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Abstract

We present a method to display large point data sets in web
browsers. Such data sets can consist of hundreds of mil-
lions to billions of points and are therefore too large to be
loaded and rendered at once. The idea of this method is
that only points inside the view frustum and up to a certain
level of detail are loaded and rendered. Using adjustable
point-count limits, even mobile and low-end desktop hard-
ware is able to display these point clouds in real time or at
least interactively. The implementation is based on stan-
dard web technologies and requires no additional plugins
to be installed. This allows developers to combine it with
other web applications, like mapping software, in order to
synchronize georeferenced point clouds with world map
overlays. We also show how to choose point sizes in order
to avoid holes and hide varying point densities caused by
different levels of detail.
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1 Introduction

Various 3D scanning technologies such as laser scanners
and photogrammetry produce enormous amounts of point
cloud data. Datasets with billions of points are not uncom-
mon anymore. Processing and rendering these datasets is
a challenging task that neither the memory nor the speed
of today’s hardware can handle in real time unless broken
down into smaller parts. The simplest approach is to tile
datasets in small regional chunks and handle one or a few
at a time. Another one is to subsample data down to a
manageable size. A third one, which is gaining more and
more popularity, is the combination of both by creating a
multi-resolution hierarchy. Such a hierarchy consists of
multiple levels of some sort of tree with a low-resolution
model stored at the top and increasing resolutions stored
in all descendants.

This paper is based on the multi resolution octree of In-
stant Points [1]. The concept of inner and outer octree
was simplified to one octree where all nodes, including
root, inner and leaf nodes, store various resolution subsets
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of the original point cloud data. Unlike the inner octree
approach, we do a uniform point selection with a user-
defined point spacing. This approach has higher prepro-
cessing costs but improves visual quality at lower levels of
detail. This is especially useful with slow internet connec-
tions, where viewers have to wait longer times until higher
levels of detail are loaded, but also for low-end hardware
with a low point budget. The predefined point spacing also
allows for a new adaptive point-size mode that changes
the point size according to the level of detail in order to
avoid holes. However, points that are close together will
be discarded due to the spacing requirements. Like the In-
stant Points system, we store one file for every node, which
makes it possible for the client to load the necessary data
without relying on server-side applications.

Our implementation, Potree [2], and some of the ex-
amples presented in this paper are available online at
http://potree.org

2 Related Work

QSplat [3] is a multi-resolution algorithm that traverses a
bounding-sphere hierarchy and builds the rendered point
cloud point by point. It adjusts level of detail to the ren-
dering duration. The fine granularity of the hierarchy, each
point is represented by a leaf or inner node, allows to ren-
der low-detail images during user navigation and progres-
sively higher levels of detail once movement has stopped.
Hierarchy traversal, on the other hand, is very costly, and
the point-wise assembly of the visible dataset makes it
hard to efficiently use the GPU.

Instead of associating each node with just one point,
Layered Point Clouds (LPC) [4] store M points per node,
where M can be chosen freely. This approach is much
more GPU friendly, as points can be stored on the GPU in
blocks of M points each, and the application only has to
tell the GPU which blocks to render. Our approach also
stores blocks of points in each node. The difference to
LPC is that points are chosen differently and it is not re-
quired to have exactly M points in each inner node. LPC
also uses a binary tree that continuously splits along the
longest axis, while our approach uses an octree instead.

Plas.io [5] is a web-based viewer for LAS and LAZ
files, and coupled with the point-streaming back-end grey-
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hound. The main differences to our implementation are
that greyhound uses a quadtree instead of an octree, points
are chosen according to the distance to a grid center dur-
ing indexing, and the client does not depend on the tree
hierarchy since the server takes care of it. The quadtree
approach works well for LIDAR datasets with large length
and width but relatively low height. General-case point
clouds with larger height are problematic, though. In-
dexing, on the other hand, is faster due to simpler point-
selection methods.

glob3mobile [6] is a mobile mapping framework with
point cloud support. Points can be stored either in a
quadtree or in an octree, depending on the extent of the
dataset. Data is stored in leaf nodes only, which de-
creases potential overhead in high zoom levels and top
down views, where few leaf nodes are visible. On the other
hand, at low zoom levels with a high amount of visible
nodes, the overhead increases.

ShareLiDAR [7] also uses a multi-resolution model ap-
proach and it is currently the only web viewer listed in this
paper that supports normals and therefore illumination as
well. According to their description, they have a prepro-
cessing throughput of 40kb of LAS files which is roughly
1500 points per second. For large datasets with billions of
points, this throughput is problematic.

3 Multi-Resolution Octree

In order to be able to render point clouds in real time and
to keep load times low, we first create a multi-resolution
octree hierarchy of the point cloud. The first level of this
octree, the root node, contains a coarse representation of
the whole point cloud. The resolution is defined by the
spacing parameter, which specifies the minimum distance
between points at root level. The default spacing is set to

spacing =
boundingBoxDiagonal

250
(1)

but users may define other values if required. Each sub-
sequent level halves the spacing and stores models with
increased resolution.

The spacing influences the number of points in each
node and therefore affects download times, the total num-
ber of nodes, the number of rendered nodes for a certain
point budget and the efficiency of frustum culling. The de-
fault value was chosen as a trade-off between fewer points
per node to improve download times but enough points to
avoid generating a large amount of mostly empty nodes.

Since hierarchy traversal is done on client side, the
client has to know about the hierarchy. Depending on the
size of the input dataset and the indexing parameters, the
octree can grow up to millions of nodes. Downloading
the full hierarchy at once increases the initial load times.
To keep load times low, the hierarchy is split into smaller
chunks, and only parts that are needed will be loaded. A
chunk contains a node and its descendants for the next

chunkDepth levels. Assuming chunkDepth = 5, a chunk
is generated for the root node, containing the hierarchy
from root to descendants at level 5. The same is repeated
for all nodes at level 5, resulting in a multitude of chunks
that contain the hierarchy from level 5 up to level 10 in the
respective regions.

4 Point Cloud Indexing

This section describes how a multi-resolution hierarchy is
created from an input point cloud.

First, the bounding cube of the input data is calculated
and the spacing and the depth of the octree are defined.
The default value for spacing is given by Equation 1 but
may be set to any other value by the user. The octree depth
has to be defined by the user. In the next step, points of the
input dataset are subsequently added to the octree. If the
distance to any other point inside the root is larger than
the spacing, the point is added to the root node. If there
is already another point in close proximity, it is passed to
the next level and the same test is repeated with half the
spacing. This process is repeated until the point has been
added to a node or the octree depth has been exceeded. In
the latter case, the point is discarded and will not be added
to any node. No duplicate points are generated.

Each node may contain thousands of points. To reduce
the amount of necessary distance tests while adding a new
point, points in a node are stored in a 3D grid. The length,
width and height of each cell is equal to the spacing at the
nodes level. During the distance test, only points in the
same cell and neighbouring cells have to be tested.

The hierarchy and nodes are written to disk regularly,
e.g., for every millionth point processed. The results up to
the last write can be viewed at any time, giving the user
the possibility to immediately cancel the conversion pro-
cess if, for example, the user decides to adjust conversion
parameters based on the current results.

Each node of the octree is given an ID that also rep-
resents its exact position in the hierarchy. The numbers in
the ID stand for indices ranging from 0 to 7. The root node
is named r. The first child of the root node has index 0 and
therefore its ID is r0, while the last child of the root has
index 7 and ID r7. The same is repeated for each level,
always concatenating the ID of the parent and the index of
the child to calculate the child’s ID. The second child of r0
has index 1 and thus the id r01.

5 Data Streaming and Disposal

This section describes how point data is loaded and un-
loaded.

The indexing process splits the point data into small
nodes and stores each of them in its own file. The only
task of the server is to host these files and send them to the
client upon request.
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Initially, the client loads metadata such as bounding
box, spacing and point attributes from the server. In the
next step, the first hierarchy chunk, containing the hier-
archy for the first few levels, is loaded. At this point,
the client starts to calculate the visible nodes and deter-
mines nodes that are visible but have not yet been loaded.
Unloaded nodes with the largest screen-projected size are
then requested from the server until at most maxParallel-
Requests are loaded at the same time. A value of 4 for
maxParallelRequests has proven to work well in practice.
If a node has a hierarchy chunk associated with it, that
chunk will be loaded as well, thus expanding the currently
loaded hierarchy by another few levels in the respective
region.

The client cannot load and store an infinite amount of
data in memory. It is therefore necessary to remove nodes
which are no longer or rarely used. This is done by keep-
ing track of the least recently used (LRU) nodes. After
a certain threshold on the number of loaded points has
been reached, the client starts to remove least recently used
nodes from memory before loading new ones. Previously
disposed data is often loaded faster on future http requests
since web browsers usually cache data by themselves.

6 Rendering

This section describes the rendering process, including hi-
erarchy traversal to calculate visible nodes, coloring, cal-
culating point sizes and different point-rendering qualities.

6.1 Octree Traversal and Visible Node Deter-
mination

Octree traversal fulfils 4 main tasks:

• Discard nodes outside the visible area (Frustum
Culling)

• Prioritize nodes with large screen-projected size

• Enforce point budget

• Discard nodes with a small screen-projected size

The traversal is done in a largest to smallest screen pro-
jected size order since nodes with a larger projected size
tend to have a higher impact on visual quality. This is
done by adding the children of each traversed node into a
priority queue, and then visiting the node with the highest
priority. The priority is given by the screen-projected size.
A child always has a lower priority than its parent, but dis-
tant high-level nodes may have a lower priority than low
level nodes that are close to the viewer. During traversal,
the visiblePoints and visibleNodes variables keep track of
the amount of points and nodes that were found to be vis-
ible. Traversal stops if there are no more nodes to visit or
if a user-defined point budget has been reached.

(a) RGB (b) Height

(c) Intensity (d) Classification

(e) Return Number (f) Point Source ID

Figure 1: Coloring different point cloud attributes; CA13
point cloud courtesy of [8]

.

Frustum culling is done using box frustum intersection
tests. A node that is not inside or does not intersect the
view frustum will not be rendered and is omitted from fur-
ther processing.

Nodes with a small projected size have a smaller impact
on quality. They are discarded if their size is lower than a
user-defined threshold.

The visible hierarchy is kept in a list for use with other
features such as ray casting, point picking and adaptive
point size, which is explained in detail in subsection 6.3.

6.2 Coloring

Point clouds can have a variety of different attributes. LI-
DAR data, for example, often contains intensity, return
number, point source ID and classification, but not neces-
sarily color (RGB). Photogrammetry-based point clouds,
on the other hand, have color and possibly normals, but no
intensity or return number. In our system, octree nodes are
stored as files on the disk, and the format of these files can
be chosen freely. For point clouds with only color data,
points are stored in binary files with coordinates and color.
For point clouds with color, intensity, classification or re-
turn number, points are stored in LAS or compressed LAZ
files, instead. Color data is rendered as is, while inten-
sity is rendered using a grayscale gradient, classification
is rendered using a look up table, and other attributes are
rendered using rainbow color gradients, as shown in Fig-
ure 1.

6.3 Point Size

One problem of level of detail using multi-resolution hi-
erarchies is the noticeable difference in point density in
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ID index children offset
r 0 00001010 1
r1 1 00010000 2
r3 2 00000000 0
r14 3 00000000 0

Figure 2: Hierarchy encoded in a 1D array containing chil-
dren masks and relative offsets to a node’s first child.

regions with different level of detail. To overcome this
problem, an adaptive point-size mode was implemented.
This mode sets the point size based on both, the visible
octree depth at the point position and the distance to the
camera. Calculating the visible octree depth for all visible
points and sending this data to the GPU each frame is a
relatively slow process. Instead, this calculation is done
directly on the GPU. The visible hierarchy is encoded in a
1D array, stored in a texture and sent to the GPU. Inside the
vertex shader, the hierarchy is traversed towards the vertex
position and the localOctreeDepth variable is incremented
along the way.

Nodes are stored in breadth-first order and are encoded
in 3 bytes, each. The bits of the first byte indicate which
children are visible. The second byte contains the relative
offset to the node’s first child inside the array. These 2
properties are sufficient to traverse the octree from top to
bottom. The third byte is empty. Figure 2 shows an exam-
ple of a hierarchy and its encoding. Each traversed level
requires one texture lookup, counting how many bits have
been set in a byte and whether a certain bit has been set
or not. This puts additional overhead on the vertex shader,
but it also reduces the number of vertices and fragments
required to fill holes.

The point-size is calculated by taking the spacing of the
octree root, then halving the size for each visible node at
that location and finally computing the screen projected
size, as shown in Equation 2 and 3.

worldSpaceSize =
spacing

2localOctreeDepth (2)

pointSize = pro ject(worldSpaceSize) (3)

This algorithm only works properly if the worldSpace-
Size is higher than the sampling density of the original
point cloud data. In regions where the size is lower than
the original sampling density, holes will appear because
there are not enough points available to make up for the
decreased point size. For a good utilization of adaptive
point size it is therefore important that the octree depth is
not too high.

Figure 3 shows the difference between fixed and adap-
tive point size.

6.4 Rendering Quality

Most point cloud viewers render points either as squares
or circles. Increasing the size will cause these primitives
to overlap and reduces the readability of high-frequency
features such as text and fine details. In order to improve
readability, the high-quality splatting [10] algorithm using
screen-space aligned circles was implemented. Instead of
rendering only the fragments closest to the camera, frag-
ments within a certain distance are blended together. This
algorithm requires at least 3 rendering passes. In the depth
pass, a linear depth map with an additional linear offset,
for example 1cm, is rendered. In the next step, the at-
tribute pass, all fragments that pass the depth test, i.e.,
all fragments closest to the camera as well as fragments
at most 1cm behind them, will be blended together. The
fragments are weighted according to their distance to the
center of the point, and the weighted value as well as the
weight will be summed up. The last step is to normalize
the buffers by dividing the weighted sum of the attributes
by the sum of their weights. Both, blend depth and weight
function can be made dynamic to adapt to different needs.
Large-scale point clouds will need a different blend depth
than point clouds of small objects. Changing the weight
function can result in very smooth or blurry but also very
sharp images. High-quality splatting gives very good re-
sults, but the downside is the need for at least 3 rendering
passes.

In order to achieve good results in just one pass, we im-
plemented another point-rendering algorithm with a sim-
ilar idea. High-quality splatting assigns weights to frag-
ments based on their distance to the point center and then
blends them together. Instead of summing up weights and
attributes, we use a weight function as an offset to the frag-
ment depth. Essentially, this means that instead of render-
ing screen-aligned squares or circles, each point is ren-
dered as a three-dimensional object. Fragments far from a
point’s center are more likely to be occluded due to their
high depth offset. The result is a nearest-neighbour-like
interpolation with similarities to a Voronoi diagram.

Figure 4 shows a comparison of the different rendering
modes.
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(a) fixed (b) adaptive

(c) fixed (d) adaptive

(e) adaptive optimal

Figure 3: With fixed or projected point size, noticeable
holes appear in regions with a lower level of detail. In
figure (b) and (d), adaptive mode is used to increase point
size in order to avoid holes. In figure (e), point size was
chosen to avoid holes completely. Highway construction
point cloud courtesy of [9]

.

(a) squares (b) circles

(c) interpolation (d) splats

Figure 4: 4 different rendering modes. Squares and cir-
cles have issues with overlapping points. Interpolation and
splats provide considerable improvements in readability of
high frequency features. Point cloud courtesy of [11]

.

7 Georeferencing

One of the largest use cases of point clouds is the captur-
ing of landscapes with LIDAR or photogrammetry. These
kinds of point cloud scans can be georeferenced, which
means they can be assigned coordinates that refer to exact
positions on the planet. A variety of projections exists for
different tasks and locations. These projections are usu-
ally planar and do not account for the earth’s curvature,
but they work as a good approximation in small regions.
Additionally, coordinates are often stored as 32bit floats
or integers which have enough precision for a given area
but not the whole planet. Most projections are therefore
only valid for small regions or countries and not meant to
be used outside.

One of the challenges of working with georeferenced
data are the huge values of point coordinates. Ac-
cording to Spatial Reference [12], x coordinates in
EPSG:21781 (Swiss) projection lie between 485869.5728
and 837076.5648. Floating-point types have high preci-
sion for values near 0 but cannot accurately handle such
high values. For this reason, the point cloud will be trans-
formed to local scene coordinates by translating all points
to the origin.

We use georeferencing to provide a side-by-side view
of a 3D point cloud scene and a web map such as Open-
StreetMap [13], as shown in Figure 5. In order to dis-
play camera position and direction in a web map, the cam-
era scene coordinates are first transformed to the projected
point cloud coordinates and then to the map coordinates.
The reverse can be done as well, for example to draw a
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Figure 5: Map overlay showing camera position and point
cloud extent. Point cloud courtesy of [9]

.

(a) Original (b) Bing

(c) OpenStreetMap

Figure 6: Bing and OpenStreetMap projected on point
cloud data. Point cloud courtesy of [9]

.

line on the map and then display the same line in the 3D
scene.

We also use georeferencing to project web maps, e.g.,
OpenStreetMap or Bing Aerial [14], onto point cloud data,
as shown in Figure 6. First, the bounds of the desired re-
gion are calculated and then transformed to map coordi-
nates. The map inside these coordinate bounds is used as
a texture that is projected onto the point cloud data. Map
projections may be used for colorless LIDAR data or to
compare map data with point cloud data.

8 Performance

Indexing performance is measured in points per second.
Unlike other methods, the presented method also subsam-
ples the point cloud, so another important measure is the
sampling ratio of points read versus points written. Table 1

Dataset spacing depth points/s ratio (%)
CA13 315 10 33k 49

9 95k 14
8 121k 4
7 178k 1

Lion 0.05 4 98k 77
3 133k 29
0 333k 1.8

Table 1: Indexing Performance. points/s gives the num-
ber of points per second that were processed and ratio the
amount of points that were written. Close points are dis-
carded. All tests were done on the same 5400 rpm hard
drive.

GPU points mode FPS
860M 2M fixed 104

2M adaptive 100
330M 1M fixed 14

1M adaptive 11

Table 3: Performance of fixed and adaptive point-size
modes. In both cases, 1 pixel was rendered per vertex to
avoid influence of the fragment shader.

shows our performance results.
Rendering performance on 2 different notebooks is

shown in Table 2.
Performance of adaptive point-size is shown in Table 3.

9 Conclusions and Future Work

We have shown a method to render large amounts of point
cloud data in real time in web browsers without the need
to download the full dataset. A pre-indexing step is re-
quired to sort points into an octree structure, which makes
it possible to efficiently load just small parts of the dataset
needed for the current view point. For georeferenced point
clouds, we also showed how to synchronize them to web
maps such as Bing or OpenStreetMap in order to display
a map overlay showing current camera position and di-
rection and also how the map can be projected onto point
datasets.

Figure 7 shows some screenshots of point clouds that
were rendered with our work.

Some important future tasks include improved index-
ing performance, supporting normals for illumination and
avoiding generating a large amount of nodes with a small
amount of points in each. The biggest problem with in-
dexing right now is that a relatively slow dart-throwing-
type algorithm is used in order to guarantee a minimum
distance between points and to sample evenly distributed
points without regular repeating patterns.

Additionally, further improvement is needed to make
the adaptive point-size mode work with any octree depth
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Dataset #points #rendered points #rendered nodes GT 330M(fps) GTX 860M(fps) Adreno 320(fps)
CA13 5500M 400k 77 41 148 12

991k 115 21 122 4
1987k 198 10 97

Lion Statue 0.34M 150k 64 60 136 36
340k 199 24 93 18

Matterhorn 90M 986k 81 11 120 8

Table 2: Rendering Performance Results. All tests were done in Chrome on 2 notebooks and a mobile phone: A Sony
VPCF11C4E(2010) with a Nvidia GT 330M, a custom-built Schenker(2014) with a Nvidia GTX 860M and a Samsung
Galaxy S4 Active with a Adreno 320. Tests were done with a point budget of either 1 or 2 million points. We have
measured the frames per second (FPS) for different view points and listed the number of points and nodes that were
rendered. For all measurements, adaptive point size was used to cover holes. For the notebook tests, a 1920x943 pixel
canvas was used.

and to convert the whole dataset without discarding points
that are close together.
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(a) CA13 point cloud 1.4M points rendered (b) CA13 point cloud 1.1M points rendered

(c) Matterhorn, 1M points rendered (d) Matterhorn summit, 1M points rendered

(e) Statue in Philadelphia, PA, 1M points rendered
(f) Closeup of statue inscription, 1M points rendered with
interpolation shader

Figure 7: Screenshots of different point clouds, rendered either in Firefox or Chrome. CA13 point cloud courtesy of [8].
Matterhorn point cloud courtesy of [15]

.
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