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Abstract

We are rendering semi-transparent 3D objects on GPU
we can choose from a variety of order independent trans-
parency (OIT) algorithms. The transparency of the ob-
jects can be modulated based on properties of the 3D ob-
jects such as curvature, distance from silhouette, distance
from camera, etc. In this paper we focus on non-local
opacity modulation where desired information needed for
the modulation is a matter of global context and it is not
known for current primitive directly. We introduce an
algorithm to solve the Order Independent Transparency
with non-local opacity modulation based on the Illustra-
tion Buffer. While the original Illustration Buffer is con-
structed from meshes of flow surfaces we focus on use
with general 3D meshes.

We compare our algorithm with several OIT algorithms:
depth peeling, dual depth peeling, and per pixel linked lists
which provides us a deeper insight at what conditions is
one algorithm better than another from the point of speed,
memory consumption and effort needed to incorporate the
transparency modulation based on a certain property of the
3D objects to the algorithm.

Keywords: order independent transparency, non-local
opacity modulation, illustration buffer, comparison, depth
peeling, dual depth peeling, per pixel linked lists, opengl

1 Introduction

We are rendering semitransparent 3D objects, the order of
the rendered primitives is critical to correctly compute the
final colour of each pixel. Considering only objects con-
sisting of 3D meshes it is not trivial to determine the order
of the primitives, e.g. triangles, given by distance from
the camera. A group of methods that do not require the
meshes to be sorted before the rendering process is called
the Order Independent Transparency (OIT).

When the general OIT problem is solved we can also
consider opacity modulation techniques to enhance per-
ception of object’s inner structure. We can classify such
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Figure 1: On the left all fragments are set 40% opacity. Non
local opacity modulation (distance from silhouettes) is used on
the right image to reveal inner structure of rendered drill.

techniques considering the knowledge of the information
desired for the modulation as follows: Local, if informa-
tion is known to a primitive - in case of this paper to
a fragment - directly. This includes techniques based on
the fragment lighting and shading, distance from the cam-
era, or custom fragment properties. Non-Local is a com-
plementary class to a local opacity modulation. It can be
further divided to following cases: a) the information is
retrievable from the direct neighbours along the surface or
along the view ray. This e.g. includes modulation based
on surface curvature or edges detection. b) the informa-
tion is further than in case a). This e.g. includes modula-
tion based on distance from important object features like
silhouettes, etc.

Non-local opacity modulation is often needed to enable
the user to see the required detail without losing the con-
text. In this paper we introduce an OIT algorithm capable
of both local and non-local opacity modulation. The algo-
rithm is based on Illustration Buffer proposed by Carnecky
et al. [3]. While they construct the Illustration Buffer from
3D meshes of the flow surfaces only our algorithm is de-
signed for general 3D meshes. The main contributions of
this paper include:
• The proposed OIT algorithm for 3D meshes along

with the measurements of the algorithm stages and
stages variants that provide better insight to the be-
haviour and performance bottlenecks of the algo-
rithm.
• Comparison with existing algorithms solving OIT

w.r.t. the speed, memory requirements, and ease
of use.
• Our comparison also allows to decide which algo-

rithm to use w.r.t. chosen the opacity modulation
technique.
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2 State of the Art

Problem of the Order Independent Transparency (OIT) is
well known in 3D scene rendering and there is no standard
implementation included in either OpenGL or DirectX. It
is a general problem consisting of rendering objects with
a uniform or non-uniform alpha channel. To display such
geometry correctly all fragments need to be blended in the
correct order, thus sorting the fragments is often the key
requirement for techniques solving OIT. In this section we
briefly review algorithms that solve OIT using the rasteri-
zation proces. Please note that there are also alpha blend-
ing approximations [6][2] that perform approximative ren-
dering in only one pass. Even though these approach are
very fast, they only approximate the OIT problem and
are not extendable to any methods considering non-local
transparency and therefore these methods are not further
examined in this text.

Depth Peeling presented in 2001 by C.Everitt [5] is
based on multiple geometry passes, peeling just one layer
of visible geometry per pass. It is in fact based on
a shadow mapping technique, which helps to determine
visibility between scene points and a certain light source.
This algorithm process the scene by layers peeling one by
one using two depth buffers per geometry pass.

While more advanced algorithms such as Dual Depth
Peeling [2] blend these layers “on the fly” during the peel-
ing passes, depth peeling algorithm [5] stores currently
retrieved layer and performs another blending pass using
full-screen quad, using OpenGL blending functions.

Dual Depth Peeling method by Bavoil [2] is a modifi-
cation of the original Depth peeling algorithm allowing to
peel two layers at once. In one pass it peels back and front
layers simultaneously. Since this is not possible to do with
the default depth buffer and GPU does not have multiple
depth buffers to perform front to back and back to front
rendering, custom min-max depth buffer has to be used.

To prevent peeling any fragments by both front to back
and back to front directions, the algorithm uses mecha-
nism of sliding window for two consecutive layers. While
in the original depth peeling N geometry passes are neces-
sary to process the scene, where N is the number of layers
it created, Dual depth peeling performs N/2+1 geometry
passes only. This algorithm however speeds up the render-
ing only if application is geometry (vertex) bounded.

Per Pixel Concurrent Linked Lists Another method is
to store every fragment that belongs to one pixel in a linked
list and sorting it by fragment’s depth to determine the
order of the fragments. Method [9] described below is
very similar to A-buffer [4], it only achieves OIT by us-
ing linked lists constructed in memory of GPU. While the
first GPU implementations of A-buffer presented by Mey-
ers and Bavoil A-buffer [7] and Bavoil et al. [1] were able
to store fixed amount of fragments per list, the method pre-
sented by Yang [9] is unbounded.

A GPU version of A-buffer can be constructed in two
rendering passes. In the first pass we create a linked lists of
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Figure 2: For the sake of simplicity one row display of pixels
pi, i ∈ {1, ...,m} where m is the number of pixels is shown. Frag-
ments with the same number are in the case of peeling methods
in the same layer. In case of ray casting terminology, numbers
denote the order along the ray.

fragments per pixel by rendering the geometry and storing
all fragments of a pixel to the linked list. The linked list
can be accessed by an index to the first fragment called
the pixel head. The second pass consists of a full-screen
quad rendering and sorting the linked lists. Traversing the
sorted linked lists to compose final pixel color can be done
at the end of the sorting pass thus no further passes are
needed.

Illustration Buffer was presented by Carnecky et al. [3]
and inspired by Yang [9]. The Illustration buffer data
structure is motivated by several image enhancements that
modulate opacity based on non-local information.

To provide the information about the surrounding shape
of all fragments, A-buffer constructed in the GPU mem-
ory [9] is extended. While in A-buffer method fragments
know their neighbours only along the viewing ray, Car-
necky et al. present methods to find and connect also
neighbours that belong to the surrounding pixels. For pixel
with coordinates (x,y) new four neighbours are found in
linked lists of pixels (s + dx,y + dy) where (dx,dy) ∈
{(1,0),(−1,0),(0,1),(0,−1)}. After the neighbours are
found the Illustration buffer can be used to traverse object
surfaces to retrieve information about their shape, such as
gradients, or distances to important features.

Structures created by our algorithm described in the
next section are the same as used by Carnecky et al. [3].
We take advantage of the indexed geometry and propose
a geometry motivated method to locate the neighbours
which is faster and more precise than heuristics used by
Carnecky et al. [3].

3 Proposed Algorithm

In this section we describe the Illustration buffer as well
as our extension of the approach. The Illustration buffer
requires the per pixel concurrent linked lists to be created
first. However, in contrast to the concurrent linked lists
we need to store much more information. In the following
list are the buffers we need to construct and work with the
Illustration buffer:
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Figure 3: Shows the filling step of the algorithm. Data are
spanned by four, giving a space for colour, four surrounding
neighbours (NB), normal (N) and some other data, which depend
on the target use of the buffer. Buffer pixelHead if of a same
size as the viewport (X ×Y ). This Figure does not consider the
sorting of samples along the ray or search for the neighbouring
fragments.

• pixelHead is a buffer of size X ×Y where X ,Y are
the dimensions of the viewport. It stores ID of the
first fragment in the linked list.
• pixelCount is also X ×Y buffer storing lengths of

the lists in each pixel. While not required when
traversing the list and using special value for the end,
this value is important for certain opacity modulation
techniques.
• fragNext is a one dimensional buffer where the next

index is stored for current fragment
• fragData stores all data we need to work with the

Illustration buffer. For each fragment it stores the
colour, indices of its four geodesic neighbours and
optionally other data we need for non local trans-
parency.
• fragData2 is of the same layout as f ragData and it

is used for ping pong computational schemes
• fragElements stores 3 indices of the originating tri-

angle per fragment, is used in our neighbours search
Figure 3 shows necessary structures for the Illustration

buffer and how the data are stored when new element is
rendered. To retrieve the next available free index for in-
serted fragment we need to use the global atomic counter
GL_ATOMIC_COUNTER_BUFFER. We need a memory
to store the indices of the fragment neighbours as well as
custom fragment properties. Therefore we reserve sev-
eral cells in the f ragData buffer per fragment and use
the spanning mechanism for retrieving the index to this
buffer. The internal formats used by those buffers are:
GL_RGBA32UI for the fragData, fragData2 and fragEle-
ments buffers and GL_R32I for fragNext. The buffer
fragElements consists of the vertex indices of the triangle
it belongs to. The buffer pixelHead which stores point-
ers to first node of each per pixel linked lists is defined as
GL_TEXTURE_2D with GL_R32I type of the viewport
size.

3.1 Filling Step

Algorithm 1 shows the filling step of the algorithm
when the geometry is rendered. Since we need to
not only read but also write to the buffers in the later
shader invocations, traditional GL_TEXTURE_2D can-
not be used to store the data. Therefore we use the
ARB_shader_image_load_store OpenGL extension. This
extension brings functions imageLoad(), imageStore() and
also many atomic operations imageAtomic*(). Pack-
ing of 4 floats f , f ∈ [0,1] to one unsigned integer us-
ing bitwise shifts and GLSL built-in functions floatBit-
sToUint and uintBitsToFloat is used to reduce amount
of used memory. In the beginning of each frame
we reset the atomic counter and buffer fragData using
GL_PIXEL_UNPACK_BUFFER to initial state. The lines
10 and 11 of Algorithm 1 have to be atomic to prevent
read-write collisions.

3.2 Sorting

In our application two sorting methods are implemented.
The first is sorting the linked list without using any auxil-
iary structures and in the second is used an array of fixed
size for sorting. Both presented methods are invoked sim-
ply by rendering a full-screen quad with access to the al-
gorithm buffers storing the linked lists.

Sorting the Linked List by Insertion sort can be done
easily using two fragNext buffers. One to be filled initially
and second that will be used for adding sorted fragments
as shown in Algorithm 2.We can see this procedure as an
analogy to two linked lists A,B. A is unsorted and B con-
sists only from copy of head in A. Then we remove node a
from the front of A and insert it to B. To be able to remove
a.next from A and insert it to B, we would have to remem-
ber what was the original a.next since inserting the node a
to B may change its next pointer. In single linked lists this
could be solved also by copies of the nodes instead of their

Algorithm 1: Filling per pixel linked lists
Data: Geometry to be rendered, atomic counter AC = 1
Result: Unsorted concurrent linked lists

1 Render the geometry, Depth Test OFF
2 while fragments with (X,Y) to be processed do
3 index = AC
4 colour = shadeFragment()
5 if pixelHead(X,Y) == -1 then
6 pixelHead(X,Y) = index
7 fragData(index*span) = colour
8 fragNext(index*span) = -1 //next pointer is empty.
9 else

10 nextPointIndex = pixelHead(X,Y)
11 pixelHead(X,Y) = index
12 fragData(index*span) = colour
13 fragNext(index*span) = nextPointIndex
14 end
15 AC+= 1 // increase the atomic counter
16 discard fragment // we do not want it to be seen yet.
17 end
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removal from A. As mentioned, we solve this issue by two
buffers for the next pointers. In Algoritm 2 we keep two
next pointers for each node. Pointer next is the original
next pointer and nextSorted guarantees that the depth of
nextSorted is greater or equal to the current fragment.

Algorithm 2: sorting the linked lists directly
Data: Buffers u_fragNext and u_fragNext2, u_fragData and u_pixelHead
Result: Sorted next pointers in the u_fragNext2 and a head pointer in

u_pixelHead.
1 int sortedSize = 1,int head = loadHead(x,y)
2 int newFrag = next(head); int current,int previous, float currentDepth
3 while sortedSize < totalCount do
4 if newFrag.depth < head.depth then
5 newFrag.nextSorted = head
6 head = new, head.depth = newFrag.depth
7 new = next(newFrag)
8 sortedSize++, continue
9 end

10 previous = head
11 current = head.nextSorted, int innerCounter = 0
12 while innerCounter <= sortedSize && current.depth < new.depth do
13 previous = current
14 current = current.nextSorted;
15 innerCounter++;
16 end
17 newFrag = new.next; sortedSize++;
18 end

Sorting in Array of Fixed Size The Number of accesses
to the buffers is a bottleneck of the previous method. To
eliminate the bottleneck we load all values and their next
pointers to static arrays of fixed size (64 in our implemen-
tation). This array is then sorted and results are stored back
to the buffers. Fragments are sorted using insertion sort
as Yang [9] or selection sort as Carnecky et al. [3] (Even
though selection sort should be more efficient due to num-
ber of writes over the insertion sort, no performance differ-
ence was found, presumably because of caching[12]). In
comparison of the speed (Section 5) we use the selection
sort.

3.3 Neighbours Location by Carnecky et al.

Let us assume we have already created the concurrent
linked lists by Algorithm 1 and that the samples are al-
ready sorted along the viewing ray. This is essential to
location of the neighbours.

However wanted neighbours differ greatly from the
neighbours in the layers. Let us consider situation depicted
in Figure 4 where we see the found neighbours and peeled
layers. It shows the difference between neighbours of P in
peeled layer and neighbours of P on the surface discussed
later.

As shown in Figure 4 the goal is to find geodesic neigh-
bours on the same surface and not of the same layer in
the peeling point of view. We denote fragments of cur-
rent linked list A as fi, i ∈ {1, ...,n} where n is the number
of fragments in A and neighbouring list B with fragments
f j, j ∈ {1, ...,m} where m is the number of fragments in B.
To find the neighbour we need to traverse entire neighbour-
ing list. Carnecky et al. use a simple heuristic measure ε

of the surface continuity for two fragments as shown in

P

P

P

a)

b)

c)

εn 

εz 

Figure 4: Left: Using a perspective we show two crossing planes
a). When peeling the first layer and querying the neighbouring
pixels of P in such layer, we retrieve b). When searching for
neighbours of P in Illustrative buffer we want to find c). Right:
Geometrical meaning of εn and εz on the surface samples.
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Figure 5: a) indexed geometry to prevent duplicate geometry to
be sent to gpu. b) Every vertex knows indices of all vertices in
given triangle. c) Every triangle has its own id. d) table maps IDs
of the triangles (blue) to b) where every vertex knows all indices
in its triangle.

Figure 4. They compute the εn as difference of fragments
i, j normals ni,n j as:

εn(i, j) = 1−ni +n j

The eye distance εz is computed using the radius of
a rendered object bounding sphere rob j, normal ni, pixel
coordinates xi, eye distance z coordinate and finally the zi

gradient
(

dzi
dxi

)
:

εz(i, j) =
1

rob j

[
zi +(x j− xi) ·

(
dzi

dxi

)
− z j

]

ε(i, j) = wz · εz(i, j)+wn · εn(i, j)

Given this heuristic measure ε will be small for proba-
bly neighbouring fragments of the same surface and large
for fragments of different surfaces. For two neighbouring
lists A,B and fragment fi ∈ A they first try to find the best
neighbour candidate ci for fi in B and then they traverse A
to find if there is better neighbour for ci than fi in A. Even
though they use a component ID check to set ε = ∞ to
exclude fragments of different components (and therefore
surfaces), this is rather inefficient since for the location of
one neighbour we have to traverse both the neighbouring
and the original list.
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3.4 Proposed Neighbours location

To overcome the inefficiency of the method [3] we propose
a new method motivated by indexed geometry. Given two
neighbouring lists A,B where list A is the current list and
B is the list where neighbour is to be found, we propose
auxiliary structure depicted in Figure 5.

We are using indexed geometry to lower the load of in-
formations mapped to GPU memory. We extend the in-
dices information so that every vertex knows indices of all
vertices of the same triangle. This is shown in Figure 5
b). However this would be against the very principle of
indexed geometry since we would replicate a lot of data.
This can be solved as shown in Figure 5 c) where every
triangle has its unique ID attached and auxiliary table to
map IDs to triangle indices as shown in Figure 5 d).

For fragments f ∈ A of coordinates x f ,y f and g ∈ B of
coordinates xg,yg then apply following rules:

1. f and g are not neighbours if f and g do not share any
indices of the triangle they are part of.

2. f and g are neighbours and fragments of the same
triangle if f and g share exactly 3 indices.

3. f and g are neighbours and fragments of two neigh-
bouring triangles if f and g share exactly 2 indices.

4. f and g are neighbours and fragments of two neigh-
bouring triangles if f and g share exactly 1 indices.
This situation can happen e.g. for triangles with
ID = 1, ID = 4 in figure 5.

The algorithm for neighbour search is then simplified to
only one cycle through the neighbouring list B and there is
no need for the cycle through A afterwards.

3.4.1 Drawbacks

Even-though this method is geometry motivated there can
be artifacts caused by the rasterization process. Such arti-
facts occur when rendered triangles are smaller than pixel
and neighbouring fragments skip triangle(s). This error is
shown in figure 6. With that knowledge we can higher
the viewport resolution or lower the detail of the model to
overcome this.

3.5 Memory consumption

Unfortunately, memory consumption is the biggest weak-
ness of the Illustration Buffer and therefore of our algo-
rithm as well. While in Depth Peeling and Dual Depth
Peeling structures are of fixed size without any relation
to the number of rendered fragments (except for the ab-
solute size of the viewport, of course), structures fragData
and fragNext of the Illustration Buffer are growing linearly
based on the number of fragments.

4 Results

In this section we present the results and measurements
of our algorithm. We have implemented both presented

Figure 6: Every fragment has equal opacity in the left render of
the engine. Right engine shows render in which fragment is fully
opaque if the number of neighbours is less than four meaning it
is part of the edge. Artifacts caused by the geometry detail and
explained in the Section 3.4.1 are enlarged in the red circles.

Algorithm 3: proposed neighbour search
Data: two neighbouring lists A,B, current fragment fi ∈ A, indices

of fi indicesO f F .
Result: Index to the linked list structure of fi neighbour.

1 for b = 0; b < count(B); b++ do
2 fragB = B(b); indicesOfB = fragB.triangleIndices;
3 for k = 0; k < 3; k++ do
4 for l = 0; l < 3; l++ do
5 if indicesOfB[k] == indicesOfA[L] then
6 return fragB.ID; // Neighbor has been found

since it shares at least one triangle index with fi.
7 end
8 end
9 end

10 end

methods of the sorting and as the proposed neighbours
search. Very precise OpenGL GPU queries are used
to measure application rendering time in nanoseconds.
For measurements of the total rendering time we use the
QElapsedTimer from QT Framework. Twelve varied
models are used to measure the Illustration buffer char-
acteristics. Each model is tested in two positions - one
general and one where the length of linked list is maxi-
mum possible. Note that in all measurements image reso-
lution 600× 600 is used if not stated otherwise. To see
all the measurements conducted with all the tables and
graphs, please see the master’s thesis this paper origi-
nates from [8]. We have used GeForce GTX 660 with
2048 MB GDDR5 memory, 4× 2GiB DIMM DDR and
Intel CoreTM2 Duo CPU E6850 @ 3.00GHz for all mea-
surements. Final renders using different non-local opacity
modulations are shown in Figure 16.

4.1 Sorting

The graph in Figure 7 is very clear that the dynamic ver-
sion of the sort is winning in all cases over sorting in static
array. For the measurements we have used 3 arrays of
size 64. One for IDs, second for the depths and third for
the distances between layers. In case of our GPU it was
more expensive to allocate such arrays than much bigger
amount of texture reads and writes, which could differ on
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Figure 7: Speed comparison of the dynamic sort and sorting in
static array. Bigger spikes are caused by the Ψ parameter which
will be introduced when studying parameters that affect the per-
formance of the algorithm the most.

hardware where invocation of the fragment shader for one
pixel would have more memory available.

4.2 Illustration Buffer Performance

During the Illustration buffer creation we examine rela-
tions between number of vertices, rendered fragments,
lengths of the linked lists storing the data along the ray,
and rendering time on the GPU and rendering time com-
bined with the CPU workload.
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Models

Time [ms]

Figure 8: GPU Time in split stages of the Illustration buffer
creation process. Models on the horizontal axis are sorted by the
Total rendering time.

To be able to examine the relations fully,the creation
process is split to several stages by the functionality. Fig-
ure 8 shows the performance of the separated algorithm
stages. The time presented for each stage contain also
times measured for all preceding stages. Figure 9 shows
the relations between number of vertices, rendered frag-
ments, lengths of the linked lists and their impact on the
rendering time. We can see that another not mentioned pa-
rameter affects the rendering time significantly in Figure
9. Scenario that includes models GPU 2 and Suspension 2
is further shown in Figure 10.

Even though we process the scene on GPU, the process
is not entirely parallel. All the parameters are higher for
the Suspension 2 model than for GPU 2 model and yet
the rendering time is greater for the GPU 2 model. The
reason is that the number of long lists is much lower for
the Suspension 2 model than for the GPU 2 model (see
Figure 10. The dashed line in Figure 9 shows percentage
coverage of the linked list lengths that are bigger than 2

3 of

Figure 9: Secondary Y axis is used for the dashed line repre-
senting Ψ, primary Y axis (on the left) is then used for all other
variables using logarithmic scale.

Figure 10: Heatmaps of the linked lists lengths of GPU 2 and
Suspension 2. Color represents the distribution of the linked
lists lengths, blue is zero and red is maximal linked list length.

the longest linked list, please mind the secondary vertical
axis. We denote this parameter as complexity coverage Ψ.

4.3 Memory Consumption

Using the presented structures we need 208 bytes per
fragment and additional 96 bits per pixel. This gives
us for the scene Suspension 2 with 1900548 fragments
and 600x600 resolution memory requirements of approxi-
mately 397MB. For 800x800 resolution it requires 702MB
and for 1200x1200 we would need 1.58GB of GPU mem-
ory. Given this amount of data we are very likely to face an
overflow of the used buffers on memory bounded systems.

5 Comparison of OIT Algorithms

This section provides comparison of the speed of our al-
gorithm with the remaining methods: depth peeling, dual
depth peeling and concurrent per pixel linked lists.

We have used implementation of the peeling methods
from the NVIDIA Graphics SDK 10, only our own GPU
time measuring system was added to their implementa-
tion. Concurrent per pixel linked lists are on the other hand
measured using our own implementation since it is a sub-
problem of the Illustration buffer construction. We have
used GeForce GTX 660 with 2048 MB GDDR5 memory,
4×2GiB DIMM DDR and Intel CoreTM2 Duo CPU E6850
@ 3.00GHz.

Figures 11, 12, 13 and 14 show such comparison using
parallel coordinates. In all presented graphs the render-
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Figure 11:
Depth peeling
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Figure 12:
Dual depth peeling

285600.00

564200.00

842800.00

1121400.00

1400000.00

600000.00

950000.00

1300000.00

1650000.00

2000000.00

14.00

28.00

42.00

56.00

70.00

4

2.80

5.60

8.40

11.20

14.00

28.00

56.00

84.00

112.00

140.00

7000.00 250000.00 0.00 0.00 0.00
VERTICES FRAGMENTS LISTS MAX

LENGTH
PSI GPU TIME [ms]

Figure 13:
Concurrent per pixel linked lists
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Figure 14:
Illustration buffer

ing time is divided to thirds, where times in the first third
are green, in second blue and times of the worst third are
coloured red.

We can see that the linked lists absolutely win in speed.
Another observation is that only the Illustration buffer is
really affected by the complexity coverage Ψ, which is
caused by its FindNeighbours stage. We can also see that
the overhead on the fragment shader is not big for first
three methods and they are vertex bounded in most cases.
This is logical for the peeling methods since we need to
render the geometry in each peeling pass. It might be
however surprising for the per pixel linked lists, where
even though the sorting procedure must occur on all frag-
ments, the overhead is small thus application stays vertex
bounded. However this is completely different in the case
of the Illustration buffer where processing of the Find-
Neighbours stage is vital for the final rendering time.

During our measurements, the speed comparison of the
dual depth peeling and the depth peeling we have observed
that the dual depth peeling is in fact much slower than the
depth peeling algorithm. The authors [2] admit that the
dual depth peeling may speed up performance by 2x for
geometry bound applications. This issue should be how-
ever stressed and explained much more in the original arti-
cle. Reason for this behaviour is that the workload of frag-
ment shaders is only worth the computation if the work of
the vertex shader is more demanding which is a case of
vertex bounded applications.

6 Opacity Modulation

Opacity modulation is a desired feature of the OIT solving
algorithms. Therefore this section briefly demonstrates the
power of the proposed algorithm.

Silhouette
enhancement

distance from 
the silhouette
inside the surface

Figure 15: Right: Modulation by distance from the silhouettes,
Left: Scene with the problematic situation in the white circle.

6.1 Local Opacity Modulation

When we are considering only the local opacity modu-
lation using only information available to a fragment di-
rectly, all reviewed algorithms can be used. We only
mention some of the techniques in this class for reader’s
convenience: based on the lighting intensity, custom per
fragment data e.g. density, or by distance from defined
plane/area (cut motivated). This class of modulation sim-
ply consists of all procedures that can be computed only
from the global shader knowledge (uniform variables, con-
stants, etc) and knowledge of the current fragment.

The Depth peeling is certainly the easiest one to be im-
plemented but not the fastest. Dual depth peeling can
speed up the rendering time only if application is ver-
tex bounded as stated above. Implementing the per pixel
linked lists is more challenging task but as we can see in
the Section 5 it is certainly the fastest algorithm of all com-
pared in this context.

6.2 Non-Local Opacity Modulation

The situation is much more challenging when the opac-
ity of the current pixel depends on the context - on the
state of its surroundings. While some opacity modulation
techniques can be used quite easily using both peeling and
linked lists mechanisms, some are not solvable by the peel-
ing algorithms. Let us consider simple modulation by dis-
tance along the ray as in Equation 1. For two samples s
with indices i, j where i < j and therefore si closer to the
camera, and user defined parameter f ocusRegion we com-
pute opacity α of sample si as shown in Equation 1. This is
achievable by simply comparing values of last peeled and
current sample in the peeling methods and by traversing
the sorted linked list easily.

α = saturate
(
|si.depth− s j.depth|

f ocusRegion

)
(1)

Let us now consider a modulation by distance from im-
portant features of the 3D mesh, in this case the silhou-
ettes. If we consider the problematic situation from the
Figure 15, this situation is not simply solvable by the peel-
ing methods since neighbours of the peeled layers are not
always neighbours of the same surface. We therefore can-
not know if the red gradient inside the circle should con-
tinue or not since we cannot tell if the surface is continuous
under the green surface or if it exists at all. This situation
is however solvable easily by proposed algorithm since we
have knowledge of the surface neighbours on the surface
of the mesh and not only of the neighbours on the current
layer.
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Figure 16: Final renders from our application using the Illustration buffer. These pictures were created by opacity modulation based
on: surface curvature, distance between samples along the view ray, distance from surface silhouettes and silhouettes enhancements
and their combinations.

7 Discussion of Results

The measurements of the OIT task alone shows clearly
that methods based on the concurrent linked lists are much
more efficient than the peeling methods. In case of the Il-
lustration buffer the bottleneck is the neighbours location
stage. To improve this process the future work should con-
sider that in current form whole neighbouring list has to
be traversed. We therefore suggest developing a heuristic
based on the interpolation search optimized for the linked
lists. If the approximate position of the desired neighbour
is known, we can load only the next pointers to traverse to
this node and omit loading its data.

Our measurements of the sorting methods shows that
a bigger amount of read and write access to the OpenGL
image buffer is more efficient than allocating an additional
memory array for fragments to reduce number of image
buffer accesses. This is a great motivation for developing
dynamic algorithms that are unbounded. Proposed neigh-
bours search method is faster and more precise than ap-
proach of Carnecky et al. [3], but it can generate artifacts
as discussed above. Speeding up the neighbours search
process by interpolation search might give us enough time
to examine neighbours lists of distance greater than one to
eliminate these artifacts.

The complexity coverage parameter Ψ impact should
be further researched - how it affects the algorithm par-
allel computation since it demonstrates the complexity of
GPU parallelization process and optimizations being done
by the hardware.

8 Conclusions

In this paper we present an algorithm to solve the Or-
der Independent Transparency for general 3D meshes that
allows non-local opacity modulation. This algorithm is
based on the Illustration Buffer. We discuss two meth-
ods of the fragment sorting as well as measurements of
both methods. Novel geometry motivated technique to
find geodesic neighbours of fragments is proposed. Our
method is faster and more precise than heuristic proposed
by Carnecky et al. [3]. However, further research is how-
ever required to eliminate presented artifacts.

To learn more about our algorithm we encourage the
reader to read the thesis [8] this paper originates from. Fig-
ure 16 can serve as a motivation and demonstration of the
Illustration buffer flexibility considering opacity modula-
tion techniques.

The comparison of OIT algorithms provides insight into
behaviour of the algorithms at different conditions and can
be used to choose the right algorithm for the given condi-
tions. While peeling methods are easier to implement, the
best rendering times are achieved by implementing more
complex per pixel linked lists.
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