
OpenGL View Library

Adam Riečický∗

Supervised by: Martin Madaras†

Faculty of Mathematics, Physics and Informatics
Comenius University in Bratislava

Bratislava/Slovakia

Abstract

In the paper, we propose a library for the viewing of
OpenGL textures, models and other resources. The in-
cluded library is adding a possibility for users to open
an additional window beside their program, which can be
used for displaying models, variables and textures in mul-
tiple ways. The user can configure window layout and cus-
tomize what will be displayed in the window. The library
also supports creating more layouts and switching between
them during runtime. The user is free to apply his own
shaders and vertex attributes for individual objects to cus-
tomize the rendering. The library can be used as a support-
ive viewer or tool for debugging OpenGL applications.

Keywords: OpenGL, mesh viewer, texture viewer, C++
library, buffer visualization

1 Introduction

Nowadays, many programmers need to use graphical out-
put in their programs. It may become useful also for the
programmers for whom the graphical output is not the
main intention. For this purpose, various graphical li-
braries such as OpenGL [1] or DirectX are chosen to get
maximal rendering efficiency.

Since these libraries are working directly with graphic
accelerators, the performance is robust, but it has its cost
especially for the developers. Data stored in video card
memory are hard to review by the program debugging and
errors on this level are unpleasant and disturbing. More-
over, programmers often have these data stored on graphic
card related with data in their application, which makes
debugging even more frustrating.

Our goal was to create a visualization tool for these pro-
grammers, where they would be able to inspect models
and textures stored in the video memory, and connect it
with the data from their program. This should be done by
providing a library with a simple interface which can cre-
ate another window beside the user’s application and offer
previewing possibilities.

∗a.riecicky@gmail.com
†martin.madaras@gmail.com

The paper is organised as follows. The first section is
devoted to similar solutions. It provides a closer look on
currently existing tools, and summarizes what is missing
in those solutions compared to our solution. The second
part specifies how the rendering of the structures is done.
The next section is devoted to a rough description of the
implementation. The last section summarizes the testing
and results that we have achieved. A concrete outcome of
this work is a library that can monitor and display different
types of data for various applications.

2 Related Work

The most widely used debuggers which we discuss and
compare in this section are gDEBugger [2], nSight [3],
Vogl [4] and few others. Each of them offer slightly dif-
ferent features, but the main purpose is the same, similar
with ours.

The gDEBugger is being promoted as an advanced
OpenGL debugger, profiler and memory analyser. It is
a stand-alone application, which allows the user to select
an executable he wants to debug. It runs the executable
under its environment and allows the user to display tex-
tures, shaders, OpenGL state and other resources created
and used by the application. After pausing the application,
the user can list down all textures, buffers, and objects lo-
cated on the graphic card in a moment. It also informs
the user about the performance and function calls. Since
gDEBugger is running over an executable, the user cannot
debug the variables from his application. Our library can
display both memory and video-memory data, also beside
the custom debugging environment.

In contrast, the nSight debugger from Nvidia extends
traditional code debugging environments. It can be built
in the Visual studio or Eclipse environment and offers the
user an ability to see almost anything what is related to
the video card memory, while he is debugging his own
code. The nSight can be used for debugging on CPU, GPU
and shaders simultaneously. However, an obvious main
disadvantage of this product is that it supports the latest
versions of the nVidia graphic cards only. Our solution is
designed to support also older versions of OpenGL.

The Vogl is being promoted as an OpenGL capture /
playback debugger. It is a new tool currently in alpha re-

Proceedings of CESCG 2015: The 19th Central European Seminar on Computer Graphics (non-peer-reviewed)



lease, which support both Linux and Windows platforms.
It handles logging all OpenGL state into the file, with re-
viewing possibilities. Compared to our solution, at the cur-
rent state it does not offer any graphical output for debug-
ging, despite the large amount of information logged.

There are also many other tools which can be used for
debugging OpenGL contexts. The BuGLe [5] - similar
to nSight but running on UNIX-like systems. It can be
used for debugging and profiling OpenGL applications in-
cluding shader code, buffers and a visual feedback of the
textures, the color and the depth buffers. Since November
23 2014, BuGLe is no longer being developed. Another
tool, the GLIntercept [6] can log all OpenGL calls but it
was mainly designed for OpenGL to version 2.1. Can be
declared that it is similar, however older solution then the
Vogl.

Despite all the pros of the mentioned tools, there are
many limitations. None of the tools provides a visualiza-
tion of meshes, and that was the main reason and motiva-
tion to create our own. We wanted to let the user to see not
only the array of values in the buffer, but also a 3D visual-
ization of them. Debugging the meshes in a visual form is
much more intuitive then listing a buffer values.

Most of the tools, like gDEBugger and nSight, need
to pause the application before they can be used. It can
be restrictive in some cases, for example when debug-
ging an animation, and it may lead to complications such
as need of frame-by-frame data debugging. Our library
works real-time, allowing the users to view mesh or tex-
ture animations instantly.

In mesh processing algorithms, an output is often rep-
resented as an array of values, corresponding to individ-
ual vertices of the mesh. These values can be for exam-
ple mesh diameter in vertex, skinning weights for single
bone, curvature or other vertex properties. Rendering of
these values in the user’s application would need creation
of specific shaders and buffers applied on a meshes. We
wanted to offer the user a possibility for creating a link
between data in the memory and data on the video card,
with a visual output. Our solution transforms an array of
values into a color data and then assign them to a vertices
of a mesh, which is the feature that is not present in any of
known debuggers.

In order to allow the user other possibilities, we added
a visualization of texture data and displaying variable val-
ues. To sum up, our tool may not be as complex as the
existing solutions mentioned before, but it provides visual-
ization possibilities that are beyond the limits of the other
tools.

Compared to other debugging tools, our framework is
displaying data defined by the user only, instead of all
OpenGL context. This may result in the better clarity of
displayed data, and filtering all not requited buffers.

Similarly to the gDEBugger, our framework works in
an additional window running beside the users application.
This window displays all resources monitored by the tool
and can be customized, depending on the needs and pref-

erences of the user. This feature also makes it suitable for
supplementary visual output applications, not only for de-
bugging purposes.

3 Visualization Methods

Our solution is displaying user defined structures only. We
needed a mean to uniquely identify them, which would
also help the user to distinguish between them. All the data
monitored by the library have therefore its unique caption,
defined by the user.

3.1 Mesh Visualization

Mesh rendering is the feature of our framework on which
we were focused the most. In its simplest form, our frame-
work can render a vertex buffer displaying a mesh as a
point cloud. This form of visualization does not require
additional information about the mesh, beside a buffer and
number of vertices. This allows the user to get a visual
feedback in a single library function call. In the next step,
the mesh data can be adjusted by other callings to spec-
ify vertex connectivity, texture coordinates or vertex at-
tributes.

The vertex connectivity can be added by sending an in-
dex buffer. Specifying element type, viewer treats a vertex
array as a sequence of elements. From that moment the
mesh is not rendered just as a point cloud, but individual
connected elements can be seen. Similar procedure can be
used for the objects which should be textured, but there
is a need to have the vertex connectivity specified in the
moment. Object is then displayed as a full solid textured
mesh, which can be viewed in the window.

After this, a rendering of the model is done by the li-
brary’s internal shader program which can be replaced by
the user specific shader program. It can modify the way
how the model in a library window is rendered. It is possi-
ble for the user to use vertex attribute buffers for a shader
input as well.

To each model, an array of values can be assigned. It
manipulates the vertex colors depending on the value. For
each individual vertex one value is taken from a field and
transformed to a color using a selected color scale. There
are several possibilities how the value can be changed into
the color. For our solution we selected a linear color map-
ping function, which is trivial to implement, with a low
computing cost, and result which is adequate and fully
sufficient for our needs. The vertex value is mapped on
a predefined linear color scale (e.g. blue for the minimal
and red for maximal value), and then applied as a vertex
color.

3.2 Other Data

Beside the one main purpose, which is a vertex-buffer
and mesh visualization, we want to offer the user ability

Proceedings of CESCG 2015: The 19th Central European Seminar on Computer Graphics (non-peer-reviewed)



to display other structures, to enlarge usage possibilities.
Specifically there are two other options - inspection of the
textures and tracking application variables.

Textures stored in the video memory can be monitored
via their individual buffer ID generated by OpenGL. Send-
ing this ID to the library allows the user to display specific
textures in the Viewer window. All the textures that were
sent to the library, can be displayed and viewed. This fea-
ture is not as complex as the mesh viewing, but we de-
cided to implement it, because it often may come in handy
to have it available. It can be used for example to review
depth or color frame buffer textures, normal, diffuse and
other texture properties of a model.

The last function allows the user to set a variable point-
ers to the library and then display actual values. Output of
the each pointer can be formatted and inserted into a de-
fined string line. These strings can then be selected in a
library window and are displayed as standard text output.
This function may be useful when there is a need to see
variables in a real-time without the restriction of applica-
tion pausing.

4 Implementation

The library offers a set of tools for previewing data struc-
tures. User can specify which OpenGL context he wants
to share with the library, and which structures he wants
to display. Viewing framework then makes a list of these
structures and the user can select and see the actual look
of the data at runtime.

Primarily, the library is designed to work with OpenGL
version 4+, however it can be used with projects that are
written in lower OpenGL version standards. The project
is implemented as a static library that can be linked to any
C++ project. The library header file, contains all function
callings that the library provides.

4.1 Architecture

The library interface function callings can be used to spec-
ify which resources should be displayed in the library win-
dow. By using them, the user passes to the library all infor-
mation needed. The framework stores all the data which
has been sent and offers them to select at runtime (User-
Library interaction described in Figure 1). Each structure
has its own caption - a user defined text description of the
resource. The user can identify and select the resource he
wants to display by the caption.

User Application

Visualizer Window

Library

Resource adding

Resource viewing

Configuration setting

Figure 1: User - Library interaction

The Viewer Library runtime is separated into two modes
to make it easier to adjust for different purposes. First,
there is the configuration mode. It allows the user to create
a layout of the window and specify parts of it, where the
rendering of the individual structures will be done. This
layout serves as a starting point for the second, and more
important part - the viewing mode.

The viewing mode is the main feature of the program,
which allows the user to list all stored data, such as meshes
and textures stored in video memory or to display vari-
ables. It is possible to select in real-time what to display
at the current moment. The number of structures and data
that can be reviewed in this mode are dependent on the
code interface calls. That means, that if there were no in-
terface calls, nothing can be viewed in the viewing mode.

4.2 Context Sharing

Each application that is running OpenGL has its context. It
stores all the state associated with the instance of OpenGL.
Each resource generated and stored on the graphic card is
specific for the instance of the context, which means that
two applications running OpenGL cannot see nor access
the context of the other.

Our Viewing Library uses context sharing. This means
that on initialization, the context created by the user pro-
gram needs to be shared with the library. It allows the
library to operate on the same context as the user program.
The difference between separated and shared context is
shown in Figure 2.

shared 
OpenGL 
context

A B

Applicaton Library

2nd
OpenGL 
context

1st
OpenGL 
context

Applicaton Library

Figure 2: A - two separate OpenGL contexts, B - single
shared OpenGL context

4.3 Viewing Mode

The viewing mode is the main part of the application, and
it is the actual visual feedback for the user. In this mode
the user can display all the data which were sent to the Li-
brary through the code. In Figure 3, an example of viewing
layout is displayed.

Viewing mode distinguishes three types of the field,
which can be rearranged in the configuration mode. Mesh
view is used for displaying vertices from the vertex buffers
and seeing the correlation of them with the value arrays

Proceedings of CESCG 2015: The 19th Central European Seminar on Computer Graphics (non-peer-reviewed)



RenderinguFPS:u60
Camerauposition:u233,u156,u5

Objectu153uactive:utrue
Objectu168uactive:ufalse
Passiveuobjectunumber:u24

Tesselationutimes:u3
Bumpmap:ufalse
Postrenderuactive:utrue

A A B

C

Figure 3: Example of the viewing mode layout.
A - Texture views, B - Variable display, C - Mesh view

from the computer memory. It is possible to rotate and
zoom the individual objects in the view. Texture view de-
termines an area where the textures can be displayed. Vari-
able view is the area which displays text output and the
actual value of the defined variables. Variables are added
by the user program, and lines to display can be selected
by the user for each individual variable display.

4.4 Configuration Mode

This mode is focused on creating a custom layout for the
window, as the one which can be seen in Figure 4. The
layout is represented as a set of rectangular fields. The
type of each can be changed by the user. There are three
main types of fields which can be selected: mesh, texture
and variable field type.

Texture 

View

Model View

Texture 

View

Variable View

A B C

D

Figure 4: Example of the configuration.

Our framework supports profile creation. Each profile
can hold different configurations of a window. The user
can switch between profiles and modify them at runtime.
Each session comes with one default profile which cannot

be deleted and which can be selected any time. All other
profiles can be freely renamed or deleted.

All changes made in the configuration mode are applied
to the current profile. These changes are automatically
saved. During the next creation of the Viewer window the
previously created layout is loaded, therefore there is no
need to configure the window layout every time the pro-
gram is started.

4.5 Usage Example

To demonstrate the usage of our framework, lets assume an
example. The user wants to preview two loaded models as
a point cloud, a texture and a variable which holds number
of renders of his application.

First step is including the library into the project and
calling the initialization function at the start of the pro-
gram. Then for each resource he need to send a buffer and
his own description of it. It is one function calling for each
of the models, and one for the texture. Finally, he uses an-
other function to specify output string and set a pointer to
the value which represent the number of renders. When he
now runs an application, additional window pops up be-
side his application window (if there is any). This window
is currently empty and there is no possibility to see any-
thing yet. Currently there is configuration mode running,
which means that the user can set up a layout. He creates
layout which consists or each mesh, texture and variable
field, and then switch to viewing mode. Once the mode is
switched, resources can be displayed and previewed in the
fields.

5 Results

To test all the features of the library we run it on an ap-
plication used for model manipulation and computation.
This application provides mesh processing algorithms and
calculations on meshes. One specific feature of the pro-
gram is the calculation of a Shape Diameter Function [7]
for graphs, which can nicely demonstrate the use of the
mesh and data linking in the library. The application is
also working with other data, such as generated textures
and variables.

In Figure 5 the tested application and the window of
our Viewer running on top of it can be seen. Textures
which were generated by the client application are in-
stantly sent to the library. These textures can be displayed
in the Viewer. Figure 6 shows a similar test on a differ-
ent model. Both Figures show that the vertices of model
are coloured in the Viewer window. These colors are vi-
sual representation of the Shape Diameter Function values,
which is defining the diameter of the mesh in an individual
vertex. The values were calculated by the application, sent
to the Viewer as a pointer to an array and assigned to the
model by its caption. Our conclusion to this test was that

Proceedings of CESCG 2015: The 19th Central European Seminar on Computer Graphics (non-peer-reviewed)



Figure 5: Viewer window (A) used beside an application
(B).

the Viewer is correctly and tabularly displaying all data we
sent to it.

Images indicate that the Viewer provides sufficient vi-
sual feedback for the user who is developing such an ap-
plication. Without a need of the users own rendering envi-
ronment, the visualization possibilities of the tool can be
easily used to display several kinds of resources.

Figure 6: Model with applied values of Shape Diameter
Function and its displacement and height map.

Since the tool provides multiple visual output options,
there are many possible applications for it. For example
it may become useful when the programmer needs to de-
termine if some mesh/texture was loaded correctly. Using
just a few commands it allows the user to have a visual
feedback of a mesh or a texture, where he can inspect it
and determine its correctness.

Another application can be a visual test of a shader pro-
gram. For one user specified model there is a possibility
to apply a shader program. The model can be rendered
in the Viewer window with the shader. The user can see
whether the render behaves as it should, or there are some
undesirable artefacts. The user is also free to add another
shader and the same model, and able to see both renders

and compare them.

6 Conclusions

Our goal was to create a library which can display meshes
with their supplementary data, textures and variable values
on a separate window which can run beside the user’s ap-
plication in real-time. We reviewed similar existing tools,
but since we were not able to find any solutions for exactly
this type of problem, we have been inspired by existing de-
buggers for OpenGL, which were closest to the subject of
our work.

Our library can be further expanded by adding more
customization possibilities for the fields, user interface up-
grades like texture zooming or functional expansions such
as printing a matrix values. It can be used for viewing
OpenGL and the user-program variable arrays. The library
can be useful in several applications, mainly as an alterna-
tive tool for displaying OpenGL resources, debugging a
program or just an auxiliary viewer running in a detached
window.

References

[1] The Khronos Group. Opengl 4 reference pages.
http://www.opengl.org/sdk/docs/man/, 1997-2015.
[Online; accessed 19-February-2015].

[2] Graphic Remedy. gdebugger.
http://www.gremedy.com/, 2004-2011. [Online;
accessed 02-January-2015].

[3] NVIDIA Corporation. Nvidia nsight.
http://www.nvidia.com/object/nsight.html/, 2015.
[Online; accessed 15-March-2015].

[4] RAD Game Tools Valve Software. Vogl.
https://github.com/ValveSoftware/vogl, 2015.
[Online; accessed 15-March-2015].

[5] Bruce Merry. Bugle.
https://www.opengl.org/sdk/tools/BuGLe/,
2007-2014. [Online; accessed 10-March-2015].

[6] Damian Trebilco. Glintercept.
https://code.google.com/p/glintercept/, 2003-2012.
[Online; accessed 10-March-2015].

[7] Lior Shapira, Ariel Shamir, and Daniel Cohen-Or.
Consistent mesh partitioning and skeletonisation
using the shape diameter function. Vis. Comput.,
24(4):249–259, March 2008.

Proceedings of CESCG 2015: The 19th Central European Seminar on Computer Graphics (non-peer-reviewed)


