithms and the conclusions
in this section hold for both operations. In the first test
case with only 256 operations (see Figure 3), the CPU
computations are still performed faster compared to our
own framework or almost equal if we do not take the data
transfers into account, since the computational load is too

small and the GPU not fully occupied. As we increase
the amount of operations to be performed, we can see an
advantage of the GPU – data transfer taken into account
– at around 1024 operations. The advantage of the GPU
and the performance gap between CPU and GPU increases
with every raise of the operation count as we saturate the
full compute capabilities of the graphics hardware.

Multiplication Comparison Due to the higher computa-
tional complexity of multiplications, we already see the per-
formance advantages of the GPU compared to the CPU at
the first test case with 256 operations, although the lengths
of the integers are only a fourth of the lengths in the ad-
ditions and subtractions benchmark. Due to the shorter
numbers used for the multiplication benchmarks, the data
transfer happens relatively fast, and the two cases with and
without transfer behave the same. Already at 256 opera-
tions, the GPU performs around three times as fast as the
CPU and this performance gap almost remains throughout
our test cases, as shown in Figure 4. At 4096 operations
the GPU performs about four times as fast as the CPU.

Proceedings of CESCG 2015: The 19th Central European Seminar on Computer Graphics (non-peer-reviewed)
29



6 Limitations and Future Work

As our work is a pioneering effort into arbitrary-precision
integer arithmetics on graphics hardware, there are multiple
venues for future work:

Faster Multiplication One could replace our school-
method multiplication with the Karatsuba Algorithm [12]
for a better computational complexity. Even better perfor-
mance on longer numbers can be achieved with the use of
FFT based methods [21].

Parallelization Strategies For small numbers, a per-
thread parallelization can yield better device occupancy
for a smaller amount of computations. For huge numbers,
a per-block or per-device parallelization can lead to better
occupancy as well.

Additional Formats A support for rational numbers as
quotients of two integers would add implicit division ca-
pabilities. However, an efficient method to compute the
greatest common divisor would be needed to reduce the
memory requirements. Furthermore, the framework can
be extended to support algebraic number formats, which
is highly non-trivial due to the conceptual and algorithmic
complexities involved.

Additional Operations Although the framework is a
proof of concept, it can be extended to make it practically
usable. For that it needs to support more mathematical
operations than simple arithmetics, such as exponential
functions, least common multiple, greatest common divi-
sor, min/max functions and comparators.

7 Conclusion

We presented a method to perform arbitrary-precision inte-
ger arithmetics on massively parallel hardware in the form
of graphic cards. By employing a two-level parallelization
scheme, we ensure minimal code divergence within the
SIMD units while still providing effective load balancing
across all units. By employing parallel prefix sum com-
putations we allow for an efficient carry propagation and
dynamic computation of memory offsets to both read and
write integers of arbitrary length. Our CUDA implementa-
tion was compared to a state-of-the-art CPU-based libraries
and with several benchmarks we showed that method is
several times faster for large computation loads.
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Abstract

In the paper, we propose a library for the viewing of
OpenGL textures, models and other resources. The in-
cluded library is adding a possibility for users to open
an additional window beside their program, which can be
used for displaying models, variables and textures in mul-
tiple ways. The user can configure window layout and cus-
tomize what will be displayed in the window. The library
also supports creating more layouts and switching between
them during runtime. The user is free to apply his own
shaders and vertex attributes for individual objects to cus-
tomize the rendering. The library can be used as a support-
ive viewer or tool for debugging OpenGL applications.

Keywords: OpenGL, mesh viewer, texture viewer, C++
library, buffer visualization

1 Introduction

Nowadays, many programmers need to use graphical out-
put in their programs. It may become useful also for the
programmers for whom the graphical output is not the
main intention. For this purpose, various graphical li-
braries such as OpenGL [1] or DirectX are chosen to get
maximal rendering efficiency.

Since these libraries are working directly with graphic
accelerators, the performance is robust, but it has its cost
especially for the developers. Data stored in video card
memory are hard to review by the program debugging and
errors on this level are unpleasant and disturbing. More-
over, programmers often have these data stored on graphic
card related with data in their application, which makes
debugging even more frustrating.

Our goal was to create a visualization tool for these pro-
grammers, where they would be able to inspect models
and textures stored in the video memory, and connect it
with the data from their program. This should be done by
providing a library with a simple interface which can cre-
ate another window beside the user’s application and offer
previewing possibilities.

∗a.riecicky@gmail.com
†martin.madaras@gmail.com

The paper is organised as follows. The first section is
devoted to similar solutions. It provides a closer look on
currently existing tools, and summarizes what is missing
in those solutions compared to our solution. The second
part specifies how the rendering of the structures is done.
The next section is devoted to a rough description of the
implementation. The last section summarizes the testing
and results that we have achieved. A concrete outcome of
this work is a library that can monitor and display different
types of data for various applications.

2 Related Work

The most widely used debuggers which we discuss and
compare in this section are gDEBugger [2], nSight [3],
Vogl [4] and few others. Each of them offer slightly dif-
ferent features, but the main purpose is the same, similar
with ours.

The gDEBugger is being promoted as an advanced
OpenGL debugger, profiler and memory analyser. It is
a stand-alone application, which allows the user to select
an executable he wants to debug. It runs the executable
under its environment and allows the user to display tex-
tures, shaders, OpenGL state and other resources created
and used by the application. After pausing the application,
the user can list down all textures, buffers, and objects lo-
cated on the graphic card in a moment. It also informs
the user about the performance and function calls. Since
gDEBugger is running over an executable, the user cannot
debug the variables from his application. Our library can
display both memory and video-memory data, also beside
the custom debugging environment.

In contrast, the nSight debugger from Nvidia extends
traditional code debugging environments. It can be built
in the Visual studio or Eclipse environment and offers the
user an ability to see almost anything what is related to
the video card memory, while he is debugging his own
code. The nSight can be used for debugging on CPU, GPU
and shaders simultaneously. However, an obvious main
disadvantage of this product is that it supports the latest
versions of the nVidia graphic cards only. Our solution is
designed to support also older versions of OpenGL.

The Vogl is being promoted as an OpenGL capture /
playback debugger. It is a new tool currently in alpha re-

Proceedings of CESCG 2015: The 19th Central European Seminar on Computer Graphics (non-peer-reviewed)



lease, which support both Linux and Windows platforms.
It handles logging all OpenGL state into the file, with re-
viewing possibilities. Compared to our solution, at the cur-
rent state it does not offer any graphical output for debug-
ging, despite the large amount of information logged.

There are also many other tools which can be used for
debugging OpenGL contexts. The BuGLe [5] - similar
to nSight but running on UNIX-like systems. It can be
used for debugging and profiling OpenGL applications in-
cluding shader code, buffers and a visual feedback of the
textures, the color and the depth buffers. Since November
23 2014, BuGLe is no longer being developed. Another
tool, the GLIntercept [6] can log all OpenGL calls but it
was mainly designed for OpenGL to version 2.1. Can be
declared that it is similar, however older solution then the
Vogl.

Despite all the pros of the mentioned tools, there are
many limitations. None of the tools provides a visualiza-
tion of meshes, and that was the main reason and motiva-
tion to create our own. We wanted to let the user to see not
only the array of values in the buffer, but also a 3D visual-
ization of them. Debugging the meshes in a visual form is
much more intuitive then listing a buffer values.

Most of the tools, like gDEBugger and nSight, need
to pause the application before they can be used. It can
be restrictive in some cases, for example when debug-
ging an animation, and it may lead to complications such
as need of frame-by-frame data debugging. Our library
works real-time, allowing the users to view mesh or tex-
ture animations instantly.

In mesh processing algorithms, an output is often rep-
resented as an array of values, corresponding to individ-
ual vertices of the mesh. These values can be for exam-
ple mesh diameter in vertex, skinning weights for single
bone, curvature or other vertex properties. Rendering of
these values in the user’s application would need creation
of specific shaders and buffers applied on a meshes. We
wanted to offer the user a possibility for creating a link
between data in the memory and data on the video card,
with a visual output. Our solution transforms an array of
values into a color data and then assign them to a vertices
of a mesh, which is the feature that is not present in any of
known debuggers.

In order to allow the user other possibilities, we added
a visualization of texture data and displaying variable val-
ues. To sum up, our tool may not be as complex as the
existing solutions mentioned before, but it provides visual-
ization possibilities that are beyond the limits of the other
tools.

Compared to other debugging tools, our framework is
displaying data defined by the user only, instead of all
OpenGL context. This may result in the better clarity of
displayed data, and filtering all not requited buffers.

Similarly to the gDEBugger, our framework works in
an additional window running beside the users application.
This window displays all resources monitored by the tool
and can be customized, depending on the needs and pref-

erences of the user. This feature also makes it suitable for
supplementary visual output applications, not only for de-
bugging purposes.

3 Visualization Methods

Our solution is displaying user defined structures only. We
needed a mean to uniquely identify them, which would
also help the user to distinguish between them. All the data
monitored by the library have therefore its unique caption,
defined by the user.

3.1 Mesh Visualization

Mesh rendering is the feature of our framework on which
we were focused the most. In its simplest form, our frame-
work can render a vertex buffer displaying a mesh as a
point cloud. This form of visualization does not require
additional information about the mesh, beside a buffer and
number of vertices. This allows the user to get a visual
feedback in a single library function call. In the next step,
the mesh data can be adjusted by other callings to spec-
ify vertex connectivity, texture coordinates or vertex at-
tributes.

The vertex connectivity can be added by sending an in-
dex buffer. Specifying element type, viewer treats a vertex
array as a sequence of elements. From that moment the
mesh is not rendered just as a point cloud, but individual
connected elements can be seen. Similar procedure can be
used for the objects which should be textured, but there
is a need to have the vertex connectivity specified in the
moment. Object is then displayed as a full solid textured
mesh, which can be viewed in the window.

After this, a rendering of the model is done by the li-
brary’s internal shader program which can be replaced by
the user specific shader program. It can modify the way
how the model in a library window is rendered. It is possi-
ble for the user to use vertex attribute buffers for a shader
input as well.

To each model, an array of values can be assigned. It
manipulates the vertex colors depending on the value. For
each individual vertex one value is taken from a field and
transformed to a color using a selected color scale. There
are several possibilities how the value can be changed into
the color. For our solution we selected a linear color map-
ping function, which is trivial to implement, with a low
computing cost, and result which is adequate and fully
sufficient for our needs. The vertex value is mapped on
a predefined linear color scale (e.g. blue for the minimal
and red for maximal value), and then applied as a vertex
color.

3.2 Other Data

Beside the one main purpose, which is a vertex-buffer
and mesh visualization, we want to offer the user ability
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to display other structures, to enlarge usage possibilities.
Specifically there are two other options - inspection of the
textures and tracking application variables.

Textures stored in the video memory can be monitored
via their individual buffer ID generated by OpenGL. Send-
ing this ID to the library allows the user to display specific
textures in the Viewer window. All the textures that were
sent to the library, can be displayed and viewed. This fea-
ture is not as complex as the mesh viewing, but we de-
cided to implement it, because it often may come in handy
to have it available. It can be used for example to review
depth or color frame buffer textures, normal, diffuse and
other texture properties of a model.

The last function allows the user to set a variable point-
ers to the library and then display actual values. Output of
the each pointer can be formatted and inserted into a de-
fined string line. These strings can then be selected in a
library window and are displayed as standard text output.
This function may be useful when there is a need to see
variables in a real-time without the restriction of applica-
tion pausing.

4 Implementation

The library offers a set of tools for previewing data struc-
tures. User can specify which OpenGL context he wants
to share with the library, and which structures he wants
to display. Viewing framework then makes a list of these
structures and the user can select and see the actual look
of the data at runtime.

Primarily, the library is designed to work with OpenGL
version 4+, however it can be used with projects that are
written in lower OpenGL version standards. The project
is implemented as a static library that can be linked to any
C++ project. The library header file, contains all function
callings that the library provides.

4.1 Architecture

The library interface function callings can be used to spec-
ify which resources should be displayed in the library win-
dow. By using them, the user passes to the library all infor-
mation needed. The framework stores all the data which
has been sent and offers them to select at runtime (User-
Library interaction described in Figure 1). Each structure
has its own caption - a user defined text description of the
resource. The user can identify and select the resource he
wants to display by the caption.

User Application

Visualizer Window

Library

Resource adding

Resource viewing

Configuration setting

Figure 1: User - Library interaction

The Viewer Library runtime is separated into two modes
to make it easier to adjust for different purposes. First,
there is the configuration mode. It allows the user to create
a layout of the window and specify parts of it, where the
rendering of the individual structures will be done. This
layout serves as a starting point for the second, and more
important part - the viewing mode.

The viewing mode is the main feature of the program,
which allows the user to list all stored data, such as meshes
and textures stored in video memory or to display vari-
ables. It is possible to select in real-time what to display
at the current moment. The number of structures and data
that can be reviewed in this mode are dependent on the
code interface calls. That means, that if there were no in-
terface calls, nothing can be viewed in the viewing mode.

4.2 Context Sharing

Each application that is running OpenGL has its context. It
stores all the state associated with the instance of OpenGL.
Each resource generated and stored on the graphic card is
specific for the instance of the context, which means that
two applications running OpenGL cannot see nor access
the context of the other.

Our Viewing Library uses context sharing. This means
that on initialization, the context created by the user pro-
gram needs to be shared with the library. It allows the
library to operate on the same context as the user program.
The difference between separated and shared context is
shown in Figure 2.

shared 
OpenGL 
context

A B

Applicaton Library

2nd
OpenGL 
context

1st
OpenGL 
context

Applicaton Library

Figure 2: A - two separate OpenGL contexts, B - single
shared OpenGL context

4.3 Viewing Mode

The viewing mode is the main part of the application, and
it is the actual visual feedback for the user. In this mode
the user can display all the data which were sent to the Li-
brary through the code. In Figure 3, an example of viewing
layout is displayed.

Viewing mode distinguishes three types of the field,
which can be rearranged in the configuration mode. Mesh
view is used for displaying vertices from the vertex buffers
and seeing the correlation of them with the value arrays
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RenderinguFPS:u60
Camerauposition:u233,u156,u5

Objectu153uactive:utrue
Objectu168uactive:ufalse
Passiveuobjectunumber:u24

Tesselationutimes:u3
Bumpmap:ufalse
Postrenderuactive:utrue

A A B

C

Figure 3: Example of the viewing mode layout.
A - Texture views, B - Variable display, C - Mesh view

from the computer memory. It is possible to rotate and
zoom the individual objects in the view. Texture view de-
termines an area where the textures can be displayed. Vari-
able view is the area which displays text output and the
actual value of the defined variables. Variables are added
by the user program, and lines to display can be selected
by the user for each individual variable display.

4.4 Configuration Mode

This mode is focused on creating a custom layout for the
window, as the one which can be seen in Figure 4. The
layout is represented as a set of rectangular fields. The
type of each can be changed by the user. There are three
main types of fields which can be selected: mesh, texture
and variable field type.

Texture 

View

Model View

Texture 

View

Variable View

A B C

D

Figure 4: Example of the configuration.

Our framework supports profile creation. Each profile
can hold different configurations of a window. The user
can switch between profiles and modify them at runtime.
Each session comes with one default profile which cannot

be deleted and which can be selected any time. All other
profiles can be freely renamed or deleted.

All changes made in the configuration mode are applied
to the current profile. These changes are automatically
saved. During the next creation of the Viewer window the
previously created layout is loaded, therefore there is no
need to configure the window layout every time the pro-
gram is started.

4.5 Usage Example

To demonstrate the usage of our framework, lets assume an
example. The user wants to preview two loaded models as
a point cloud, a texture and a variable which holds number
of renders of his application.

First step is including the library into the project and
calling the initialization function at the start of the pro-
gram. Then for each resource he need to send a buffer and
his own description of it. It is one function calling for each
of the models, and one for the texture. Finally, he uses an-
other function to specify output string and set a pointer to
the value which represent the number of renders. When he
now runs an application, additional window pops up be-
side his application window (if there is any). This window
is currently empty and there is no possibility to see any-
thing yet. Currently there is configuration mode running,
which means that the user can set up a layout. He creates
layout which consists or each mesh, texture and variable
field, and then switch to viewing mode. Once the mode is
switched, resources can be displayed and previewed in the
fields.

5 Results

To test all the features of the library we run it on an ap-
plication used for model manipulation and computation.
This application provides mesh processing algorithms and
calculations on meshes. One specific feature of the pro-
gram is the calculation of a Shape Diameter Function [7]
for graphs, which can nicely demonstrate the use of the
mesh and data linking in the library. The application is
also working with other data, such as generated textures
and variables.

In Figure 5 the tested application and the window of
our Viewer running on top of it can be seen. Textures
which were generated by the client application are in-
stantly sent to the library. These textures can be displayed
in the Viewer. Figure 6 shows a similar test on a differ-
ent model. Both Figures show that the vertices of model
are coloured in the Viewer window. These colors are vi-
sual representation of the Shape Diameter Function values,
which is defining the diameter of the mesh in an individual
vertex. The values were calculated by the application, sent
to the Viewer as a pointer to an array and assigned to the
model by its caption. Our conclusion to this test was that
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Figure 5: Viewer window (A) used beside an application
(B).

the Viewer is correctly and tabularly displaying all data we
sent to it.

Images indicate that the Viewer provides sufficient vi-
sual feedback for the user who is developing such an ap-
plication. Without a need of the users own rendering envi-
ronment, the visualization possibilities of the tool can be
easily used to display several kinds of resources.

Figure 6: Model with applied values of Shape Diameter
Function and its displacement and height map.

Since the tool provides multiple visual output options,
there are many possible applications for it. For example
it may become useful when the programmer needs to de-
termine if some mesh/texture was loaded correctly. Using
just a few commands it allows the user to have a visual
feedback of a mesh or a texture, where he can inspect it
and determine its correctness.

Another application can be a visual test of a shader pro-
gram. For one user specified model there is a possibility
to apply a shader program. The model can be rendered
in the Viewer window with the shader. The user can see
whether the render behaves as it should, or there are some
undesirable artefacts. The user is also free to add another
shader and the same model, and able to see both renders

and compare them.

6 Conclusions

Our goal was to create a library which can display meshes
with their supplementary data, textures and variable values
on a separate window which can run beside the user’s ap-
plication in real-time. We reviewed similar existing tools,
but since we were not able to find any solutions for exactly
this type of problem, we have been inspired by existing de-
buggers for OpenGL, which were closest to the subject of
our work.

Our library can be further expanded by adding more
customization possibilities for the fields, user interface up-
grades like texture zooming or functional expansions such
as printing a matrix values. It can be used for viewing
OpenGL and the user-program variable arrays. The library
can be useful in several applications, mainly as an alterna-
tive tool for displaying OpenGL resources, debugging a
program or just an auxiliary viewer running in a detached
window.
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Abstract

As part of an archaeological excavation, huge amounts
of different types of data, for example laser scan point-
clouds, triangulated surface meshes, pictures or drawings
of finds, find attributes like location, age, condition and
description or layers of excavated earth are collected. This
detailed documentation is important to give archaeologists
the possibility to analyze the collected data at a later date,
since the find spot might not be accessible anymore. Un-
fortunately, all the accumulated data is separately saved
and consequently complex to explore.

Therefore, we present a novel solution that allows the
user to digitally explore a virtual archaeological excava-
tion in real-time. With our approach, we can not only vi-
sualize different types of textured meshes and finds, but
also allow the user to draw on surfaces to mark areas of
certain interest that need further exploration, enable explo-
sion views to investigate composition of different layers of
earth and arbitrary slicing of the three- dimensional mesh
structure to better visualize cross-sections, and an easier
tracing of accumulation points of finds. The result of this
work is a new powerful tool that will support the analysis
of future excavations. All results and the implementation
itself will be presented as part of this work.

Keywords: Unity3D, Archaeology, Visualization

1 Introduction

This work complements the already implemented Harris
Matrix Composer [a], abbreviated below as HMC. The
HMC is an important tool archaeologists use for the doc-
umentation of archaeological sites. Our 3D viewer is an
additional component of the new Harris Matrix Composer
- Plus system. The viewer is a real-time renderer with a
GUI shown as a toolbox which allows the user to further
explore and verify a given three-dimensional data set. This
allows the user to visualize selections and/or combinations
of all types of stratigraphic units within the HMC.

The HMC is based on the Harris Matrix which was in-
vented in 1975 by Edward Harris [8]. During an exca-
vation, this matrix is used to document the stratigraphic

∗thomas.trautner@tuwien.ac.at
†hesina@vrvis.at

relations of dug out sediments. Every unit of stratification
– for example remains of wood or brick walls, a basement,
or inclusions – is displayed as a single node in the hierar-
chical graph. Figure 1 shows a typical Harris Matrix.

Figure 1: Example of a Harris Matrix within the Harris Matrix
Composer. It is a two-dimensional and graph-like representa-
tion of dug out stratigraphical layers. Additionally we highlight
a subdivision which represents room 1 of the excavated ruin in
Falkenstein.

A typical HMC matrix starts with a circular green unit at
the top. It represents the top surface of the archaeologi-
cal excavation, for example measured by a laser-scan. The
lowest unit is as well a circular green unit, which stands for
the lowest excavated stratigraphic layer. Every other unit
in-between consists of at least a top- and a bottom-surface,
or a hull of these two surfaces. Additionally, a HMC ma-
trix enables an accurate assignment of the find locations.
Every path visualizes a different location, and therefore a
subdivision of the excavated area can be easily identified.

Unfortunately, beside all the already mentioned advan-
tages of a two-dimensional graph-like representation, do-
main experts from the field of archeology (like the Ludwig
Boltzmann Institut für Archäologische Prospektion und
Virtuelle Archäologie [c]) came to the conclusion that it
is necessary to explore not only a graph-like representa-
tion, but also the real excavated three-dimensional data
set. This is essential to better understand an excavation
and easily track possible mistakes made during the docu-
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mentation process – like, for example, wrong classification
or age determination of layers.

Therefore we extended the HMC and implemented this
3D viewer which allows archaeologists to (1) compare a
Harris Matrix with measured three-dimensional data (2)
perform manipulations on the data in real time and further
(3) verify assumptions and findings. Doing this without
our 3D viewer is extremely difficult and time-consuming,
because all layers of earth are irretrievable removed during
an excavation.

2 Related Work

A very similar approach of visualizing archaeological ex-
cavations is presented by J. Cosmas et al. [4]. The
authors propose a tool to visualize building parts, finds,
stratigraphical layers and textures in situ, and furthermore
provide advanced 3D reconstruction techniques. This is
done by storing all different types of data in a multimedia
database. The result is used for presentation or publication
purposes.

Another approach presents a virtual reality tool [2]
which allows the user to measure stratigraphical units like
curvature, length, thickness, height or volume to enhance
archaeological fieldwork. Furthermore it allows the user to
calculate volumes and simulate archaeological formations
and deformation processes which is essential for under-
standing an excavation.

The work of Vote [13] focuses on visualizing the Great
Temple of Petra based on post-excavation archaeological
analysis. As part of this work they analyzed four different
prototypes. First of all a conceptual model that automati-
cally assigns chronology by using finds and other datable
objects, secondly a three-dimensional database and a Ge-
ographical Information System (GIS) visualization soft-
ware, thirdly visualizations using a virtual-reality interface
and finally they focused on improving visual perception
using lighting and coloration.

Dellepiane et al. [5] present a technique of interactive
slicing, where a slicing plane is moved further away to-
ward the viewing direction to visualize disparity between
two different time steps – a technique that is also very use-
ful for archaeological visualizations.

Benko et al. [3] focus on a mixed-reality approach im-
plemented for multiple users. It supports the tracking of
see-through head mounted displays and multi-touch table
surfaces. The final visualization is similar to our approach
based on the Harris Matrix.

Additionally, we considered a summary [9] of five pa-
pers that propose different approaches to visualize seismic
measurements. This is done to allow the user to further
explore and analyze possible oil or gas reserves. For op-
timal use the author recommends the following expressive
visualization and rapid interaction techniques: the time of
creation of such an illustration must be reduced, the pro-
gram must independently recognize important stratigraph-

ical layers, and the exploration should be as simple as pos-
sible for the user.

Remondino and Campana [10] present image-based ap-
proaches to capture detailed 3D information of archaeo-
logical excavations. This is done with cost-efficient ap-
proaches like taking pictures of finds from different an-
gles, and finally computing the three-dimensional struc-
ture. Therefore we implemented a run-time object loader
for our HMC-Plus 3D viewer which is able to load and
visualize such models as well.

A similar low-cost approach is presented by Doneus et
al. [6]. Instead of expensive techniques like measurements
with laser scanners, they use a technology called Struc-
ture from Motion [12] and create a three-dimensional point
cloud. This approach requires only minimal technical
knowledge and user interaction, and is therefore straight-
forward to use.

Allen et al. [1] introduce a 3D Modeling Pipeline for
archaeological excavations and finds. First, the excava-
tion site is either scanned by a laser scanner or pictured
with cameras. In the next step, the site is represented as
3D model, and additional context like background images,
videos or GIS data is added.

Santos et al. [11] focus on realistic rendering of archae-
ological excavations. They concentrate on illumination
methods like global illumination. The paper presents dif-
ferent approaches that guarantee a frame-rate of at least 10
images per second and the possibility to change the view
point dynamically. Since lighting is such an important fac-
tor for a realistic perception of a scene, we allow the user
to dynamically place light sources in the scene with our
HMC-Plus 3D viewer.

To provide stereoscopic rendering we further imple-
mented a technique called off-axis rendering, which was
described by Grasberger [7]. His work presents different
approaches of stereo rendering and explains in detail their
use, the advantages and disadvantages.

3 Implementation

Our main goal was building a tool that allows the user
to scientifically visualize archaeological excavations. The
resulting 3D viewer should be dynamic, customizable,
easily extendable and has to support the import of high-
resolution geometry and very large geometric models.
Therefore, we chose the Unity3D Game Engine [b] as an
optimal framework for our implementation. Furthermore,
Unity 3D offers the possibility to build a 3D viewer for
different platforms.

3.1 Object Import and Data Preparation

We wanted our rendering framework to be as independent
and compact as possible. Therefore, we implemented a
3D viewer and partially extended it with already existing
libraries that were well-suited for our approach – like for
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example an improved file browser dialog [d] that allows
us to display different folder structures including all their
files during runtime. By additionally applying a filter
function that allows the user to select only files with an
(*.obj) extension, we managed to optimize the complex
handling of the numerous 3D files. We furthermore
expect the following naming restrictions to guarantee a
successful mesh import:

[0-9] [000-350] tbs [0-99] [A-Za-z0-9]? .obj
[Sub-Mesh] [Name] [Room] [Information].obj

Example:
0 000tbs 0 falkenstein smart.obj
0 000tbs 1 falkenstein smart.obj

Sub-Mesh: We use this index to detect if a mesh con-
sists of smaller sub-meshes. In the given example the two
objects are named 000tbs and belong to the same sub-mesh
with index 0. If one of them is selected by the user during
a load object operation, the other one will automatically
be loaded as well.

Name: This name is displayed if the mouse cursor
is moved over the mesh in our rendering window. The
name consists of three digits that represent the layer and
the acronym tbs which stands for top-bottom surface. The
lowest layer of excavation should always be called 000tbs.
All other layers can be called according to their HMC-
label, although the highest possible number is currently
350tbs. This limitation results from the current maximum
number of tags that are assigned dynamically during run-
time. Unfortunately, tags must be hard-coded and cannot
be created depending on variables which are passed during
run-time.

Room: The room number is important to enable future
versions of the HMC-Plus 3D viewer to perform manipu-
lations only on individual rooms of the currently selected
mesh (for example only explode layers of a single room).
The current version of the 3D viewer explodes all layers
equally independent from the selected mesh and room it
belongs to.

Information: This part is not required by the 3D
viewer. It can be used to store additional information
assigned by the user. If there is no need for further
information, it can be left out.

Unfortunately, our external triangulation library [e]
and Unity3D itself have a maximum vertex count limit of
65.534 vertices per mesh. If such a big mesh is imported
into the editor, Unity3D will automatically divide it
into default sub-meshes. After building the project, or
during runtime, this additional processing step is not
possible anymore. Therefore, we expect the user to either
load smaller meshes or divide meshes which have more
vertices into sub-meshes manually in a preprocessing
step.

3.2 Mesh Selection

If a layer is selected by clicking the left mouse button, the
outline of the selected object is changed to red, which can
be seen in Figure 2.

Figure 2: An example scene where three different meshes were
selected. Their shader is changed from a diffuse shader to a red
outline-shader. This feature allows the user to easily see which
layers are currently selected.

As we can see the mesh is still textured, but the shader is
changed from a simple diffuse shader to an outline-shader
with red as its main color. If the ”Ctrl” button is pressed
and another object is selected, this object is selected as
well, and their shader is changed to an outline shader. In
Figure 2, three different layers were selected: First of all
the 000tbs ground layer, then layer 074tbs in the middle,
and the highest and therefore latest layer 006tbs on the
rightmost side of the screen. If the ”Ctrl” button is not
clicked, the first selected object will be deselected after an-
other element is selected. By clicking on the background
all currently selected meshes will be deselected.

Especially this feature will be essential for future ver-
sions of the HMC-Plus 3D viewer. It will allow the user
to select stratigraphical layers within the 3D viewer and
directly get their position in the two-dimensional Harris
Matrix.

3.2.1 Functioning of the Outline Shader

The result of the dot product is a scalar which represents
the cosine of the angle between two vectors. If the dot
product of the current viewing vector and the surface nor-
mal is zero, we simply change the pixel color to the outline
color. If the dot product is not zero, we do a texture look
up for the current pixel and calculate the dot product of
the surface normal and the light direction to illuminate the
pixel with a diffuse illumination model. An example of
this algorithm can be seen in Figure 3.

Figure 3: Low resolution meshes with an outline-shader
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In the case demonstrated in Figure 3, the black polygon
line represents an example layer which has an outline
shader attached to it. Every triangle of this mesh has a
surface normal which is represented by the vectors called
n. The current camera position is represented by the eye
with the corresponding viewing vectors called v. If the dot
product is zero, the surface color will be changed to red,
which is represented by the red angle in the middle. In this
case vector n is orthogonal to vector v.

In Figure 3, we visualize two special cases: the cross-
section of a triangulated surface without a correct red out-
line and the cross-section of a concave polygon with two
viewpoints from which a correct outline is drawn.

3.3 Show Finds

During the excavation process, usually different items or
materials like coins, glass, wood, porcelain, iron or others
are found. To provide interactive exploration of find lo-
cations, our 3D viewer is capable of visualizing them as
well. An example of this can be seen in Figure 4.

Figure 4: Example of finds of an excavation. They are repre-
sented as colored boxes whereas the color depends on the mate-
rial properties of the find. Furthermore an additional description
is shown if the mouse is moved over a box ( for example year
dates, the material, or layer number in which it was found).

Finds are usually represented by a point-cloud file which
stores all X-, Y- and Z-coordinates (*.obj) and an ad-
ditional description file (*.txt), which includes the layer
number where it was found, the material and an additional
description for every find. As soon as the 3D viewer has
imported all finds, colored boxes will be displayed. Every
box represents a single find.

Currently the color is chosen randomly, but finds with
similar materials are always colored the same: For exam-
ple, every silver coin is colored red, and every copper coin
blue. To guarantee that the colors are significantly differ-
ent and the same color is not selected twice, we used a
hash-function that uses all the available find-information
as seed to calculate the color. To improve the comparison
of finds across different excavations, the next version of
our 3D viewer will allow the user to select certain color
maps to be able to use the same colors for materials which
were already used in previous models of archaeological
sites and only define new colors for new materials.

Furthermore, the user can change the color distribution,
so that all finds of a certain layer will get the same color.

This feature allows the user to easily see which finds were
found in which layer and where accumulations may be.

3.4 Slice Surface-Layers

Stratigraphy is a meaningful subsection of archaeology.
Therefore it is important for archaeologists to understand
how layers have moved, changed and sedimented over the
years. Knowing this allows for example the age determi-
nation of finds. Unfortunately layers are often not well
separated and therefore the Harris Matrix is not expres-
sive enough. Therefore we implemented another impor-
tant feature which allows the user to explore the structure
of all stratigraphical layers of an excavation in explosion
view. After the user has selected a layer, the 3D viewer
will automatically calculate the bounding box of the se-
lected mesh, and a slicing plane is shown. This is depicted
in Figure 5.

Figure 5: Different positions of the slicing plane

The dimension of the slicing plane depends on the dimen-
sions of the bounding box. To guarantee that the slicing
plane is always large enough to cut through the whole cur-
rently selected layer, the greatest dimension of the bound-
ing box determines the width of the slicing plane. The user
can then change the position and orientation of the slicing
plane. In some special cases, like for example a diagonal
position of the slicing plane, the greatest dimension of the
bounding box is not enough. Therefore, we will increase
the width and use the greatest distance between two points
of the bounding box in the next version of the 3D viewer.

Figure 6: In this Figure we present a possible slicing view of an
excavation. To visualize cross-sections of surfaces our 3D viewer
uses orthographic cameras. Furthermore it is still possible to
visualize finds and enable the explosion mode.

Additionally, we want the user to be able to place the
plane exactly at the desired location. To simplify this task,
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the slicing plane is semitransparent, and its color differs
significantly from typical soil colors to further strengthen
the contrast. The slicing view uses two orthographic cam-
eras to visualize cross-sections of surfaces. An example of
the sliced model can be seen in Figure 6. All the finds are
visible and room 1 is currently in explosion mode.

3.5 Explosion View

Another important feature we implemented allows the user
to explore the structure of all stratigraphical layers of an
excavation in explosion view. Using this type of visualiza-
tion, the hierarchical order and composition of all layers
are better visible and therefore easier to analyze. The re-
sulting animation steps can be seen in Figure 7.

Figure 7: Explosion view animation sequence

Figure 8 shows a graphical explanation of our algorithm.
The expander variable is a float value which controls the
factor of explosion. Depending on the total number of lay-
ers called k, it is multiplied with k minus the current layer
index.

Figure 8: Simplified explosion view explanation

Therefore the collection of expandable layers is always
sorted in descending order. The sign factor depends on the
direction in which the mouse wheel was turned. With this
adaption the same algorithm can either perform an explo-
sion to enlarge the offset or an inverse explosion and move
all layers back to their original position.

3.6 Brushing

The brushing tool can be used to mark certain regions of
interest. This is important to identify future excavation
sites, potential errors, overlooked finds and further to be
able to easily export and exchange this information glob-
ally. To enable this, we implemented multilayer-texturing
using an additional alpha texture. If our 3D viewer im-
ports a mesh it will have two texture layers. The first layer

is the texture that the material file was pointing at. The
second layer will be added by the viewer. It is a simple
alpha-texture that is used for all the brushing operations.
After selecting a color and enabling the brushing tool, the
user can use the left mouse button to draw on a surface
and the right button to erase already made drawings. To
remove drawings, they are changed back to the original al-
pha value. The brush size is calculated dynamically, but
currently only quadratic kernels are supported. Another
characteristic can be observed in Figure 9: If the brushing
is performed repeatedly on the same spot, the opacity of
the color increases.

Figure 9: Color selection and kernel with different opacities

In the top left corner of Figure 9 the color selection [f] is
visible. It can be used to select RGBA colors either by
simply clicking on a color, or by inserting values from 0 to
255 for every red, green, blue and alpha channel.

After the brushing operation the alpha texture can be
exported and for example imported the next time the
users opens his model. It will be saved as (*.png) in the
folder for textures and screenshots of the opened scene.
In addition, the date and time is recorded in the name of
the file. For example:

6-18-2014 10-42-50 AM Texture 44

[month]-[day]-[year] [hour]-[min]-[sec] [AM/PM]
Texture [sequence number].png

An example of how marked regions could look like
can be seen in Figure 10.

Figure 10: Example of marked regions

3.7 Adding Light Sources

To enhance the perception of the structure of the recon-
structed geometry, the scene can be illuminated manually
during runtime. The current version of the 3D viewer sup-
ports point lights; however, future versions will include
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different types of light sources like for example spot-lights
or directional-lights. Once a light source is added to the
scene, its intensity can be changed. An example of how
different intensities could look like is shown in Figure 11.

Figure 11: Controlling the intensity of a point-light source using
the mouse-wheel

To manipulate the light source position three arrows rep-
resenting the X-, Y- and Z-axis are displayed. By clicking
on one of them with either the left or right mouse button,
the position can be moved up or down along this axis re-
spectively.

3.8 Name Highlighting

If the mouse cursor moves over a mesh, we automatically
display the name of the mesh. We do this by continuously
emitting rays from the mouse position into the viewing-
direction. If such a ray hits a mesh-collider, we print a
label with the corresponding mesh name next to the cur-
sor. Thereby we allow the user to interactively explore the
given data set without having to look up every layer within
the Harris Matrix.

4 Additional GUI-Settings

Apart from the already mentioned exploration features, we
allow the user to change some basic settings of the render-
ing system as well. These adjustments include the actual
type of camera and the used render mode.

4.1 Camera modes

Currently we support two different camera modes: The
first mode, which can be seen in Figure 12, is called Fly-
Through-Mode. The second mode, which is visible in Fig-
ure 13, is called Origin-Rotation-Mode.

Figure 12: Fly-Through-Mode explanation

4.1.1 Fly-Through-Mode:

The viewing direction can be changed by moving the
mouse, and the camera position can be changed by using
the W, A, S and D keys.

4.1.2 Origin-Rotation-Mode:

Using this mode the camera moves circularly around its
center-point. The distance to the center-point can be
changed by using the mouse-wheel.

Figure 13: Origin-Rotation-Mode explanation

Additionally, this mode consists of two cameras to pro-
vide stereoscopic rendering. To render these images, we
implemented off-axis-projection by using different projec-
tion matrices.

5 Results

The most important performance criteria for us was the
applicability in real-time to allow the user to interactively
explore our visualization. Therefore we focused mainly
on GPU and CPU consumption and the average number of
frames per second in this section. The following hardware
settings were used on the testing computer:

Operating system: 64-bit Windows 7 Home
RAM: 16 GB
CPU: Intel(R) Core(TM) i7 -3930K CPU @ 3.20Ghz
Graphic card: NVIDIA GeForce GTX 690 with 4096
MB memory

The scene we used for testing consists of twelve dif-
ferent stratigraphic layers. Every layer is a triangulated
and textured high-resolution point-cloud (*.obj). The
biggest layer we used is the 000tbs ground layer which
consists of 314.347 vertices and has an overall size of
20,17 MB. Furthermore, we used a 1024x1024 picture
(*.png) taken during the excavation to texture the ground
layer and a 128x128 checkerboard pattern (*.png) to
texture all other sub-meshes. An overview of all object
and texture sizes can be seen in Table 1.
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Number of layers 1 2 3 4 5 6 7 8 9 10 11 12
Added layer 000tbs 006tbs 020tbs 032tbs 035tbs 054tbs 074tbs 096tbs 100tbs 106tbs 109tbs 115tbs
Vertices in layer 314347 6070 10931 10543 7734 10589 10393 8793 3067 10403 5731 3465
Vertices in scene 314347 320417 331348 341891 349625 360214 370607 379400 382467 392870 398601 402066
Size of *.obj file(s) (kB) 20.170 329 618 800 706 616 612 519 162 593 395 311
Texturesize of layer (kB) 2.370 4,74 4,74 4,74 4,74 4,74 4,74 4,74 4,74 4,74 4,74 4,74

Table 1: Overview of the example scene Falkenstein

Number of layers 0 1 2 3 4 5 6 7 8 9 10 11 12
Added layer - 000tbs 006tbs 020tbs 032tbs 035tbs 054tbs 074tbs 096tbs 100tbs 106tbs 109tbs 115tbs
lowest FPS 140 133 120 103 88 80 73 69 43 35 31 22 19
highest FPS 173 168 165 152 149 148 132 113 109 91 80 75 60
average FPS 156 148 142 135 134 125 115 95 73 48 45 41 40

Table 2: Overview of the lowest, highest and average frame rate

Usually, an average frame rate of at least 35 frames per
second is needed to ensure interactivity in real-time. Ta-
ble 2 shows a minimum average frame rate of 40 FPS. The
lowest frame rate occurs usually during and immediately
after the importing of a new layer. Thereby we can guar-
antee that our viewer is able to deal with large data sets
with a high vertex count.

6 Conclusions

The HMC-Plus 3D viewer was already presented to the
potential end-user group of archaeologists of the Ludwig
Boltzmann Institut für Archäologische Prospektion und
Virtuelle Archäologie [c]. They found the 3D viewer to be
especially helpful and easy to use – on one hand to watch
cross-sections and explosion views to analyze structures
and their relations, and on the other hand the stereo ren-
dering for public presentations such as press conferences.

Although we built a stand-alone viewer and could there-
fore not totally benefit of a fully developed game engine
like in our case Unity3D, we were able to achieve excel-
lent results. We presented the development of a powerful
tool, which is designed to simplify the future work of ar-
chaeologists. With this solution, it is possible to not only
analyze a graph-representation of an archaeological exca-
vation, but visually represent all measured data at run time.
This provides a virtual exploration for archaeologists who
were not able to physically visit the excavation site. In ad-
dition, it allows archaeologists to research different strati-
graphic layers at the same time. This is usually difficult,
as younger layers, which are mostly located above older
layers, must be irretrievably removed to reach lower sur-
faces. With our approach no information is lost, and even
younger surface layers can be studied easily.

7 Future Work

The goal of our future work will be to develop an interface
between this viewer and other parts of the Harris Matrix
Composer - Plus system. It will then be possible to not
only investigate the three-dimensional data set, but also
instantly determine its position in the Harris Matrix and
vice versa. As result, we want to create a single, even
more powerful tool out of already developed components,
which can be seen in Figure 14.

Figure 14: The final Harris Matrix Composer - Plus System will
consist out of already implemented components for example the
HMC and the 3D viewer. If a unit in the HMC is selected it will
be automatically highlighted in the 3D viewer.

We further plan to replace the box-placeholder of the
finds with their exact 3D representations. In addition we
want to apply the Explosion mode not only on the strati-
graphical layers but also to the finds, develop other intu-
itive camera modes, and implement ambient occlusion to
improve the spatial perception for the users. Furthermore
we plan to implement selection based manipulations like
exploded views which only affect certain areas or rooms
of an excavation.

Finally we want to expand our user study to ensure that
our HMC-Plus system supports most of the archaeological
work and techniques.
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Abstract

Virtual presentation of cultural heritage is significantly en-
hanced through the interactive digital storytelling. The
common approach is to access the digital stories by click-
ing the interactive nodes within the virtual environment.
We introduce a different method which enables the users
to interact with the story and branch to hyperlinked digital
content, which can contain virtual environments. The hy-
perlinked structure implementation is done in Unity. Eval-
uation of the method is performed through the user feed-
back analysis. Keywords: Interactive digital storytelling,
hyperlinked stories, virtual cultural heritage.

Keywords: Digital Storytelling, Hyperlinked Video,
Unity

1 Introduction

Storytelling is one of the oldest concepts in history of
mankind. Stories are hidden in every aspect of human life.
The methods of storytelling are changing and adjusting to
the available media and tools. However, the aim remains
the same: engage the consumer with the story and make
him/her immersed in different space and time. With the
development of digital technologies, the presentation of
cultural heritage is significantly improved. Nowadays we
can virtually travel through time and visit the 3D models of
monuments in their original shape. Many tools and tech-
niques are involved in such presentations, one of them dig-
ital storytelling. The museums are improving their phys-
ical exhibitions adjoining the artifacts with digital stories
about their purpose, history and related events and charac-
ters. Today the people are used to all kinds of interactions.
The time becomes a precious commodity. Very few peo-
ple read books, most just skim through web sites and can
afford to watch only short videos. The hypertext principle
has conquered our everyday lives. The aim of this research
is to explore how the perception of stories can be enhanced
dividing them in short sub-stories hyperlinked in a hierar-
chical structure. On the example of the Tašlihan applica-
tion we will discuss the user perception of this concept and
its advantages and drawbacks in comparison with the lin-

∗iprazina1@etf.unsa.ba
†srizvic@etf.unsa.ba

ear storytelling. The paper is organized in the following
way: Section 2 presents the existing concepts of hyper-
linked storytelling structures such as hyper-video, in Sec-
tion 3 we present the overview of our research in this field
and introduce the new method of Unity hyperlinked video,
Section 4 describes the case study we used as a proof of
concept, in Section 5 we evaluate our concept through a
user survey and Section 6 presents our conclusions.

2 Related work

One of the most common concepts of hyperlinked stroy
structures is the hyper-video. It was first demonstrated
by the Interactive Cinema Group at the MIT Media Lab.
Elastic Charles [1] was a hypermedia journal developed
between 1988 and 1989, in which ”micons” (video foot-
notes) were placed inside a video, indicating links to other
content. Following the Storyspace project, a hypertext
writing environment, the HyperCafe, an award-winning
interactive film, places the viewer inside a virtual cafe. It
is a video environment where stories unfold around the
viewer [2]. After these first works, and a rather long period
of stagnation, many different methods of hyper-video im-
plementations started to appear with development of Inter-
net, starting in 2010s, most of them for use in advertising
and marketing. Nowadays there are several popular tools
using hypervideo. In the RaptMedia [3] cloud based edi-
tor, the user can create interactive videos and controls are
implemented in form of links on the web. The Madvideo
tool [4] is used to add tags to video files. Interactivity is
implemented via manually inserted interactive tags. The
tags can be links to websites, images, or other video clips.
In the Open Hypervideo project [5] the contents are linked
using annotation-types, such as: Wikipedia Articles, loca-
tions, videos, web pages, etc. Video sequences are made
out of multiple (cut) video files. In E-Learning-How-Tos
[6] the learning process via videos is enhanced using elec-
tive contextual data inside the videos. Cacophony, the in-
teractive player for HTML 5 and JavaScript [7] allows cre-
ating interactive elements inside videos like story adapting
in response to the user input. ClickVID video players [8]
allow creating ’hotspots’, clickable regions with specific
content at designated time. WebM is a video file format
made for HTML5 video tagging. Apart from the men-
tioned fields of application, the hyperlinked storytelling is
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used in virtual cultural heritage applications. A Human
Sanctuary is a project implemented by the Cyprus Insti-
tute, telling the story about the famous Dead Sea Scrolls,
with text annotations which offer more details about cer-
tain notions mentioned in the video [9]. In the Keys to
Rome exhibition [10] the interactive digital storytelling
was used to present the reconstructed Roman remains from
Rome, Amsterdam, Alexandria and Sarajevo in combina-
tion with physical museum exhibits. Most of the men-
tioned projects use HTML5 and JavaScript as tools to
make interactivity in the linear video sequence. Our idea
is to try to use the Unity 3D game engine to connect the
hyperlinked stories and combine them with interactive vir-
tual models.

3 Interactive digital storytelling
methodology

”Digital storytelling is narrative entertainment that reaches
the audience via digital technology and media.” In [11]
Miller states that digital storytelling techniques can make
a dry or difficult subject more alive and engaging to the
viewers. In order to improve the classical storytelling con-
cept, Glassner defined interactive storytelling as a two-
way experience [12], where ”the audience member actu-
ally affects the story itself”. Manovich introduces the pos-
sibility for audience to change the story and offers the con-
cept of an interactive narrative as ”a sum of multiple tra-
jectories through a database” [13]. We started our research
of interactive video with the interactive video virtual tours
[14], where the user is watching video walks through the
streets of Sarajevo old town, navigating through decision
points. The following was the concept of ”a story guided
virtual museum’, implemented in the Sarajevo Survival
Tools project [15]. The digital story provides the user with
the historical context of the siege of Sarajevo 1992-1996,
guiding him/her through the virtual museum of objects
created by the citizens during that time. The virtual ex-
hibition is divided in thematic clusters and the stories are
connecting that clusters. In [16] we introduced and evalu-
ated through user studies the concept of audio guided vir-
tual museum. Here we implemented the audio stories to
guide the visitor through the virtual collection of Bosniak
Institute exhibits. The user evaluation has shown that visi-
tors were so focused on the story that they have not noticed
that movement through 3D environment was not enabled,
but they could move only through clicking on hotspots in
the pre-rendered images. In the computer animation of the
zikr ritual in Isa bey’s tekke1 [17], the animated virtual en-
vironment was exported to Unity 3D and adjusted to place
the user in the middle of the animation. The user observes
the dervish ritual going on around him/her and has a pos-
sibility to explore in more detail the highlighted elements.
Here the main story is happening in the ritual room sema-
hana and sub stories are connected to highlighted scene el-

ements and activated on mouse click. After the activation
every sub story is implemented as a movie. The last im-
provement of our interactive storytelling concepts was im-
plemented in the Isa bey’s endowment project and united
the interior animation of zikr ritual with the exterior virtual
environment consisting of the tekke, accommodation area,
soup kitchen and water mills. The main story about the
endowment and sub stories about particular objects are re-
alized in form of audio stories in corresponding areas [18].
Once the user starts the interactive environment, the main
story starts; if the user is detected inside one of these acti-
vation areas, a trigger is launched to pause the main story
and start the sub-story of the activated area.

3.1 Hyperlinked interactive digital story-
telling

The new method we call hyperlinked interactive digital
storytelling is based on interconnecting the video file of
the main story with sub-stories and the interactive virtual
environments using Unity hyperlinks. The method implies
structuring the story scenario in such way that it consists
of a main story presenting a short summary of the topic
and sub-stories offering more details on particular aspects
of the topic to the user. While watching the main story, at
the time each of sub-stories topics is mentioned, the user
can click on a link to watch the sub-story. Sub-stories have
the same recursive structure of the main story, as they can
also contain their sub-stories. Instead of sub-stories, in-
teractive virtual environments (IVE) can also be linked in
this hyper-structure. The general algorithm of this method
is displayed in Figure 1.

Figure 1: Algorithmic representation of the method

Through this method we aim to achieve the following
contributions:

1. optimization of time the viewer spends in the appli-
cation Most of the Internet users do not have time to
watch a story that lasts more then 3-5 minutes. The
proposed story structure offers the insight in the in-
formation content through the main story and a set
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of sub-stories for viewers who have more time and/or
are more interested in learning about the object. Also,
the users can come back and watch sub-stories ac-
cording to their time and availability.

2. adjusting the form of narrative to the concept familiar
to the modern Internet era We created the story struc-
ture following the organization of HTML pages with
hyperlinks. This concept is natural to the modern hu-
man media perception. If proven successful, this con-
cept could offer an alternative form of presentation in
literature and movie industry.

3. joining different media in an unique digital storyline
The combination of the story about an object with an
interactive 3D model of that object could enhance the
user perception and immersion in the story The re-
sults of the user evaluation will show if we succeeded
to reach these aims. They will show us the way we
need to follow in our future interactive digital story-
telling concepts development.

4 Case study the proof of concept

4.1 The Tašlihan object

The Tašlihan was the largest accommodation facility in
Sarajevo during the Ottoman period. It was built between
1540 and 1543 as an endowment of Gazi Husref Bey, gov-
ernor of the Bosnian province within the Ottoman Em-
pire. It could host 20 people and 70 horses. Aside of
Tašlihan was built a huge covered bazaar called Bezistan,
with 52 shops. Presently there is only one wall remained
of Tašlihan (Figure 2), aside of the hotel Europe garden.
The Bezistan is still functional as a trade center.

Figure 2: The remains of Tašlihan, Sarajevo, Bosnia and
Herzegovina

The only visualization of the Tašlihan original appear-
ance is a part of the physical model of Sarajevo old town
from XIV century exhibited in the Museum of Sarajevo
(Figure 3).

Figure 3: Physical model of Tašlihan, Museum of Sarajevo

4.2 Interactive digital story

In Tašlihan application [19], the main story represents a
summary of the information about the object, its history
and related events and characters. It consists of 7 thematic
clusters (MS 1-7). After each thematic cluster the user
can activate a link to the sub-story (SS), which describes
in more detail a topic mentioned in the main story. For
example, in the main story the narrator says that the ob-
ject was built as an endowment of Gazi Husref Bey. By
clicking the link on SS1, the viewer can see the story ex-
plaining the concept of endowment in Islamic tradition.
The structure of the application is presented in Figure 4.
The sub-story SS1 is linked to another sub-story (SS 1-
1) and the SS4 is linked to the interactive virtual model
of the object. All links are displayed on the right side of

Figure 4: Structure of the interactive digital story

the window with the story player and become clickable af-
ter the predetermined time code of the main story video
file (Figure 8). In [20] we showed that the storytelling is
much more engaging and immersive if there is a character
telling the story. Therefore in this project the story is told
by Murat Bey, the first associate of Gazi Husref bey, who
sponsored the construction of Tašlihan. Digital stories are
created using the photos of the present appearance of the
Tašlihan complex, as well as the other objects that belong
to the Gazi Husref bey’s endowment, such as the Begova
mosque, as the character who tells the stories, Murad bey,
is buried in the yard of that mosque, next to Gazi Husref
bey. We also used drawings created by a digital artist and
photos of the Sarajevo old town model from the Musum
of Sarajevo. In stories creation we followed the principles
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of film language grammar and engaged a professional nar-
rator for voice over. 3D model of Tašlihan (Figure 5) was
created in Maya and exported to Unity 3D, where textures
and illumination were adjusted and optimized for online
use. The geometry of the model is based on the scientific
work of archaeologists and historians who excavated the
remains of the object. Unity 3D has been chosen as we
needed to introduce interactivity into a video. In our pre-
vious projects we used Flash, but presently it is not sup-
ported by all platforms.

Figure 5: The interactive 3D model of Tašlihan

4.3 The Unity hyperlinked story structure
implementation

The screen appearance of the Tašlihan application is dis-
played in Figure 8. Here we briefly describe the imple-
mentation of the method. Unity 3D supports the video re-
production via MovieTexture tag. The MovieTexture can
be assigned to a plane, as a common texture, and video re-
production can be controlled by three MovieTexture meth-
ods (Play, Pause and Stop). For our hyper linked stories
and sub-stories we needed the current playing time, not
supported by the MovieTexture, so we implemented an in-
ternal timer for each plane with the MovieTexture. The
timer uses Unity Time class which stores elapsed time
in seconds since start of the application. To get current
video time (Tcurrent ) you have to subtract the starting time
of video (Tstart o f video) and the sum of time when video
was paused (Tin pause) from the time since application was
started (Telapsed).
Tcurrent = Telapsed−Tstart o f video−Tin pause

Explanation of the application’s algorithm is given in
Fig. 6. When the application is started the main story’s
video is played, and in the appropriate moment (time
stored in the start time attribute of a sub-story’s class)
notification is presented and link to a sub-story is high-
lighted. Sub-stories are stored in the list, and sorted by
their starting time. If a user clicks on the link, current
story’s video is stopped, its plane is deactivated (no longer
visible), sub-story’s plane is activated (now visible) and
sub-story’s video is played. If sub-story has one or many
sub-stories than same process is repeated as for main story.
At any moment when a user is watching sub-story he can

click the back button which takes him back to the main
story. If that happens sub-story’s video is paused, the sub-
story’s plane is deactivated (no longer visible), the main
story’s plane is activated (now visible) and the main story’s
video is played. Along with these controls a user can pause
and rewind video. If the pause button is clicked the video
is paused via MovieTexture.Pause(), the elapsed time in
moment of the click is stored in timer’s variable called
pauseStart and pause button is converted to the play but-
ton. The play button resumes the video and calculates time
spent in pause using earlier pauseStart, this time is used to
calculate Tcurrent. If rewind button is pressed the video is
stopped via MovieTexture.Stop(), this resets video to start,
our timer is also reset and then MovieTexture.Play() is
called. Unity scripts are used to implement the algorithm.
Each plane has the script attached. The script do all actions
regard plane activation/deactivation, video play/pause and
timer calculation. In the script each story’s data is stored
in Story class. Story has attributes: name, start time, end
time, link button, plane. We use these data to know ex-
act time when to notify a user and which plane to activate.
The data about each story is tuned so the transition from a
current story to a sub-story is as smooth as possible. The
start time of a sub-story is (manually) determined in a way
that we know when context of the sub-story is mentioned
in the parent story, in that moment sub-story becomes rele-
vant, and that moment is time when sub-story should start.
The start time and end time is measured in the timescale
of the parent story.

Figure 7: Class diagram

Description of each Story’s [Figure 7] attribute:

• name – short Story title,

• start time – time when the story is mentioned in the
parent story. We use this time to notify a user that he
can click to the link of this story,

• end time – time when story stops being relevant to the
parent story and time when notification is closed,
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Figure 6: Activity diagram

• link button – the button which switches the parent
story and the sub-story. When the story is loaded sub-
stories of the current story are loaded and stored in
list,

• reference to the plane with video content – we use
this reference to activate the story plane.

When implementing a Unity application with video, two
issues should be considered: Unity native video format
is ogg theora MovieTexture has limited set of video con-
trol methods, there is no support for playing a video from
random position (no seek method), no support for current
playing time.

5 User evaluation

5.1 Introduction

User evaluation is the main parameter for the success of
virtual cultural heritage applications. We performed two
user evaluation studies: quantitative evaluation based on
customer satisfaction questionnaires and qualitative evalu-
ation based on user interviews.

5.2 Customer satisfaction questionnaires

The initial evaluation of the project was done by 9 users
who filled out a customer satisfaction survey. The first
group of questions was related to information perception.
We have investigated what the users have learned from the
application asking them questions about the notions men-
tioned in stories. We also evaluated the quality of interac-
tive digital storytelling, asking the users to mark the nar-
rative, the video and music in digital stories. The third
group of questions was about the interactive 3D model of
Tašlihan. Firstly, we investigated if the users got to open
the model, as it is positioned as a link in one of sub-stories.
Then we inquired about the quality of models geometry,
textures and illumination, as well as the navigation through
the model. The last group of questions considers the over-
all satisfaction of users, with emphasis on feeling of im-

mersion. The users could describe what they liked and
disliked in the application.

The questions which contained rating of particular as-
pects of the project were set up according to the positive
response bias [21], so the users could rate that aspect from
1-10, but in case 9 or lower was chosen they were offered
to answer What would make it a ”10”?.

Although this initial evaluation was performed on an ex-
tremely small number of users, the results we obtained are
very valuable. Most of the users rated the application and
its particular aspects with 10 and felt immersion in the past
of the Tašlihan object. But, more important was that they
appreciated the concept of hyperlinked stories as a method
to present the information on cultural heritage. One of
them answered the question ”What did you liked the best
in the Tašlihan application? with the following statement:
-”widening” of the story in a sense that the viewer who
becomes interested in particular part of the story has the
possibility to explore it further. Also, I have never seen
something similar to this concept of mixing stories and 3D
models in a unique interactive application, it’s a quite new
experience for me. And another one said: ”this is much
better than reading a tourist guide”. Most of the users
found as a drawback the long downloading time of the ap-
plication, some of them would like to see a more detailed
3D model of the object and one of them was missing peo-
ple in the virtual environment. They also mentioned that
some controls over the playback of the stories should be
introduced.

5.3 Qualitative data analysis - data coding

One of the most efficient methods of user evaluation is the
qualitative analysis of user feedback. It is based on inter-
views with the users in which they express their experi-
ence during the use of the application. This kind of user
evaluation is performed according to the following work-
flow: definition of hypotheses, interviewing the users, data
coding of users feedback, analysis of coded answers and
comparison with hypotheses.
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Figure 8: The Tašlihan application main story

5.3.1 Experiment design

The user experience practice has shown that 7 users will
find approximately 80% of problems of an interface or ap-
plication [22]. User selection included different nation-
alities (Spanish, Indian, Azeri, Chinese) and various aca-
demic backgrounds (Computer Science, Historians, and
even some Colour Science student, etc). Five of them were
experienced computer users. Average age of users was 29
years old

Question Code Possible value and number of
answers

How interesting
and engaging you
found stories in
the application?

Q6

Very interesting (2)
Quite interesting (2)
Interesting (2)
Intermediate (1)
Not interesting (0)

Did you see a
common line
between them? Q7

Yes (7)

No (0)

How immersive
you found the
application? Q14

Very immersive (2)
Moderately immersive (3)
Slightly immersive (1)
Not immersive (1)

Table 1: Illustration of data coding

5.3.2 Evaluation process and results

Qualitative data analysis is based on data coding [22].It
is a process of extracting qualitative data into quantitative
form. The possible values of the qualitative data are cre-
ated according to the given answers.Since participants of-
ten use different terms for the same notion or same words
for different notions, it is important to perform coding as

accurate as possible, without losing too much information.
The data analysis was performed in two steps: defining the
hypotheses and grounding the evidence. We defined the
following hypothesis:

• H1: users learn more from interactive storytelling
than from linear story

• H2: interactive storytelling application makes users
immersed in the past

• H3: users prefer interactive over linear storytelling

The hypotheses were generated using the constant com-
parison method [23]. After coding the questions (Table
1), each of them representing a particular section, we went
through the data looking for patterns. At the end of the
analysis we obtained the following level of hypotheses
confirmation (Table 2) These results show that we still

Hypothesis Percentage of confirmatory answers
H1 78.30%
H2 62.50%
H3 50.00%

Table 2: Hypothesis confirmation results

have to work on the interactive digital storytelling meth-
ods in order to motivate the majority of users to choose it
over the linear storytelling. At the end we will quote some
of the user statements we find valuable for the future re-
search: ”It supplies 3D model that allows the user to get
the feeling about the building. Compared with a normal
presentation, makes the user involved with the environ-
ment” ”The interactive form gives freedom to select cer-
tain part of information the participant would like to listen
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to again.” ”It is nice how information is displayed, the mix-
ture of old images and 3D reconstruction. If I would need
to imagine, from the current picture of the site nowadays,
how it was the building before, it would not be possible for
me”.

6 Conclusions

The Tašlihan application aims to present to the Internet
users a cultural heritage object which does not exist any
more, except the remains of one of its walls. In this pre-
sentation we used the hyperlinked interactive digital sto-
rytelling combined with the 3D virtual environment. This
concept offers to the users an overview story about the
history of the object, hyperlinked with sub-stories about
some events and characters from its history, together with
the possibility to virtually explore the reconstruction of the
object. The application structure is implemented in Unity
3D. The initial user evaluation of the application shows
that this concept could be appreciated by the viewers and
can create the feeling of immersion. The main drawback
of the Unity implementation is the long downloading time.
In the future work we need to decide whether the links to
sub-stories should be active all the time, or should be acti-
vated after the key notion is mentioned in the main story.
We also need to introduce some controls for users to play-
back the stories. The thorough user evaluation needs to
be performed on a larger groups of viewers, with different
professional backgrounds, ages and computer literacy.

7 Acknowledgment

The interactive 3D model of Tašlihan was created by Bojan
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[15] S. Rizvić, A. Sadžak, et al. Interactive Digital Sto-
rytelling in the Sarajevo Survival Tools Virtual Envi-
ronment. SCCG, 2012.
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Abstract

CellUnity is a tool for interactive visualization of molec-
ular reactions using the Unity game engine. Current
mesoscale visualizations commonly utilize the results of
particle-based simulations, which account for spatial in-
formation of each single particle and are supposed to
mimic a realistic behavior of the metabolites. How-
ever, this approach employs stochastic simulation methods
which do not offer any control over the visualized output.
CellUnity, on the other hand, exploits the results of de-
terministic simulations which are purely quantitative and
in that way offering full user control over the spatial lo-
cations of the reactions in the visualization. The user is
able to trigger reactions on demand instead of having to
wait or search for a specific type of reaction event, while
the quantities of displayed molecules would still be in
accordance with real scientific data. CellUnity exploits
the simulation results in real time and allows the user to
freely modify simulation parameters while the system is
running. The tool was realized in Unity, a cross-platform
game engine that also comprises a free version with ade-
quate functionality and therefore enables easy deployment
of the project.

Keywords: Unity, visualization, molecular reactions,
quantitative simulation, interactive visualization

1 Introduction

Biochemistry allows a deep insight into cells and the syn-
ergy of molecular processes. Without any visual expla-
nation, biochemistry can be difficult to understand [1].
Hence, it is necessary to visualize these processes to gain a
better and more intuitive understanding of what is happen-
ing inside a cell [2]. For learning and comprehension pur-
poses it is also important to provide an interactive, game-
like environment in order that students can immediately
experience the impact of modifications in a cellular envi-
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ronment [3]. Scientific illustrators usually utilize animated
storytelling principles to visually explain molecular activ-
ities, e.g. a metabolic pathway. To achieve this, corre-
sponding particles and reaction events have to be shown in
a story-structured manner [1]. Available mesoscale visual-
ization tools commonly utilize the results of particle-based
simulations to generate illustrations depicting reactions of
a given biochemical process. Particle-based simulations
determine spatial information of each single particle and
are supposed to mimic a realistic behavior of the metabo-
lites. However, this approach do not offer any control over
the visualized output [1]. In particle-based simulations it
is extremely difficult to track a specific particle due to the
chaotic motion. Also reactions cannot easily be observed
in the complex environment [2]. Due to this problem, it
is challenging to comprehend reactions describing a bio-
chemical process. Even when single particles are tracked
and brought to focus, there is still no guarantee that a de-
sired or an interesting event will happen [1].

The goal of this project is to create a tool for interac-
tive visualization of an illustrative molecular environment.
The functionality and the implementation is inspired by
the paper of Le Muzic et al. [1]. CellUnity exploits the re-
sults of deterministic simulations which are purely quanti-
tative. This offers, in contrast to the existing approaches,
full user control over the spatial locations of the reactions
and avoids the chaotic diffusion motion [1]. The user is
able to trigger reactions on demand instead of having to
wait or search for a specific type of reaction event, while
the quantities of the displayed molecules would still be in
accordance with real scientific data. This makes it possible
for the user to follow a specific reaction chain in a realistic
environment, which is greatly valuable for the user’s com-
prehension and for illustration purposes. Parameters such
as reaction rates and particle quantities can be changed
while the system is running. The impacts of these changes
are immediately visualized.

Often, existing visual simulation environments like Zig-
Cell3D are implemented as proprietary research proto-
types that cannot be freely deployed on any machine [4].
Other tools like Molecular Maya or BioBlender are great
for visualization but the created environments cannot be
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animated using a simulator [5][6]. The main contribu-
tion of this work is the implementation of such a visual-
ization and simulation tool in Unity to enable easy and
free deployment. Unity is a cross-platform game engine
that also comprises a free version with adequate function-
ality [7]. CellUnity provides a user interface to create sim-
ple bio-molecular environments. It is possible to import
molecular structures available from public databases, de-
fine molecule quantities, reaction rates, and even to locate
individual particles in the environment. The settings can
also be exported to bioinformatics standard formats for the
usage in external applications.

2 State of the Art

There are already tools for visualizing molecular reactions
depicting a biological pathway. All of them have been de-
signed for a slightly different purpose. Yet they all share
the goal to provide insight into biological processes by vi-
sualizing a cellular environment at mesoscale levels. In
this chapter various available tools are examined in re-
spect to their visualization capabilities for scientific cor-
rect mesoscopic storytelling to explain cellular activities.

2.1 Tools for Molecular Visualization only

Some tools like Molecular Maya, BioBlender and
ePMV focus solely on visualizing cellular environments
[5][6][8]. These tools are all implemented as plugins for
3D computer graphics software and use the host appli-
cation for visualization. They are all capable of import-
ing molecules from the RCSB Protein Data Bank and
they are all available for free [9]. Molecular Maya uses
Maya as host application, BioBlender uses Blender and
ePMV can be used with Blender, Cinema4D and Maya
[5][10][6][11][8][12].

Molecular Maya supports various representation forms
and also enables the user to easily extend structures, for
example creating surface meshes and biological units [5].
BioBlender can animate transitions of conformations and
visualize various molecular features, e.g. the electrostatic
potential (EP) and the molecular lipophilicity potential
(MLP). This kind of representation makes the nano scale
world more understandable and is making it easier to con-
ceive invisible phenomena such as hydropathy or charge
[6]. The embedded Python Molecular Viewer (ePMV)
does not only import molecules from different file for-
mats but also keeps the link between structure file and the
model. That way changes that are applied to the struc-
ture file after the import, are also applied to the model.
The generated model is not just a static structure but can
also be manipulated by the 3D host program or by python
scripts that interact with ePMV.

All mentioned tools can be used to illustrate molecules
but the models do not convey information about its func-
tion. To illustrate a cellular environment, the illustrator has

to model the molecular processes manually using the host
applications default tool set, which is a time-consuming
and expensive task, taking up to months or years [1].

2.2 Tools for Molecular Visualization and
Simulation

2.2.1 Visualization of Signal Transduction Processes

Falk et al. developed a visualization framework to explore
simulation data of a virtual cellular environment [2]. The
goal of the work was to highlight events of interest in the
confusing environment. It especially helps Biologists to
follow signaling molecules through the cell. The user can
interactively select individual molecules and zoom into the
virtual cell. It is possible to visualize individual molecules,
their tracks, or reactions. The work is suitable for detailed,
realistic, spatial simulations, where each molecule is an
independent agent. A simulation usually covers several
hundred frames. The user can step through each frame by
keystrokes. The work also includes a virtual microscope
to create images which can be compared with results from
wet lab experiments. While the analyzing tool is interac-
tive, the simulation is not [2]. The user has to perform the
simulation again before it is possible to see the effects of
the changes made. Also the tool is not openly available
and therefore only used by a small set of users [2].

2.2.2 MCell and CellBlender

MCell (Monte Carlo Cell) is referring itself as micro phys-
iological simulator [13]. It is a program to simulate the
movements and reactions of molecules within and between
cellular regions. For simulation, MCell uses spatially real-
istic 3D models and specialized Monte Carlo algorithms.
It is intended to realize as realistic simulations as possible.
The model can contain multiple compartments, which rep-
resent enclosed parts, e.g. organelles [13]. The meshes can
be obtained from segmented volumetric imaging data or
from CAD (computer-aided design) software [14]. MCell
is free of charge and available for Linux, OS X, and Win-
dows [13]. The model and the simulation conditions are
defined in modular, human-readable text files, using a
model description language [14].

CellBlender is an add-on for the free and open-source
3D computer graphics software Blender [11] [15]. The
add-on is closely linked to MCell and enables the user to
perform integral modeling tasks in Blender. It is possible
to create, edit and visualize cellular models for the use in
MCell. The simulation results generated by MCell, again,
can be visualized in Blender, including the locations and
states of participating meshes and molecules [15].

2.2.3 ZigCell3D

ZigCell3D is a software for modeling, simulating and vi-
sualizing an entire cell. The visualization covers several
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orders of magnitudes, the full range from the cell surface
to organelles and molecules down to the atomic level. The
system also includes a virtual fluorescence microscope.
For simulation two different approaches are used. On the
one hand particle-based Brownian dynamics simulation,
and on the other hand simulations based on Reaction Dif-
fusion Master Equations (RDME), which have less spatial
resolution but better performance [4].

ZigCell3D provides a real time interactive environment,
where model parameters can be changed and the resulting
effect can be analyzed in the 3D visualization of the cell.
The user can select particles and can analyze the underly-
ing rules and mathematical expressions that are responsi-
ble for the creation of the selected component or molecule.
That frees the user from guessing the possible origin and
bridges the divide between quantitative sciences and math-
free wet-lab biology [4].

3 Methods

In CellUnity, the user has to set up the molecular envi-
ronment before it can be simulated. The setup consists
of importing different molecule species, setting the initial
quantities, defining the reaction equations and setting the
compartment size. The tool is interactive, so that the user
is able to explore and immerse into a virtual 3D cellular
environment. It is possible to track molecular compounds
and also trigger reactions manually, while respecting quan-
tities obtained via scientific simulation. In this chapter, the
concepts and tools used in CellUnity are introduced. In the
next chapter the concrete implementation is explained.

3.1 Development Environment

The project is built in Unity, a cross-platform game en-
gine. Unity is not only a game engine but also includes
an integrated development environment (IDE). Unity was
chosen as framework because it is easy to use, quick to
learn and there is also a free version with adequate func-
tionality to realize this tool. Moreover, this enables the
project to be easily shared and deployed, and allows the
user to modify or extend the project with little effort. Ad-
ditionally, Unity provides built-in methods for visualizing
3D objects and has a built-in physics engine. These fea-
tures speed up development and avoid that the project has
to be created from scratch. Furthermore, the Unity editor
can be extended easily to include custom plugins, which
seamlessly integrate into the Unity interface [7].

3.2 Visualization of Molecules

Molecules are visualized at atomic resolution. CellUnity
can import molecule species from the file system using
PDB files or can download the structure information auto-
matically from the PDB webserver using a given PDB ID

Figure 1: Visualization of an ubiquitin [16] molecule in
CellUnity

[9]. The representation of a molecule is automatically cre-
ated using the atom definitions in that PDB file. The im-
ported molecules are displayed as bunch of spheres, each
representing an atom. The locations of the atoms are in
accordance with the PDB file. The size of each atom cor-
responds with the Van der Waals radius of the associated
element. This representation is often referred as Van der
Waals representation [1]. An example is shown in figure 1.

3.3 Simulation

CellUnity is coupled to a simulator to mimic a realistic be-
havior in the visualization. For simulation the biochemical
simulator COPASI is used [17].

As soon as the simulation is started, the user defined ini-
tial state is transmitted to the simulator. Since CellUnity
only needs the number of reactions occurred, the simula-
tion is purely quantitative. The simulation is performed
step by step. After each step, the results are transmitted
back to CellUnity and the reactions are performed in the
visualization. It is also possible to modify simulation pa-
rameters after each step. The duration of such a step is
adjustable by the user.

Reaction events are solely triggered by an omniscient
intelligence (OI), like proposed by Le Muzic et al. [1]. In
this system, molecules are passive agents, according to the
definition by Kubera et al. [18]. Unlike in spatial-based
simulation methods, molecules in CellUnity are unable to
initiate reactions but can only receive reaction orders from
the OI. The OI is influenced by the simulator and controls
the molecules accordingly. Thus reactions in CellUnity
do not just happen but are actively forced. The OI uses
the current simulation state and takes action to achieve the
same state in the visualization. Concretely, the OI reads
out the quantity of reactions that occurred in the simu-
lation for each reaction type, and forces the same quan-
tity of reactions to happen in the visualization. Therefore
the simulation and the visualization are quantitatively syn-
chronized [1].

When a reaction is initiated, the OI selects random or
user selected candidates according to the species of the
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Figure 2: Example: Apply simulation results in visualiza-
tion.

reactants and applies mutual attraction forces to force re-
action partners to meet. As soon as they collide, the re-
actants are replaced by the reaction products. An exam-
ple is shown in figure 2. The motion of molecules and
also the collision detection is realized using Unity’s built-
in physics engine. Depending on if colliding molecules
should react, the reaction takes place, if not, they repel
each other via bouncing motion [1].

3.4 Navigation and Storytelling

To allow the user to navigate through the molecular en-
vironment, a navigation similar to a first-person-game is
enabled. The user can turn around using the mouse and
move with the W, A, S, D keys. Clicking on a molecule
selects it. The user can adjust the view to automatically
follow the selected molecule in the space or tag it for a re-
action. If a molecule is tagged for a reaction, its priority
will be set to react first when the OI initiates a new reac-
tion. This allows the user to easily follow a reaction chain
along a metabolic pathway. This is an easy way to compre-
hend reaction chains without having to wait until reactions
happen on themselves, and is useful for storytelling.

3.5 Data Persistence

Unity usually serializes game data into so-called assets to
persistently save them [7]. CellUnity uses this feature to

save environmental data like molecule species and reac-
tions. Molecules are implemented as GameObjects and
therefore can be saved and restored in scenes when Unity
is in edit mode. The position of every molecule is also pre-
served that way. In game mode the scene cannot be saved
but the current state can be exported to an SBML file. The
export functionality is available in edit mode as well. The
SBML functionality is acquired by an external library.

4 Implementation

CellUnity is implemented as a project inside Unity. Cus-
tom editors are used to allow the user to configure the
molecular environment. CellUnity’s implementation is di-
vided into individual classes. It is heeded that respon-
sibilities of each class is well defined, to ensure coher-
ent program modules that are as independent as possi-
ble. The CellUnity Environment (CUE) implements the
model of the cell, the custom editor serves as controller
for this model and Unity provides the visualization. To-
gether these components form a model-view-controller.

One custom editor window is implemented for CellU-
nity. Via this editor the user can model and modify the en-
vironment. It is possible to import molecule species from
PDB, to add and remove reactions from the system, con-
figure simulation properties and export the environment to
an SBML file. The target of the changes made in the edi-
tor is the CUE, which holds all the environment properties
and definitions.

4.1 CellUnity Environment

The CellUnity Environment (CUE) is the class that holds
all environmental properties and definitions. The entire
system can only contain one instance of a CUE, there-
fore it is implemented as singleton. The CUE contains
the defined molecule species and reactions, the volume of
the compartment, a molecule manager, a reaction manager
and a simulation manager. Each manager focuses on a sep-
arate task. They are described in detail in later sections.

4.2 Saving

Because all the environmental information is stored in the
CUE, it makes sense to simply serialize the instance to
persistently save the entire model when Unity is closed.
Unity already provides automatic serialization methods.
However, a few specific characteristics must be consid-
ered when used. Multiple references to one instance of
a class are serialized multiple times, therefore, for every
reference a new instance is created after restoring. This
behavior is not satisfactory for species and reaction in-
stances. Therefore these classes are derived from Script-
ableObject. ScriptableObjects are serialized only once and
multiple references are restored correctly [7].

Proceedings of CESCG 2015: The 19th Central European Seminar on Computer Graphics (non-peer-reviewed)
60



4.3 Compartment

The CUE currently only supports one compartment and it
has to be in the shape of a sphere. To keep the molecules
inside the compartment, collisions with the compartment
wall must be detected and the particles must bounce off.
The physics engine of Unity does not support inverted col-
liders, which would be required. Therefore the desired be-
havior must be implemented by user code [7]. For each
molecule, the distance to the compartment center is calcu-
lated. If the distance exceeds the radius, the distance is set
to the value of the radius and the velocity of the molecule
is inverted.

4.4 Molecules

In CellUnity, molecule representations are GameObjects
with a Molecule-script attached. The Molecule-script
applies molecular behavior to the GameObject. Each
molecule is an instance of a specific molecule species. To
make it easy to insert new molecules, each species has a
prefab asset. A prefab is a Unity asset type that allows to
store a GameObject with all components and properties. It
acts as a template from which it is possible to create new
instances in the environment [7]. The prefab is automati-
cally created when a new species is imported.

4.5 PDB Import

CellUnity can either import PDB files from the file system
or download them directly from the PDB website. PDB
files are text files which contain 3D structure information
of biological macromolecules [19]. For the molecule rep-
resentation, only the atom positions in the file are consid-
ered. To gather this information, a simple PDB parser was
written.

When a new molecule species is imported, at first, a
new MoleculeSpecies-instance is created and added to
the CUE. Then an empty GameObject is created, which
serves as the main object of the molecule. The main ob-
ject gets the Molecule-script attached and the newly cre-
ated species-instance assigned. All atoms defined in the
PDB file are now created as sphere-primitives and are
added as sub-objects to the main object. To get a Van der
Waals representation of the molecule, the size, location
and color of each sphere is set accordingly. For perfor-
mance reasons only one spherical collider that is consid-
ered by the physics engine is used for the whole molecule.
The newly created molecule is then saved to a new prefab
asset and assigned to the new species as the template for
the molecules.

4.6 Molecule Manager

The assignment of the MoleculeManager is to keep track
of all molecules in the system. When the play mode
in Unity is activated, each molecule registers itself to
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Figure 3: Schematic Diagram of the Molecule Manager

the MoleculeManager of the CUE. In the manager, all
molecules are organized in separate lists, depending on
their species and whether they are free or already in use for
a reaction. These lists are implemented as double linked
lists. One molecule can only be in one list at a time. This
enables to find free molecules quickly and efficient, which
is important for the preparation of reactions. The organi-
zation of the molecule manager is depicted in figure 3.

When a new reaction is initiated, the reaction manager
asks the molecule manager to find a set of molecules of
specific species that are near together. Due to the organi-
zation in the molecule manager, the nearest free molecule
of a specific species can be found in O(n+m) where n is
the number of species, which is usually very small, and
m is the number of molecules which are “free” and of the
defined species, meaning only a fraction of all molecules.
When a molecule’s state changes from “free” to “react-
ing”, it has to be removed from the “free” list and added to
the “reacting” list. This state change can be performed in
O(1).

4.7 Automatic Molecule Placement

Since it is impractical to place each molecule manually,
CellUnity offers to place a defined initial quantity of
molecules automatically and randomly. The initial quan-
tity can be set in the species editor. A problem that can
possibly occur is that due to the randomness two or more
molecules are placed too near together so that their col-
liders intersect. When this happens in Unity, particles re-
pel each other with an unusually strong collision response
which we ought to avoid. In CellUnity the problem is
solved using the physics engine itself. The initial drag
of the molecules is set to a very high value. As a result,
colliding molecules repel each other gently until they do
not intersect each other any longer and then remain steady
next to each other. This procedure is only performed once,
when the molecules are placed.

4.8 Reactions

Reactions that are possible in the system must be defined
to the CUE. They are defined as ReactionType-instances.
A reaction type consists of one or more reactants, zero
or more products and a reaction rate. Reactants are the
molecule species that are needed to perform a reaction.
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Products are molecule species that are produced when a
reaction was performed. The rate defines how many reac-
tions should happen in a given amount of time. The re-
action law is by default “Mass action (irreversible)” and
cannot be changed in the current version of CellUnity.

4.9 Reaction Manager

The assignment of the ReactionManager is to initiate re-
actions and to perform them when all reactants collide.
Reactions are usually initiated by the simulation manager.
When a reaction of a specific reaction type is started, a
new ReactionPrep (short for reaction preparation) object
is created, which stores all important information about
the reaction. Then the reaction manager asks the molecule
manager to choose some free molecules of the species
of the reactants for the reaction. The user can influence
which molecules are chosen next by selecting them. If no
molecule is selected, the reactants are picked randomly. If
not enough molecules are available, the reaction is noted
and delayed until enough molecules are available. This is
important to guarantee correct molecule quantities on the
long run. Such a delay can happen when the visualization
is slower than the simulation, for example when the react-
ing molecules are located far apart, or when they hit ob-
stacles which slow them down before reacting. However,
if enough molecules are available, they are linked with the
ReactionPrep object. Every molecule can only be linked
to one ReactionPrep object at a time. Molecules linked to
the same ReactionPrep instance and therefore are reactants
of the same reaction, attract each other. This ensures that
they will collide. When two molecules collide, they in-
form the reaction manager. The reaction manager checks
if they belong to the same reaction, if yes, they are both
tagged as “ready”. As soon as all reactants are ready, the
reaction is performed. The reactants are then replaced by
new product molecules.

When a reaction is initiated, the reactants attract each
other and accelerate towards each other. Due to their phys-
ical properties they possibly do not collide immediately
but start to orbit the common barycenter. This can re-
sult in an endless circulation with the molecules never col-
lide. To avoid this, a drag is set in the environment for
all molecules. As a consequence orbiting molecules slow
down and collide after a short time.

4.10 Simulation

CellUnity is coupled with COPASI, a tool for quantitative
modeling and simulation. COPASI is used to simulate the
user defined molecular environment. The communication
is enabled via the C# application programming interface
(API) provided by COPASI [17]. The simulation is started
and administered by the simulation manager. The manager
is also responsible for the data transfer with the simulator
as well as the utilization of the simulation results.

4.11 Simulation Manager

Prior to the real-time simulation of the environment, the
CellUnity model has to be transferred to COPASI. The
compartment, the species and the reactions from the CUE
are added to COPASI via the API. The initial quanti-
ties of the species in COPASI are set to the count of the
species currently located in the CUE. When the model is
changed, it is re-transferred to COPASI. Because CellU-
nity only pursuits of quantitative correctness, everything
needed from the simulator are the number and types of re-
actions performed in the simulation. To gather this value
for each reaction type, a “global quantity” model value
is added. The value is defined as the ParticleFlux of the
particular reaction. The type of the model value is set to
“ode”, so the value is the total value of performed reactions
of this type.

The simulation is performed in steps. In CellUnity,
there is a time for the “visualization step” and a time for
the “simulation step” that the user can define. The “visual-
ization step” is the real time interval of a step. The “simu-
lation step” is the time simulated in such a step. After each
simulation step, the ParticleFlux of each reaction is com-
pared with the value before that step. The difference is the
number of reactions performed during this step. The same
number of reactions is then initiated in the visualization.

5 Summary

This paper presents an interactive tool for illustrative vi-
sualization of molecular reactions. It enables the user to
build a simple molecular environment and simulate it in
real time. It is possible to import molecular structures
available from public databases, define reactions, and lo-
cate molecules in a compartment. Existing visualization
tools commonly utilize particle-based simulations to gen-
erate illustrations depicting reactions. This approach pro-
vides highly realistic visualization, however, it does not
offer any control about the visual output. Due to this, it
can be hard to follow a specific chain of reactions, be-
cause reactions occur randomly and it is not guaranteed
that anything interesting will happen in the user’s sight.
CellUnity, on the other hand, allows the user to trigger re-
actions and can automatically follow molecular reactions
along a metabolic pathway. Even though the user inter-
acts with the environment, the visualization remains in ac-
cordance with real scientific data. This enables the user
to experience and comprehend metabolic processes. The
model created in CellUnity can be exported as SBML file
and used in other applications. Another advantage is that
only free software is used to develop CellUnity. Hence,
CellUnity can be easily deployed, modified and extended
by everyone.
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Abstract

This paper describe an experimental method implement-
ing Progressive photon mapping on contemporary hard-
ware - PC with GPU. The overview of Progressive photon
mapping as well as its GPGPU-specific modification. The
experimental results are shown as well along with the per-
formance measurements.
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1 Introduction

From the beginning of computer graphics, there was an
effort to make nice photorealistic images. One way to do
this is to use global illumination methods. These meth-
ods have high computational cost and they are not always
suitable for massive parallelism on graphics acceleration
hardware, such as GPU. Photon mapping is a relatively
new approximation of global illumination and Progressive
photon mapping is its very promising variant. This pa-
per propose a naive implementation of Progressive photon
mapping on contemporary GPU and propose acceleration
approaches on this naive solution.

2 Related work

Best photorealistic rendering results today are achieved
using methods belonging to the global illumination ones.
These methods attempt to simulate physically correct light
propagation in scenes, and basis for all of the global illu-
mination methods was set in 1986 when James T. Kajiya
[5] formulated the rendering equation.

Rendering equation describes how to precisely compute
reflected radiance in a certain point by summing light con-
tribution from all direction in hemisphere around exam-
ined point. Using this approach, it is possible to com-
pute precise light propagation in the scene. The major

∗xlysek03@stud.fit.vutbr.cz
†zemcik@fit.vutbr.cz

problem of this approach is that this computation is done
by computing integral through hemisphere and computing
this integral is nearly computationally impossible for large
scenes.

In the paper that introduced the rendering equation, the
path tracing method was proposed as well. Path tracing
samples Rendering equation by examination random di-
rection in hemispheres. To get good result, very many ran-
dom paths have to be computed. Path tracing is, in fact,
using Monte Carlo approach for integral computation and
thus the methods based on path tracing are called Monte
Carlo methods.

Path tracing was probably the first complete global illu-
mination technique (although radiosity was invented ear-
lier, it assumes only diffuse light propagation) and using
this technique, it was possible to compute nice photoreal-
istic images. Extension of path tracing called bidirectional
path tracing was invented independently in 1993 [6] and
1994 [7]. Bidirectional path tracing traces paths from eye
and from light simultaneously and from this two paths, it
computes illumination. It is possible (in scenes with lot of
indirect illumination) to compute photorealistic images in
lower time using bidirectional path tracing comparing to
the original path tracing. Another extension of path trac-
ing is so called Metropolis light transport [8] and this tech-
nique sets another examinated path from previous path by
mutation of such path.

To achieve good photorealistic results using Monte
Carlo raytracing methods, many paths per pixels need to
be examined and it is very time consuming. Another way
how to approximate rendering equation is using Photon
mapping. Photon mapping was invented by Henrik Wann
Jensen in 1996 [4]. It is two-pass algorithm; in the first
pass light contribution in scene is computed by sampling
light distribution from scene, sample of light is called pho-
ton and the photons are saved in photon maps covering sur-
faces of the scene. In the second pass, an extended raytrac-
ing is used to compute final image. When this extended
raytracing computes local illumination model (for exam-
ple by phong lightning), illumination from photon maps is
included.

For good results in Photon mapping, large number of
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photons has to be saved in photon map and if photon
map is really big, searching in photon map becomes slow.
Extension of normal photon mapping, called Progressive
photon mapping [2] addresses this problem. The differ-
ence from the standard Photon mapping is that Progressive
photon mapping computes many smaller photon maps and
progressively improves results from another photon maps.
In 2009, Stochastic progressive [1] photon mapping was
proposed, extending Progressive photon mapping by dis-
tributed raytracing effects, such as depth of field, motion
blur, etc.

All of the above described global illumination methods
are consistent - this means that with increasing rendering
time method is approaching correct result. Monte Carlo
raytracing methods are unbiased - this means that even if
we compute one path per pixel and average large amount
of this images, we still get correct result. On the other
hand Photon mapping methods are biased and if we av-
erage many of rendered images we do not generally get
correct result.

3 Progressive photon mapping

Radiance estimation in photon mapping is an approxima-
tion of Rendering equation. Luminance at point x heading
in direction ~ω is computed as:

Lr(x, ~ω)≈ 1
πr2

N

∑
p=1

f (x, ~ω, ~ωp)∆Φp(x, ~ωp) (1)

where ∆Φp(x, ~ωp) is photons flux saved in photon map.
f (x, ~ω, ~ωp) is bidirectional reflectance distribution func-
tion. Sum involves N nearest photons from point x in pho-
ton map. Nearest photon in space generates sphere and
because it is possible to assume that photons are accumu-
lated from flat surface, the result is divided by area of cir-
cle where r is distance of farthest photons from point x.

For removing low-frequency noise in result images,
photon map has to have many photons, possibly infinitely
many. If photon map has infinite number of photons and
in radiance estimation is gets fraction of this infinite pho-
tons, radiance is estimated in radius approaching zero at
the limit. From this observation, it is possible to assume
that best results are obtained by radius as small as pos-
sible. With increasing number of photons in the photon
map, both memory and time complexities are increasing.

There was an effort to divide final large photon map into
several smallest photon maps, compute some sort of data
and get better result in faster time. One way was averaging
lot of computed images, but this does not lead to consistent
result.

Another way was invented with Progressive photon
mapping. This multiple-pass technique reorders photon
mapping in proper way and ensures that with another
passes, consistent result is obtained.

Figure 1: Progressive photon mapping schema[2]

Scheme of Progressive photon mapping is shown in Fig-
ure 1. First, raytracing is performed and after this, photon
tracing passes are performed. Raytracing is performed for
saving special positions in scene - so called hitpoints. Hit-
points are saved when ray intersect with diffuse surface,
and in each hitpoint lot of needed data are saved. This
data contains: position, material, normal, pixel location,
pixel weight, current photon radius, accumulated photon
count and accumulated reflected flux. Using this data it is
possible to synthesize final image.

Photon tracing pass is divided into iterations, with fixed
(smaller than in normal photon mapping) number of pho-
tons. Theoretically it is possible to process infinite num-
ber of photons on limited memory. In each iteration, new
random photon map is created and then for each hitpoint,
illumination from photon map is computed. As it was de-
scribed above, radius decreases with each iteration. Equa-
tion for computation new radius is written as:

R̂(x) = R(x)

√
N(x)+αM(x)
N(x)+M(x)

(2)

where R(x) respectively R̂(x) is radius in hitpoint x respec-
tively new radius in hitpoint x. N(x) is number of photons
saved in hitpoint x, M(x) is number of new photons in cur-
rent iteration in current radius R(x). α is value in range 0
- 1 and indicate how much new photons will be added to
illumination and how fast radius will be decreasing.

New flux τN̂(x, ~ω) in hitpoint x is computed as:

τN̂(x, ~ω) = τN+M(x, ~ω)
N(x)+αM(x)
N(x)+M(x)

(3)

where τN+M(x, ~ω) is sum of flux from previous iteration
and current iteration computed by equation 1 and values
N(x),M(x) and α is same values as in equation 2.

Final luminance in point x heading in direction ~ω is
computed as:

L(x, ~ω) ≈ 1
πR̂(x)2

τN̂(x, ~ω)

Nemmited
(4)

It is possible to render image after each photon tracing
iteration or after all iteration has been proceed.
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Using progressive photon mapping it is possible to ren-
der whole global illumination and very similar images like
using monte carlo raytracing methods. Progressive photon
mapping excel in rendering specular diffuse specular path
(SDS path) above all other monte carlo raytracing meth-
ods [2]. SDS path means that path from light is connected
through any number of specular surfaces, reflected on dif-
fuse surface and then again reflected through any number
of specular surfaces to eye. This effect can be seen for
example on bottom of swimming pool.

4 GPGPU model

Graphics Processing Units have a unique ability to accel-
erate general purpose tasks. Graphics cards were made in
order to accelerate realtime computer graphics; however,
lately the GPUs have been able to compute nearly any kind
of programmable task.

Few programing languages exist for programing GPUs,
the most used being CUDA and OpenCL. They vary by
notation and capabilities and because this paper is using
OpenCL for execution, OpenCL notions will be presented.

Execution model

Graphics card consist of a set of streaming multiproce-
sors. Streaming multiprocessors can be viewed as big en-
hanced SIMD (single instruction single data) processors.
One thread of parallel computation is called kernel. Kernel
are grouped into work group - it is set of kernels executed
on same streaming multiprocessor. When computation is
set on gpu, size of workgroup has to be set and size of final
number of threads have to be set.

Memory model

GPU executes many threads simultaneously, so it is not
possible to allow all operate with memory. In GPU, three
memory space exist. The first is a large global memory.
This memory is the biggest memory on GPU (in size of
gigabytes) and has the slowest access time of all memory
on GPU.

Other memory is the local memory available only to
threads in one workgroup; this memory is called local
memory and size of this memory is in the order of tens
of kilobytes. THe access time of local memory is much
faster than to the global memory because local memory is
on the same chip as the streaming multiprocessors while
the global memory is on another chip (because of it’s big-
ger size).

The third memory space is private memory space and in
this memory is exclusive only to one thread. This memory
is also mapped on registers and is used for variables, coun-
ters, etc. This memory has fastest access time but smallest
size.

GPU architecture is very different compared to the
CPU. The program execution must satisfy some require-
ments for fast execution. Memory operation has to be co-
herent or has to be in block. This means that all threads in
one workgroup has to read from one memory position or
from block of memory. Access time of memory operation
is much bigger than on CPU. From this requirements it is
clear that for programs with lot of memory operation gpu
is not beneficial as for program with less memory opera-
tions.

5 Simple GPGPU decomposition

Progressive photon mapping could be divided into several
blocks: raytracing, photon tracing, hitpoint illumination
and image synthesis.

Raytracing

Raytracing could be understood as sequential examining
each pixel’s color in final image. Examination routine of
one ray is same for each pixel, so it is possible to imple-
ment to one kernel examination of one ray. Global work
size of raytracing task is equal to number of pixels in final
image rounded to size of work group.

Raytracing routine is often written in recursive manner
on CPU. This recursive approach is not possible to use
on current GPGPU, because GPGPU programming lan-
guages do not allow recursive function calling. Therefore,
raytracing has to be written without recursion, stack or dy-
namic array. One possible way of doing this is make itera-
tive function calling (with maximum iteration) and called
function will return another ray.

Most scenes are described by set of triangles. There are
exists lot of ray-triangle intersection algorithms, chosen
technique in own implementation of simple GPU raytrac-
ing is Havel’s algorithm [3]. When ray is examining with
scene, it has to be tested through all triangles in scene.

Solving this problems and combining them into one ker-
nel it is possible to get naive GPGPU implementation of
raytracing.

Photon tracing

Photon tracing block uses very similar routines for scene
traversal like raytracing. Each initial photon is traversed
in separate kernel. The problem occurs when photon has
to determine random direction, in photon generating or in
photon reflection on diffuse surface. GPGPU does not
have any sort of random generator and therefore random
generator is needed. It is possible to use classic congru-
ential generator. Same as in raytracing, photon tracing has
set max recursion value. This is done, because before start-
ing photon tracing kernel memory to fixed size have to be
allocated.
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Hitpoint illumination

After each photon tracing pass, new illumination for each
hitpoint has to be calculated. It is only computation few
formulas if we get all information needed. The slowest
thing in whole hitpoint illumination is finding for each hit-
point x photons in radius R(x).

Very naive solution is going through all photons, com-
pute distance from each photons and process only those
photons with radius lower than R(x).

Image synthesize

Image synthesize is possible to perform after each photon
tracing and hitpoint illumination pass or at the end of all
iterations. All needed data are saved along with each hit-
point and therefore computation of luminance is very easy.
For each hitpoint will be executed one kernel and this ker-
nel will compute color for his hitpoint. This color will
scale by hitpoint weight and atomically add to framebuffer
in proper position given by hitpoint framebuffer position.

6 Evaluation of simple GPGPU im-
plementation

Naive implementation was done for evaluating bottlenecks
of progressive photon mapping on GPGPU. This naive im-
plementation was done on very simple scene only for ex-
perimental usage and for evaluating biggest bottleneck in
whole process. Image 2 show results of this simple im-
plementation. Implementation of progressive photon map-
ping was done on GPGPU and on CPU to evaluate perfor-
mace between this two execution possibilities.

CPU implementation was evaluated on laptop with In-
tel i7-4702MQ processor written in c++ and was com-
pile with Intel c++ 15.0 compiler. GPGPU implementa-
tion was written in OpenCL and was evaluated on nVidia
GeForce GT 750M. Speed of CPU implementation was
evaluated using std::chrono library and GPU implementa-
tion was evaluated using nvidia nsight timeline profiler.

GPU CPU
Raytracing 0.706 ms 1172 ms
Photon tracing 7.897 ms 317 ms
Hitpoint Illumination 2041 ms 1593 ms
Synthesize 0.247 ms 3 ms

Table 1: Performance evaluation between CPU and GPU
naive implementation with 320*280 resolution and 100
thousands photons in photon tracing pass

Table 1 and table 2 show performance between GPU
and CPU implementation for 320*280 and 1920*1080 res-
olution. In each photon tracing iteration 100 thousands
photons was traced. As it can be seen, GPU is far more

Figure 2: Progressive results of photon mapping. On top
image is result with one iteration, on the middle image is
result with 10 iterations, on the bottom image is result with
100 iterations. In each iteration 100 thousands photons
was generated

faster than CPU implementation in all blocks except hit-
point illumination. CPU block of hitpoint illumination is
using kd-tree and if this block will use bruteforce search
similar to GPU it will be much more slower. For resolution
320*280 bruteforce on CPU was performed in 68 seconds.

Speed of raytracing and photon tracing is influenced by
number of pixels / photons and by complexity of scene.
Even when testing scene was simple, photon tracing and

Proceedings of CESCG 2015: The 19th Central European Seminar on Computer Graphics (non-peer-reviewed)
70



GPU CPU
Raytracing 12.107 ms 6 197 ms
Photon tracing 7.897 ms 317 ms
Hitpoint Illumination 38 603 ms 23 957 ms
Synthesize 4.924 ms 91 ms

Table 2: Performance evaluation between CPU and GPU
naive implementation with 1920*1080 resolution and 100
thousands photons in photon tracing pass

raytracing aren’t bottlenecks because lot of accelerating
algorithm for spatial subdivision exists and it is possible to
use existing solution for this task for example nvidia OptiX
framework. Because of this, this paper will not focus to
implementing fast raytracing.

Hitpoint illumination is slowest block in progressive
photon mapping implementation on GPU and on CPU.
This fact is influenced by very naive implementation of
hitpoint illumination and this paper will furthermore focus
on accelerating hitpoint illumination on GPGPU.

7 Accelerated photon gathering

Bruteforce implementation of hitpoint illumination is very
naive and very slow. In this simple implementation, each
thread in workgroup load one photon from memory, com-
pute distance, check if distance is lower than proper radius
and optionally accumulate photon flux.

Memory loads are very costly on GPU, even if stream-
ing multiprocessor is multiplexing work between few
workgroups, it will wait long time in sleep mode to load
data from global memory. One way how to mitigate mem-
ory waiting is to use local memory.

This section will present accelerating approaches to ac-
celerate this task. Mostly every other approach will be
based on previous approach.

Local memory

Idea is to load block of photons into local memory and
go through this photons from local memory. Access to
local memory is faster than access to global memory, so it
should lead to acceleration.

Each thread in workgroup will load one photon into lo-
cal memory. Kernel driver will recognize this as block
loading and this block loading should be done faster than
sequential load of each photon.

Photon sorting

When illumination is computed for hitpoint x, in computa-
tion have to be included only those photons lying on same
mesh as hitpoint x. When illumination is computed by
bruteforce, in hitpoint illumination photons from all mesh
are included and when photon from other mesh is loaded

to illumination computation, this photon are discarded and
costly load was in vain.

One way, how to solve problem with loading photons
from different meshes, is to sort photons into unique pho-
ton map for each mesh. This task should be done in sep-
arate kernel. Each thread will load one photon, check its
mesh, by special operation called atomic inc will get po-
sition in separated photon map and this photon will save
into proper position in memory.

When hitpoint is illuminated it will check hitpoint mesh
look into proper photon map and will sequentially loading
photons from proper photon map. In this case it is not
possible to use local memory because it is not guaranteed
that all hitpoints in workgroup will lie on same mesh.

Hitpoint sorting

It is needed to ensure that all hitpoints in workgroup lie on
same mesh to use coherent approach (all thread are reading
from same memory location) to fast loading from memory.

Hitpoint sorting could be done on CPU size because this
work will done only once per whole render process. Hit-
points are loaded to CPU side after raytracing pass. This
hitpoints are sorted to separate arrays. In the end of each
hitpoint array, special filler hitpoints have to be saved.

This is because ending workgroup of one hitpoint array
is not filled fully, for instance we have size of workgroup
256 and in last workgroup of hitpoint array is only 150
hitpoints, so if we do not save 106 filler hitpoints, this last
workgroup will consist from hitpoints from two meshes.

If it is ensured that hitpoints in all workgroup is
same, performance should accelerate because all threads
in workgroup is loading sequentially from same memory.

Hitpoint sorting and local memory

If all photons are separated and similar hitpoints are saved
in one workgroup it is possible to use local memory to
save photons from separated photon map. This should lead
to best acceleration and should be much faster than naive
sequential loading.

Hitpoint clustering and spatial grid

Last proposed acceleration is to build spatial grid on each
scene objects and sort photons to appropriate subspaces.
Then all hitpoints will search only through limited space
and will not go through all photons on one mesh. For
speedup purposes photons in each workgroup photons
should be as close as possible, so some sort of clustering
is needed.

8 Experimental results

Acceleration approaches introduced in previous section
was implemented on same scene. Table 3 shows result
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of this implementation.

320*280 1920*1080
Naive solution 2041 ms 38 603 ms
Local memory 1109 ms 17 750 ms
Photon sorting 611 ms 10 539 ms
Hitpoint sorting 484 ms 8 384 ms
Hitpoint sorting, local memory 327 ms 5 422 ms

Table 3: Performance evaluation between all proposed ac-
celeration techniques.

As it can be seen, all proposed approaches lead to some
sort of speedup. Local memory accelerate computation
nearly twice. Photon sorting accelerate naive solution
nearly four times. Using this approach special kernel exe-
cution is needed. Kernel for photon sorting has been exe-
cuted in nearly 1ms, so final speedup of hitpoint illumina-
tion is much higher than overhead made by special kernel
execution.

Hitpoint sorting uses photon sorting with sorted hit-
points on CPU side, so some CPU overhead is needed.
Because this task is performed only once - after raytrac-
ing pass - this overhead does not matter. Last accelerating
approach use local memory with hitpoint sorting and pho-
ton sorting. This approach is much faster then all previous
approaches.

All of this test was written in OpenCL. OpenCL has
built-in function distance() and even when this function
should be very fast, it isn’t. When on last, fastest approach
was distance() function replaced by manual distance cal-
culation from high school, this block get nearly three times
speedup! Hitpoint illumination with hitpoint sorting and
local memory extended by manual distance calculation has
125 ms execution on 320*280 resolution and 1 941 ms ex-
ecution on 1920*1080 resolution.

Hitpoint clustering and spatial grid

For clustering, k-means algorithm was used. K-means al-
gorithm return hitpoints clustered in close clusters. One
problem occurs with this type of clusters, it is not possi-
ble to made fix number of hitpoints in one cluster so lot of
filler hitpoints have to be used to fill gaps in hitpoints so
one workgroup will only consist from hitpoints from one
cluster and eventually filler hitpoints. Lot of filler hitpoints
have to be used with k-means. For 1920*1080 resolution
nearly 33% filler hitpoints (in sum of all hitpoints) was
generated and this lead to slower performance without us-
ing grid.

Image 3 shows how clusters are made in scene. For
each object in scene, simple (naive) grid structure is pro-
posed. First bounding box of object is computed, then
longest axis is split by fixate number of pieces. Length
of one divided piece give length of cube of one subspace
and then this subspaces are uniformly distributed on ob-
ject. For each subspace on each object maximum size (in

Figure 3: Hitpoint clusters made by k-means

photons count) have to be set. This approach lead to easy
implementation and this approach has nice modification
options.

320*280 1920*1080
Hitpoint sorting, local memory 172 ms 2 852 ms
Grid structure 87 ms 730 ms

Table 4: Performance evaluation of naive grid structure
with clustered hitpoints.

Table 4 shows that by using clustered hitpoints and
naive spatial grid it is possible to achieve double accel-
eration.

9 Conclusion

This paper described an experimental implementation of
Progressive photon mapping by its decomposition into
several blocks suitable for GPGPU. More or less naive im-
plementation of these blocks in GPGPU was proposed as
well. The full Progressive photon mapping performance in
GPGPU was tested and compared to the CPU. The slow-
est block turned out to be Hitpoint illumination and for this
block, an acceleration approaches were proposed as well.

The Fastest evaluated approach was sorting photons into
a mesh, sorting hitpoints into a mesh as well, compute
clusters on each mesh and use grid for photon acceleration
search. Used grid is very naive and in future work this grid
should be replaced by more complex and efficient grid, but
this very naive grid with clustered hitpoints shows way to
accelerate hitpoint illumination block. Another thing in fu-
ture work should aim to efficient clustering with low filler
hitpoint ratio.

The future work also includes the overall profiling of the
GPGPU Progressive photon mapping implementation and
also various planned improvements in quality of rendering
and speed.
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Abstract

Most of the implementations solving photo-realistic image
rendering use standard unidirectional path tracing, hav-
ing fast and accurate results for scenes without caustics
or hard cases. These hard cases are usually solved by a
bidirectional path tracing algorithm. However, due to the
complexity of the bidirectional path tracing algorithms,
its implementations almost exclusively target sequential
CPUs. The following paper proposes a new parallel im-
plementation of the bi-directional path tracing algorithm
for the GPUs. Our approach is compared with existing so-
lutions in terms of both performance and image quality.
As the references we use the standard unidirectional GPU
path tracer and commercial off-line bidirectional path trac-
ers. We achieve interactive rendering rates for scenes of
medium complexity.

Keywords: bidirectional path tracing, path tracing, phys-
ically based rendering, ray tracing, CUDA

1 Introduction

Global illumination research recently focuses on unbiased
methods. Unbiased method is such method, that under
some assumptions, converges to the solution of the ren-
dering equation.

One of the common techniques for rendering unbiased
images is path tracing, respectively the extension of path
tracing - bidirectional path tracing. These techniques are
well known for high quality rendering output. Formerly,
most of the path tracing and bidirectional path tracing
implementations were done on the CPU. However, these
techniques are well fit for massively parallel hardware, like
the recent generations of graphics hardware.

Even though there are already present implementations
of bidirectional path tracing on the graphics hardware,
most of the implementations are either using the graphics
hardware only for small part of the computation or they do
not contain any surface shading at all.

The presented work focuses mainly on the implementa-
tion of a full featured bidirectional path tracing renderer,

∗vilem.otte@post.cz
†xvinkl@fi.muni.cz

allowing for advanced materials, including textures and
computing the entire image using the graphics hardware.
The contributions of this paper are the following:

• Design and implementation of three variants of bidi-
rectional pathtracing on the GPU.

• Comparison of their speed and quality to the ground
truth path tracing solution.

• Comparison to other GPU based renderers.

2 Related Work

In this section we summarize literature most relevant to
bidirectional path tracing - various approaches to global
illumination focused on parallel GPU algorithms.

2.1 Ray Casting

The core of almost every global illumination technique is
ray casting, which allows for finding closest ray-primitive
intersection point along each ray and also to test visibility
between two points. This visibility computation is the key
to the evaluation of light transport. The focus of research
on ray casting are following three issues: selection of ac-
celeration structure, their construction and their traversal.

High performance and well established ray casting solu-
tions are available for public, including NVidia OptiX [11]
targeting NVidia hardware (which is actually full ray trac-
ing engine), Intel Embree [15] targeting traditional SIMD-
based CPU architectures. Our implementation is based on
the open source framework by Aila et al. [1, 2].

2.2 Early Global Illumination

Whitted [14] used ray-casting for generation of photo re-
alistic images, allowing for recursive specular reflections
and refractions. Later Cook extended ray tracing to dis-
tributed ray tracing to allow for effects such as diffuse in-
terreflection [3]. The rendering equation was introduced
in 1986 by Immel et al. [5] and Kajiya [7].

The rendering equation describes light transport in the
scene. Light transport describes the energy transfers in a
given scene that affects visibility.

Proceedings of CESCG 2015: The 19th Central European Seminar on Computer Graphics (non-peer-reviewed)



2.3 Path Tracing and Bidirectional Path Trac-
ing

Path tracing algorithm allows for computing the solution
of the rendering equation. By computing the paths of light
from the camera into the scene (eventually reaching light
source), it closely resembles the behavior of light. The
path starts with primary ray at the camera and is traced
into the scene. Upon intersection, in continues in random
direction.

For further efficiency, at each vertex of the path it is
determined whether path should be terminated or not by
Russian roulette, thus preventing infinite path lengths. It
allows for physically based computation of lighting, and
so the synthesis of photo realistic images. The algorithm is
also unbiased, with theoretically absolute accuracy when
using infinite number of samples.

Bidirectional path tracing is further extension of path
tracing algorithm, introduced by Veach [12]. By gener-
ating one sub path from a light source and one sub path
from the camera, later joining them together, it is possible
to handle indirect lighting computation more robustly (and
efficiently) compared to ordinary path tracing. Further-
more, this modification still keeps the resulting algorithm
physically based and unbiased.

2.4 Other Global Illumination Methods

Lately a lot of fast algorithms for computation of global il-
lumination were introduced. Most of the algorithms were,
compared to path tracing, biased, providing a trade off be-
tween rendering quality and speed.

Recent interactive global illumination methods are
modifications of Virtual Point Lights, introduced by Keller
et al. [9], allowing for real time smooth global illumina-
tion [10]

One of the other popular global illumination techniques,
used in real time rendering, are Cascaded Light Propaga-
tion Volumes [8].

Photon mapping introduced by Jensen [6], is currently
popular in production renderers, especially for interior
rendering. The technique was further extended into pro-
gressive photon mapping [4]. Compared to standard pho-
ton mapping, which is a biased rendering algorithm, pro-
gressive photon mapping is an unbiased one.

3 Bidirectional Path Tracing

This section presents some improvements when using
bidirectional path tracing. For proper description of these
features it is critical to define some terms.

Naive Path Tracing This designation is used for path
tracers that does not do any explicit steps, but wait for
camera ray to actually hit light (or get terminated).

Figure 1: All possible connections between a light path
and camera path. 1. Represents camera path, 2. Repre-
sents light path, Dashed lines represent possible connec-
tions between light path and camera path.

Standard (Explicit) Path Tracing Due to very bad con-
vergence ratio using naive path tracing, it is often under-
stood that generic path tracing algorithm does single ex-
plicit step towards light on each vertex of the path. These
path tracers are to be designated as standard, or explicit,
path tracers.

For the sake of completeness, pseudo algorithms for
standard path tracing (see Algorithm 1) and bidirectional
path tracing (see Algorithm 2) are provided.

Bidirectional path tracing, computes two paths, one
from the light and another one from the camera. These
paths are later connected (see Figure 1). These connec-
tions attempt to solve several problems introduced by uni-
directional path tracers:

Small light sources For naive path tracers, the probabil-
ity of hitting a light source is proportional to its size. Hav-
ing point lights (lights that are infinitely small) in naive
path tracer often ends up with nothing visible in rendered
image, as the probability of hitting the light source reaches
zero.

This can be solved by sampling light in explicit man-
ner each step in path computation, resulting in very fast
convergence for directly lit scenes. While sometimes this
technique is referred as explicit path tracing, it actually is
a special case of bidirectional path tracing, where the light
path contains only a single vertex.

The visibility function between each camera path vertex
and light path vertex has to be computed, resulting in 2 ·N
cast rays for camera path length of N.

For bidirectional path tracing, even more complex paths
from the light can be easily evaluated, e.g. light hidden
inside a lamp.

Interior scenes lit by exterior light Assuming we are
inside a room, where there is only a single window, stan-
dard, or even explicit, path tracers are not going to con-
verge very quickly because the probability of sampling the
light is low. In fact, in case where no path vertex on cam-
era path lies in direct light, the contribution of that path is
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Figure 2: Difference between path tracer and bidirectional
path tracer when computing caustics. On the left side,
the fireflies generated by standard path tracer compared to
more smooth caustics generated by the bidirectional path
tracer on the right side.

zero. This is one of the so called ’pathological scenarios’
for path tracing, where the algorithm fails to provide result
fast enough.

Using a bidirectional path tracer with light path of
length M, it is enough that single point of the light path
is directly visible from any of the camera path vertices. If
this condition is true, that paths’ contribution will be non-
zero, resulting in faster convergence.

Caustics convergence Using a unidirectional path
tracer often results in poor caustics and fireflies in the re-
sulting image, as their convergence rate is by magnitudes
worse to convergence rate of diffuse light. Computing
caustics with bidirectional path tracer is faster (see Fig-
ure 2), yet there are still difficulties with reflected caustics.
Bidirectional path tracer can be, however, further extended
with Metropolis Light Transport [13], improving the per-
formance on reflected caustics.

Algorithm 1 Path Tracing
1: procedure PATHTRACE
2: for each path:
3: ray← setup primary ray
4: while ray.terminated = false do
5: result← raycast(ray)
6: if result.hit = false then
7: Accumulate background color
8: ray.terminated← true
9: else

10: Compute and Accumulate surface emission
11: Compute contribution of random light
12: if Contribution is non zero then
13: Accumulate contribution
14: if Russian roulette terminates path then
15: ray.terminated← true
16: else
17: ray← Get B*DF Sample

Algorithm 2 Bidirectional Path Tracing
1: procedure BIDIRPATHTRACE
2: for each path:
3: Generate vertex on random light
4: Push this vertex to light path
5: ray← setup light ray
6: while ray.terminated = false do
7: result← raycast(ray)
8: if result.hit = false then
9: ray.terminated← true

10: else
11: Push this hitpoint to light path
12: if Russian roulette terminates path then
13: ray.terminated← true
14: ray← setup primary ray
15: while ray.terminated = false do
16: result← raycast(ray)
17: if result.hit = false then
18: Accumulate background color
19: ray.terminated← true
20: else
21: Compute contribution by joining light path
22: with this vertex
23: if Russian roulette terminates path then
24: ray.terminated← true
25: else
26: ray← Get B*DF Sample

3.1 Parallel Bidirectional Path Tracing using
GPU

Computation of different samples, (sub)paths in terms of
path tracing, and different pixels is independent on each
other. Path tracing and also bidirectional path tracing are
therefore good candidates for massively parallel computa-
tion.

The resulting parallel algorithm looks similar to sequen-
tial version. The parallel run is performed over the pixels,
with each sample is computed by a single thread in a single
kernel launch.

4 Implementation

The bidirectional ray tracing kernels were implemented
on top of open source framework by Aila. For this pur-
pose, new rendering kernels for each variant of bidirec-
tional path tracer were added.

To achieve high performance of the source code, the
speculative while-while traversals were used. As oppos-
ing to persistent threads they perform, in general, better
on new hardware. Also, bounding volume hierarchy with
spatial splits was used as acceleration structure for the ren-
dering.

The Aila framework was further extended to support
high resolution textures, reflective, refractive and dielec-
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tric materials. Light sources are handled as geometry
with emissive material, so in general any number of light
sources is supported.

The bidirectional path tracer kernel always processes
one pixel in single walk through, e.g. the light path gen-
eration (storing required data), followed by computation
of the camera path. During each step of the camera path
computation the join for currently processed vertex is per-
formed when necessary.

5 Optimizations and Limitations

The following section describes possible optimizations
and limitations when implementing bidirectional path
tracer on the GPU. For each optimization a brief summary
is given.

5.1 Sub path join

Full join
Joining of the light sub path of length M and the camera

sub path of length N is a non trivial task. There are mul-
tiple ways to join these, the intuitive solution is joining
each vertex from light sub path to each vertex in camera
sub path. While this actually leads to faster convergence,
N ·M rays have to be used to compute the visibility be-
tween samples, which is slow. Moreover, the full light
path has to be stored in the memory, and so larger memory
space is required.

Single-step join
Performance wise, the most efficient idea is joining the

last camera sub path vertex and the last light sub path ver-
tex. Such approach has some advantages. Single path
computation is of the same performance as naive path trac-
ing, although improving the situations where naive path
tracing has major problems. However, by combining only
the ends of both paths contributions of these light paths are
very small.

K-step join
It is also possible to select an approach using random-

ized algorithm. For each of the N ·M joining rays, the
algorithm discards some of these joins. The actual join-
ing ray rejection can be built upon multiple criteria - either
fully random, or deterministic (removing less contributing
joins and accordingly weighting the rest). This join is to
be designated as K-step join. The join is performed by
taking each vertex from camera against k vertices from the
light path. The k value has to be smaller than the number
of vertices in the light path.

When implemented properly, the different sub path
joins do not break the unbiased property of the algorithm.

5.2 Path pre-generation

Given a static scene, all the light paths can actually be pre-
computed. Later, during the execution of the algorithm,
we only select one of the light paths from given M pre-
computed light paths.

While this approach is highly efficient, it often means
that the resulting algorithm is biased. This can be over-
come by re-generating these light paths on runtime. Once
we start joining samples to random pre-generated paths, it
is possible that some samples are to be joined with a single
light path. This could lead to unnatural patterns in result-
ing image, and of course breaking unbiased nature of the
algorithm. By re-generating the paths after they have been
used, it is possible to avoid this problem.

Unless large M is selected, the quality of resulting im-
age can be highly degraded. To keep the quality of the
resulting image high enough, it was experimentally eval-
uated that the number of light paths must be at least the
same as the number of pixels in the resulting image.

5.3 Biasing

Biasing the algorithm does not have much sense for simu-
lations. Although, for performance heavy applications, in
case where we have limited time for calculating an image,
for example in games, it is possible to trade off quality for
speed.

During the implementation, two of the biasing tech-
niques were considered.

Limiting maximum camera path length Generally, the
camera path length can be very long (assuming it doesn’t
directly hit the light), until Russian Roulette finally termi-
nates the path.

By limiting the length of camera path to some value it
is possible to increase performance. First of all, longer
paths generally tend to have smaller contribution, by end-
ing them at some given maximum length we terminate
them early, effectively reducing the number of computa-
tions they need to do.

Also, from the GPU perspective, we are always waiting
for the longest path to finish the computation, in the worst
situation, whole warp is waiting for single thread to finish
a very long path. By bounding the maximum length, we
effectively reduce this issue and increase the computation
performance.

On the other hand, the unbiased nature of the algo-
rithm is lost, by limiting the maximum path length we
are effectively limiting the maximum number of reflec-
tions/refractions, which may cause visible problems in im-
ages (for example, missing reflection).

Random Number Generation As each Monte-Carlo
technique, path tracing and bidirectional path tracing,
heavily depend on random number generation. Having a
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random number generator with large period means, that
resulting image will converge closely to the ground truth.

Each Monte-Carlo technique spends some amount of
time in random number generator. If the application tar-
gets performance instead of precision, it is possible to pre-
generate random numbers into an array and use those later.

Doing so introduces a limit at which the image is not
able to converge more towards the ground truth (as all the
samples were already taken).

It is important to note that the results taken using the
implementation were recorded with unbiased version of
the algorithms. The biased version is between 2 and 3
times faster compared to unbiased version.

6 Results

6.1 Evaluation and Analysis

Results of the implementation were evaluated on low-end
laptop GPU NVidia GeForce 720M, with 1.5 GB mem-
ory. The system was running under Windows 8.1 OS, with
CUDA 5.5 installed. Kernels were compiled with com-
pute capability 2.0. The light paths were generated on the
runtime.

A low end GPU was used to demonstrate, that even cur-
rent generation laptop based GPUs are capable of interac-
tive rendering of moderately complex scenes.

The rendered images were taken each 5 seconds, while
the used algorithm was running progressively. Results pre-
sented in this section show the difference in quality be-
tween the specific implementations. The resulting images
are also compared to ground truth using the root mean
square error (further RMSE, lower is better).

The first set of comparisons is between path tracing
and bidirectional path tracing. Followed by comparison
against other GPU based Monte-Carlo rendering systems.

The single-step join does need to keep just a single (last)
vertex of the light path. K-step join needs to keep K ver-
tices of the light path in the memory during the compu-
tation, while full join needs to keep all the vertices in the
light path. While single-step join and K-step join have
constant memory footprint, the full join footprint grows
with the length of the light path.

6.2 Bidirectional vs. Unidirectional

Cornell Box
We ran two algorithms on the following scene, bidirec-

tional path tracing (with full path join) and standard path
tracing. Both of the resulting images are compared to the
ground truth. The sample images were taken after 5 sec-
onds and after 10 seconds. (see Table 1)

From the given comparison, it can be stated that bidirec-
tional path tracing with full path joining converges faster

Path Tracing Bidirectional

5s
RMSE 0.1002 0.0628

10s
RMSE 0.0784 0.0456

Table 1: comparison between Path Tracing and Bidirec-
tional Path Tracing with full path join.

compared to standard path tracing. This is especially the
case for caustics.

Crytek Sponza
The following scene shows complex materials, like tex-

tured, alpha-tested, reflective and refractive surfaces, lit by
an area light source.

All three different bidirectional kernels were run on this
scene, and the results show how the scene looked after 5
seconds of processing. All the results are compared to the
ground truth in terms of RMSE (see Table 2).

We observed the same behavior in all of our measure-
ments, full path join results in best image quality and
fastest speed. This shows, that the algorithm is not bound
by memory performance, in which case K-step join or sin-
gle step join would result in higher performance and thus
quality on a fixed budget.

Caustics Test
We also ran three different bidirectional kernels, as well

as standard path tracing method, on a scene with a caus-
tic. The results show how the scene looked after 5 and 10
seconds of processing (see Table 3).

The full path join also results in the highest quality caus-
tics, that are almost perfectly smooth after ten seconds of
computation.

6.3 Other GPU rendering packages

iRay
NVidia iRay is a physically based renderer highly scal-

able in performance across GPUs and CPUs. We rendered
the Crytek Sponza scene using our bidirectional path trac-
ing renderer and the iRay from a similar viewpoint (see
Table 4).
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Renderer Image RMSE

Single-step 0.1584

K-step (K=3) 0.0701

Full 0.0095

Table 2: Equal-time comparison between three different
implementations of bidirectional path tracing and their dis-
tance to ground truth in terms of RMSE.

Renderer 5s 10s

Single-step

K-step (K=3)

Full

Table 3: Comparison of a caustic scene with three dif-
ferent implementations of bidirectional path tracing. The
contrast was intentionally enhanced so it is possible to see
the difference in sampling inside caustics casted by a glass
sphere. Single step join has very slow convergence and so
the resulting image is darker compared to the others.

NVidia iRay Bidirectional

5s

10s

Table 4: Comparison between iRay and our bidirectional
path tracing implementation. The brightness/contrast dif-
ference is caused by different handling of output between
both implementations.

Again we target images generated after 5 and 10 sec-
onds, which shows the quality achievable using an inter-
active preview on low end graphics card.

The resulting images are untextured, as there is not a
full support for textured surfaces in iRay, and the scene
was lit using single directional light. This setting also al-
lows for an easier comparison of the quality of the global
illumination without the masking effect of the textures.

The technique iRay uses is actually standard path trac-
ing, in comparison it is clearly visible that our Bidirec-
tional technique produces smoother results for a similar
time budget.

LuxRender
LuxRender is a physically based and unbiased render-

ing engine. The LuxRender package was used through
Blender software, possibly limiting some options leading
to slightly decreased quality (see Table 5).

LuxRender uses a technique called LuxRays to produce
the image, it is an unbiased technique similar to bidirec-
tional path tracing. The implemented bidirectional solu-
tion might seem to converge better, although it is important
to state, that LuxRender is a very large package supporting
complex material setup (along with subsurface scattering
effects for example), while the implemented solution does
not.
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LuxRender Bidirectional

10s

20s

Table 5: Comparison between LuxRenderer and our
bidirectional path tracing implementation. The bright-
ness/contrast difference is caused by different handling of
output between both implementations.

7 Summary

Path tracing, in general, excels in exterior scenes or when
there are large light sources. Bidirectional path trac-
ing is an extension that allows for faster computation of
more complex situations, like interior scenes or small light
sources.

The created GPU-based implementation showed, that
bidirectional path tracing is also suitable for massively
parallel implementation. The results confirmed, that con-
vergence rates are in general better for bidirectional path
tracer, which effectively reduces computation time.

Full path joining proved to lead to the highest quality
global illumination, although keeping large memory foot-
print. However, on modern GPU architectures, the mem-
ory footprint required by full path joining is bearable.

K-path join proved to be an interesting alternative to full
path join. Even though the full path join actually results in
better convergence rates, it is possible to alter the number
of joins for K-join on the fly. This can be used to achieve
a constant refresh rate when running the algorithm in pro-
gressive mode. Such approach can be interesting for inter-
active preview of rendered scene.
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Abstract

We present a method to display large point data sets in web
browsers. Such data sets can consist of hundreds of mil-
lions to billions of points and are therefore too large to be
loaded and rendered at once. The idea of this method is
that only points inside the view frustum and up to a certain
level of detail are loaded and rendered. Using adjustable
point-count limits, even mobile and low-end desktop hard-
ware is able to display these point clouds in real time or at
least interactively. The implementation is based on stan-
dard web technologies and requires no additional plugins
to be installed. This allows developers to combine it with
other web applications, like mapping software, in order to
synchronize georeferenced point clouds with world map
overlays. We also show how to choose point sizes in order
to avoid holes and hide varying point densities caused by
different levels of detail.

Keywords: WebGL, Point Cloud, LIDAR

1 Introduction

Various 3D scanning technologies such as laser scanners
and photogrammetry produce enormous amounts of point
cloud data. Datasets with billions of points are not uncom-
mon anymore. Processing and rendering these datasets is
a challenging task that neither the memory nor the speed
of today’s hardware can handle in real time unless broken
down into smaller parts. The simplest approach is to tile
datasets in small regional chunks and handle one or a few
at a time. Another one is to subsample data down to a
manageable size. A third one, which is gaining more and
more popularity, is the combination of both by creating a
multi-resolution hierarchy. Such a hierarchy consists of
multiple levels of some sort of tree with a low-resolution
model stored at the top and increasing resolutions stored
in all descendants.

This paper is based on the multi resolution octree of In-
stant Points [1]. The concept of inner and outer octree
was simplified to one octree where all nodes, including
root, inner and leaf nodes, store various resolution subsets

∗mschuetz@potree.org
†wimmer@cg.tuwien.ac.at

of the original point cloud data. Unlike the inner octree
approach, we do a uniform point selection with a user-
defined point spacing. This approach has higher prepro-
cessing costs but improves visual quality at lower levels of
detail. This is especially useful with slow internet connec-
tions, where viewers have to wait longer times until higher
levels of detail are loaded, but also for low-end hardware
with a low point budget. The predefined point spacing also
allows for a new adaptive point-size mode that changes
the point size according to the level of detail in order to
avoid holes. However, points that are close together will
be discarded due to the spacing requirements. Like the In-
stant Points system, we store one file for every node, which
makes it possible for the client to load the necessary data
without relying on server-side applications.

Our implementation, Potree [2], and some of the ex-
amples presented in this paper are available online at
http://potree.org

2 Related Work

QSplat [3] is a multi-resolution algorithm that traverses a
bounding-sphere hierarchy and builds the rendered point
cloud point by point. It adjusts level of detail to the ren-
dering duration. The fine granularity of the hierarchy, each
point is represented by a leaf or inner node, allows to ren-
der low-detail images during user navigation and progres-
sively higher levels of detail once movement has stopped.
Hierarchy traversal, on the other hand, is very costly, and
the point-wise assembly of the visible dataset makes it
hard to efficiently use the GPU.

Instead of associating each node with just one point,
Layered Point Clouds (LPC) [4] store M points per node,
where M can be chosen freely. This approach is much
more GPU friendly, as points can be stored on the GPU in
blocks of M points each, and the application only has to
tell the GPU which blocks to render. Our approach also
stores blocks of points in each node. The difference to
LPC is that points are chosen differently and it is not re-
quired to have exactly M points in each inner node. LPC
also uses a binary tree that continuously splits along the
longest axis, while our approach uses an octree instead.

Plas.io [5] is a web-based viewer for LAS and LAZ
files, and coupled with the point-streaming back-end grey-
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hound. The main differences to our implementation are
that greyhound uses a quadtree instead of an octree, points
are chosen according to the distance to a grid center dur-
ing indexing, and the client does not depend on the tree
hierarchy since the server takes care of it. The quadtree
approach works well for LIDAR datasets with large length
and width but relatively low height. General-case point
clouds with larger height are problematic, though. In-
dexing, on the other hand, is faster due to simpler point-
selection methods.

glob3mobile [6] is a mobile mapping framework with
point cloud support. Points can be stored either in a
quadtree or in an octree, depending on the extent of the
dataset. Data is stored in leaf nodes only, which de-
creases potential overhead in high zoom levels and top
down views, where few leaf nodes are visible. On the other
hand, at low zoom levels with a high amount of visible
nodes, the overhead increases.

ShareLiDAR [7] also uses a multi-resolution model ap-
proach and it is currently the only web viewer listed in this
paper that supports normals and therefore illumination as
well. According to their description, they have a prepro-
cessing throughput of 40kb of LAS files which is roughly
1500 points per second. For large datasets with billions of
points, this throughput is problematic.

3 Multi-Resolution Octree

In order to be able to render point clouds in real time and
to keep load times low, we first create a multi-resolution
octree hierarchy of the point cloud. The first level of this
octree, the root node, contains a coarse representation of
the whole point cloud. The resolution is defined by the
spacing parameter, which specifies the minimum distance
between points at root level. The default spacing is set to

spacing =
boundingBoxDiagonal

250
(1)

but users may define other values if required. Each sub-
sequent level halves the spacing and stores models with
increased resolution.

The spacing influences the number of points in each
node and therefore affects download times, the total num-
ber of nodes, the number of rendered nodes for a certain
point budget and the efficiency of frustum culling. The de-
fault value was chosen as a trade-off between fewer points
per node to improve download times but enough points to
avoid generating a large amount of mostly empty nodes.

Since hierarchy traversal is done on client side, the
client has to know about the hierarchy. Depending on the
size of the input dataset and the indexing parameters, the
octree can grow up to millions of nodes. Downloading
the full hierarchy at once increases the initial load times.
To keep load times low, the hierarchy is split into smaller
chunks, and only parts that are needed will be loaded. A
chunk contains a node and its descendants for the next

chunkDepth levels. Assuming chunkDepth = 5, a chunk
is generated for the root node, containing the hierarchy
from root to descendants at level 5. The same is repeated
for all nodes at level 5, resulting in a multitude of chunks
that contain the hierarchy from level 5 up to level 10 in the
respective regions.

4 Point Cloud Indexing

This section describes how a multi-resolution hierarchy is
created from an input point cloud.

First, the bounding cube of the input data is calculated
and the spacing and the depth of the octree are defined.
The default value for spacing is given by Equation 1 but
may be set to any other value by the user. The octree depth
has to be defined by the user. In the next step, points of the
input dataset are subsequently added to the octree. If the
distance to any other point inside the root is larger than
the spacing, the point is added to the root node. If there
is already another point in close proximity, it is passed to
the next level and the same test is repeated with half the
spacing. This process is repeated until the point has been
added to a node or the octree depth has been exceeded. In
the latter case, the point is discarded and will not be added
to any node. No duplicate points are generated.

Each node may contain thousands of points. To reduce
the amount of necessary distance tests while adding a new
point, points in a node are stored in a 3D grid. The length,
width and height of each cell is equal to the spacing at the
nodes level. During the distance test, only points in the
same cell and neighbouring cells have to be tested.

The hierarchy and nodes are written to disk regularly,
e.g., for every millionth point processed. The results up to
the last write can be viewed at any time, giving the user
the possibility to immediately cancel the conversion pro-
cess if, for example, the user decides to adjust conversion
parameters based on the current results.

Each node of the octree is given an ID that also rep-
resents its exact position in the hierarchy. The numbers in
the ID stand for indices ranging from 0 to 7. The root node
is named r. The first child of the root node has index 0 and
therefore its ID is r0, while the last child of the root has
index 7 and ID r7. The same is repeated for each level,
always concatenating the ID of the parent and the index of
the child to calculate the child’s ID. The second child of r0
has index 1 and thus the id r01.

5 Data Streaming and Disposal

This section describes how point data is loaded and un-
loaded.

The indexing process splits the point data into small
nodes and stores each of them in its own file. The only
task of the server is to host these files and send them to the
client upon request.
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Initially, the client loads metadata such as bounding
box, spacing and point attributes from the server. In the
next step, the first hierarchy chunk, containing the hier-
archy for the first few levels, is loaded. At this point,
the client starts to calculate the visible nodes and deter-
mines nodes that are visible but have not yet been loaded.
Unloaded nodes with the largest screen-projected size are
then requested from the server until at most maxParallel-
Requests are loaded at the same time. A value of 4 for
maxParallelRequests has proven to work well in practice.
If a node has a hierarchy chunk associated with it, that
chunk will be loaded as well, thus expanding the currently
loaded hierarchy by another few levels in the respective
region.

The client cannot load and store an infinite amount of
data in memory. It is therefore necessary to remove nodes
which are no longer or rarely used. This is done by keep-
ing track of the least recently used (LRU) nodes. After
a certain threshold on the number of loaded points has
been reached, the client starts to remove least recently used
nodes from memory before loading new ones. Previously
disposed data is often loaded faster on future http requests
since web browsers usually cache data by themselves.

6 Rendering

This section describes the rendering process, including hi-
erarchy traversal to calculate visible nodes, coloring, cal-
culating point sizes and different point-rendering qualities.

6.1 Octree Traversal and Visible Node Deter-
mination

Octree traversal fulfils 4 main tasks:

• Discard nodes outside the visible area (Frustum
Culling)

• Prioritize nodes with large screen-projected size

• Enforce point budget

• Discard nodes with a small screen-projected size

The traversal is done in a largest to smallest screen pro-
jected size order since nodes with a larger projected size
tend to have a higher impact on visual quality. This is
done by adding the children of each traversed node into a
priority queue, and then visiting the node with the highest
priority. The priority is given by the screen-projected size.
A child always has a lower priority than its parent, but dis-
tant high-level nodes may have a lower priority than low
level nodes that are close to the viewer. During traversal,
the visiblePoints and visibleNodes variables keep track of
the amount of points and nodes that were found to be vis-
ible. Traversal stops if there are no more nodes to visit or
if a user-defined point budget has been reached.

(a) RGB (b) Height

(c) Intensity (d) Classification

(e) Return Number (f) Point Source ID

Figure 1: Coloring different point cloud attributes; CA13
point cloud courtesy of [8]

.

Frustum culling is done using box frustum intersection
tests. A node that is not inside or does not intersect the
view frustum will not be rendered and is omitted from fur-
ther processing.

Nodes with a small projected size have a smaller impact
on quality. They are discarded if their size is lower than a
user-defined threshold.

The visible hierarchy is kept in a list for use with other
features such as ray casting, point picking and adaptive
point size, which is explained in detail in subsection 6.3.

6.2 Coloring

Point clouds can have a variety of different attributes. LI-
DAR data, for example, often contains intensity, return
number, point source ID and classification, but not neces-
sarily color (RGB). Photogrammetry-based point clouds,
on the other hand, have color and possibly normals, but no
intensity or return number. In our system, octree nodes are
stored as files on the disk, and the format of these files can
be chosen freely. For point clouds with only color data,
points are stored in binary files with coordinates and color.
For point clouds with color, intensity, classification or re-
turn number, points are stored in LAS or compressed LAZ
files, instead. Color data is rendered as is, while inten-
sity is rendered using a grayscale gradient, classification
is rendered using a look up table, and other attributes are
rendered using rainbow color gradients, as shown in Fig-
ure 1.

6.3 Point Size

One problem of level of detail using multi-resolution hi-
erarchies is the noticeable difference in point density in
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ID index children offset
r 0 00001010 1
r1 1 00010000 2
r3 2 00000000 0
r14 3 00000000 0

Figure 2: Hierarchy encoded in a 1D array containing chil-
dren masks and relative offsets to a node’s first child.

regions with different level of detail. To overcome this
problem, an adaptive point-size mode was implemented.
This mode sets the point size based on both, the visible
octree depth at the point position and the distance to the
camera. Calculating the visible octree depth for all visible
points and sending this data to the GPU each frame is a
relatively slow process. Instead, this calculation is done
directly on the GPU. The visible hierarchy is encoded in a
1D array, stored in a texture and sent to the GPU. Inside the
vertex shader, the hierarchy is traversed towards the vertex
position and the localOctreeDepth variable is incremented
along the way.

Nodes are stored in breadth-first order and are encoded
in 3 bytes, each. The bits of the first byte indicate which
children are visible. The second byte contains the relative
offset to the node’s first child inside the array. These 2
properties are sufficient to traverse the octree from top to
bottom. The third byte is empty. Figure 2 shows an exam-
ple of a hierarchy and its encoding. Each traversed level
requires one texture lookup, counting how many bits have
been set in a byte and whether a certain bit has been set
or not. This puts additional overhead on the vertex shader,
but it also reduces the number of vertices and fragments
required to fill holes.

The point-size is calculated by taking the spacing of the
octree root, then halving the size for each visible node at
that location and finally computing the screen projected
size, as shown in Equation 2 and 3.

worldSpaceSize =
spacing

2localOctreeDepth (2)

pointSize = pro ject(worldSpaceSize) (3)

This algorithm only works properly if the worldSpace-
Size is higher than the sampling density of the original
point cloud data. In regions where the size is lower than
the original sampling density, holes will appear because
there are not enough points available to make up for the
decreased point size. For a good utilization of adaptive
point size it is therefore important that the octree depth is
not too high.

Figure 3 shows the difference between fixed and adap-
tive point size.

6.4 Rendering Quality

Most point cloud viewers render points either as squares
or circles. Increasing the size will cause these primitives
to overlap and reduces the readability of high-frequency
features such as text and fine details. In order to improve
readability, the high-quality splatting [10] algorithm using
screen-space aligned circles was implemented. Instead of
rendering only the fragments closest to the camera, frag-
ments within a certain distance are blended together. This
algorithm requires at least 3 rendering passes. In the depth
pass, a linear depth map with an additional linear offset,
for example 1cm, is rendered. In the next step, the at-
tribute pass, all fragments that pass the depth test, i.e.,
all fragments closest to the camera as well as fragments
at most 1cm behind them, will be blended together. The
fragments are weighted according to their distance to the
center of the point, and the weighted value as well as the
weight will be summed up. The last step is to normalize
the buffers by dividing the weighted sum of the attributes
by the sum of their weights. Both, blend depth and weight
function can be made dynamic to adapt to different needs.
Large-scale point clouds will need a different blend depth
than point clouds of small objects. Changing the weight
function can result in very smooth or blurry but also very
sharp images. High-quality splatting gives very good re-
sults, but the downside is the need for at least 3 rendering
passes.

In order to achieve good results in just one pass, we im-
plemented another point-rendering algorithm with a sim-
ilar idea. High-quality splatting assigns weights to frag-
ments based on their distance to the point center and then
blends them together. Instead of summing up weights and
attributes, we use a weight function as an offset to the frag-
ment depth. Essentially, this means that instead of render-
ing screen-aligned squares or circles, each point is ren-
dered as a three-dimensional object. Fragments far from a
point’s center are more likely to be occluded due to their
high depth offset. The result is a nearest-neighbour-like
interpolation with similarities to a Voronoi diagram.

Figure 4 shows a comparison of the different rendering
modes.
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(a) fixed (b) adaptive

(c) fixed (d) adaptive

(e) adaptive optimal

Figure 3: With fixed or projected point size, noticeable
holes appear in regions with a lower level of detail. In
figure (b) and (d), adaptive mode is used to increase point
size in order to avoid holes. In figure (e), point size was
chosen to avoid holes completely. Highway construction
point cloud courtesy of [9]

.

(a) squares (b) circles

(c) interpolation (d) splats

Figure 4: 4 different rendering modes. Squares and cir-
cles have issues with overlapping points. Interpolation and
splats provide considerable improvements in readability of
high frequency features. Point cloud courtesy of [11]

.

7 Georeferencing

One of the largest use cases of point clouds is the captur-
ing of landscapes with LIDAR or photogrammetry. These
kinds of point cloud scans can be georeferenced, which
means they can be assigned coordinates that refer to exact
positions on the planet. A variety of projections exists for
different tasks and locations. These projections are usu-
ally planar and do not account for the earth’s curvature,
but they work as a good approximation in small regions.
Additionally, coordinates are often stored as 32bit floats
or integers which have enough precision for a given area
but not the whole planet. Most projections are therefore
only valid for small regions or countries and not meant to
be used outside.

One of the challenges of working with georeferenced
data are the huge values of point coordinates. Ac-
cording to Spatial Reference [12], x coordinates in
EPSG:21781 (Swiss) projection lie between 485869.5728
and 837076.5648. Floating-point types have high preci-
sion for values near 0 but cannot accurately handle such
high values. For this reason, the point cloud will be trans-
formed to local scene coordinates by translating all points
to the origin.

We use georeferencing to provide a side-by-side view
of a 3D point cloud scene and a web map such as Open-
StreetMap [13], as shown in Figure 5. In order to dis-
play camera position and direction in a web map, the cam-
era scene coordinates are first transformed to the projected
point cloud coordinates and then to the map coordinates.
The reverse can be done as well, for example to draw a
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Figure 5: Map overlay showing camera position and point
cloud extent. Point cloud courtesy of [9]

.

(a) Original (b) Bing

(c) OpenStreetMap

Figure 6: Bing and OpenStreetMap projected on point
cloud data. Point cloud courtesy of [9]

.

line on the map and then display the same line in the 3D
scene.

We also use georeferencing to project web maps, e.g.,
OpenStreetMap or Bing Aerial [14], onto point cloud data,
as shown in Figure 6. First, the bounds of the desired re-
gion are calculated and then transformed to map coordi-
nates. The map inside these coordinate bounds is used as
a texture that is projected onto the point cloud data. Map
projections may be used for colorless LIDAR data or to
compare map data with point cloud data.

8 Performance

Indexing performance is measured in points per second.
Unlike other methods, the presented method also subsam-
ples the point cloud, so another important measure is the
sampling ratio of points read versus points written. Table 1

Dataset spacing depth points/s ratio (%)
CA13 315 10 33k 49

9 95k 14
8 121k 4
7 178k 1

Lion 0.05 4 98k 77
3 133k 29
0 333k 1.8

Table 1: Indexing Performance. points/s gives the num-
ber of points per second that were processed and ratio the
amount of points that were written. Close points are dis-
carded. All tests were done on the same 5400 rpm hard
drive.

GPU points mode FPS
860M 2M fixed 104

2M adaptive 100
330M 1M fixed 14

1M adaptive 11

Table 3: Performance of fixed and adaptive point-size
modes. In both cases, 1 pixel was rendered per vertex to
avoid influence of the fragment shader.

shows our performance results.
Rendering performance on 2 different notebooks is

shown in Table 2.
Performance of adaptive point-size is shown in Table 3.

9 Conclusions and Future Work

We have shown a method to render large amounts of point
cloud data in real time in web browsers without the need
to download the full dataset. A pre-indexing step is re-
quired to sort points into an octree structure, which makes
it possible to efficiently load just small parts of the dataset
needed for the current view point. For georeferenced point
clouds, we also showed how to synchronize them to web
maps such as Bing or OpenStreetMap in order to display
a map overlay showing current camera position and di-
rection and also how the map can be projected onto point
datasets.

Figure 7 shows some screenshots of point clouds that
were rendered with our work.

Some important future tasks include improved index-
ing performance, supporting normals for illumination and
avoiding generating a large amount of nodes with a small
amount of points in each. The biggest problem with in-
dexing right now is that a relatively slow dart-throwing-
type algorithm is used in order to guarantee a minimum
distance between points and to sample evenly distributed
points without regular repeating patterns.

Additionally, further improvement is needed to make
the adaptive point-size mode work with any octree depth
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Dataset #points #rendered points #rendered nodes GT 330M(fps) GTX 860M(fps) Adreno 320(fps)
CA13 5500M 400k 77 41 148 12

991k 115 21 122 4
1987k 198 10 97

Lion Statue 0.34M 150k 64 60 136 36
340k 199 24 93 18

Matterhorn 90M 986k 81 11 120 8

Table 2: Rendering Performance Results. All tests were done in Chrome on 2 notebooks and a mobile phone: A Sony
VPCF11C4E(2010) with a Nvidia GT 330M, a custom-built Schenker(2014) with a Nvidia GTX 860M and a Samsung
Galaxy S4 Active with a Adreno 320. Tests were done with a point budget of either 1 or 2 million points. We have
measured the frames per second (FPS) for different view points and listed the number of points and nodes that were
rendered. For all measurements, adaptive point size was used to cover holes. For the notebook tests, a 1920x943 pixel
canvas was used.

and to convert the whole dataset without discarding points
that are close together.
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(a) CA13 point cloud 1.4M points rendered (b) CA13 point cloud 1.1M points rendered

(c) Matterhorn, 1M points rendered (d) Matterhorn summit, 1M points rendered

(e) Statue in Philadelphia, PA, 1M points rendered
(f) Closeup of statue inscription, 1M points rendered with
interpolation shader

Figure 7: Screenshots of different point clouds, rendered either in Firefox or Chrome. CA13 point cloud courtesy of [8].
Matterhorn point cloud courtesy of [15]

.

Proceedings of CESCG 2015: The 19th Central European Seminar on Computer Graphics (non-peer-reviewed)
90



Order Independent Transparency with Non-local Opacity
Modulation for 3D Meshes

Tomáš Pastýřík∗
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Abstract

We are rendering semi-transparent 3D objects on GPU
we can choose from a variety of order independent trans-
parency (OIT) algorithms. The transparency of the ob-
jects can be modulated based on properties of the 3D ob-
jects such as curvature, distance from silhouette, distance
from camera, etc. In this paper we focus on non-local
opacity modulation where desired information needed for
the modulation is a matter of global context and it is not
known for current primitive directly. We introduce an
algorithm to solve the Order Independent Transparency
with non-local opacity modulation based on the Illustra-
tion Buffer. While the original Illustration Buffer is con-
structed from meshes of flow surfaces we focus on use
with general 3D meshes.

We compare our algorithm with several OIT algorithms:
depth peeling, dual depth peeling, and per pixel linked lists
which provides us a deeper insight at what conditions is
one algorithm better than another from the point of speed,
memory consumption and effort needed to incorporate the
transparency modulation based on a certain property of the
3D objects to the algorithm.

Keywords: order independent transparency, non-local
opacity modulation, illustration buffer, comparison, depth
peeling, dual depth peeling, per pixel linked lists, opengl

1 Introduction

We are rendering semitransparent 3D objects, the order of
the rendered primitives is critical to correctly compute the
final colour of each pixel. Considering only objects con-
sisting of 3D meshes it is not trivial to determine the order
of the primitives, e.g. triangles, given by distance from
the camera. A group of methods that do not require the
meshes to be sorted before the rendering process is called
the Order Independent Transparency (OIT).

When the general OIT problem is solved we can also
consider opacity modulation techniques to enhance per-
ception of object’s inner structure. We can classify such

∗mail@tomaspastyrik.cz
†cmolikl@fel.cvut.cz

Figure 1: On the left all fragments are set 40% opacity. Non
local opacity modulation (distance from silhouettes) is used on
the right image to reveal inner structure of rendered drill.

techniques considering the knowledge of the information
desired for the modulation as follows: Local, if informa-
tion is known to a primitive - in case of this paper to
a fragment - directly. This includes techniques based on
the fragment lighting and shading, distance from the cam-
era, or custom fragment properties. Non-Local is a com-
plementary class to a local opacity modulation. It can be
further divided to following cases: a) the information is
retrievable from the direct neighbours along the surface or
along the view ray. This e.g. includes modulation based
on surface curvature or edges detection. b) the informa-
tion is further than in case a). This e.g. includes modula-
tion based on distance from important object features like
silhouettes, etc.

Non-local opacity modulation is often needed to enable
the user to see the required detail without losing the con-
text. In this paper we introduce an OIT algorithm capable
of both local and non-local opacity modulation. The algo-
rithm is based on Illustration Buffer proposed by Carnecky
et al. [3]. While they construct the Illustration Buffer from
3D meshes of the flow surfaces only our algorithm is de-
signed for general 3D meshes. The main contributions of
this paper include:
• The proposed OIT algorithm for 3D meshes along

with the measurements of the algorithm stages and
stages variants that provide better insight to the be-
haviour and performance bottlenecks of the algo-
rithm.
• Comparison with existing algorithms solving OIT

w.r.t. the speed, memory requirements, and ease
of use.
• Our comparison also allows to decide which algo-

rithm to use w.r.t. chosen the opacity modulation
technique.
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2 State of the Art

Problem of the Order Independent Transparency (OIT) is
well known in 3D scene rendering and there is no standard
implementation included in either OpenGL or DirectX. It
is a general problem consisting of rendering objects with
a uniform or non-uniform alpha channel. To display such
geometry correctly all fragments need to be blended in the
correct order, thus sorting the fragments is often the key
requirement for techniques solving OIT. In this section we
briefly review algorithms that solve OIT using the rasteri-
zation proces. Please note that there are also alpha blend-
ing approximations [6][2] that perform approximative ren-
dering in only one pass. Even though these approach are
very fast, they only approximate the OIT problem and
are not extendable to any methods considering non-local
transparency and therefore these methods are not further
examined in this text.

Depth Peeling presented in 2001 by C.Everitt [5] is
based on multiple geometry passes, peeling just one layer
of visible geometry per pass. It is in fact based on
a shadow mapping technique, which helps to determine
visibility between scene points and a certain light source.
This algorithm process the scene by layers peeling one by
one using two depth buffers per geometry pass.

While more advanced algorithms such as Dual Depth
Peeling [2] blend these layers “on the fly” during the peel-
ing passes, depth peeling algorithm [5] stores currently
retrieved layer and performs another blending pass using
full-screen quad, using OpenGL blending functions.

Dual Depth Peeling method by Bavoil [2] is a modifi-
cation of the original Depth peeling algorithm allowing to
peel two layers at once. In one pass it peels back and front
layers simultaneously. Since this is not possible to do with
the default depth buffer and GPU does not have multiple
depth buffers to perform front to back and back to front
rendering, custom min-max depth buffer has to be used.

To prevent peeling any fragments by both front to back
and back to front directions, the algorithm uses mecha-
nism of sliding window for two consecutive layers. While
in the original depth peeling N geometry passes are neces-
sary to process the scene, where N is the number of layers
it created, Dual depth peeling performs N/2+1 geometry
passes only. This algorithm however speeds up the render-
ing only if application is geometry (vertex) bounded.

Per Pixel Concurrent Linked Lists Another method is
to store every fragment that belongs to one pixel in a linked
list and sorting it by fragment’s depth to determine the
order of the fragments. Method [9] described below is
very similar to A-buffer [4], it only achieves OIT by us-
ing linked lists constructed in memory of GPU. While the
first GPU implementations of A-buffer presented by Mey-
ers and Bavoil A-buffer [7] and Bavoil et al. [1] were able
to store fixed amount of fragments per list, the method pre-
sented by Yang [9] is unbounded.

A GPU version of A-buffer can be constructed in two
rendering passes. In the first pass we create a linked lists of
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Figure 2: For the sake of simplicity one row display of pixels
pi, i ∈ {1, ...,m} where m is the number of pixels is shown. Frag-
ments with the same number are in the case of peeling methods
in the same layer. In case of ray casting terminology, numbers
denote the order along the ray.

fragments per pixel by rendering the geometry and storing
all fragments of a pixel to the linked list. The linked list
can be accessed by an index to the first fragment called
the pixel head. The second pass consists of a full-screen
quad rendering and sorting the linked lists. Traversing the
sorted linked lists to compose final pixel color can be done
at the end of the sorting pass thus no further passes are
needed.

Illustration Buffer was presented by Carnecky et al. [3]
and inspired by Yang [9]. The Illustration buffer data
structure is motivated by several image enhancements that
modulate opacity based on non-local information.

To provide the information about the surrounding shape
of all fragments, A-buffer constructed in the GPU mem-
ory [9] is extended. While in A-buffer method fragments
know their neighbours only along the viewing ray, Car-
necky et al. present methods to find and connect also
neighbours that belong to the surrounding pixels. For pixel
with coordinates (x,y) new four neighbours are found in
linked lists of pixels (s + dx,y + dy) where (dx,dy) ∈
{(1,0),(−1,0),(0,1),(0,−1)}. After the neighbours are
found the Illustration buffer can be used to traverse object
surfaces to retrieve information about their shape, such as
gradients, or distances to important features.

Structures created by our algorithm described in the
next section are the same as used by Carnecky et al. [3].
We take advantage of the indexed geometry and propose
a geometry motivated method to locate the neighbours
which is faster and more precise than heuristics used by
Carnecky et al. [3].

3 Proposed Algorithm

In this section we describe the Illustration buffer as well
as our extension of the approach. The Illustration buffer
requires the per pixel concurrent linked lists to be created
first. However, in contrast to the concurrent linked lists
we need to store much more information. In the following
list are the buffers we need to construct and work with the
Illustration buffer:
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Figure 3: Shows the filling step of the algorithm. Data are
spanned by four, giving a space for colour, four surrounding
neighbours (NB), normal (N) and some other data, which depend
on the target use of the buffer. Buffer pixelHead if of a same
size as the viewport (X ×Y ). This Figure does not consider the
sorting of samples along the ray or search for the neighbouring
fragments.

• pixelHead is a buffer of size X ×Y where X ,Y are
the dimensions of the viewport. It stores ID of the
first fragment in the linked list.
• pixelCount is also X ×Y buffer storing lengths of

the lists in each pixel. While not required when
traversing the list and using special value for the end,
this value is important for certain opacity modulation
techniques.
• fragNext is a one dimensional buffer where the next

index is stored for current fragment
• fragData stores all data we need to work with the

Illustration buffer. For each fragment it stores the
colour, indices of its four geodesic neighbours and
optionally other data we need for non local trans-
parency.
• fragData2 is of the same layout as f ragData and it

is used for ping pong computational schemes
• fragElements stores 3 indices of the originating tri-

angle per fragment, is used in our neighbours search
Figure 3 shows necessary structures for the Illustration

buffer and how the data are stored when new element is
rendered. To retrieve the next available free index for in-
serted fragment we need to use the global atomic counter
GL_ATOMIC_COUNTER_BUFFER. We need a memory
to store the indices of the fragment neighbours as well as
custom fragment properties. Therefore we reserve sev-
eral cells in the f ragData buffer per fragment and use
the spanning mechanism for retrieving the index to this
buffer. The internal formats used by those buffers are:
GL_RGBA32UI for the fragData, fragData2 and fragEle-
ments buffers and GL_R32I for fragNext. The buffer
fragElements consists of the vertex indices of the triangle
it belongs to. The buffer pixelHead which stores point-
ers to first node of each per pixel linked lists is defined as
GL_TEXTURE_2D with GL_R32I type of the viewport
size.

3.1 Filling Step

Algorithm 1 shows the filling step of the algorithm
when the geometry is rendered. Since we need to
not only read but also write to the buffers in the later
shader invocations, traditional GL_TEXTURE_2D can-
not be used to store the data. Therefore we use the
ARB_shader_image_load_store OpenGL extension. This
extension brings functions imageLoad(), imageStore() and
also many atomic operations imageAtomic*(). Pack-
ing of 4 floats f , f ∈ [0,1] to one unsigned integer us-
ing bitwise shifts and GLSL built-in functions floatBit-
sToUint and uintBitsToFloat is used to reduce amount
of used memory. In the beginning of each frame
we reset the atomic counter and buffer fragData using
GL_PIXEL_UNPACK_BUFFER to initial state. The lines
10 and 11 of Algorithm 1 have to be atomic to prevent
read-write collisions.

3.2 Sorting

In our application two sorting methods are implemented.
The first is sorting the linked list without using any auxil-
iary structures and in the second is used an array of fixed
size for sorting. Both presented methods are invoked sim-
ply by rendering a full-screen quad with access to the al-
gorithm buffers storing the linked lists.

Sorting the Linked List by Insertion sort can be done
easily using two fragNext buffers. One to be filled initially
and second that will be used for adding sorted fragments
as shown in Algorithm 2.We can see this procedure as an
analogy to two linked lists A,B. A is unsorted and B con-
sists only from copy of head in A. Then we remove node a
from the front of A and insert it to B. To be able to remove
a.next from A and insert it to B, we would have to remem-
ber what was the original a.next since inserting the node a
to B may change its next pointer. In single linked lists this
could be solved also by copies of the nodes instead of their

Algorithm 1: Filling per pixel linked lists
Data: Geometry to be rendered, atomic counter AC = 1
Result: Unsorted concurrent linked lists

1 Render the geometry, Depth Test OFF
2 while fragments with (X,Y) to be processed do
3 index = AC
4 colour = shadeFragment()
5 if pixelHead(X,Y) == -1 then
6 pixelHead(X,Y) = index
7 fragData(index*span) = colour
8 fragNext(index*span) = -1 //next pointer is empty.
9 else

10 nextPointIndex = pixelHead(X,Y)
11 pixelHead(X,Y) = index
12 fragData(index*span) = colour
13 fragNext(index*span) = nextPointIndex
14 end
15 AC+= 1 // increase the atomic counter
16 discard fragment // we do not want it to be seen yet.
17 end
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removal from A. As mentioned, we solve this issue by two
buffers for the next pointers. In Algoritm 2 we keep two
next pointers for each node. Pointer next is the original
next pointer and nextSorted guarantees that the depth of
nextSorted is greater or equal to the current fragment.

Algorithm 2: sorting the linked lists directly
Data: Buffers u_fragNext and u_fragNext2, u_fragData and u_pixelHead
Result: Sorted next pointers in the u_fragNext2 and a head pointer in

u_pixelHead.
1 int sortedSize = 1,int head = loadHead(x,y)
2 int newFrag = next(head); int current,int previous, float currentDepth
3 while sortedSize < totalCount do
4 if newFrag.depth < head.depth then
5 newFrag.nextSorted = head
6 head = new, head.depth = newFrag.depth
7 new = next(newFrag)
8 sortedSize++, continue
9 end

10 previous = head
11 current = head.nextSorted, int innerCounter = 0
12 while innerCounter <= sortedSize && current.depth < new.depth do
13 previous = current
14 current = current.nextSorted;
15 innerCounter++;
16 end
17 newFrag = new.next; sortedSize++;
18 end

Sorting in Array of Fixed Size The Number of accesses
to the buffers is a bottleneck of the previous method. To
eliminate the bottleneck we load all values and their next
pointers to static arrays of fixed size (64 in our implemen-
tation). This array is then sorted and results are stored back
to the buffers. Fragments are sorted using insertion sort
as Yang [9] or selection sort as Carnecky et al. [3] (Even
though selection sort should be more efficient due to num-
ber of writes over the insertion sort, no performance differ-
ence was found, presumably because of caching[12]). In
comparison of the speed (Section 5) we use the selection
sort.

3.3 Neighbours Location by Carnecky et al.

Let us assume we have already created the concurrent
linked lists by Algorithm 1 and that the samples are al-
ready sorted along the viewing ray. This is essential to
location of the neighbours.

However wanted neighbours differ greatly from the
neighbours in the layers. Let us consider situation depicted
in Figure 4 where we see the found neighbours and peeled
layers. It shows the difference between neighbours of P in
peeled layer and neighbours of P on the surface discussed
later.

As shown in Figure 4 the goal is to find geodesic neigh-
bours on the same surface and not of the same layer in
the peeling point of view. We denote fragments of cur-
rent linked list A as fi, i ∈ {1, ...,n} where n is the number
of fragments in A and neighbouring list B with fragments
f j, j ∈ {1, ...,m} where m is the number of fragments in B.
To find the neighbour we need to traverse entire neighbour-
ing list. Carnecky et al. use a simple heuristic measure ε
of the surface continuity for two fragments as shown in

P

P

P

a)

b)

c)

εn 

εz 

Figure 4: Left: Using a perspective we show two crossing planes
a). When peeling the first layer and querying the neighbouring
pixels of P in such layer, we retrieve b). When searching for
neighbours of P in Illustrative buffer we want to find c). Right:
Geometrical meaning of εn and εz on the surface samples.
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Figure 5: a) indexed geometry to prevent duplicate geometry to
be sent to gpu. b) Every vertex knows indices of all vertices in
given triangle. c) Every triangle has its own id. d) table maps IDs
of the triangles (blue) to b) where every vertex knows all indices
in its triangle.

Figure 4. They compute the εn as difference of fragments
i, j normals ni,n j as:

εn(i, j) = 1−ni +n j

The eye distance εz is computed using the radius of
a rendered object bounding sphere rob j, normal ni, pixel
coordinates xi, eye distance z coordinate and finally the zi

gradient
(

dzi
dxi

)
:

εz(i, j) =
1

rob j

[
zi +(x j− xi) ·

(
dzi

dxi

)
− z j

]

ε(i, j) = wz · εz(i, j)+wn · εn(i, j)

Given this heuristic measure ε will be small for proba-
bly neighbouring fragments of the same surface and large
for fragments of different surfaces. For two neighbouring
lists A,B and fragment fi ∈ A they first try to find the best
neighbour candidate ci for fi in B and then they traverse A
to find if there is better neighbour for ci than fi in A. Even
though they use a component ID check to set ε = ∞ to
exclude fragments of different components (and therefore
surfaces), this is rather inefficient since for the location of
one neighbour we have to traverse both the neighbouring
and the original list.
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3.4 Proposed Neighbours location

To overcome the inefficiency of the method [3] we propose
a new method motivated by indexed geometry. Given two
neighbouring lists A,B where list A is the current list and
B is the list where neighbour is to be found, we propose
auxiliary structure depicted in Figure 5.

We are using indexed geometry to lower the load of in-
formations mapped to GPU memory. We extend the in-
dices information so that every vertex knows indices of all
vertices of the same triangle. This is shown in Figure 5
b). However this would be against the very principle of
indexed geometry since we would replicate a lot of data.
This can be solved as shown in Figure 5 c) where every
triangle has its unique ID attached and auxiliary table to
map IDs to triangle indices as shown in Figure 5 d).

For fragments f ∈ A of coordinates x f ,y f and g ∈ B of
coordinates xg,yg then apply following rules:

1. f and g are not neighbours if f and g do not share any
indices of the triangle they are part of.

2. f and g are neighbours and fragments of the same
triangle if f and g share exactly 3 indices.

3. f and g are neighbours and fragments of two neigh-
bouring triangles if f and g share exactly 2 indices.

4. f and g are neighbours and fragments of two neigh-
bouring triangles if f and g share exactly 1 indices.
This situation can happen e.g. for triangles with
ID = 1, ID = 4 in figure 5.

The algorithm for neighbour search is then simplified to
only one cycle through the neighbouring list B and there is
no need for the cycle through A afterwards.

3.4.1 Drawbacks

Even-though this method is geometry motivated there can
be artifacts caused by the rasterization process. Such arti-
facts occur when rendered triangles are smaller than pixel
and neighbouring fragments skip triangle(s). This error is
shown in figure 6. With that knowledge we can higher
the viewport resolution or lower the detail of the model to
overcome this.

3.5 Memory consumption

Unfortunately, memory consumption is the biggest weak-
ness of the Illustration Buffer and therefore of our algo-
rithm as well. While in Depth Peeling and Dual Depth
Peeling structures are of fixed size without any relation
to the number of rendered fragments (except for the ab-
solute size of the viewport, of course), structures fragData
and fragNext of the Illustration Buffer are growing linearly
based on the number of fragments.

4 Results

In this section we present the results and measurements
of our algorithm. We have implemented both presented

Figure 6: Every fragment has equal opacity in the left render of
the engine. Right engine shows render in which fragment is fully
opaque if the number of neighbours is less than four meaning it
is part of the edge. Artifacts caused by the geometry detail and
explained in the Section 3.4.1 are enlarged in the red circles.

Algorithm 3: proposed neighbour search
Data: two neighbouring lists A,B, current fragment fi ∈ A, indices

of fi indicesO f F .
Result: Index to the linked list structure of fi neighbour.

1 for b = 0; b < count(B); b++ do
2 fragB = B(b); indicesOfB = fragB.triangleIndices;
3 for k = 0; k < 3; k++ do
4 for l = 0; l < 3; l++ do
5 if indicesOfB[k] == indicesOfA[L] then
6 return fragB.ID; // Neighbor has been found

since it shares at least one triangle index with fi.
7 end
8 end
9 end

10 end

methods of the sorting and as the proposed neighbours
search. Very precise OpenGL GPU queries are used
to measure application rendering time in nanoseconds.
For measurements of the total rendering time we use the
QElapsedTimer from QT Framework. Twelve varied
models are used to measure the Illustration buffer char-
acteristics. Each model is tested in two positions - one
general and one where the length of linked list is maxi-
mum possible. Note that in all measurements image reso-
lution 600× 600 is used if not stated otherwise. To see
all the measurements conducted with all the tables and
graphs, please see the master’s thesis this paper origi-
nates from [8]. We have used GeForce GTX 660 with
2048 MB GDDR5 memory, 4× 2GiB DIMM DDR and
Intel CoreTM2 Duo CPU E6850 @ 3.00GHz for all mea-
surements. Final renders using different non-local opacity
modulations are shown in Figure 16.

4.1 Sorting

The graph in Figure 7 is very clear that the dynamic ver-
sion of the sort is winning in all cases over sorting in static
array. For the measurements we have used 3 arrays of
size 64. One for IDs, second for the depths and third for
the distances between layers. In case of our GPU it was
more expensive to allocate such arrays than much bigger
amount of texture reads and writes, which could differ on
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Figure 7: Speed comparison of the dynamic sort and sorting in
static array. Bigger spikes are caused by the Ψ parameter which
will be introduced when studying parameters that affect the per-
formance of the algorithm the most.

hardware where invocation of the fragment shader for one
pixel would have more memory available.

4.2 Illustration Buffer Performance

During the Illustration buffer creation we examine rela-
tions between number of vertices, rendered fragments,
lengths of the linked lists storing the data along the ray,
and rendering time on the GPU and rendering time com-
bined with the CPU workload.

0

20

40

60

80

100

120

140

Fill time [ms] Sort time [ms] FindNeighbors time [ms] Total time [ms]
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Figure 8: GPU Time in split stages of the Illustration buffer
creation process. Models on the horizontal axis are sorted by the
Total rendering time.

To be able to examine the relations fully,the creation
process is split to several stages by the functionality. Fig-
ure 8 shows the performance of the separated algorithm
stages. The time presented for each stage contain also
times measured for all preceding stages. Figure 9 shows
the relations between number of vertices, rendered frag-
ments, lengths of the linked lists and their impact on the
rendering time. We can see that another not mentioned pa-
rameter affects the rendering time significantly in Figure
9. Scenario that includes models GPU 2 and Suspension 2
is further shown in Figure 10.

Even though we process the scene on GPU, the process
is not entirely parallel. All the parameters are higher for
the Suspension 2 model than for GPU 2 model and yet
the rendering time is greater for the GPU 2 model. The
reason is that the number of long lists is much lower for
the Suspension 2 model than for the GPU 2 model (see
Figure 10. The dashed line in Figure 9 shows percentage
coverage of the linked list lengths that are bigger than 2

3 of

Figure 9: Secondary Y axis is used for the dashed line repre-
senting Ψ, primary Y axis (on the left) is then used for all other
variables using logarithmic scale.

Figure 10: Heatmaps of the linked lists lengths of GPU 2 and
Suspension 2. Color represents the distribution of the linked
lists lengths, blue is zero and red is maximal linked list length.

the longest linked list, please mind the secondary vertical
axis. We denote this parameter as complexity coverage Ψ.

4.3 Memory Consumption

Using the presented structures we need 208 bytes per
fragment and additional 96 bits per pixel. This gives
us for the scene Suspension 2 with 1900548 fragments
and 600x600 resolution memory requirements of approxi-
mately 397MB. For 800x800 resolution it requires 702MB
and for 1200x1200 we would need 1.58GB of GPU mem-
ory. Given this amount of data we are very likely to face an
overflow of the used buffers on memory bounded systems.

5 Comparison of OIT Algorithms

This section provides comparison of the speed of our al-
gorithm with the remaining methods: depth peeling, dual
depth peeling and concurrent per pixel linked lists.

We have used implementation of the peeling methods
from the NVIDIA Graphics SDK 10, only our own GPU
time measuring system was added to their implementa-
tion. Concurrent per pixel linked lists are on the other hand
measured using our own implementation since it is a sub-
problem of the Illustration buffer construction. We have
used GeForce GTX 660 with 2048 MB GDDR5 memory,
4×2GiB DIMM DDR and Intel CoreTM2 Duo CPU E6850
@ 3.00GHz.

Figures 11, 12, 13 and 14 show such comparison using
parallel coordinates. In all presented graphs the render-
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Figure 11:
Depth peeling
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Figure 12:
Dual depth peeling
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Figure 13:
Concurrent per pixel linked lists
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Figure 14:
Illustration buffer

ing time is divided to thirds, where times in the first third
are green, in second blue and times of the worst third are
coloured red.

We can see that the linked lists absolutely win in speed.
Another observation is that only the Illustration buffer is
really affected by the complexity coverage Ψ, which is
caused by its FindNeighbours stage. We can also see that
the overhead on the fragment shader is not big for first
three methods and they are vertex bounded in most cases.
This is logical for the peeling methods since we need to
render the geometry in each peeling pass. It might be
however surprising for the per pixel linked lists, where
even though the sorting procedure must occur on all frag-
ments, the overhead is small thus application stays vertex
bounded. However this is completely different in the case
of the Illustration buffer where processing of the Find-
Neighbours stage is vital for the final rendering time.

During our measurements, the speed comparison of the
dual depth peeling and the depth peeling we have observed
that the dual depth peeling is in fact much slower than the
depth peeling algorithm. The authors [2] admit that the
dual depth peeling may speed up performance by 2x for
geometry bound applications. This issue should be how-
ever stressed and explained much more in the original arti-
cle. Reason for this behaviour is that the workload of frag-
ment shaders is only worth the computation if the work of
the vertex shader is more demanding which is a case of
vertex bounded applications.

6 Opacity Modulation

Opacity modulation is a desired feature of the OIT solving
algorithms. Therefore this section briefly demonstrates the
power of the proposed algorithm.

Silhouette
enhancement

distance from 
the silhouette
inside the surface

Figure 15: Right: Modulation by distance from the silhouettes,
Left: Scene with the problematic situation in the white circle.

6.1 Local Opacity Modulation

When we are considering only the local opacity modu-
lation using only information available to a fragment di-
rectly, all reviewed algorithms can be used. We only
mention some of the techniques in this class for reader’s
convenience: based on the lighting intensity, custom per
fragment data e.g. density, or by distance from defined
plane/area (cut motivated). This class of modulation sim-
ply consists of all procedures that can be computed only
from the global shader knowledge (uniform variables, con-
stants, etc) and knowledge of the current fragment.

The Depth peeling is certainly the easiest one to be im-
plemented but not the fastest. Dual depth peeling can
speed up the rendering time only if application is ver-
tex bounded as stated above. Implementing the per pixel
linked lists is more challenging task but as we can see in
the Section 5 it is certainly the fastest algorithm of all com-
pared in this context.

6.2 Non-Local Opacity Modulation

The situation is much more challenging when the opac-
ity of the current pixel depends on the context - on the
state of its surroundings. While some opacity modulation
techniques can be used quite easily using both peeling and
linked lists mechanisms, some are not solvable by the peel-
ing algorithms. Let us consider simple modulation by dis-
tance along the ray as in Equation 1. For two samples s
with indices i, j where i < j and therefore si closer to the
camera, and user defined parameter f ocusRegion we com-
pute opacity α of sample si as shown in Equation 1. This is
achievable by simply comparing values of last peeled and
current sample in the peeling methods and by traversing
the sorted linked list easily.

α = saturate
( |si.depth− s j.depth|

f ocusRegion

)
(1)

Let us now consider a modulation by distance from im-
portant features of the 3D mesh, in this case the silhou-
ettes. If we consider the problematic situation from the
Figure 15, this situation is not simply solvable by the peel-
ing methods since neighbours of the peeled layers are not
always neighbours of the same surface. We therefore can-
not know if the red gradient inside the circle should con-
tinue or not since we cannot tell if the surface is continuous
under the green surface or if it exists at all. This situation
is however solvable easily by proposed algorithm since we
have knowledge of the surface neighbours on the surface
of the mesh and not only of the neighbours on the current
layer.

Proceedings of CESCG 2015: The 19th Central European Seminar on Computer Graphics (non-peer-reviewed)
97



Figure 16: Final renders from our application using the Illustration buffer. These pictures were created by opacity modulation based
on: surface curvature, distance between samples along the view ray, distance from surface silhouettes and silhouettes enhancements
and their combinations.

7 Discussion of Results

The measurements of the OIT task alone shows clearly
that methods based on the concurrent linked lists are much
more efficient than the peeling methods. In case of the Il-
lustration buffer the bottleneck is the neighbours location
stage. To improve this process the future work should con-
sider that in current form whole neighbouring list has to
be traversed. We therefore suggest developing a heuristic
based on the interpolation search optimized for the linked
lists. If the approximate position of the desired neighbour
is known, we can load only the next pointers to traverse to
this node and omit loading its data.

Our measurements of the sorting methods shows that
a bigger amount of read and write access to the OpenGL
image buffer is more efficient than allocating an additional
memory array for fragments to reduce number of image
buffer accesses. This is a great motivation for developing
dynamic algorithms that are unbounded. Proposed neigh-
bours search method is faster and more precise than ap-
proach of Carnecky et al. [3], but it can generate artifacts
as discussed above. Speeding up the neighbours search
process by interpolation search might give us enough time
to examine neighbours lists of distance greater than one to
eliminate these artifacts.

The complexity coverage parameter Ψ impact should
be further researched - how it affects the algorithm par-
allel computation since it demonstrates the complexity of
GPU parallelization process and optimizations being done
by the hardware.

8 Conclusions

In this paper we present an algorithm to solve the Or-
der Independent Transparency for general 3D meshes that
allows non-local opacity modulation. This algorithm is
based on the Illustration Buffer. We discuss two meth-
ods of the fragment sorting as well as measurements of
both methods. Novel geometry motivated technique to
find geodesic neighbours of fragments is proposed. Our
method is faster and more precise than heuristic proposed
by Carnecky et al. [3]. However, further research is how-
ever required to eliminate presented artifacts.

To learn more about our algorithm we encourage the
reader to read the thesis [8] this paper originates from. Fig-
ure 16 can serve as a motivation and demonstration of the
Illustration buffer flexibility considering opacity modula-
tion techniques.

The comparison of OIT algorithms provides insight into
behaviour of the algorithms at different conditions and can
be used to choose the right algorithm for the given condi-
tions. While peeling methods are easier to implement, the
best rendering times are achieved by implementing more
complex per pixel linked lists.
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Abstract

We present a simple and efficient technique of the pupil
centre detection. This technique is addressed to the video
eye tracking solutions, in which pupil centre must be found
in image of the human eye. In contrary to previous work,
we assume stable light conditions that provide a correct
eye image. Such conditions can be achieved in many
eye tracking applications but our solution is especially ad-
dressed to the scientific activities related to the perceptual
experiments. We introduce a novel cross spread technique
in which it is assumed that pupil shape is similar to ellipse.
In this strategy, a parallel algorithm can be applied to de-
tect the pupil centre, which enables accurate operation in
less than 2 milliseconds. We present the OpenCL-based
implementation of the cross spread algorithm and its ap-
plication in the real-world eye tracker. The paper shows
the results of the experimental measurement of this eye
tracker accuracy performed for a number of human ob-
servers. The achieved accuracy close to 1.5 degree of the
visual angle is comparable to the commercial devices.

Keywords: pupil centre detection, cross spread, eye trac-
ing, eye tracking accuracy, perceptual experiments

1 Introduction

Detection of the pupil centre in the images of the eye is a
basic function of the video-based eye trackers. This type
of eye trackers consists of the infrared camera and the in-
frared light source, which are directed towards the eye.
The camera captures the image of the eye with the dark
circle of the pupil (see example in Fig. 2). The pupil fol-
lows the gaze direction during eye movement. Location of
its centre is used to estimate the gaze direction.

The field of view for both eyes spans more than 180◦

horizontally and 130◦ vertically, although, humans are
able to see details only in the fovea — the 2◦ patch of the
retina located in the middle of the macula. The eye mus-
cles enable fast gaze shifting to orient the eye such that
the object of interest is projected onto the fovea. There
are four types of eye movements: vergence movements,
vestibular ocular movements, smooth pursuit, and sac-
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cadic movements [6]. From the eye tracking perspective,
the most important is the latter one. Fast (up to 900◦/s) and
short (10-100 milliseconds [1]) saccades move the eye to a
new area of interest. They should be captured with at least
200 Hz frequency to allow accurate registration of the gaze
direction. Otherwise, eye tracker can register a gaze loca-
tion in the middle of the saccadic movement making its
identification challenging.

In this paper we propose a novel pupil tracking algo-
rithm called the cross spread. We assume that the pupil
shape is similar to ellipse. Then, we use basic image pro-
cessing operations to process the image of the eye and find
the pupil centre. The algorithm consists of three steps:
thresholding and binarization, noise reduction using me-
dian filter, and the core cross spread algorithm, which de-
tects the pupil centre. These operations are sufficient to
achieve the high accuracy of detection. However, a correct
image of the eye must be delivered from the camera to
avoid image analysis errors. The most important is a good
visibility of the pupil on the iris background. A correct
image of the eye can be taken in the stable light condi-
tions. Such conditions may be provided e.g. during the
perceptual experiments, that use eye trackers.

We implemented parallelised version of the cross spread
algorithm based on the OpenCL library, which detects the
pupil centre in less than 2 milliseconds. This implementa-
tion was tested with the Do-It-Yourself (DIY) eye tracker
- the custom-built head-mounted eye tracking system [4].
The paper shows the results of the experimental measure-
ment of DIY accuracy performed for a number of hu-
man observers. The achieved accuracy close to 1.5 degree
of the visual angle is comparable to the commercial eye
trackers.

In Sect. 2, an existing pupil detection techniques are
outlined. The cross spread technique is introduced in
Sect. 3, followed by the description of its parallel imple-
mentation and results of the performance tests. In Sect. 4
we present conducted experiments that measured the ac-
curacy of the custom-build eye tracker equipped with our
implementation of cross spread technique.

2 Previous work

Most algorithms for detection of the pupil centre binarise
the image of the eye and filter out the noise to achieve the

Proceedings of CESCG 2014: The 18th Central European Seminar on Computer Graphics (non-peer-reviewed)



best possible image of the pupil. Then, various scenarios
are implemented to detect the centre of the ellipse, which
shape reproduces the shape of the pupil.

The curvature detection algorithm [8] detects the edge
of the pupil by tracing rays in all direction from the start-
ing point located within the pupil area. For each ray, the
location of the pupil edge is detected. Then, a heuristic
curvature detection algorithm is used to eliminate the edge
deteriorations caused by the eyelids, cilia, or corneal re-
flections. Finally, the parameters of ellipse, which best fits
in the detected edge are computed using the least squares
solution.

In the starburst algorithm [2] rather complex noise re-
duction technique based on Gaussian filtering, threshold-
ing and morphological operation is used to achieve sat-
isfactory image of eye. Then, similarly to the curvature
detection technique, the rays are shot to find the pupil
edge. Finally, the best fitting ellipse is determined using
the RANSAC technique.

Other pupil centre detection algorithms are described
in [7] and [5]. The goal of all these techniques is to achieve
the best accuracy of detection. Much attention is paid to
noise reduction and accurate ellipse fitting. In the follow-
ing section we present simplified technique. We assume
that correct image of the eye is delivered from the cam-
era and more attention is paid to the processing speed. We
propose the parallelised implementation of this algorithm
adjusted to the GPU processing.

3 Cross spread technique

This section includes a detailed description of the cross
spread algorithm and discussion on the drawbacks of this
technique.

3.1 Detection pipeline

The whole algorithm consists of three steps presented in
Fig. 1. As an input, the eye image is taken using the in-
frared camera. Then thresholding and median filtering is
applied to binarise and denoise the image, respectively. Fi-
nally, the core algorithm is activated to detect the pupil
centre and compute (x,y) coordinates of this point. The
output values are expressed in pixels of the camera image.

Figure 1: The pupil centre detection pipeline.

The core cross spread algorithm is designed to search
elliptic shapes. Any deviation of continuity of the edges
or spatial coherence of the blob may reduce its accuracy.
The possible deterioration depends mainly on the area of
an artefact. Although the algorithm is designed to find
the centre of ellipse, it can work correctly also for other
convex shapes that are centrally symmetric.

Image thresholding

Thresholding is a simple image processing operation,
which binarises the image colours. The infrared camera
delivers image in the grey shades (see Fig. 2, left). After
thresholding, the pupil ellipse becomes black and the rest
of the pixels in an image become white. It is done based on
the threshold value - empirically chosen grey value below
and above which, the pixels are marked as black or white
respectively. Fig. 2 (right) presents an example image of
the eye after thresholding. The threshold value can be ad-
justed to the camera and lighting conditions. However, in
some cases it must be tuned for an individual observer.

Figure 2: Left: image taken by the infrared camera. Right:
the same image after thresholding.

Median filtering

The main task of median filter is to reduce the noise in the
thresholded image. After thresholding, some black pixels
can still exist in the pupil surrounding. These pixels are
filtered out using the median filter. Filtration efficiency,
i.e. the efficiency of impulse noise removal, depends on
the size of this neighbourhood (see examples in Fig. 3).
However, if one chooses too large surrounding the pupil
shape can be distorted.

Figure 3: Results of the median filter for 3x3, 7x7, 15x15,
and 31x31 pixel neighbourhoods (viewed from the top-left
corner). The median filter removes pixels that not belong
to the pupil.
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The median filter is computationally complex operation
for the colour images. It requires sorting of the pixels,
which is particularly expensive for the large pixel neigh-
bourhoods. For binary image, this operation is much aster,
because the final value of the pixel depends on the number
of white pixels in the surrounding. If this number is higher
than the number of all pixels in the surrounding, the final
value is set to 1 (white colour). Vice versa, the pixel value
is set to 0 (black colour).

Cross spread algorithm

The term cross spread refers to the process of searching
the boundary points. This technique is based on the hu-
man eye trait - circular shape of the pupil. Unlike pupils
of other mammals, the human pupil is close to the circle.
When the image of the eye is captured by camera, the pupil
forms various elliptical shapes, depending on the location
of the eyeball.

The cross spread technique is performed in the follow-
ing steps:

1. Choose the starting point located in the area covered
by the pupil (black pixels) (Fig. 4a).

2. Shoot 4 rays from the starting point in the horizon-
tal (left, right) and vertical (top, down) directions
(Fig. 4b).

3. Find the boundary points located on the pupil edge,
that are closest to the starting point (Fig. 4c).

4. Create a new starting point by averaging the coordi-
nates of the boundary points (Fig. 4d).

5. Iterate again from 1. until the location of the starting
point is stabilised between iterations.

The boundary points are identified as points not belong-
ing to the pupil, i.e. points with the high gradient between
the current and the next position. Abscissa and ordinate
of the new starting point are computed by averaging the
coordinates of the horizontal and vertical boundary points,
respectively.

Parallelisation

We implemented the parallelised version of the algorithm.
We apply the regular grid of horizontal and vertical lines
that covers the image. Candidate starting points are gen-
erated at the intersection these lines. The ones belonging
to the pupil are passed to further processing (see Fig. 5a).
Then, four rays from each starting point is traced in par-
allel and the boundary points for each ray are located (see
Fig. 5b). The location of the most advanced points in each
direction is stored (see Fig. 5c). These values are used to
find the pupil centre (see Fig. 5d).

Figure 4: An iteration of the cross spread algorithm.

Corneal reflections

Corneal reflections are the small bright spots in the image
of the eye (see Fig. 6). In the most eye tracking systems
they are caused by infrared light sources placed near the
camera.

If the corneal reflection is located within the pupil it in-
terferes with the trivial implementation of the cross spread
algorithm and can cause false detection of the boundary
points. Therefore, after detecting a boundary point, we
continue the search for the next few pixels. This toler-
ance depends on the size of the corneal reflection spots
and should be set empirically.

3.2 Implementation and performance tests

We implemented the parallelised version of the algorithm
using the OpenCL library 1. This library allows choosing
the computing device, which can be both CPU or GPU.
We created three kernels responsible for thresholding, fil-
tering, and the core cross spread algorithm. The kernels
share the same device memory.

We measured the execution time of the cross spread
algorithm using the profiling system provided by the
OpenCL platform. It enables to separate time spent for
individual kernels and also measures the overall execution
time. The test was run 1000 times and then, the results
were averaged. The final results are presented in Tab. 1.

Four different computation devices were evaluated: In-
tel Core i7-2670QM (2.20 GHz), Intel Core i7-3537U
(2.00 GHz), NVIDIA GeForce GT 555M, and NVIDIA
GeForce GT 740M.

As it was expected, the best results were achieved for
GPUs. Both graphics processors can compute the cross
spread in less than 2 ms, which is equivalent to processing
of more than 500 frames per second. The data prepara-
tion phase is rather expensive for GPUs (this is 70% of the

1Open Computing Language, https://www.khronos.org/
opencl/
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Figure 5: The parallel version of the cross spread algo-
rithm. a: red dots depict the starting points. b: the blue,
green, yellow, and pink dots are the boundary points. c:
location of the extreme points. d: the white dot depicts
the computed pupil centre surrounded by the red rectangle
defining the boundaries of the pupil.

Figure 6: The two corneal reflection spots located with the
pupil.

total execution time) because the camera image must be
transferred to the GPU memory .

Interestingly, we achieved satisfactory results also for
CPUs. The execution time of 4.4195 ms and 7.483 ms is
equivalent to processing of 225 and 133 frames per second,
respectively.

As can be seen in Tab. 1, the median filtering is the
main bottleneck of the CPU implementation. It accounts
for 60% of the overall execution time.

4 Accuracy evaluation

The goal of the experiment was to evaluate the accuracy
of the cross spread algorithm. However, we measured this
factor indirectly by testing the accuracy of the DIY eye
tracker equipped with our software.

4.1 Do-It-Yourself eye tracker

The DIY eye tracker is a custom-built low-cost eye tracker
of a basic construction [4] (see Fig. 7). It consists of two

Computing device

Intel Core

i7-3537U

2.00 GHz

Intel Core

i7-2670QM

2.20 GHz

NVIDIA

GeForce

GT 555M

NVIDIA

GeForce

GT 740M

Thresholding 0.9613 0.5080 0.0944 0.1388

Median filtering 4.4191 2.4243 0.1158 0.1776

Cross spread 0.3036 0.2001 0.2198 0.2128

Overall time 7.4830 4.4195 1.9031 1.8260

Data preparation 1.7989 1.2871 1.4731 1.2968

Table 1: Execution times of the paralleled version of the
cross spread algorithm. Time in milliseconds.

main components: a modified safety goggles that act as
a frame, and a typical web camera: Microsoft Lifecam
VX-1000, working in 640x480 pixels resolution. The only
change made to the camera is replacing the infrared light
blocking filter with the visible light blocking filter to en-
able capturing images in the infrared light spectrum. The
camera is mounted on the frame in 5 cm distance from
the left eye. It is connected to computer via the USB ca-
ble. The eye is illuminated by three infrared LEDs placed
close to the camera lens.

Figure 7: Head-mounted Do-It-Yourself video eye
tracker [4].

Formerly, the DIY eye tracker was controlled by the
ITU Gaze Tracker software. We reimplemented the whole
eye tracking pipeline replacing all the tasks made by this
software with our algorithms. Our implementation in-
volves pupil detection based on the cross spread algorithm,
but also communication with the camera, eye tracker cali-
bration, and gaze position estimation.

The principle of the eye tracker operation is based
on the observation that the pupil follows the gaze direc-
tion during eye movement. Therefore, the location of
the pupil centre can be used to estimate the temporary
gaze position/direction. The cross spread algorithm de-
tects the pupil centre as the position in camera image co-
ordinates (in pixels). These coordinates must be trans-
formed from the camera space to the screen space to com-
pute the gaze position on the screen. It is done using the
mapping defined as the polynomial transformation citeRa-
manauskas06:
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{
sx = a0 +a1x+a2y+a3xy+a4x2 +a5y2,
sy = b0 +b1x+b2y+b3xy+b4x2 +b5y2,

(1)

where (sx,sy) depicts gaze position in the screen coor-
dinates (in pixels). a0...5 and b0...5 are coefficient com-
puted during the eye tracker calibration. Calibration is the
mandatory part which precedes every eye tracking session.
During calibration, people are asked to look at the target
points displayed on the screen, so one can assume that lo-
cations of these target points are known (i.e. (sx,sy) for
each target point is known). The pupil centre (x,y) is com-
puted by the cross spread algorithm in the camera space.
Then, the polynomial coefficients can be calculated using
the Singular Value Decomposition technique (SVD) [3].
During actual eye tracking, the polynomial with known
coefficients can be used to transform the centre of pupil
location from the camera space to the screen space.

Stimuli and procedure

Observers sat in the front of the display in 60 cm distance
and used the chin-rest adopted from an ophthalmic slit
lamp. The experiment started with a 9-point calibration.
This procedure took about 20 seconds and involved obser-
vation of the markers displayed in different areas of the
screen. The data processing including computation of the
calibration polynomial coefficients was performed by the
custom software.

In validation phase, participants looked at the circle
marker displayed for 2 seconds at 25 different positions
located on the regular grid (see Fig. 9). These positions,
called the target points, acted as known and imposed fixa-
tion points. The marker was moved between target points
in random order. We noticed that smooth animation of the
marker between target points allows for faster observer’s
fixation and reduces number of outliers. Additionally, the
marker was minified when reaches its target position to
focus observer’s attention on a smaller area. The data
recorded before 800 ms from the beginning of the marker
movement was removed from the analysis. Also the data
collected over the last 200 ms were filtered out. Thanks
to this it was possible to avoid the errors arising from the
gaze transfer between the reference points.

The experiment was performed in a darkened room. Im-
ages were displayed on LCD monitor with native resolu-
tion of 1920 x 1080 pixels.

Participants

We repeated the experiment for 11 volunteer observers
(age between 20 and 22 years, 9 males and 2 females).
They declared normal or corrected to normal vision and
correct colour vision. The participants were aware what
they should do, but they were naı̈ve about the purpose of
the experiment.

4.2 Results

The accuracy of eye tracker is quantified as the aver-
age distance between the physical target position and the
measured gaze position. During experiment described in
Sect. 4 we registered over 30 thousand gaze points with
the known reference. Due to the eye tracking inaccuracies
these points are located in a circular neighbourhood of the
physical target points.
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Figure 8: The average DIY eye tracker error.

We present the average eye tracker error as the co-
variance ellipses (see Fig. 8). The direction of the radii of
ellipse corresponds to the eigenvectors of the covariance
matrix and their lengths to the square roots of the eigen-
values. An eye tracker will have a good accuracy, if the
distribution of the error will have the circular shape corre-
sponding to the normal distribution and the centre of this
circle will be located in (0,0) position. Additionally, the
ellipse radii should be as small as possible.

As can be seen in Fig. 8, the average eye tracker error
is closed to 1.51◦ of visual angle. The ellipse is noticeably
shifted in vertical direction, which indicates the systematic
error of the gaze estimation. We suspect that this error
was caused by involuntary movements of the head during
measurement. The DIY eye tracker is not immune to the
head movements. We used the chin rest to stabilise the
head but even small movements caused by e.g. swallowing
could introduce some inaccuracies.

Fig. 9 shows covariance ellipse calculated for individual
target points. The inaccuracies are larger for higher view-
ing angles. It is particularly evident for the target points
located at the edges of the screen, for which the ellipses
are distorted. We suspect that it was caused by occlusion
of the pupil by the eye lids. Notice, that the distance from
the centre of ellipse (i.e. average gaze location) is more
meaningful for accuracy estimation than the radii of el-
lipses. For example, for (-10.1,5.72) [deg] target point lo-
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Figure 9: Covariance of the averaged locations of the gaze points recorded by the DIY eye tracker for each reference
point.

cation, the distance is rather small despite the large size of
the ellipse, which can be caused by some unfiltered gaze
points which occurred during blinks.

5 Conclusions and future work

We have implemented a new pupil centre detection tech-
nique, which skips some time consuming operations per-
formed by typical methods to increase the processing
speed. The core of the technique is the cross spread algo-
rithm, which detects the centre of the pupil by tracing only
horizontal and vertical rays. This simple approach gives
satisfactory detection accuracy for the pupil images of the
centrally symmetric shape. This accuracy is comparable
to ITU Gaze Tracker software results.

Our OpenCL-based implementation of the cross spread
technique is executed in less than 2 milliseconds, which is
equivalent to processing more than 500 frames per second.
This frequency is satisfactory for accurate recording of the
saccadic movements and only slightly worse than in the
commercial high-end eye tracking systems.

We have integrated the cross spread method with the
low-cost DIY eye tracker and tested the accuracy of this
setup. The perceptual experiments have revealed satisfac-
tory accuracy of the eye tracker equal to 1.5◦ per visual
angle.

In future work we plan to conduct a detailed analysis of
the accuracy of the cross spread algorithm. In particular,
we are interested in challenging scenarios, in which the
pupil is partially obscured.
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Abstract

With the arrival of the trend of integrating powerful graph-
ics processing units into modern hand-held devices, per-
forming complex computations is becoming feasible to the
point that allows developers to deploy augmented reality-
enabled smart-phone applications. This work aims to
tackle the challenges of establishing an efficient pipeline
of image processing tasks involved therein. We focus on
the automatic synthesis of the interest point detection op-
erator using a multiobjective genetic programming (MO-
GP) framework that promotes properties suitable for de-
tecting local features in cluttered scenes. In previous
works, three properties chosen as the genetic programming
(GP) search objectives have been used: stability, point dis-
persion, and information content. We seek to expand this
approach with a fourth objective that emphasizes computa-
tional efficiency, taking parallelizability of algorithms into
account. The produced operators are then validated us-
ing a set of images with appropriate content and compared
with the results of existing approaches. Finally, the most
promising Pareto-optimal operators are efficiently imple-
mented in the Android RenderScript framework for use in
Android mobile applications.

Keywords: augmented reality, genetic programming, in-
terest point detection, multiobjective optimization, parallel
computing

1 Introduction

Many applications of augmented reality heavily rely on
the object recognition pipeline. The most frequently used
method to recognize unmarked objects in unorganized,
cluttered scenes is based on local image features. The
process typically consists of three phases. First, salient
regions in the image are detected using the interest point
(IP) detector. Then, local features are computed for each
interest point based on its local neighborhood. These fea-
tures are assembled into feature vectors by interest point

∗ivor.uhliarik@gmail.com
†zhaladova@gmail.com

descriptors, which try to distinctively capture the nature
of objects represented by interest points. Finally, these de-
scriptions are matched with precomputed descriptions of
objects in a database and the nearest match is declared as
the recognized object.

This approach offers resilience toward scenes where
the objects are occluded or otherwise distorted. Several
human-designed algorithms have emerged and proven to
perform well over the last few decades, and are still an
active topic in research. The drawback of this system is,
however, that the task of image recognition in a general
case lacks a formal definition. This results in the variance
of scenarios in which different algorithms perform well.
For example, some interest point detectors focus on de-
tecting corners, while other detect edges, ridges, or blobs.
Moreover, existing algorithms considerably differ in their
computational complexity [14].

In recent years, there has been effort to construct algo-
rithms used in the image recognition pipeline in an au-
tomated way using evolutionary algorithms. Olague and
Trujillo in [6] have proposed a multiobjective genetic pro-
gramming approach to the synthesis of interest point de-
tectors. To counter the bias introduced in existing human-
designed algorithms, this approach promotes theoretical
properties the interest point detector should maximize,
which are discussed in the next chapters. The outcome
of this work is a set of synthesized interest point detec-
tion algorithms that exceed the recognition performance
of several human-designed algorithms.

Our work seeks to build up an MO-GP framework for
the synthesis of interest point detectors similar to that
in [6] and extend it with a proposed novel objective that
maximizes computational efficiency. The focus is laid on
the feasibility of the synthesized operators to be imple-
mented in mobile devices with competent parallel process-
ing power, such as the modern smart-phones, whose po-
tential is often left unexploited.

The motivation of seeking to improve the detection
phase of the object recognition pipeline rests on the low-
level nature and ubiquity of IP detection. The resulting
algorithms may be useful for all tasks in computer vision
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that IP detection is a part of.

Note that this is still a work in progress. The purpose
is to design a framework for performing experimental re-
search.

In Section 2, we describe the previous and ongoing
work in both human-designed interest point detection al-
gorithms and their automatic synthesis. Later in Section 3,
we delve into the four qualities of detectors our MO-GP
maximizes. In Section 4, we describe the genetic pro-
gramming concept and explain how we optimize multiple
objectives therein. Section 5 displays the results we have
acquired and finally, Section 6 sums up the conclusions of
our work.

2 Related Work

Human-designed algorithms for interest point detection
based on local features are still the most commonly used
method in the detection phase of the recognition pipeline.
These can be categorized into corner and edge detectors,
blob detectors, and region detectors.

An example of a corner detector is the Harris detector
proposed by Harris and Stephens [2]. The approach is
based on the auto-correlation matrix that describes the gra-
dient distribution in the local neighborhood of a point. The
eigenvalues of this matrix represent the principal changes
in the image signal. The point for which both of the eigen-
values are large is likely to be a corner. The output of the
Harris detector is shown in Figure 1. Other corner-based
interest point detectors include SUSAN [9] and FAST [7].

An example of a blob detector is the scale-invariant fea-
ture transform (SIFT) by Lowe [4], which is distinguished
by its extension of the image space by sub-sampling and
smoothing methods to form the scale-space. This allows
for scale-invariant object detection.

A comprehensive comparison of human-designed inter-
est point detectors is discussed in [14].

The already mentioned disadvantages of human-
designed algorithms are apparent: each of these solutions
maximizes ad-hoc objectives. There is no universal con-
sensus as to what defines the salience of the detected inter-
est points. Images with smooth corners may be overlooked
by corner detectors, while the points in other images may
be captured more meaningfully by corner detectors rather
than blob detectors.

The ad-hoc fashion of the objectives of human-designed
algorithms was challenged by the work of Olague and
Trujillo in 2006 [11]. A (single-objective) genetic pro-
gramming approach was proposed that synthesizes interest
point detectors. The approach promotes detector stability
and point dispersion using a single fitness function. The
output consists of several generated algorithms in form of

Figure 1: Example of points detected by the Harris interest
point detector [14]

computational trees built up using low-level image trans-
formations. Results of this work have been competitive
to the human-designed state of the art algorithms. Later
work by Trujillo and Olague in 2008 [12] showed new re-
sults that yielded performance better than many human-
designed algorithms at the time using a similar setup. In
2011 [5], the same authors proposed a multi-objective GP
approach, effectively splitting stability and point disper-
sion into two separate objectives (fitness functions). Sev-
eral novel synthesized interest point detectors have been
introduced. Finally, in 2012 [6], the work of Trujillo and
Olague continued with the addition of a novel, third objec-
tive: information content.

As our proposal is based on the progressive work of Tru-
jillo and Olague, the key concepts and algorithms will be
further explained in the following sections. An example of
a synthesized detector is shown in Figure 2.

Figure 2: Example of points detected by an evolved oper-
ator synthesized by the MO-GP process using our frame-
work

Similar work has been conducted in the synthesis of
interest point descriptors by Liu et al. in 2013 [3].
The proposed solution uses MO-GP for the synthesis of
image descriptors yielding feature vectors for detected
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interest points.

3 Qualities of IP Detectors

In this section, we describe the three qualities proposed by
Trujillo and Olague in [6] a good interest point detector
should exhibit. Next, we propose fourth, novel objective
used in our work that extends the solution.

3.1 Stability

Stability of an interest point detector is measured by its re-
peatability rate. In practice, this corresponds to the level of
invariance of the detector toward affine transformations of
the image. This objective is crucial in achieving good per-
formance of interest operators in cluttered scenes. Given
images I1 and Ii, the set of point pairs (x1,xi) that are re-
peated in image Ii based on the image I1 related by homog-
raphy H1i with maximum error of ε is

RIi(ε) = {(x1,xi)|dist(H1ix1,xi)< ε}. (1)

The overall repeatability rate is calculated as

rIi(ε) =
|RIi(ε)|

min(γ1,γi)
, (2)

where γ1 = |{x1}| and γ2 = |{xi}|. min(γ1,γi) in the equa-
tion represents the total number of extracted points.

The concept of the measure of repeatability is depicted
in Figure 3.

Figure 3: An illustration of the stability objective crite-
rion [6]

3.2 Point Dispersion

The idea of uniform interest point dispersion across the co-
ordinates of an image is simple: covering of more regions
in an image is more likely to contain useful descriptions.
We partition the image plane into a grid of J bins. The
measure of point dispersion is defined using the entropy
value of the spatial distribution of detected points X over
the image plane I.

D(I,X) =−∑Pj ∗ log2(Pj), (3)

where Pj is approximated by the 2D histogram of the po-
sitions of interest points within bin j.

3.3 Information Content

Information content is the measure of the uniform distribu-
tion of feature vectors of the detected points. To maximize
information content, therefore to avoid the loss of discrim-
inatory power of descriptors constructed for the detected
points, we have to penalize correspondences between the
positional point dispersion and the descriptor space. We
can achieve this by implementing the same principle as in
point dispersion, but in the space of descriptors, which is
illustrated in figure 4. We partition the descriptor space Γ
into partitions ϒ j and approximate the probability of the
occurrence of a descriptor within ϒ j by a histogram of the
descriptors γ ∈ ϒ j as q j. The measure of information con-
tent can then be formulated as

I (Γ) =−∑q j ∗ log2(q j). (4)

The choice of the descriptor algorithm used in this step
is crucial for a positive effect of the objective. In [13],
the SIFT descriptor has been used, which has led toward
counter-intuitive MO-GP results. The problem lies in the
manner in which SIFT builds the feature vector. SIFT
constructs histograms of gradient orientations for a region
around the interest point. This is completely appropriate
when using the SIFT algorithm for interest point detection
as well. In our case, though, the descriptor component
is used separately. It may happen that neighboring points
within regions containing curves or circles end up being
drastically different in their feature vectors. For this rea-
son, the Hölder descriptor described next is used.

Figure 4: The effect of the objective of point dispersion on
the interest point detector in a sample image [6]

3.3.1 Hölder descriptor

The Hölder descriptor is based on measuring the regularity
of the region of an interest point. It follows the idea that
most information is contained within irregular (singular)
regions. The regularity of regions can be described by the
pointwise Hölder exponent. In an image (2D signal), the
exponent is defined as follows.

Pointwise Hölder exponent definition for 2D signal f
Let f : R2→R, s∈R+? \N and x0 ∈R2. Then f ∈Cs(x0)
if and only if ∃η ∈R+?, and a polynomial P of degree < s
and a constant c such that

∀x ∈ B(x0,η), | f (x)−P(x− x0)| ≤ c|x− x0|s, (5)
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where B(x0,η) is the neighborhood of x0 with radius η .
Now, the pointwise Hölder exponent of f at x0 is defined
as

αp(x0) = sup
s
{ f ∈Cs(x0)}. (6)

The concept is better grasped when considering 1D sig-
nal as shown in figure 5. αp(x0) is the bound on the Hölder
envelope—the amount by which a signal varies. Values
close to zero indicate a wildly varying signal, while values
close to one represent a smooth signal or a regular region.
Estimators of the Hölder exponent based on genetic pro-
gramming are proposed in [10]. In our work, we use the
HGP-2 estimator. The application of the Hölder exponent
to an image is depicted in Figure 6.

Figure 5: Visualization of the plot of the Hölder envelope
of 1D signal f at point x0 [10]

The Hölder descriptor is built by sampling the expo-
nent at the position of each detected interest point and at
equidistant positions lying on four circles of different radii
around the interest point, with 32 samples per each circle.
This yields a feature vector of 129 real numbers. While it
is computationally costly to process such real-valued vec-
tors in the matching phase, this problem does not concern
our aim, since we only use this descriptor for the evalua-
tion of synthesized interest point detectors, which is per-
formed offline. The structure of the descriptor is shown in
Figure 7.

Figure 6: The Hölder exponent applied to an image. The
histogram of the result has been equalized for better visu-
alization. One detected interest point is highlighted whose
detail is shown in Figure 7.

Figure 7: The structure of the Hölder descriptor applied
to an image. The descriptor is formed by sampling the
Hölder exponent in the image region centered at an interest
point, and at 32 points per circle of 4 different radii around
the interest point. The dominant gradient orientation is
highlighted.

3.4 Computational Complexity

Our proposal stands on the definition of the objective pro-
moting computational efficiency of the synthesized opera-
tors. As we focus on the implementation of the resulting
operators on parallel processors1, we should take the par-
allelizability of the algorithms into account.

The complexity theory defines complexity classes for
problems considering their parallel nature. In partic-
ular, the class NC (Nick’s Class) is defined as the
set of problems decidable in parallel (polylogarithmic)
time (logn)O(1) on a polynomial number of processors
nO(1) [1]. The problem with the approach using the com-
plexity theory as a measure of fitness is that the definition
is too rough for the distinction of the low-level operations
used in this work (as explained in Section 4 and shown
in equations 8 and 9). All of these operations are either
performed independently on each point of an image, or on
their local neighborhood. Therefore, all of these opera-
tions are trivially parallelizable.

The approach we propose is to empirically measure the
time it takes for the synthesized algorithms to execute.
This can be done in two ways.

The first involves executing the complete algorithm on a
set of training images and measuring the total time of com-
putation of the tree2. The disadvantage is that the measur-
ing capabilities are dependent on and limited to the host
machine performing the GP search, and hence all synthe-
sized algorithms are biased toward it.

The second way which is used in our work is based
on taking apriori measurements of each atomic operation
we use in the GP search. We are not constrained to the
host machine, as these atomic operations may be imple-

1Using the CPU, GPU, and DSP units present in a device in a hetero-
geneous manner.

2As generated by the MO-GP algorithm explained in Section 4
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mented on the target platform containing multiple pro-
cessing units, or within an emulated customizable envi-
ronment. The measurements are also performed on a large
set of diverse images.

Therefore, for all op∈F∪T , where F and T are the sets
of functions and terminals used in the GP (defined in Sec-
tion 4) let Cop ∈ R be the measured average time it takes
for op to execute. We define the computational complex-
ity cost to be the sum of all atomic operations present in
a computational tree A of the generated algorithm, as for-
mulated in Equation 7. Note that this is a measure we are
trying to minimize.

C (A) = ∑
op∈A

Cop. (7)

4 Genetic Programming

Genetic programming is a branch of evolutionary algo-
rithms performing symbolic regression. It is a biologi-
cally inspired optimization method based on the iterative
stochastic generation of computer programs to perform a
given task. With each iteration, a population of computer
programs (computational trees) is generated or modified in
a manner that aims to produce better results by preferring
individuals with better survivability or fitness to solve the
problem at hand.

This approach is similar to the genetic algorithms. Here,
however, each individual consists of a computational tree
with a dynamic, flexible structure. The computational
trees are composed of nodes which are either functions (in-
ternal nodes) or terminals (leaves). These form the search
space of the GP algorithm. The terminals act as input data
that traverse upward across the tree, being transformed by
every function they pass through. When the data reach the
root node, the computation stops, yielding a result. Each
individual in the population in this work is an image inter-
est operator constructed by this form of symbolic regres-
sion.

In our work, we use the sets of functions F and termi-
nals T as shown in equations 8 and 9.

F = {+, |+ |,−, |− |, |Iout |,×,÷, I2
out ,
√

Iout ,

log2(Iout),k ∗ Iout ,
∂
∂x

GD,Gσ=1,Gσ=2},
(8)

T = {I,Lx,Lxx,Lxy,Lyy,Ly}. (9)

Here, Iout is either one of the terminals in T , or the result
of any function in F . k = 0.05 is a constant, GD is the ap-
plication of the Gaussian smoothing filter along direction
D, and Lu is the Gaussian image derivative along direction
u.

The general simplified pipeline of the computation per-
formed by the genetic programming search is described in
the following pseudo-code:

01 | P := generate_population()
02 | while stop condition is not met:
03 | for individual I in P:
04 | Fit[I] := fitness(I)
05 | S := selection of individuals

from P with the highest
fitness

06 | crossover(S)
07 | mutation(S)
08 | E := selection of individuals

from P with the lowest
fitness

09 | P := P - E

When the GP search process is complete, the individu-
als of the population in the last iteration are considered to
be good candidates of interest image operators.

An important remark is that the results of the GP search
in out work are interest point operators. An interest point
operator may be defined as a function K(x) : R+→R. We
may obtain the interest image by applying K to a regular
image. Then, we say the point x is an interest point if the
conditions in Equation 10 hold.

K(x)≥ max{K(xW )|∀xW ∈W,xW 6= x}∧K(x)> h (10)

Here, W is a square neighborhood around point x.
These two conditions represent non-maxima suppression
and thresholding, respectively. In this work, we do not use
a fixed value of h, but rather we choose the 500 points with
the highest response to the interest operator.

4.1 Multiobjective Approach

This work aims to design and implement a framework for
obtaining results that are optimal with respect to multiple
optimization functions, or objectives. The MO-GP system
avoids the need of manual tuning of parameters of a single
fitness function to achieve results. Instead, it comes with
the flexibility of altering or inserting new objectives and
handles the trade-off optimization in a consolidated way.
Moreover, with a single run of the GP search algorithm,
we are able to obtain several non-dominant (near-optimal)
results, which saves us a lot of time, considering the com-
putational complexity of the overall MO-GP search.

The principle of the multiobjective search is intertwined
with Pareto’s economic theory. Given k objectives, the
multiobjective space in which trade-offs and domination
relations are considered, is k-dimensional and individual
samples are k-dimensional vectors. In this space, we focus
on finding solutions that are Pareto-optimal, i.e. are not
dominated by any other vector. Considering a maximiza-
tion problem, an objective vector f i dominates objective
vector f j if no component of f i is smaller than its coun-
terpart in f j and at least one component is larger. This
can be seen in Figure 8 which optimizes objectives f 1 and
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f 2: the white samples are non-dominated, as there is no
other sample in a dominant relation with them. On the
other hand, the black samples are all dominated by at least
one of the white samples. The set of non-dominated (near-
optimal) solutions is called the Pareto-front.

Figure 8: An example of a maximization SPEA2 search
space [15]. The objective space specific to this work is de-
picted later in Figure 9. With all four objectives employed,
this space is four-dimensional. The Pareto front represents
the set of near-optimal IP detection operators that are effi-
cient in terms of both object matching and computational
complexity.

Approximation algorithms may have to deal with two
problems: finding the true (optimal) Pareto-front and sam-
pling the Pareto-front with uniform distribution across the
objective space. Several multiobjective evolutionary algo-
rithms (MOEAs) exist that solve these problems. In our
work, we use Strength Pareto Evolutionary Algorithm 2
(SPEA2) [15].

5 Results

With an MO-GP framework deployed, we are able to con-
duct the experiments of automatic interest point operator
synthesis, optimizing multiple objectives at the same time.
In comparison with [6], we extend the objectives being
optimized by our novel objective promoting less computa-
tionally expensive algorithms, as defined in Section 3. The
solution proposed in [6] serves as a basis of comparison.

5.1 Environment Setup

To be able to objectively compare our results with the work
in [6], we use the same environment and similar parame-
ters of the MO-GP search process. The MO-GP parame-
ters are presented in Table 1. There are only two differ-
ences. First, we set the crossover and mutation probabili-
ties to 50%. Second, we do not limit the tree depth, as our
novel objective already prefers results with lower compu-
tational cost, which is partially dependent on the tree size.

Parameter Value
Population size 200
Generations 50
Initialization type Ramped half-and-half
Crossover probability 0.5
Mutation probability 0.5
Mating selection Binary tournament
SPEA2 archive size 100
SPEA2 selection size 100

Table 1: Table of parameters of the MO-GP search envi-
ronment

The four fitness functions are formed of the quality mea-
sures defined in Section 3, where the first three are inverted
so as to match the minimization goal. Also, the outputs
of objectives 2 through 4 are empirically proportionally
transformed and scaled to maintain a similar range of all
four fitness values.

We use the GPLAB MATLAB toolbox [8] to perform
the GP search, and the SPEA2 implementation available at
the PISA website3. The training image dataset consisting
of rotated Van Gogh images has been obtained from the
Learning and Recognition in Vision team of Inria4. The
repeatability rate MATLAB script from the Visual Geom-
etry Group at Oxford University5 has been used.

5.1.1 Computational costs

For our computational cost objective, we have empirically
evaluated the costs of atomic operations as shown in Table
2. These costs have been measured by averaging multiple
runs of the operations over a random subset of 500 images
of size 256x256 from the SUN scene category database6.

5.2 Comparison of Results

It has been expected that by extending the results in [6]
with our novel objective, we yield interest operators with
similar properties. The assumption is that computational
complexity conflicts with other objectives in the Pareto
front. This means that the more computationally effi-
cient the operators are, the less compliant they are with
the other objectives. Figure 9 shows the Pareto front of
two objectives: point dispersion and stability, which gives
an overview of the idea. Dispersion and stability are in
conflict, which is a desired situation, as we obtain several
near-optimal results with different trade-offs, all of which
are useful for experimental work.

The assumption of obtaining operators with similar
properties to those in [6] is confirmed as shown in figures

3http://www.tik.ee.ethz.ch/sop/pisa/
4http://lear.inrialpes.fr/people/mikolajczyk/
5http://www.robots.ox.ac.uk/~vgg/research/
6http://sun.cs.princeton.edu/
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Operation Time in milliseconds
f_abs 0.3237
f_const_times 0.3203
f_div 0.1594
f_gauss_1 1.6819
f_gauss_2 1.3688
f_gauss_x 1.5951
f_gauss_y 1.5466
f_log2 1.1669
f_minus 0.1358
f_minus_abs 0.1362
f_plus 0.1340
f_plus_abs 0.1385
f_square 0.3301
f_square_root 0.4282
f_times 0.1403
t_gauss_x 1.2296
t_gauss_xx 1.3685
t_gauss_xy 1.3422
t_gauss_y 1.1930
t_gauss_yy 1.3373

Table 2: Table of the evaluated computational cost of
atomic operations

10 and 11. The synthesized operator in Equation 11 ex-
poses high point dispersion fitness.

∂
∂x

Gx(log2(Gσ=2(k ·Ly))) (11)

This is similar to the (c) operator evolved in [6], as it
also achieves high point dispersion7 as depicted in Figure
9. This operator uses different tree nodes, but is of similar
depth and is also comprised of Gaussian filter applications
as shown in Equation 12:

Gσ=2 ∗ (
Ly

Lyy
) (12)

6 Conclusion

The aim of this work has been to implement an MO-GP
framework for the synthesis of interest point detectors.
The framework has successfully been implemented in a
way that allows for feasible modification and insertion of
objectives.

We have extended the work of Olague and Trujillo [6]
by designing and implementing a fourth objective opti-
mizing computational efficiency. This objective has been
designed in a way that focuses on client runtime (mobile
devices, devices with parallel computation power) rather
than the host machine, while at the same time offers easy
means of redefinition of the measurement of computa-
tional cost if desired.

7Here, the fitness is minimized, so high point dispersion measurement
represents a low value in the graph

Figure 9: The Pareto front of stability and point dispersion
in the work of [6]. The graph includes human-designed al-
gorithms (Beaudet, Harris, K & R, Forstner) and operators
resulting from SO-GP search presented in [11] (IPGP1,
IPGP2).

In comparison, our results show high degree of similar-
ity to those of the original work. Our intention was not
to improve the results in the originally proposed three ob-
jectives, but rather to experiment by plugging the novel
objective into our framework.

As mentioned in the introduction, our approach is still
a work in progress. We have designed and developed the
framework serving for conducting experiments. The pa-
rameters of the GP search are not definitive and heavily
impact the results. Moreover, each run of the GP search al-
gorithm takes roughly 24 hours of computation. For these
reasons, we will be publishing noteworthy results of our
experiments at a dedicated website8.

6.1 Future work

The resulting operators of this work are yet to be imple-
mented efficiently in the heterogeneous parallel computing
platform Android RenderScript.

Also, to improve the recognition in cluttered scenes,
a different training image set biased toward this phe-
nomenon may be experimented with.

Finally, we recognize that this work may be extended to
generate interest point detectors usable in object recogni-
tion in 3D scenes with very little work.
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Abstract

Contemporary game engines offer an outstanding graph-
ics quality but they are not free from typical graphics arte-
facts. Essential deteriorations are the shadow acne and pe-
ter panning artefacts related to deficiency of the shadow
mapping technique. In this work we assess whether the
objective image quality metrics (IQMs) are suitable for au-
tomatic detection and evaluation of these artefacts. We
conduct subjective experiments in which people manu-
ally mark the visible local artefacts. Then, the detection
maps averaged over a number of observers are compared
with results generated by IQMs. We evaluate effectiveness
of the mathematically-based objective metric - MSE, and
advanced IQMs: S-CIELAB, SSIM, MSSIM, and HDR-
VDP-2. The achieved results reveal that MSSIM and
SSIM metrics outperforms other techniques and are the
most suitable for automatic detection of the shadow acne
and peter panning.

Keywords: image quality metrics, game engine artefacts,
shadow acne, peter panning, perceptual experiments, im-
age quality

1 Introduction

Graphics artefacts are anomalies found in rendered im-
ages. They can significantly degrade an image reception
and reduce the overall quality of graphics. Interestingly,
contemporary advanced game engines are not free from
presence of the visually confusing artefacts. In this work
we evaluate two types of such deteriorations: shadow acne
and peter panning. Shadow acne (see Fig. 1) is caused
by limited depth resolution of the depth maps used in the
shadow maps technique [1, Sect.Shadow map]. This arte-
fact can be reduced applying the bias shift to the depth
computation. However, too excessive displacement can
cause the discontinuity of shadows, i.e. the peter panning
deterioration (see Fig. 3). The latter one does not degrade
the graphics quality directly but can be perceived by hu-
mans as something unnatural.

∗rpiorkowski@wi.zut.edu.pl
†rmantiuk@wi.zut.edu.pl

Our goal in this paper is to find out whether the objective
image quality metrics (IQMs) [7] are suitable for detection
of the shadow acne and peter panning artefacts. The pri-
mary application of this concept is an automatic detection
of the artefacts during the game production process. An-
other important issue is evaluation of the perceptual im-
portance of an artefact. If it is barely visible for human
observers its correction can be neglected to save the GPU
resources.

The image quality assessment revealed its usefulness in
the computer graphics applications. The extensive stud-
ies were performed in the area of 3D mesh quality assess-
ment [7]. The mesh simplification causes such artefacts as
geometric quantisation noise or texture deteriorations. The
first attempts to evaluate the visual fidelity of these types
of artefacts were simple geometric distance metrics [12].
The advanced IQMs were also tested with the conclusion
that better detection of the mesh simplification deteriora-
tion can be achieved using the model-based metrics [10].
A comprehensive review of other assessment techniques
in this field has been published in [6].

Rushmeier et al. [11] studied the effectiveness of replac-
ing geometric detail with texture maps as a method of sim-
plification. They used a psychophysical scaling procedure
to measure the perceived fidelity of simplified geometry
and textures relative to the reference representation. They
focused on a user study and analysis of its results rather
than using the objective metrics.

In [2] a quality metric for stereoscopic images was pro-
posed. It combines the typical 2D image quality metric
(SSIM or C4) with the depth information. Another idea
was presented in [9], in which the depth map is com-
pressed based on the results of the visual masking experi-
ment. Differences in depth, which are invisible to the hu-
man and not caused the visible artefact in the stereo im-
ages, are masked out to reduce the size of the depth map.

We focus on the static artefacts that are visible in a sep-
arate frame of the game animation. Even more promi-
nent are the artefacts occurring in the temporal domain,
that cause the flickering. Analysis of this type of deteri-
orations requires different quality metrics and a separate
experimental methodology (see examples in [13, 6]). We
address this issue to future work.

In this paper we describe conducted subjective experi-
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ment in which observer manually marks the visible local
artefacts in snapshots from the games. It is done in the
presence of the reference image without artefacts (ground
truth). Hence, we perform the full-reference experiment
compatible with the full-reference IQMs. This method-
ology follows the technique introduced in [5] and [4].
However in the mentioned papers, Čadı́k et al. [5] eval-
uate artefacts caused by limitation of the global illumi-
nation rendering techniques. The shadow acne and pe-
ter panning have a different characteristic and are com-
mon for the real-time rendering systems. We evaluate if
they are identified by simple arithmetic difference (MSE),
colour difference metric S-CIELAB [18], texture statistics
SSIM [17], MSSIM [15], and metric based on perceptual
models HDR-VDP-2 [8].

The achieved results reveal that MSSIM and SSIM met-
rics outperform other techniques and are the most suitable
for automatic detection of the shadow acne and peter pan-
ning artefacts.

The paper is organised in the following way. In Sect. 2
the shadow acne and peter panning are outlined. Sect. 3
presents details on the conducted perceptual experiments.
We compare the detection maps marked by human ob-
servers with the maps generated by IQMs in Sect. 4. In
this section we also briefly describe the advantages of in-
dividual objective metrics (Sect. 4.2). The paper ends with
conclusions and providing directions for further work in
Sect. 5.

2 Shadow acne and peter panning

In this section two prominent graphics artefacts are pre-
sented: shadow acne and peter panning. We discuss the
reasons for their occurrence in the graphics engines and
how to prevent them from occurring.

Shadow acne

Shadow acne also called erroneous self-shadowing, may
occur when shadow depth map algorithm [1, Sect.Shadow
map] is used in order to add shadows into the scene in the
real-time graphics engine. This artefact manifests itself as
moire patterns on surfaces (see Fig. 1). The shadow maps
technique consists of two passes. In first, scene is rendered
from the light source point of view. Information about the
distances between light source and objects is stored as tex-
ture called shadow map. Those distances are called depth.
The more distant is the object from the light source the
brighter is texel in the shadow map. During the second
pass, when the scene is rendered from the camera point
of view the location of each pixel is compared to the cor-
responding texel in the shadow map. If a rendered point
is farther away from the light source than the correspond-
ing value in the shadow map, that point is in the shadow,
otherwise it is not.

Figure 1: Shadow acne artefacts (top) and the corrected
frame (bottom). The inset depicts the surface which is self-
shadowed but it should not be shadowed at all.

The shadow acne artefact can be caused by two factors.
The first reason is a limited computation precision of the
depth maps. When both depth values compared in the sec-
ond phase of the shadow map algorithm are close to each
other, the depth test may fail for selected pixels. The sec-
ond issue is geometrical - shadow map quantises the depth
over an entire texel (see Fig. 2), while a surface is smooth.
Due to this fact, a depth test can erroneously give over-
and under-the-surface result for the same texel, resulting
in self-shadowing.

The most common method to mitigate shadow acne
artefact is adding small value - bias into light space when
depth test is computing (see Fig. 2).

Peter panning

Peter panning is another artefact connected with shadow
depth maps algorithm (see Fig. 3). This term derives from
the book character - Peter Pan, who could fly and his
shadow was detached from body. When this artefact oc-
curs, shadow is detached from the object which seems to
hover above surface. Peter panning appears when too large
bias is used to prevent the shadow acne occurrence.

Finding proper bias value in order to simultaneously
avoid shadow acne and peter panning artefacts for whole
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Figure 2: Depth values are stored in the depth map with
limited spatial precision. Adding bias shift prevents erro-
neous depth tests.

scene and each frame could be computationally expensive
and affect on performance.

3 Experimental study

The goal of the experiment was to create the reference
maps that identify the artefacts seen by the people in the
game screenshots.

3.1 Stimuli

Even the most prominent and popular graphics engines are
not free from the rendering artefacts. We selected three
contemporary graphics engines that deliver the develop-
ment environment for independent developers: Unity 3d 1,
CryEngine 3 2, and Unreal Engine 4 3. In these engines it
was possible to model a scene based on external graphics
objects or some examples delivered with the engine. Then
we ran the game changing the rendering parameters. In
particular, the shadow mapping was activated with differ-
ent bias levels to test the shadow acne and peter panning
deteriorations.

We modelled 20 different scenes. We used the static
camera to avoid motion in the scene. Scene objects and
game engine parameters were combined in a way resulted
in the appearance of shadow acne or peter panning arte-
facts. It was done using the bias coefficient that was set
to too low value for the shadow acne and too high for the
peter panning. In our stimuli for 10 scenes we forced the
shadow acne and in remaining 10 the peter panning. For
each scene the reference image was generated with the cor-
rect bias. In real-world games it is often challenging to au-
tomatically find a correct bias, which can differ for various
scenes and even various camera shots.

The screenshots of the scenes were captured using the
FRAPS program 4, which saved images in 800x600 pixel
resolution.

1http:\\www.unity3d.com
2http:\\www.cryengine.com
3http:\\www.unrealengine.com
4http:\\www.fraps.com

Figure 3: Peter panning artefact (top) and the reference
frame (bottom). The shadow discontinuity can be seen in
shadows cast by the railing posts.

3.2 Experimental procedure

We asked people to manually mark visible differences be-
tween the reference image and an image with a particular
artefact. Observers used a custom brush-paint interface
controlled by the computer mouse. The brush size could
be reduced up to per-pixel resolution. This procedure was
repeated for every scene, resulting in 20 comparisons and
finally 20 binary difference maps generated per observer.

The experiment was performed in a darkened room.
Images were displayed on 24” Eizo ColorEdge CG245W
monitor with native resolution of 1920 x 1200 pixels. This
display is equipped with the hardware colour calibration
module and was calibrated before each experimental ses-
sion to sRGB colour profile with the maximum luminance
level increased to 110 cd/m2. During the experiment, an
observer was sitting in front of the display at a distance of
70 cm. This distance was not stabilized by a chin rest but
we asked observers to keep it approximately constant.

3.3 Participants

We repeated the experiment for 25 volunteer observers
(age between 20 and 23 years, 23 males and 2 females).
They declared normal or corrected to normal vision and
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Figure 4: Screenshot from the experiment. Notice the red
vertical mark in the left image made by an observer.

correct colour vision. The participants were aware that the
image quality is evaluated, but they were naı̈ve about the
purpose of the experiment.

The experiment is time consuming, therefore we clus-
tered the stimuli images into packages consisting of 10
pairs of images (tested and reference). While there were
no time limitations to our study, the average subject fin-
ished marking a package in approximately 15 minutes.

4 Results

A goal of the experiment was to test which of the full-
reference IQMs is the most suitable for testing the game
engine artefacts. We achieved the reference difference
maps from results of the perceptual experiment described
in Sect. 3 and analysed in Sect. 4.1. These results were
compared with the test reference maps generated by IQMs
in Sect. 4.2.

Both reference and test maps are compared using the
receiver-operator-characteristic (ROC) technique and their
coherence was expressed as the Area Under Curve (AUC)
value (see Sect. 4.3). The whole procedure is outlined in
Fig. 5.

4.1 Reference difference maps

Example difference maps created by a single observer dur-
ing the experiment are presented in Fig. 6. The white
background represents untouched pixels while the pixels
marked by observer are drawn in grey. Latter pixels depict
the areas in the test image recognised as artefacts by the
human observer.

Kendall analysis

The Kendall rank correlation coefficient (or Kendall’s tau
(τ)) is a statistic used to measure the association between
two measured quantities. In our case, it assesses the inter-
observer agreement, i.e. the similarity of the difference
maps created by individual observers. As shown by Cadic

Figure 5: Evaluation procedure.

Figure 6: Example difference maps created by a single
observer for images with the shadow acne (left) and peter
panning (right) artefacts.

et al. [5], we used the τ value to assess whether people
marked similar areas for a given pair of test and reference
images. The coefficient τ ranges from τ = −1/(o− 1),
which indicates no agreement between o observers, to
τ = 1 indicating that all observers responded the same.
Examples of the coefficient maps are shown in Fig. 7.

We computed average coefficients τ for each scene con-
taining artefacts. However, these values tend to skewed
toward very high values because most pixels did not con-
tain any distortion and were consistently left unmarked by
all observers. Therefore, we also compute a τmasked , which
considers only those pixels that were marked as distorted
by at least two observers. We achieved τ equal to 0.97 and
τmasked to 0.44, averaged over all scenes. These values in-
dicate a high inter-observer agreement. For comparison,
in the similar experiment described in [5] and assumed as
a high consistent, the τ and τmasked equaled to 0.78 and
0.41, respectively.
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Figure 7: Examples of Kendall coefficient maps (top row)
and Kendall maps after masking (bottom row). The white
pixels depict good agreement between observers. The
maps correspond to shadow acne example from Fig. 1 (left
column), and peter panning from Fig. 3 (right column).

Averaged difference maps

We averaged the difference maps related to individual test
image over all observers to achieve the reference differ-
ence maps. Then, these maps were binarised with the 0.5
threshold. In other words, the pixels marked by 50% of
observers were set to 1 and remaining pixels to 0. This
thresholding gives reliable result during further statistical
analysis, because it eliminates strong deviations in mark-
ings. Example reference difference maps are shown in
Fig. 8.

Figure 8: Example difference maps averaged over all ob-
servers before binarization (top row) and after (bottom
row). Presented artefacts are shadow acne (left column)
and peter panning (right column).

4.2 Objective metrics

Objective Image Quality Metrics (IQM) deliver quan-
titative assessment of the perceptual quality of im-
ages [14][16]. In our studies we chose four representa-
tive IQMs: S-CIELAB (Spatial-CIELAB), SSIM (Struc-
tural SIMilarity Index), MSSIM, and HDR-VDP-2 (High
Dynamic Range Visual Difference Predicator) that prove
their efficacy in perceptual comparison of images. Ad-
ditionally, we evaluated the results of the MSE metric to
give a background for comparison. The S-CIELAB met-
ric [18] is a spatial extension of standard CIELAB colour
difference. SSIM [17] and MSSIM [15] detect structural
changes in the image. They are sensitive to difference in
the mean intensity and contrast but the main factors are lo-
cal correlations of pixel values. These dependencies carry
information about the structure of the objects and reveal
structural image difference between tested and reference
images. HDR-VDP-2 [8] predicts the quality degradation
expressed as a mean option score of the human observers
and visibility (detection/discrimination) of the differences
between tested and reference images. It takes into ac-
count the contrast sensitivity function measured for vari-
able background luminance and spatial frequencies. The
sensitivity to light is modelled separately for cones and
rods resulting in correct prediction for mesopic and sco-
topic light conditions.

For each IQM, we generated 20 test difference maps
that were compared to corresponding reference difference
maps. Example maps computed using each mentioned
metric are presented in Fig. 10 and Fig. 9.

Figure 9: Difference maps automatically generated by
IQMs for the shadow acne artefact.
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Figure 10: Difference maps automatically generated by
IQMs for the peter panning artefact.

4.3 ROC analysis

The key question is whether any of the IQM performs
significantly better than the others in terms of detect-
ing the shadow acne and peter panning artefacts. In our
experiment, observers binary classified pixels that con-
tained artefacts. The performance of such classification
can be analysed using the receiver-operator-characteristic
(ROC) [3]. ROC captures the relation between the size of
artefacts that were correctly marked by a IQM (true pos-
itives), and the regions that do not contain artefacts but
were still marked (false positives). The metric that pro-
duces a larger area under the ROC curve (AUC) is as-
sumed to perform better.

The ROC plots for individual metrics are presented in
Fig. 11. We achieved the best results for the SSIM and
MSSIM metrics (AUC=99.38 and 98.69, respectively).
Interestingly, simpler metric SCIELAB works compara-
tively well (AUC=99.33). As it was expected MSE gave
the worst results with AUC=89.34. We achieved also poor
result for HDR-VDP-2 (AUC=90.26). This metric incor-
rectly detected artefacts covering the large areas, which is
common e.g. for the peter panning. Analysis of this issue
we address for further work.

5 Conclusions

In this work we asked group of observers to find local arte-
facts in images rendered by the real time game engines.
We focused on two types od artefacts: shadow acne and
peter panning, accompanying the shadow mapping tech-
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Figure 11: Results of the ROC analysis for individual
IQMs.

nique. The reference difference maps derived from this
perceptual experiment were compared with the difference
maps generated by the most recognised objective image
quality metrics. The ROC analysis revealed the best accu-
racy of the SSIM metric with the effectiveness of detection
close to 100%.

In future work we plan to analyse other artefacts, espe-
cially aliasing and z-fighting. We are also interested in the
flickering resulting from the motion on the scene. How-
ever, localised analysis of such artefacts seems to be chal-
lenging.
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Abstract

In this project, we developed a method for creating virtual
head models that look like the user. The resulting applica-
tion scans the user with a Microsoft Kinect sensor to ob-
tain RGB-D images. Based on these images, a virtual face
model can be adapted to resemble the users appearance.

A fast C++ implementation was created. To generate
hair, several hair parameters were obtained. A method
to personalize existing hair mesh templates was imple-
mented.

1 Introduction

Virtual avatars are virtual 3D representations of humans.
They can help users to feel more involved with an ap-
plication and enable a number of future high-impact use
cases. For example, users can see themselves in different
clothes in virtual dressing rooms. Computer games could
be customized to allow the user to be the main character
of a game, or interact with other people and their personal
avatars. High-end teleconferencing systems would allow
participants to collaborate naturally in a 3D virtual meet-
ing room.

We developed an implementation capable of creating
virtual avatars using the popular Microsoft Kinect sensor.
The implementation acquires several RGB-D frames of the
user. Using a face tracking algorithm, it tracks the users
head and fits a face tracking mesh for every frame. The
gathered RGB-D frames are converted to 3D pointclouds.
Using the head tracking information, the pointclouds are
placed over a generic morphable 3D face. The avatar is
morphed with an optimization algorithm, minimizing the
distance between the avatar and the pointcloud.

To ensure compatibility with common work-flows, we
use avatar data models that can be generated using DAZ
3D Studio. These avatars feature parametric head models
which are customizable.

To generate realistic hair, an algorithm detects various
hair parameters. Several hair template meshes for differ-
ent hair lengths were created. By evaluating the hair pa-
rameters, the best template is chosen automatically. The
template is morphed to adapt to the persons hairstyle.

The hair and face meshes are projectively textured by

using the best captured RGB image.
To demonstrate the algorithm, a fast C++ implementa-

tion, using the Kinect SDK and OpenCV was developed.

2 Related Work

The Microsoft Kinect was the first affordable depth cam-
era, available on the consumer market. Since the Microsoft
Windows driver appeared, a lot of Kinect and RGB-D
camera related research was accomplished.

There is an approach to scan a whole person with the
Kinect [Sum+13]. This method however needs 15 min-
utes to generate a watertight mesh, with an algorithm sim-
ilar to Kinect Fusion [Iza+11]. Our project is focused on
makeing the avatar personalization process as intuitive and
simple (from the users perspective) as possible.

Zollhofer et al. [Zol+14] present a very similar ap-
proach to our project. They built an interactive system
which reconstructs facial data in real time, while giving
the user feedback. Instead of morphing a pre-designed
face template mesh, like in this project, this implemen-
tation combines 200 different heads into a statistical shape
model. With depth fitting and regularization, they estimate
the parameters of the head. We apply morphing for our
implementation, which replaces the task of creating a sta-
tistical model.

If there is no depth information available, Jiang et at.
[Jia+05] show that it is also possible to reconstruct faces
by using 3D face shape databases. In their approach, the
2D face image is first aligned with a generic 3D face ge-
ometry. Since all face geometry is compressed by PCA,
the key features of the 2D face are used to compute the 3D
shape coefficients of the Eigen vectors. The face shape is
reconstructed by using these coefficients.

Cao et al. [Cao+13] show, that animating abstract
avatars can be performed just by using simple VGA cam-
eras. It is possible to transfer facial expressions from a
person in real time to any mesh. The paper demonstrates
how far interaction with personalized avatars can go, and
how much potential there is. As first step, the implemen-
tation requests the user to make several extreme facial ex-
pressions. The abstract avatars have geometrical models
of each these extreme facial expressions. In the interac-
tive initialization part, the algorithm registers the persons
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extreme facial expressions. During animation, it interpo-
lates the previously saved extreme expressions. This is
also possible with the avatars created by our project, how-
ever additional face meshes for the extreme facial expres-
sions would be required.

Chai et al. [Cha+13] show a very promising way to gen-
erate 3D volumes of human hair just by using an image
sequence. The gathered hair model is based on strands.
The model also enables physically plausible animation of
hair. As mentioned in section 5, the image quality of the
Kinect color camera was not sufficient to consider this hair
generation method.

Blanz et al. [BV03] also use 2D images and a 3D scan
database to obtain face geometry. Their implementation
takes several 2D images of the same face to fit data to
a morphable 3D face model. Their morphable 3D face
model was created from a database of 3D scans. The goal
of this 3D scanning methods is face recognition rather than
realistic avatar generation.

There is also a way to reconstruct faces from a single 2D
image with a generic face mesh [Mag+13]. It exploits the
global similarity of faces and combines shading informa-
tion with generic shape information. With a Kinect depth
camera available, there is not much potential to use this
technique additionally. However some geometry adap-
tions, mentioned in section 5.3, are only influenced 2D
texture evaluation.

3 The Procedure

The virtual avatars are created by using RGB-D data to
morph a generic face mesh. At first, multiple RGB-D
frames are captured with the Kinect sensor. They are con-
verted to pointclouds and are aligned with a morphable
face mesh.

After morphing the head, some processing is done to
improve the avatar and add hair geometry. Additional pro-
cessing steps include the projective texture mapping, and
positioning the eyes.

Figure 1: The acquired data, the facetracking mesh aligned
with the morphable generic head mesh, the pointclouds
aligned with the head mesh, morphed result with eye and
hairmesh.

3.1 Data gathering

The data gathering software captures the RGB-D frames
and tracks the rotation and position with a head tracking
algorithm [Mic13]. Several frames are captured by the
Kinect RGB-D camera. The user presses a key to capture a

frame in a ten second interval. The optimal distance from
the sensor is one meter. Best results are obtained with a
bright diffuse illumination and a neutral background.

The following data is captured per frame:

• A color image.

• The depth information. Using the known camera pa-
rameters, a depth image is converted to a 3D point-
cloud. Due to the face tracking, it is possible to align
the pointclouds.

• A facetracking mesh. The Kinect facetracker fits
a Candide 3 [Ahl01] mesh to the face of the user.
The resulting low polygon facetracking mesh has the
same orientation and scale of the pointclouds.

• The rotation and translation of the head, calculated
by the Kinect facetracking algorithm.

• A projection matrix for projective texturing.

3.2 Face mesh production

The implementation goes through the following process-
ing steps as illustrated in Figure 1:

1. The Candide 3 headtracking meshes are in the
same coordinate system as their corresponding point-
clouds. Each pointcloud has one headtracking mesh,
so the pose of the users head is saveed in the pose
of the headtracking mesh. The orientation and posi-
tion of the facetracking meshes is used to calculate a
transformation for each point cloud. The transformed
pointclouds are aligned in the same coordinate sys-
tem. The morphable face template mesh is scaled and
placed close to the pointclouds..

2. 


px
py
pz


=




vx
vy
vz


+




dx
dy
dz


∗ f (1)

The morphing equation (1) transforms a vertex v in
direction d by a factor f . The external morphing
data from [Pro14] contains groups of vertices with
the same factor fn. Each vertex is assigned a direc-
tion vector vn. The direction vector’s magnitude de-
fines how much influence a change in factor factor fn
has.

To be able to morph the head template, all morphing
equations are compiled into equation system (2).




p1x 0 0
...

0 p1y 0
...

0 0 p1z

...
· · · · · · · · · pnx/y/z




=




v1x 0 0
...

0 v1y 0
...

0 0 v1z

...
· · · · · · · · · vnx/y/z




+




f1 0 0
...

0 f1 0
...

0 0 f1
...

· · · · · · · · · fn




(2)

The morphing factors are retrieved by solving the
equation system. This can be seen as a minimiza-
tion of the distances between the vertices of template
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mesh v and their nearest neighbours p in the point-
clouds. When the morphing factors are known, the
morphing equation 1 can be applied to each vertex v.
This enables to create a personalized, watertight DAZ
3D face mesh. This format can be incorporated into
existing workflows.

3. The mesh is projectively textured with a color image
and saved in Wavefront obj mesh file format.

4 Improvements

The avatars generated by the introduced algorithm resem-
ble the scanned person, however a better result is received
by some improvements.

Precise alignment of the pointcloud data and the mor-
phing template is crucial for good results. The mesh pro-
duced by the Kinect face tracker, is in the same coordinate
system as the pointcloud data. This means the necessary
pointcloud transformation can be calculated by aligning
the face tracking mesh with the morphing template. At
first the generic unfitted Candide 3 [Ahl01] face tracking
mesh was used. To take individual face proportions into
account, a fitted Candide 3 mesh as seen in Figure 2, was
used instead. This leads to better pointcloud alignment and
improves fitting the textures.

Figure 2: Fitted Candide 3 facetracking meshes, obtained
by the Kinect SDK facetracker.

Aligning the facetracking mesh with the morphable
facemesh is not trivial. Various alignment methods were
evaluated. Scaling along all dimensions did not produce
realistic looking faces, since the persons face proportions
got distorted. When the aligning aims to minimize the dis-
tance to the facial features, the rest of the head is distorted
tremendously.

Simply aligning the face tracking mesh by its center and
scaling by a calculated factor in every dimension as seen
in Figure 3, produced the best results. The result of the
alignment is shown in Figure 4.

Figure 3: The pointcloud data is placed on the virtual
avatar template with the help of the facetracking mesh.

Figure 4: Pointcloud data from the Kinect sensor over-
layed with the Candide 3 facetracking mesh.

4.1 Optimization

Since the creation of the virtual avatar is computation-
ally complex, a fast implementation was needed. Early
versions used the Kinect Fusion algorithm to obtain high
quality depth maps. Our experiments came to the conclu-
sion, that simple RGB-D images are sufficient.

We developed a fast C++ implementation using
OpenCV and the EIGEN Library. The solver of the Eigen
Library was utilized to solve the morphing equation. The
Kinect SDK is used to capture the RGB-D frames and per-
form headtracking. The implementation has an interface to
process live RGB-D frames from arbitrary cameras. It is
possible to align the pointclouds and capture new frames
at the same time in seperate threads. For direct and fast
display and further processing, there is an interface to re-
trieve the geometry data arrays in an OpenGL compatible
format. An external obj file format importer/exporter was
used to load the data from a Kinect capturing framework
and to produce the output meshes.
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5 Hair Reconstruction

Realistic virtual avatars need hair. There are various ap-
proaches, however only a few parameters can be obtained
by the data from the Kinect sensor. The resolution of the
Kinect RGB camera is not good enough to extract orien-
tations of hair strands. Therefore only color, shape and
geometry of the frontal hair are obtained.

To not completely rely on morphing, several hair tem-
plates for different length of hair were created. An algo-
rithm detects each hair type by evaluating the color input
images. The hair template as seen in Figure 11, is opti-
mized by modifying the shape by scaling or morphing.

5.1 Texture atlas

Since several data frames are captured, all hair parameter
detection can be performed on multiple frames and then
averaged. To explore a reduction in the processing time,
and eliminating false classifications, a texture atlas was
created.

It was necessary to associate color information with
each vertex of the pointcloud data. The vertices were pro-
jected into the corresponding texture. The pointcloud data
from all frames was aligned in the same coordinate space.
Just by removing the z-coordinate, the complete point-
cloud data got projected into 2D. By interpolating the color
information between the projected vertices, a texture atlas
was obtained.

For the depth data, a texture atlas was created as well.
Since the pointclouds are previously aligned in the same
coordinate system, a simple plane projection was sufficient
to create the depth-atlas. A depth and a RGB texture atlas
can be seen in Figure 5.

Figure 5: The texture atlas of the color and the depth im-
ages.

Performing all detections on all captured images proved
to be more robust. Calculating the variance from the atlas
for each image was a good method to eliminate erroneous
frames. It was also possible to vote on the frames, and cal-
culate a new weighted average texture atlas. Frames with
a high similarity to the original texture atlas were assigned
better weights than others. The improvement can be seen
in Figure 6.

However, hair segmentation using the atlas turned out
to be more difficult, because information is lost during the
averaging process.

Figure 6: Original texture atlas on the left, weighted tex-
ture atlas on the right

5.2 Hair Segmentation

To procedurally generate a realistic hair mesh, information
about the hair is required. Various methods were imple-
mented to segment the hair on captured RGB images.

The first attempt was to segment hair with k-means clus-
tering. By projecting the virtual avatar into the frame, the
face could be masked. The trick of the k-means clustering
in this application was to find a cluster containing hair. The
area on the forehead above the hairline was masked. After
the k-means clustering, the two most prominent clusters
on forehead were selected. These clusters were likely hair
clusters.

Figure 7: Red is the most prominent cluster, blue the sec-
ond prominent cluster.

K-means clustering as seen in Figure 7, was not robust
enough and did not consider the geometrical topology of
the hair.

The Growcut algorithm [Vl05] as seen in Figure 8, takes
sets of pixels of the image as input and performs iterative
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clustering with cellular growth from these points. Pixels
similar to the hair color were chosen for the hair as input.
Random pixels in the face and on the background were
defined as starting points for the face cluster.

Figure 8: Clustering with grow cut

Since these results were not good enough, segmenting
the RGB images with a Graphcut implementation [GPS89]
was evaluated. Even with the depth information and dif-
ferent color spaces, the results were not good enough.

Because the goal of this project was an applicable and
robust implementation, a different strategy was chosen:

The hair length only gets estimated to choose a prede-
fined hair template. The template later gets personalized
by morphing. Only the following parameters had to be
obtained from the RGB images

Hairline

To find the point where the hair starts on the forehead, the
hairline need to be estimated. The position of the facial
features on the RGB images are known, since certain ver-
tices just need to be projected into these images. The max-
imum magnitude of the color gradient between the eye-
brows and the top of the head was searched on the 2D
images. It turned out to be a very robust approximation of
the hairline. The results of the hairline detection can be
seen in Figure 9.

Hair color

A good approximation of the hair color was the average
color of the pixels above the hairline. The pixels under the
hairline were identified as skin color and used during the
hair template morphing.

Figure 9: Red: Calculated hairline Green: Averaged hair-
line parameter.

Hair length

The obtained hair length in this implementation is only
a rough estimate to select a template with proper hair
length. Three templates were created with Sculptris
[Pix13]. The hair length was estimated efficiently by com-
paring the pixel color with the previously calculated hair
color. Masking the face and the background helped a lot
to get a robust estimate of the hair length. All parameters
were obtained for every captured RGB-D frame separately
and then averaged.

5.3 Hair Template Adaption

The hair length is classified into three categories. De-
pending on the detected category, a hair template mesh is
loaded. Figure 10 shows some examples for possible hair
templates. The template is positioned on the head of the
virtual avatar as seen in Figure 12. The mesh gets projec-
tively textured with a Kinect color image. Since the hair
color is known, vertices with a different projected color
are morphed.

All morphing operations face to the center of the head.
The operation is applied per vertex, but the surrounding
vertices are moved as well. The movement is linearly de-
pended to the distance from the center vertex. This elimi-
nates sharp creases and softens morphing. Several passes
are performed. The projective texture is mapped again at
the end of each pass, to ensure the morphing is stopped
when the hair template is in shape. Figure 13 shows the
result after the morphing.

Because there are only images of the front side of the
head captured, the back of the head neede to be textured
as well. To be able to also morph the back of the hair tem-
plate, the back of the head was textured projectively with
the front texture. However the face of the back texture was
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Figure 10: Hair templates for three different hair lengths.

Figure 11: Face mesh, face mesh with hair template, face
mesh with adapted hair template

masked and the hair color was interpolated. As a side ef-
fect, the backside of the head also has a hair texture which
blends with the front texture. The interpolation was sim-
ply done by replacing the face with the color of the hair
as seen in Figure 14. There is room for improvement by
using a better interpolation method.

6 Results

The results were retrieved in a scene with a clear back-
ground and bright lightning.

The final result as seen in Figure 15 consists of three
textured meshes. The three meshes are the face, eyes and
hair. They are separate meshes for exchangeability and to
ease future animation. The meshes are saved in the .obj
format, however the C++ implementation offers an inter-
face to use the mesh data live and interactively.

6.1 Execution time

The time to generate a mesh from 7 RGB-D frames on a
Pentium Dual Core CPU is about 45 seconds. However
most of the computation time is needed by I/O operations
with the slow OBJ fileformat. In an realistic application,
the templates are previously loaded. Since the results do
not have to be exported to an OBJ mesh, the system can
work significantly faster. The most crucial and computa-
tionally intensive part of the implementation is solving the
morphing equation. This part only takes 1.5 seconds using
the solver of the EIGEN library.

6.2 Problems

One problem is the false morphing of the cheeks of the
heads. In Figure 15, you can see white spots on some
cheeks. This is caused by the lack of depth data in these

Figure 12: Virtual avatar with unmorphed hair template.

Figure 13: Virtual avatar with morphed hair.

regions. The RGB-D image are usually gathered just from
the front side of the face. This might either be solved by
removing certain morphing vectors, or reshaping the face
mesh the same way as the hair mesh. Replacing the white
spots with the skin color might also be a viable option.

Another problem is the low texture resolution on the
side of the hair. This is a consequence of the dual pro-
jective texturing. Textures are projected on the front and
back, but not on the sides. During the development of the
implementation, using the best suiting texture for every
polygon was evaluated, but the desired OBJ mesh export
did not support multi-texture blending. However all the
information can be obtained by the C++ interface, and a
future interactive implementation can use shader programs
to blend all RGB frames for optimal mesh texturing.

7 Conclusion

Automatic avatar generation can be used to enrich games
and telepresence systems. We demonstrated that the con-
cept of template adaptation can be extended to generate
hair models and avatar generation can be performed in
a time frame that is suitable for the named applications.
Moreover, we came to the conclusion, that shortcomings
of the depth sensor can be compensated well enough.
However a bad RGB sensor yields directly to bad results.
Our system therefore needs decent lighting and a contrast-
ing neutral background. We assume that average users are
capable of meeting these two requirements. Due to the
wide availability of commodity depth sensors, such as the
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Figure 14: Texturing the backside. From top to bot-
tom: Front texture, back texture with face automatically
replaced, front and backside of the projectively textured
mesh.

Microsoft Kinect, we believe that particularly games and
applications will contain automatic avatar generation fea-
tures in the future.
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Abstract

Due to the availability of cheap consumer depth sensors
and recent advances in graphics hardware, scenes can be
reconstructed in real time allowing a wide range of new
applications. Current state-of-the-art approaches use a vol-
umetric data structure and integrate recorded scans incre-
mentally to provide complete and accurate reconstructions.
However, scans usually contain noise and may be incom-
plete. Thus, using a simple update procedure becomes
impracticable. To overcome these issues, we introduce a
new weighting technique which combines different exist-
ing strategies. Typical strategies try to model such limita-
tions, like varying visibility and depth-dependent noise, in
order to estimate reasonable weights. Since the complex-
ity of modeling grows extremely fast with respect to the
number of considered limitations, development becomes
complicated and prone to errors. Instead, we consider each
limitation separately and construct easy-to-understand so-
lutions for each one. Combining these small strategies
leads to a more complex one and results in much higher
quality reconstructions.

Keywords: Real-time Reconstruction, Voxel Hashing,
GPU, Kinect, Weighting Strategies

1 Introduction

Since 3D models are extremely useful to describe the
world, they are widely used in many different areas. Possi-
ble applications might be related to online stores. Buying
furniture in big shops is often time-consuming and expen-
sive. To save traveling costs and time, clients would like
to use an interactive modeling tool for indoor rooms which
allows detailed views of the new room from all possible
perspectives. Other applications might be in the gaming
industry. Modeling detailed real world objects manually is
expensive and costs a lot of time and manpower. To reduce
costs, already existing objects can be scanned in real time
by cheap consumer hardware. In further steps, the given

∗stotko@cs.uni-bonn.de
†golla@cs.uni-bonn.de

3D model can be refined manually. Modeling large build-
ings is also quite expensive, so reconstructions captured by
a drone can be very useful and increase work-flows.

For 3D reconstruction, several approaches are developed
and many of them use the volumetric data structure by Cur-
less and Levoy [5]. They partition the world into small vox-
els and store the reconstruction implicitly using a signed
distance function (SDF). Thus, each voxel stores its signed
distance from the estimated surface with respect to the cam-
era. Since only the immediate region around the surface is
actually needed, they also introduced the notion of the trun-
cated signed distance function (TSDF). Instead of storing
the exact distance to the surface, distances beyond the user-
defined truncation region δ are cut off and only a relative
one inside the interval [−1 ,1] is stored. Under this im-
plicit scheme, scans can be integrated incrementally with
a cumulative moving average. However, in terms of noisy
data simple averaging is not appropriate since not every
data point is equally useful for the reconstruction. So scan
points need to be scored by a weight function.

The general problem of developing a weight function is
its growing complexity. For each new considered aspect
it increases by one dimension. Hence, development be-
comes error-prone and very slow. To overcome this issue,
a strategy to reduce this complexity is needed.

In this paper, we present a new weighting technique
which precisely addresses this issue. By separating the
weight function into smaller ones, each desired aspect can
be solved individually. This leads to easy-to-understand
solutions which can be easily compared and discussed. To
achieve a complete solution of the problem, we merge them
together afterwards. As a result, this technique greatly
reduces the problematic complexity and gives the user a
powerful tool to customize the weights for his needs.

In the following sections, we first review current state-of-
the-art approaches that provide different weighting strate-
gies to solve sensor limitations. Then, we briefly introduce
the structure of the 3D reconstruction algorithm used in
this paper. Based on this algorithm, we present our new
weighting technique and describe how it works with cur-
rent strategies. Finally, we conclude by comparing them
using our benchmark system.
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2 Previous work

3D reconstruction has been a very popular research topic
in the last decades. Several different approaches were de-
veloped including point-based methods, height-map based
representations and implicit volumetric approaches. In
case of depth maps, one popular approach is the volumet-
ric data structure introduced by Curless and Levoy [5]. It
subdivides the world into voxels and stores scans using a
signed distance function (SDF). To get a reconstruction,
the surface is extracted using ray casting [6] or similar
techniques. Their compelling results animated researches
to develop several applications on top of this scheme.

One prominent application is KinectFusion [10, 11]
which can reconstruct scenes in real time using the equally
named Kinect sensor. Since it originally used a regular
voxel grid, the space complexity was high and reconstruc-
tions were limited to small areas. To solve this drawback,
several strategies are developed including moving volume
approaches [16, 19, 20], streaming between CPU and GPU
[3, 13] or efficient data structures on top of the regular
voxel grid [3, 13, 15, 22]. One major improvement was
achieved by Nießner et al. [13] who used a hash table to
allow fast access to stored data. Voxel blocks, consisting
of a set of typically 83 voxels, are managed through the
hash table and efficiently processed in parallel. This tech-
nique achieved frame rates above the 30Hz frame rate of
the Kinect. So we use this algorithm as a base and extend
it with our new weighting strategy.

Other developments address the limitations of the depth
sensor. Nguyen et al. [12] developed a weight function
based on the measured noise of the Kinect sensor and
achieved higher quality with much more details. Hem-
mat et al. [7, 8, 9] also presented a distance based function
but only used scan points with higher weights for updat-
ing. With this approach, they achieved a similar reduction
of the reconstruction error. Functions based on visibility
are extensively analyzed by Sturm et al. [18]. Using them
allows detailed 360◦ reconstructions and prevents invalid
updates of voxels which causes strong artifacts.

3 Reconstruction algorithm

Since we have implemented the reconstruction algorithm
of Nießner et al. [13] in CUDA [14], we start with a brief
review of it. First, the given input frame is aligned to the
current reconstruction to obtain the new camera pose. Af-
ter estimation, we transform it into global coordinates and
integrate it into the volume. In the last step, the new recon-
struction is extracted and used for the next input frame.

3.1 Camera Pose Estimation

Before we can integrate the captured scan, the current pose
of the camera has to be estimated. Typical approaches
are based on the Iterative Closest Point algorithm (ICP)

[2, 4]. The idea is to find correspondences between two
given point clouds and compute a rigid transformation T =
[R | t] which minimizes the point-to-plane error between the
transformed source cloud P and the target cloud Q.

E =
n

∑
k=1
‖(T pk−qk) ·nk‖2

2 (1)

Hence, finding robust correspondences is essential, so we
use the efficient variant by Izadi et al. [10]. Correspon-
dences are found using the given vertex and normal maps
VP,NP and VQ,NQ by projecting each point pk ∈P to image
coordinates and choosing the point ql ∈ Q which projects
to the same coordinates. If the distance between them and
the angle between their normals is small, a match is found.

3.2 Integration

After the scan is transformed into global coordinates us-
ing the estimated transformation, it can be integrated into
the volume. First, we determine all voxel blocks that fall
into the current view frustum of the camera and integrate
them into the hash table. This is performed by the GPU
optimized variant of the Digital Differential Analyzer algo-
rithm (DDA) [1] of Xiao et al. [21]. In the next step, we
select all visible voxel blocks in the hash table and update
them using the weighted cumulative moving average.

tsdf i+1 =
tsdf i ·wi + tsdf ·w

wi +w
(2)

wi+1 = wi +w (3)

Here, tsdf i and wi are the old values of the voxel v, and tsdf
and w the TSDF value and weight estimated from the new
depth map Di. An appropriate choice for these estimated
values is presented later (see section 4). After updating,
outliers are removed through a garbage collection to keep
the hash table sparse.

3.3 Surface Extraction

In the last step of the algorithm, the new reconstruction
has to be extracted from the stored volume. For this task,
we use ray casting [6]. First, we initialize the rays using
the extrinsic and intrinsic parameters of our camera. Then,
we compute the traversal intervals [tstart(x,y) , tend(x,y)] for
each output pixel p = (x,y) by rasterizing all stored voxel
blocks and generating two z-buffers.

If all these parameters are known, we sample the vol-
ume using Adaptive sampling [6]. The base step size t0 is
dynamically reduced to t1 = 1

8 · t0 if the current distance to
the surface is smaller than a threshold. To find immediately
a point before and behind the surface during sampling, we
set the step size t0 to a multiple of the truncation region.

t0 = ctrav ·δ (4)

This approach works best using values around 2
3 since the

traversal starts at the boundary of the truncation region
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where the TSDF values are around ±1. At the end, we
iteratively refine the found intersection and check whether
this point is really a desired surface point.

|tsdf candidate ·δ | ≤ cquality (5)

If its absolute distance to the stored reconstruction is
smaller than a quality threshold cquality, it will be accepted
and returned. To get high quality results, typical values of
this threshold are around one-hundredth of the voxel size.
In a final step, we compose the extracted isosurface to the
previous ones to get a full reconstruction. We summarize
multiple reconstruction points with a voxel grid filter which
has the same size as the infinite regular voxel grid of our
volume.

4 Weighting strategies

Choosing appropriate weights is one of the most important
parts during reconstruction since some scan points may be
corrupted with noise or other limitations of the camera.

4.1 TSDF functions

The TSDF function describes a distance estimation from
the reconstructed surface. Because we only search for the
position in the volume with value 0 (see subsection 3.3),
the real distance value sdf of a voxel to the surface is not
needed and can be truncated.

KinectFusion [10, 11] provides a very simple TSDF
function. It divides the real distance by the truncation re-
gion δ and cuts off large values.

tsdf KinFu(sdf ) =





−1 if sdf < −δ
sdf
δ if −δ ≤ sdf ≤ δ

1 if sdf > δ
(6)

Voxels that are inside the truncation region are valued with
truncated distances of the desired interval [−1 ,1], whereas
those which are outside the region are valued with ±1.

Since this function may cause problems with noisy data,
Nguyen et al. [12] introduced a function based on the noise
of the Kinect. They modeled the noise along the view
direction as a Gaussian distribution with zero mean and
standard deviation σz which depends on the depth d of the
measurement.

σz(d) = 0.0012+0.0019 · (d−0.4)2 (7)

The TSDF function is now given as a cumulative distribu-
tion function of the modeled noise distribution.

tsdf NM(sdf ,d) = sign(sdf )

√

1− e
− 2

π
sdf 2

σz(d)2 (8)

In contrast to KinectFusion, voxels near the boundary
of the truncation region are also considered as far away.
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Figure 1: TSDF functions.

Therefore, finer details can be reconstructed since false
zero-crossings due to noise are reduced.

For visualization in Figure 1, we fix the distance parame-
ter d to 1.5 (which is the mean range of the Kinect) and use
the relation δ = 3 ·σz(d) proposed by Nguyen et al. [12].
This suppresses the second dimension of the function and
allows a visual comparison.

4.2 Weight functions

Weight functions are used to measure the importance of a
scan point related to the currently updated voxel. In this
paper, three different classes of strategies are discussed:
Visibility based functions, depth based functions and angle
based functions.

Visibility based functions This class of functions only
uses SDF values to compute a weight. The signed distance
implicitly encodes visibility information, so this class can
be used in 360◦ reconstructions where a lot of occlusions
have to be taken into account. The main drawback of them
is depth-dependent noise. This effect can not be modeled
here since only the relative distance of the voxel to the
surface is known but not the absolute one.

In this context, the function of KinectFusion [10, 11]
shows a natural behavior of scoring visibility.

wKinFu(sdf ) =





1 if sdf < 0
sdf
δ falls 0≤ sdf ≤ δ

0 if sdf > δ
(9)

The function distinguishes between three different states.
Voxels which lie before the measurement are scored with
full weight of 1 indicating that they should be always up-
dated. A similar scoring is performed for voxels lying
behind the measurement. They might be part of the back
side of the object or part of another one so updating them
may cause problems. To prevent this, no update should be
performed resulting in weights of value 0. The last state
describes voxels inside the truncation region meaning that
they lie close to the measured surface. Here, the weight de-
creases from 1 to 0 to ensure a smooth transition between
the two other states.
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Figure 2: Visibility based weight functions.

However, skipping the update of the background can
lead to reconstructions having a poor density of points and
small holes on the back side (see subsection 5.2). To over-
come this, Sturm et al. [18] developed a similar function.

wCM3D(sdf ) =





1 if sdf < 0

max
(

wmin,e
− sdf 2

δ2

)
if sdf ≥ 0

(10)

Like KinectFusion, voxels in the foreground are updated
with full weight of 1, while those lying inside the trunca-
tion region or far behind the measurement are scored with
decreasing weights. But instead of a minimum weight of
0, a small positive one is used. This allows the algorithm
to update the back side of the reconstructed object, while
also keeping the original distance information. In this way,
small holes are filled and the voxels can quickly be up-
dated if better measurements become available. A visual
comparison of both function is given in Figure 2.

Depth based functions In order to compute a weight,
functions of this class use the absolute distance of the mea-
sured scan point to the camera. Hence, depth-dependent
noise can be modeled here. But in contrast to visibility
based functions, 360◦ reconstructions might be problem-
atic since no occlusion information is provided.

As in their TSDF function, Nguyen et al. [12] use the
depth to estimate the noise level first and then computes a
reasonable weight.

wNM(d) =
σz(dmin)

σz(d)
· d

2
min
d2 (11)

σz(d) = 0.0012+0.0019 · (d−0.4)2 (12)

Here, σz(d) is again the depth-dependent standard devia-
tion of the modeled noise distribution. The weight itself
is now computed as the quotient of the minimal noise and
depth and the observed noise and depth. This leads to a
strong decrease of confidence for voxels being far away
from the camera. Additionally, Nguyen et al. [12] also en-
coded implicitly a visibility based function in their update
process and used a 3×3 region around the desired pixel to
reduce noise and fill small holes. Since the different classes
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Figure 3: Depth based weight functions.

of weighting strategies are analyzed here, we drop them.
The visibility based part is discussed separately and the
modified update process using the region around the pixel
only reduces noise perpendicular to the view direction of
the camera which is not considered here.

A similar function modeling this kind of noise is devel-
oped by Hemmat et al. [7, 8, 9].

wDA(d) =
1
d2 − 1

d2
max

1
d2

min
− 1

d2
max

(13)

Like Nguyen et al. [12], larger distances are weighted with
smaller weights where more noise is expected. The main
difference between the two functions is the way how they
handle the range interval [dmin ,dmax] of the camera. While
Nguyen et al. [12] only use the minimal range as a nor-
malization and ignores the upper bound, Hemmat et al.
[7, 8, 9] use both bounds to compute weights between 0
and 1. Especially for larger intervals, the former scores
two different high depth values with quite the same small
weight, whereas the latter returns small weights which dif-
fer much more from each other to indicate the difference
of the depth values.

Hemmat et al. [7, 8, 9] also used a modified update
behavior. Instead of integrating all captured scans, only
those with higher or similar weights than the previous ones
are used. The idea here is to suppress measurements with
higher noise than previously acquired ones to improve the
quality. But as mentioned before, such modifications are
not part of the considered class so we skip this step. For
a better comparison in Figure 3, we also set the scaling
parameter Wmax in the original function of Hemmat et al.
[7, 8, 9] to 1.

Angle based functions Another source of information
about the noise level is contained in the angle between the
surface normal and the view direction of the camera. Simi-
lar to the previously modeled distribution, noise increases
significantly if this angle gets larger. Large angles indi-
cate a relatively strong increase of the depth in the neigh-
borhood of the desired pixel meaning that the surface is
orientated away from the camera. In this case, measuring
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Figure 4: Angle based weight functions.

the correct depth becomes harder or even impossible, so
a high noise level is expected here. To model this uncer-
tainty, Curless and Levoy [5] use the cosine of the angle to
compute weights.

wCos(θ) = cosθ (14)

As seen in Figure 4, high weights are assigned to voxels
where the surface is orientated to the camera and the angle
is small. With increasing angles, measurements become
more and more inaccurate so the weights decrease. Angles
around 90◦ indicate a rapid increase in depth and a high
potential error. Measurements can be completely wrong
now so no voxel should change its information and weights
should be close to 0.

4.3 Combined functions

In the previous section, we introduced some easy to un-
derstand functions developed in the last past years. Re-
searchers concentrated on several effects and achieved im-
pressive results. However, these functions can not be easily
extended. To overcome this issue, we separate them as de-
scribed in the previous section by skipping terms that are
not related to the desired class. The combination is now
performed using a multiplication of the functions each cho-
sen from a unique class.

wvisibility = fvisibility(sdf ) (15)
wdepth = fdepth(d) (16)
wangle = fangle(θ) (17)

wcombined = wvisibility ·wdepth ·wangle (18)

One important aspect of a weight function is its bounds.
We assume that all used functions are non-negative and
bounded by some individual small constant.

∀sdf : 0≤ wvisibility(sdf ) ≤Wmax visibility (19)
∀d : 0≤ wdepth(d) ≤Wmax depth (20)
∀θ : 0≤ wangle(θ) ≤Wmax angle (21)

Since the combined values are bounded by the product
of the individual bounds, these constants should be small.

This ensures that the combined function never reaches ex-
tremely large values. In our case, the combined bound is
given by

Wmax combined =Wmax visibility ·Wmax depth ·Wmax angle (22)

Ideally, all of them are set to 1 resulting in a combined
bound of 1. Because large weights might be problematic
in some implementations, future extensions like additional
classes can now be integrated easily and the update behav-
ior of the algorithm still remains as expected.

Naturally, also more than three strategies can be com-
bined to compute weights. But using two functions of the
same class does not necessarily increase the complexity of
the entire strategy. The combination of these two functions
is still a function of the same strategy class and is limited to
its properties. So it could be defined directly without using
this approach. However, this also can increase readability
and lead to a finer grading of the modeled limitations.

5 Evaluation

In this part, we discuss the results achieved by our new
technique and compare it with current approaches.

5.1 Test Environment

To allow applying the introduced algorithm and test the
weight functions with existent 3D models, we need to com-
pute depth maps on-the-fly. For construction, a virtual cam-
era consisting of extrinsic and intrinsic parameters has to
be defined first. The extrinsic parameters are also known as
the pose and are already computed during pose estimation.
The intrinsic parameters contain the camera resolution, its
range and field of view. With these parameters, we com-
pute the projection matrix introduced by Zhang [23].

P =




α 0 u0
0 β v0
0 0 1


 (23)

The skewness parameter γ is dropped here since we only
consider a virtual camera. The remaining coefficients can
be expressed in terms of the camera resolution nx×ny and
the horizontal field of view fovhorizontal .

α = f ·u0 = β f =
1

tan
(

fovhorizontal
2

) (24)

u0 =
nx

2
v0 =

ny

2
(25)

To construct the depth map now, we first transform the
given point cloud to the local camera coordinate system
using the estimated pose. Then, we compute the distances
to the camera and project all points by the projection matrix
P. Points falling into the same pixel are summarized by the
one with minimal distance to the camera. Finally, we store
these distances in an image to obtain the final depth map.
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Wsingle Wcombined

Unity KinFu CM3D NM DA Cos
KinFu
+ NM
+ Cos

KinFu
+ DA
+ Cos

CM3D
+ NM
+ Cos

CM3D
+ DA
+ Cos

Dragon
TSDFKinFu 3.7052 1.9951 2.4717 3.0804 2.9989 3.3534 1.8656 1.8429 2.2461 2.2374
TSDFNM 3.3918 1.8711 2.4328 2.6763 2.5801 2.9604 1.7657 1.7434 2.2153 2.2042

Angel
TSDFKinFu 2.9870 1.1662 1.5912 2.8978 2.9313 2.7380 1.1271 1.1290 1.5045 1.4977
TSDFNM 2.6760 1.1051 1.5117 2.5358 2.5328 2.4360 1.0835 1.0848 1.4385 1.4322

Table 1: Comparison of the mean error (ME) between different TSDF and weight functions (in mm).

Wsingle Wcombined

Unity KinFu CM3D NM DA Cos
KinFu
+ NM
+ Cos

KinFu
+ DA
+ Cos

CM3D
+ NM
+ Cos

CM3D
+ DA
+ Cos

Dragon
TSDFKinFu 5.6066 2.9967 3.3495 4.6405 4.5039 5.1886 2.7912 2.7653 3.2000 3.2545
TSDFNM 5.2296 2.9073 3.3482 4.1469 3.9830 4.6493 2.7319 2.7061 3.1820 3.2213

Angel
TSDFKinFu 4.5709 1.8169 2.1430 4.3310 4.3838 4.2221 1.7622 1.7800 2.0666 2.0574
TSDFNM 4.1803 1.7674 2.0573 3.8763 3.8563 3.8216 1.7310 1.7415 2.0097 1.9961

Table 2: Comparison of the root-mean-square error (RMSE) between different TSDF and weight functions (in mm).

For testing, we use the 3D models of the Asian Dragon
and the Christian angel Lucy provided by the Stanford
Computer Graphics Laboratory [17]. Reconstruction is per-
formed on a Intel Core i7-4930K CPU, 32GiB RAM and
a Nvidia GeForce GTX780 with 3GiB VRAM. Our imple-
mentation uses a hash table with 220 buckets each contain-
ing 2 entries. The reconstruction is stored in a predefined
voxel buffer with a total number of 218 voxel blocks and 83

voxels per block. We use a voxel size of 1mm and a trunca-
tion region of 12mm. Our virtual camera has a range from
1.25m to 2.25m and captures depth maps using a resolu-
tion of 1920×1080 pixels with a horizontal field of view of
60◦. Since the angel stands upright, the camera is rotated in
this kind of situation and uses a resolution of 1080×1920
pixels with a vertical field of view of 60◦. Additionally,
we add artificial noise to each depth sample according to
the previously mentioned Gaussian noise distribution with
depth-dependent standard deviation σz(d).

For reconstruction, all models are placed 1.75m in front
of the camera and scaled such that the heights of their
bounding boxes are equal to 75% of the vertical height
of the frustum at this depth. This ensures that the depth
maps contains the full object independently of its original
location in space.

5.2 Results

Reconstruction is performed by a single 360◦ round of the
camera with 360 depth maps captured in total. Averaged
reconstruction times per frame are 231.6ms (∼4fps), with
17.7ms (7.6%) for depth map creation, 89.8ms (38.8%)

for integration, 100.2ms (43.3%) for surface extraction
and 23.9ms (10.3%) for surface composting. Since the
used resolution is much higher than the one of the Kinect,
this demonstrates the scalability of the volumetric data
structure of Curless and Levoy [5].

Tests are performed among all possible combinations
of TSDF and weight functions and shown in Table 1 and
Table 2. More precisely, we test the unity function, the vis-
ibility based functions KinFu (Izadi et al. [10], Newcombe
et al. [11]) and CM3D (Sturm et al. [18]), the depth based
functions NM (Nguyen et al. [12]) and DA (Hemmat et al.
[7, 8, 9]), and the angle based function Cos (Curless and
Levoy [5]) as defined before. These functions only com-
pute a single weight and are the reference of our technique.
As the combined weights, we use all possible combinations
consisting of three different functions each chosen from a
unique class.

Because we consider a 360◦ reconstruction, visibility
based functions perform best. KinectFusion seems to
achieve the best result since it has the lowest error. How-
ever, the point density of its reconstruction is highly irregu-
lar. While there is a high density at the front side, the back
side only has a low one resulting in a low total number of
samples and many small holes. This is caused by using
zero weight on the back side which means that no update
is performed and relating voxel blocks are deleted by the
garbage collection. Sturm et al. [18] use a small positive
weight to overcome this and achieve very good results but
with a slightly higher error. Depth based and angle based
functions perform worse which is shown especially by the
root-mean-square error that penalizes non-regular recon-
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(a) Original with 3609600 points. (b) Error heat map of the reconstruction
with 4883046 points using the functions
TSDFKinFu and WUnity.

(c) Error heat map of the reconstruction
with 6130290 points using the functions
TSDFKinFu and WCM3D.

(d) Error heat map of the reconstruction
with 4819152 points using the functions
TSDFKinFu and WDA.

(e) Error heat map of the reconstruction
with 4421626 points using the functions
TSDFKinFu and WCos.

(f) Error heat map of the reconstruction
with 5684977 points using the functions
TSDFKinFu and WCM3D+DA+Cos.

(g) Error heat map legend.

Figure 5: Asian dragon, used from Stanford Computer Graphics Laboratory [17].

structions. Furthermore, reconstructions are affected by
many artifacts and only have a slightly better quality than
the unity function (see Figure 5).

Best results among all test scenes are achieved by our
new weighting technique. All combinations outperform
the strategies which only use a single weight and achieve
improvements up to 10%. Especially the combination with
the function of Sturm et al. [18] performs best and achieves
a lower reconstruction error than current approaches. How-
ever, not all regions of the reconstruction have a lower er-
ror. As shown in Figure 5, the depth based and angle based
functions produce samples with high error at the head of
the dragon while the visibility based ones creates most sam-
ples with low error. As a result, the negative behavior of a
function is also integrated in the overall strategy and can
increase the error of some samples. Nevertheless, the posi-
tive and intended behavior of such a function overweights
its risks, so the averaged error over all samples is reduced.

6 Conclusion

We presented a new weighting technique which combines
existing strategies and assigns them to a certain class that
represents its properties. These classes can extend the

knowledge of the underlying problem and accelerate de-
velopment of more sophisticated strategies. For a complete
solution that captures all desired limitations, several func-
tions are combined, each taken from a unique class.

We demonstrated high quality reconstructions with a
smaller error than current state-of-the-art approaches. We
believe that the advantages of combined functions are even
more evident when more classes are developed and the
complexity increases. However, combining arbitrary func-
tions which might lower the error does not necessarily lead
to better results. The functions we used are developed care-
fully and proven to perform good, so the combination of
functions should also be chosen very carefully to achieve
good results.
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Abstract

This paper presents a new approach to automatic 3D
building reconstruction from LiDAR data. While tradi-
tional approaches use random sampling or Hugh trans-
form for extracting subsets of coplanar points from noisy
point clouds, our method is based on locally fitted sur-
faces (LoFS). These are planes, best-fitted to the K-
neighbourhood of each LiDAR point. In this way, a set
of candidate patches for a building surface is obtained.
The clustering of patches is then performed based on the
planes’ normals and the positions of neighbourhoods, in
order to obtain a rough approximation of flat roof sides.
An adjacent graph is generated between them and inter-
sections between neighbouring sides are estimated in or-
der to define ridges, while intersections between buildings
and ground points are considered in footprint definition.
This defines the vertical walls. This method was tested on
buildings of different architectural styles, sizes, and com-
plexity. Most buildings are successfully reconstructed,
however with increased building details, the accuracy of
reconstruction is often decreased.

Keywords: LiDAR, Building, Reconstruction, LoFS

1 Introduction

Light Detection And Ranging (LiDAR) has become a pop-
ular research topic over the last decade, as more atten-
tion is directed towards Earth observations [10, 9]. Li-
DAR is an active remote sensing technology that utilises
laser light in order to scan surface topographies, usually
from an airborne platform. The result of such scanning
is a dense cloud of topologically unstructured 3D points
that allows accurate monitoring of the Earth’s surface. Re-
cently, 3D reconstruction of urban environment has be-
come increasingly important and is being used for many
applications such as urban planning [4], wireless commu-
nications’ modelling [18], tourism or grand-scale virtual
geographical information programs [19]. As manual re-
construction is exhausting, it is imperative to be able to
reconstruct buildings automatically or semi-automatically.

∗m.bizjak@um.si
†domen.mongus@um.si

This paper presents a novel method for automatic build-
ing reconstruction from LiDAR data that uses locally fit-
ted surfaces (LoFS) in combination with clustering and an
adjacency graph to find primary buildings’ vertexes and
borders. The paper is structured into 4 sections. The next
section provides an overview of the related work. Sec-
tion 3 describes the proposed method for reconstruction of
buildings, followed by the results. The last section con-
cludes this paper.

2 Related work

Automatic reconstruction of buildings from LiDAR data
is an intensive research field, where a number of solutions
have already been proposed. In most common cases, pla-
nar patches are extracted from point clouds in order to
obtain approximated flat roof sides. Random sampling
consensus (RANSAC) [2, 21, 22, 12, 1], Hugh transform
[13, 20, 23], or region growing on surfaces [15, 7, 5, 17]
are the most often used methods for this purpose.

An early attempt at semi-automatic reconstruction was
done by Haala and Brenner [3]. In addition to LiDAR data
they used 2D ground plans of buildings for their automatic
3D reconstruction. The ground plans are divided into
rectangles, for each of which 3D primitives are instanti-
ated. Final reconstruction is obtained by merging selected
3D primitives. Later, Brenner [2] presented a bottom-up
approach that extracts faces from laser scan data using
RANSAC. A set of rules was developed to decide which
segments are selected for this purpose. The roof is then
built from the selected segments, closing any gaps. Re-
cently, Arikan et. al [1] introduced a reconstruction and
modelling pipeline to create polygonal models from un-
structured point clouds. They extracted planar patches us-
ing RANSAC and then snapped them together using an
iterative optimisation approach.

In contrast, Vosselman [23] developed a method that
uses Hough transform in order to extract planar faces from
laser scan data, followed by a connected component anal-
ysis. The roof topology is determined by considering geo-
metric constraints and bridging gaps along detected edges.
Vosselman and Dijkman [24] upgraded this method by in-
tegrating the information obtained from ground plans.
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In 2003, region growing on surfaces was utilised for re-
construction by Rottensteinter and Breise [17]. They pro-
posed a method that uses LiDAR data in combination with
aerial images. Roof planes are detected by a curvature-
based segmentation technique [16]. They are grouped to
create polyhedral building models and then improved with
the usage of all available sensor information. A region
growing algorithm based on an adjacency graph was pro-
posed by Milde et al. [7]. Simple roof shapes are extracted
by finding subgraphs, whereas complex roof structures are
derived using formal grammar.

The idea of presenting topological relations between ap-
proximated roof sides using adjacency graph was first in-
troduced by Verma et al. [22], where two faces are con-
sidered as adjacent if at least one pair of line segments
from their approximated 3D boundaries is close enough.
Several other approaches have also been proposed for es-
tablishing adjacency relations. Milde et al. [7] used the
perpendicular distance between oriented parallel bounding
boxes of faces. Oude Elberink [14] considered the length
of a segment, determined by points within a flexible dis-
tance from intersection lines between two faces.

3 Reconstruction of buildings

Reconstruciton is performed over four steps. Firstly, lo-
cally fitted surfaces (LoFS) are estimated for each point.
In the next step DBSCAN clustering is applied on the nor-
mals and position of the neighbourhood in order to obtain
approximated flat roof sides. An adjacency graph is con-
structed in the third step and in the last step main build-
ings’ borders and sides are estimated. Every step is sepa-
rately described in detail in the following subsection.

3.1 Estimation of LoFS

The method’s input is a LiDAR point cloud, where each
point is georeferenced and classified as building, terrain
or vegetation [8]. Firstly, for each building point, the
K-nearest points are located using fast approximate K-
nearest neighbours algorithm [11]. A plane is fitted to the
K-neighbourhood of each point using locally fitted sur-
faces (LoFS). LoFS is a set of best-fitted surfaces to the
K-neighbourhood of each point [8]. If the neighbourhood
of each point does not belong to the same surface, large-
fitting error occurs. In this case, a surface with better-fit
should exist. In order to determine it, the neighbourhood
of each point is inspected. For better understanding, con-
sider the example in Figure 1a), where a case of six points
from a roof surface and a point within the building is pre-
sented. Firstly, a set of best-fitting surfaces is estimated
in Figure 1b) with a fitting window size set to 3 and link-
ing window size to 5. Window size defines the number
of points considered when fitting or linking surfaces. In
our case this means that each surface is fitted to a given
point by also considering its neighbour on each side. Ev-

Figure 1: Estimation of LoFS with window size for fitting
set at 3 and for linking at 5 in the case of a noisy surface
a). A set of best-fitted surfaces is obtained and linked with
the corresponding points b). The neighbourhood of each
point is inspected to link it with a surface with the best fit
c) in order to obtain the final set of surfaces d).

ery point is linked to the fitted surface, as shown in Fig-
ure 1b). During the linking step, the neighbourhood of 2
points on each side of the given point are inspected for the
defined window size. The surface from this neighbour-
hood with the lowest distance (error) to a given point is
linked with it. Thus, the darkened point is linked with the
surface corresponding to the second neighbour on its right
(as shown in Figure 1c)). The final set of surfaces can be
seen in Figure 1d).

3.2 Clustering

Points linked with their LoFS are then clustered separately
by normals and then by position in order to obtain a rough
approximation of flat roof sides. Clustering is a process
of dividing data into groups of similar objects (clusters).
Density based spatial clustering (DBSCAN) within large
datasets with noise is used [6], as LiDAR point cloud is a
representative of such datasets. DBSCAN is based on the
idea that the density within a neighbourhood for an object
has to be high enough to belong to a cluster. Each cluster
is created from a single data object by absorbing all ob-
jects in its neighbourhood. DBSCAN is independent of
data order. It is controlled by two parameters: the minimal
number of points required to be considered as a cluster and
density treshold for neighbourhoods. In this step clusters
of points that belong to the same flat roof side are obtained.
The problem of using density within a neighbourhood for
clustering is that DBSCAN also clusters points within the
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neighbourhood that might be a part of a curved surface.
This only occurs when the curvature is small enough for
the distance between neighbours to be lower than the den-
sity threshold. Each cluster with an averaged plane equa-
tion is considered as a node of the adjacency graph that is
constructed in the next step. The result of such clustering
is presented in Figure 2.

Figure 2: Example of clusters of points that belong to the
same flat roof side (i. e. nodes) for a building’s roof.

3.3 Adjacency graph construction

The topological relations between approximated roof sides
are usually presented in an adjacency graph. Adjacency is
commonly defined as a pair-wise connection by an edge
between two roof sides that share a common border [22].
In order to be able to detect common ridge points, we
define adjacency as edges between roof sides that share
at least one ridge point. Adjacency is tested using en-
larged and oriented bounding boxes of the approximated
roof sides. If two bounding boxes overlap, they are adja-
cent. In this way an undirected graph is constructed, as
shown in Figure 3.

Figure 3: Adjacency graph for a roof with four nodes
that share the same ridge point. Black segments represent
graph edges.

3.4 Modelling

In order to reconstruct a building we need to determine its
boundary points and edges. Firstly, ridge points that are
shared between at least three roof sides are estimated. This

is performed by searching for maximal cliques in the adja-
cency graph. Clique is a subset of nodes in an undirected
graph where every two nodes in the subset are connected
by an edge. It is maximal when it does not exist within a
larger clique. From every clique we select three nodes that
share at least one border with the other two nodes. To test
if two nodes share a common border, an intersection line
between pairs of nodes is first calculated. Then the points
of each node that are within a certain distance d from the
intersection line are projected perpendicularly on the line,
as shown in Figure 4.

Figure 4: Shared common border between a pair of nodes.
Points within a distance d from both nodes are perpendic-
ularly projected on the intersection line. The longest seg-
ment between projected points l needs to be long enough.

If the longest segment l between the projected points
from both nodes is long enough (e.g. 1m), it is consid-
ered that there is a border between these nodes. Using the
selected three nodes we calculate a shared ridge point as
the intersection point of three planes. The calculated ridge
point is shared amongst all nodes in the clique. After we
have obtained ridge points, the borders between nodes are
estimated. A border is a segment on an intersection line
between two nodes. A segment is bounded by either a
ridge point or the projection of a bounding point of a node.
There are two types of bounding points of a node used for
projection.

Figure 5: Border bounding points determination based on
the type of a border (A - horizontal, B - inclined).
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Suppose we have a building designed as shown in Fig-
ure 5, we already know the marked ridge point and we
need to determine borders A and B. If an intersection line
is horizontal (A), it represents a ridge, thus the bounding
point of a border is the perpendicular projection of a node
point to the intersection line in such a way that the bor-
der is maximally long. If it is not horizontal (B), then the
bounding point of a border is the point on the intersection
line with the same height as for the lowest point from both
intersecting nodes. After the bounding points and borders
of a roof are determined, we need to determine the build-
ing’s exterior walls’ height. This height is obtained from
LiDAR data as the difference to the lowest ground point in
direct proximity to the building.

4 Results

The presented method was tested on LiDAR datasets with
a wide variety of building types. The tested buildings were
of different sizes, architecture and complexity. We were
limited by LiDAR data sparsity as the number of points on
each planar surface needs to be large enough for success-
ful extraction of flat roof sides. Consequently, only those
flat roof sides that are large enough were successfully ex-
tracted and used during the process of reconstruction.

During the first step we fitted to the neighourhood of 8
points (K=8). The fitting and linking window sizes were
also set to 8. At least 5 points were needed to form a clus-
ter in the next step. When clustering by position and nor-
mals were performed, densities of 1.4 and 0.12 were used,
respectively. In the third step for the adjacency test the
oriented bounding boxes were enlarged by 1m in all direc-
tions. For the shared common border test d and the min-
imum length of l were both set to 1m. All the presented
results were tested using these settings. The result of the
reconstruction of a single building without complex parts
is presented in Figure 6.

Figure 6: Reconstruction of a building with large surfaces.

Common ridge points and borders were successfully de-
termined. Additionally we are able to reconstruct more
complex buildings with smaller roof surfaces, as shown in

Figures 7 and 8. For better comparison, LiDAR datasets
for these two reconstructed buildings are shown in Figures
7a) and 8a), where the building points are red and ground
points brown. The capabilities of reconstruction include a
hipped roof and embedding gable to the larger roof sides,
as can be seen in Figure 7.

Figure 7: Reconstruction of a building b) with embedded
gable and hipped roof on the left side from LiDAR data a).

Figure 8 presents an example of a reconstruction that
incorporates shed dormer into the building. Dormers can
be located anywhere on the larger roof surface as long as
the first two steps have successfully extracted its planar
surfaces. In addition we performed testing on larger Li-

Figure 8: Reconstruction of a building b) with embedded
shed dormer from LiDAR data a).
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DAR datasets. As can be seen in Figures 9 and 10, this
method provides good reconstruction of buildings from Li-
DAR datasets with a greater number of buildings.

Figure 9: Example of successfully reconstructed buildings
of a small settlement from LiDAR dataset.

Figure 10: Reconstruction of a settlement.

5 Conclusions

This paper proposed a novel method for the reconstruction
of buildings from LiDAR data. For the extraction of ap-
proximated roofs’ planar faces the locally fitted surfaces
(LoFS) and DBSCAN clustering were used. Between the
obtained planar faces an adjacency graph was constructed
for extracting the common ridge points. The borders be-
tween the faces and building’s exterior walls were esti-
mated for the final building model. To our knowledge this
is the first method using this concept of LoFS for the esti-
mation of planar surfaces. The results confirmed that the
method can successfully reconstruct most regularly com-
plex buildings with sufficient accuracy.

There are many possibilities for the improvement of re-
construction during all steps. Different clustering algo-
rithm could provide better planar faces extraction results
as DBSCAN clusters points within the neighbourhood that
might also be a part of a curved surface. For faster com-
putation a subgraph of the adjacency graph from the third
step, that would define adjacency more strictly, could be
used for border estimation. Modelling improvements are
possible on many levels such as multi-layered building
roofs, curved roofs or facade design.
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VRVis Zentrum für Virtual Reality und 

Visualisierung Forschungs‐GmbH 

The  VRVis  Research  Center  is  a  joint  venture  in 
research  and  development  for  virtual  reality  and 
visualization. VRVis was founded in 2000 as part of 
the  Austrian  Kplus  program  to  bridge  the  gap 
between  academic  research  and  commercial 
development  as  well  as  to  supply  the  necessary 
transfer  of  knowledge  between  the  academic 
community  and  industry.  The  competence  center 
VRVis  is funded by BMVIT, BMWFW, and ZIT ‐ The 
Technology Agency of the City of Vienna within the 
scope  of  COMET  –  Competence  Centers  for 
Excellent  Technologies.  The  program  COMET  is 
managed by FFG. 
This mission  is mirrored  in  a  variety  of  academic 
and  industrial  partners.  The  research  center  is 
currently  conducted  by  five  academic  institutes 
and  numerous  industrial  partners.  Leading‐edge 
innovations  and  down‐to‐earth  business  style 
characterizes  VRVis  as  a  valued  partner  for  high‐
level research. 
The company  is  located  in Vienna, Austria. Today, 
around  60  researchers  together  with  about  20 
students do high‐level  applied  and basic  research 
in three different areas. 
 

The Team 

VRVis  consists  of  internationally  experienced 
researchers in the areas of visualization, rendering 
and  visual  analysis.  Their  outstanding  experience 
and knowledge in these topics qualify them for the 
innovative  research  they  are  performing.  The 
research areas are headed by key researchers who 
manage  these areas, define goals and projects  for 
this  area,  and  conduct  the  defined  research 
together  with  their  staff.  All  members  of  the 
research  team  are  young  researchers,  whose 
creativity and  ingenuity  is  the  key  to  the  success. 
VRVis  is  always  looking  for  young,  talented,  and 
motivated  researches  in  the  fields  of  research  to 
extend  its  research  work  or  to  support  partner 
companies. 

Research Program 

The  scientific  research  program  consists  of  three 
research areas (Visualization, Rendering and Visual 
Analysis)  in which  thematically matching  research 
projects are conducted. Each research area realizes 
application  projects  on  the  one  hand  and  basic 
research  for  these  application  projects  on  the 
other hand. 
 

Working at VRVis 

VRVis  is  always  looking  for  students,  junior  and 
senior  researchers  who  want  to  join  the  VRVis 
team.  VRVis  is  offering  internships,  diploma  the‐ 
ses  and  PhD  theses  in  cooperation  with  the  TU 
Wien and  regular positions. For more  information 
or search for job opportunities in the field of Visual 
Computing visit our webpage at www.vrvis.at. 
 

Selection of Partners 

Scientific Partners: 
• Vienna University of Technology 
• Graz University of Technology 
• University of Vienna 

Industrial Partners: 
• AVL List GmbH 
• AGFA Healthcare GesmbH 
• Austria Power Grid AG 
• Geodata Ziviltechniker GmbH 
• Imagination Computer Services GesmbH 
• ÖBB‐Infrastruktur AG 
• Zumtobel Lighting GmbH 
• and many more 

Currently,  VRVis  is  again  extending  its  industrial 

base with new partners from several new fields. 

 
 
 
 
 
 
 
 
 
 
 
 

 
Additional Information and Contact 

Please  visit our webpage  for detailed  information 
about the research program or current projects at 
www.vrvis.at or contact us at office@vrvis.at or via 
phone +43 (1) 20501 / 30100. 
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