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Abstract

Most of the implementations solving photo-realistic image
rendering use standard unidirectional path tracing, hav-
ing fast and accurate results for scenes without caustics
or hard cases. These hard cases are usually solved by a
bidirectional path tracing algorithm. However, due to the
complexity of the bidirectional path tracing algorithms,
its implementations almost exclusively target sequential
CPUs. The following paper proposes a new parallel im-
plementation of the bi-directional path tracing algorithm
for the GPUs. Our approach is compared with existing so-
lutions in terms of both performance and image quality.
As the references we use the standard unidirectional GPU
path tracer and commercial off-line bidirectional path trac-
ers. We achieve interactive rendering rates for scenes of
medium complexity.

Keywords: bidirectional path tracing, path tracing, phys-
ically based rendering, ray tracing, CUDA

1 Introduction

Global illumination research recently focuses on unbiased
methods. Unbiased method is such method, that under
some assumptions, converges to the solution of the ren-
dering equation.

One of the common techniques for rendering unbiased
images is path tracing, respectively the extension of path
tracing - bidirectional path tracing. These techniques are
well known for high quality rendering output. Formerly,
most of the path tracing and bidirectional path tracing
implementations were done on the CPU. However, these
techniques are well fit for massively parallel hardware, like
the recent generations of graphics hardware.

Even though there are already present implementations
of bidirectional path tracing on the graphics hardware,
most of the implementations are either using the graphics
hardware only for small part of the computation or they do
not contain any surface shading at all.

The presented work focuses mainly on the implementa-
tion of a full featured bidirectional path tracing renderer,
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allowing for advanced materials, including textures and
computing the entire image using the graphics hardware.
The contributions of this paper are the following:

• Design and implementation of three variants of bidi-
rectional pathtracing on the GPU.

• Comparison of their speed and quality to the ground
truth path tracing solution.

• Comparison to other GPU based renderers.

2 Related Work

In this section we summarize literature most relevant to
bidirectional path tracing - various approaches to global
illumination focused on parallel GPU algorithms.

2.1 Ray Casting

The core of almost every global illumination technique is
ray casting, which allows for finding closest ray-primitive
intersection point along each ray and also to test visibility
between two points. This visibility computation is the key
to the evaluation of light transport. The focus of research
on ray casting are following three issues: selection of ac-
celeration structure, their construction and their traversal.

High performance and well established ray casting solu-
tions are available for public, including NVidia OptiX [11]
targeting NVidia hardware (which is actually full ray trac-
ing engine), Intel Embree [15] targeting traditional SIMD-
based CPU architectures. Our implementation is based on
the open source framework by Aila et al. [1, 2].

2.2 Early Global Illumination

Whitted [14] used ray-casting for generation of photo re-
alistic images, allowing for recursive specular reflections
and refractions. Later Cook extended ray tracing to dis-
tributed ray tracing to allow for effects such as diffuse in-
terreflection [3]. The rendering equation was introduced
in 1986 by Immel et al. [5] and Kajiya [7].

The rendering equation describes light transport in the
scene. Light transport describes the energy transfers in a
given scene that affects visibility.
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2.3 Path Tracing and Bidirectional Path Trac-
ing

Path tracing algorithm allows for computing the solution
of the rendering equation. By computing the paths of light
from the camera into the scene (eventually reaching light
source), it closely resembles the behavior of light. The
path starts with primary ray at the camera and is traced
into the scene. Upon intersection, in continues in random
direction.

For further efficiency, at each vertex of the path it is
determined whether path should be terminated or not by
Russian roulette, thus preventing infinite path lengths. It
allows for physically based computation of lighting, and
so the synthesis of photo realistic images. The algorithm is
also unbiased, with theoretically absolute accuracy when
using infinite number of samples.

Bidirectional path tracing is further extension of path
tracing algorithm, introduced by Veach [12]. By gener-
ating one sub path from a light source and one sub path
from the camera, later joining them together, it is possible
to handle indirect lighting computation more robustly (and
efficiently) compared to ordinary path tracing. Further-
more, this modification still keeps the resulting algorithm
physically based and unbiased.

2.4 Other Global Illumination Methods

Lately a lot of fast algorithms for computation of global il-
lumination were introduced. Most of the algorithms were,
compared to path tracing, biased, providing a trade off be-
tween rendering quality and speed.

Recent interactive global illumination methods are
modifications of Virtual Point Lights, introduced by Keller
et al. [9], allowing for real time smooth global illumina-
tion [10]

One of the other popular global illumination techniques,
used in real time rendering, are Cascaded Light Propaga-
tion Volumes [8].

Photon mapping introduced by Jensen [6], is currently
popular in production renderers, especially for interior
rendering. The technique was further extended into pro-
gressive photon mapping [4]. Compared to standard pho-
ton mapping, which is a biased rendering algorithm, pro-
gressive photon mapping is an unbiased one.

3 Bidirectional Path Tracing

This section presents some improvements when using
bidirectional path tracing. For proper description of these
features it is critical to define some terms.

Naive Path Tracing This designation is used for path
tracers that does not do any explicit steps, but wait for
camera ray to actually hit light (or get terminated).

Figure 1: All possible connections between a light path
and camera path. 1. Represents camera path, 2. Repre-
sents light path, Dashed lines represent possible connec-
tions between light path and camera path.

Standard (Explicit) Path Tracing Due to very bad con-
vergence ratio using naive path tracing, it is often under-
stood that generic path tracing algorithm does single ex-
plicit step towards light on each vertex of the path. These
path tracers are to be designated as standard, or explicit,
path tracers.

For the sake of completeness, pseudo algorithms for
standard path tracing (see Algorithm 1) and bidirectional
path tracing (see Algorithm 2) are provided.

Bidirectional path tracing, computes two paths, one
from the light and another one from the camera. These
paths are later connected (see Figure 1). These connec-
tions attempt to solve several problems introduced by uni-
directional path tracers:

Small light sources For naive path tracers, the probabil-
ity of hitting a light source is proportional to its size. Hav-
ing point lights (lights that are infinitely small) in naive
path tracer often ends up with nothing visible in rendered
image, as the probability of hitting the light source reaches
zero.

This can be solved by sampling light in explicit man-
ner each step in path computation, resulting in very fast
convergence for directly lit scenes. While sometimes this
technique is referred as explicit path tracing, it actually is
a special case of bidirectional path tracing, where the light
path contains only a single vertex.

The visibility function between each camera path vertex
and light path vertex has to be computed, resulting in 2 ·N
cast rays for camera path length of N.

For bidirectional path tracing, even more complex paths
from the light can be easily evaluated, e.g. light hidden
inside a lamp.

Interior scenes lit by exterior light Assuming we are
inside a room, where there is only a single window, stan-
dard, or even explicit, path tracers are not going to con-
verge very quickly because the probability of sampling the
light is low. In fact, in case where no path vertex on cam-
era path lies in direct light, the contribution of that path is
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Figure 2: Difference between path tracer and bidirectional
path tracer when computing caustics. On the left side,
the fireflies generated by standard path tracer compared to
more smooth caustics generated by the bidirectional path
tracer on the right side.

zero. This is one of the so called ’pathological scenarios’
for path tracing, where the algorithm fails to provide result
fast enough.

Using a bidirectional path tracer with light path of
length M, it is enough that single point of the light path
is directly visible from any of the camera path vertices. If
this condition is true, that paths’ contribution will be non-
zero, resulting in faster convergence.

Caustics convergence Using a unidirectional path
tracer often results in poor caustics and fireflies in the re-
sulting image, as their convergence rate is by magnitudes
worse to convergence rate of diffuse light. Computing
caustics with bidirectional path tracer is faster (see Fig-
ure 2), yet there are still difficulties with reflected caustics.
Bidirectional path tracer can be, however, further extended
with Metropolis Light Transport [13], improving the per-
formance on reflected caustics.

Algorithm 1 Path Tracing
1: procedure PATHTRACE
2: for each path:
3: ray← setup primary ray
4: while ray.terminated = false do
5: result← raycast(ray)
6: if result.hit = false then
7: Accumulate background color
8: ray.terminated← true
9: else

10: Compute and Accumulate surface emission
11: Compute contribution of random light
12: if Contribution is non zero then
13: Accumulate contribution
14: if Russian roulette terminates path then
15: ray.terminated← true
16: else
17: ray← Get B*DF Sample

Algorithm 2 Bidirectional Path Tracing
1: procedure BIDIRPATHTRACE
2: for each path:
3: Generate vertex on random light
4: Push this vertex to light path
5: ray← setup light ray
6: while ray.terminated = false do
7: result← raycast(ray)
8: if result.hit = false then
9: ray.terminated← true

10: else
11: Push this hitpoint to light path
12: if Russian roulette terminates path then
13: ray.terminated← true
14: ray← setup primary ray
15: while ray.terminated = false do
16: result← raycast(ray)
17: if result.hit = false then
18: Accumulate background color
19: ray.terminated← true
20: else
21: Compute contribution by joining light path
22: with this vertex
23: if Russian roulette terminates path then
24: ray.terminated← true
25: else
26: ray← Get B*DF Sample

3.1 Parallel Bidirectional Path Tracing using
GPU

Computation of different samples, (sub)paths in terms of
path tracing, and different pixels is independent on each
other. Path tracing and also bidirectional path tracing are
therefore good candidates for massively parallel computa-
tion.

The resulting parallel algorithm looks similar to sequen-
tial version. The parallel run is performed over the pixels,
with each sample is computed by a single thread in a single
kernel launch.

4 Implementation

The bidirectional ray tracing kernels were implemented
on top of open source framework by Aila. For this pur-
pose, new rendering kernels for each variant of bidirec-
tional path tracer were added.

To achieve high performance of the source code, the
speculative while-while traversals were used. As oppos-
ing to persistent threads they perform, in general, better
on new hardware. Also, bounding volume hierarchy with
spatial splits was used as acceleration structure for the ren-
dering.

The Aila framework was further extended to support
high resolution textures, reflective, refractive and dielec-
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tric materials. Light sources are handled as geometry
with emissive material, so in general any number of light
sources is supported.

The bidirectional path tracer kernel always processes
one pixel in single walk through, e.g. the light path gen-
eration (storing required data), followed by computation
of the camera path. During each step of the camera path
computation the join for currently processed vertex is per-
formed when necessary.

5 Optimizations and Limitations

The following section describes possible optimizations
and limitations when implementing bidirectional path
tracer on the GPU. For each optimization a brief summary
is given.

5.1 Sub path join

Full join
Joining of the light sub path of length M and the camera

sub path of length N is a non trivial task. There are mul-
tiple ways to join these, the intuitive solution is joining
each vertex from light sub path to each vertex in camera
sub path. While this actually leads to faster convergence,
N ·M rays have to be used to compute the visibility be-
tween samples, which is slow. Moreover, the full light
path has to be stored in the memory, and so larger memory
space is required.

Single-step join
Performance wise, the most efficient idea is joining the

last camera sub path vertex and the last light sub path ver-
tex. Such approach has some advantages. Single path
computation is of the same performance as naive path trac-
ing, although improving the situations where naive path
tracing has major problems. However, by combining only
the ends of both paths contributions of these light paths are
very small.

K-step join
It is also possible to select an approach using random-

ized algorithm. For each of the N ·M joining rays, the
algorithm discards some of these joins. The actual join-
ing ray rejection can be built upon multiple criteria - either
fully random, or deterministic (removing less contributing
joins and accordingly weighting the rest). This join is to
be designated as K-step join. The join is performed by
taking each vertex from camera against k vertices from the
light path. The k value has to be smaller than the number
of vertices in the light path.

When implemented properly, the different sub path
joins do not break the unbiased property of the algorithm.

5.2 Path pre-generation

Given a static scene, all the light paths can actually be pre-
computed. Later, during the execution of the algorithm,
we only select one of the light paths from given M pre-
computed light paths.

While this approach is highly efficient, it often means
that the resulting algorithm is biased. This can be over-
come by re-generating these light paths on runtime. Once
we start joining samples to random pre-generated paths, it
is possible that some samples are to be joined with a single
light path. This could lead to unnatural patterns in result-
ing image, and of course breaking unbiased nature of the
algorithm. By re-generating the paths after they have been
used, it is possible to avoid this problem.

Unless large M is selected, the quality of resulting im-
age can be highly degraded. To keep the quality of the
resulting image high enough, it was experimentally eval-
uated that the number of light paths must be at least the
same as the number of pixels in the resulting image.

5.3 Biasing

Biasing the algorithm does not have much sense for simu-
lations. Although, for performance heavy applications, in
case where we have limited time for calculating an image,
for example in games, it is possible to trade off quality for
speed.

During the implementation, two of the biasing tech-
niques were considered.

Limiting maximum camera path length Generally, the
camera path length can be very long (assuming it doesn’t
directly hit the light), until Russian Roulette finally termi-
nates the path.

By limiting the length of camera path to some value it
is possible to increase performance. First of all, longer
paths generally tend to have smaller contribution, by end-
ing them at some given maximum length we terminate
them early, effectively reducing the number of computa-
tions they need to do.

Also, from the GPU perspective, we are always waiting
for the longest path to finish the computation, in the worst
situation, whole warp is waiting for single thread to finish
a very long path. By bounding the maximum length, we
effectively reduce this issue and increase the computation
performance.

On the other hand, the unbiased nature of the algo-
rithm is lost, by limiting the maximum path length we
are effectively limiting the maximum number of reflec-
tions/refractions, which may cause visible problems in im-
ages (for example, missing reflection).

Random Number Generation As each Monte-Carlo
technique, path tracing and bidirectional path tracing,
heavily depend on random number generation. Having a
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random number generator with large period means, that
resulting image will converge closely to the ground truth.

Each Monte-Carlo technique spends some amount of
time in random number generator. If the application tar-
gets performance instead of precision, it is possible to pre-
generate random numbers into an array and use those later.

Doing so introduces a limit at which the image is not
able to converge more towards the ground truth (as all the
samples were already taken).

It is important to note that the results taken using the
implementation were recorded with unbiased version of
the algorithms. The biased version is between 2 and 3
times faster compared to unbiased version.

6 Results

6.1 Evaluation and Analysis

Results of the implementation were evaluated on low-end
laptop GPU NVidia GeForce 720M, with 1.5 GB mem-
ory. The system was running under Windows 8.1 OS, with
CUDA 5.5 installed. Kernels were compiled with com-
pute capability 2.0. The light paths were generated on the
runtime.

A low end GPU was used to demonstrate, that even cur-
rent generation laptop based GPUs are capable of interac-
tive rendering of moderately complex scenes.

The rendered images were taken each 5 seconds, while
the used algorithm was running progressively. Results pre-
sented in this section show the difference in quality be-
tween the specific implementations. The resulting images
are also compared to ground truth using the root mean
square error (further RMSE, lower is better).

The first set of comparisons is between path tracing
and bidirectional path tracing. Followed by comparison
against other GPU based Monte-Carlo rendering systems.

The single-step join does need to keep just a single (last)
vertex of the light path. K-step join needs to keep K ver-
tices of the light path in the memory during the compu-
tation, while full join needs to keep all the vertices in the
light path. While single-step join and K-step join have
constant memory footprint, the full join footprint grows
with the length of the light path.

6.2 Bidirectional vs. Unidirectional

Cornell Box
We ran two algorithms on the following scene, bidirec-

tional path tracing (with full path join) and standard path
tracing. Both of the resulting images are compared to the
ground truth. The sample images were taken after 5 sec-
onds and after 10 seconds. (see Table 1)

From the given comparison, it can be stated that bidirec-
tional path tracing with full path joining converges faster

Path Tracing Bidirectional

5s
RMSE 0.1002 0.0628

10s
RMSE 0.0784 0.0456

Table 1: comparison between Path Tracing and Bidirec-
tional Path Tracing with full path join.

compared to standard path tracing. This is especially the
case for caustics.

Crytek Sponza
The following scene shows complex materials, like tex-

tured, alpha-tested, reflective and refractive surfaces, lit by
an area light source.

All three different bidirectional kernels were run on this
scene, and the results show how the scene looked after 5
seconds of processing. All the results are compared to the
ground truth in terms of RMSE (see Table 2).

We observed the same behavior in all of our measure-
ments, full path join results in best image quality and
fastest speed. This shows, that the algorithm is not bound
by memory performance, in which case K-step join or sin-
gle step join would result in higher performance and thus
quality on a fixed budget.

Caustics Test
We also ran three different bidirectional kernels, as well

as standard path tracing method, on a scene with a caus-
tic. The results show how the scene looked after 5 and 10
seconds of processing (see Table 3).

The full path join also results in the highest quality caus-
tics, that are almost perfectly smooth after ten seconds of
computation.

6.3 Other GPU rendering packages

iRay
NVidia iRay is a physically based renderer highly scal-

able in performance across GPUs and CPUs. We rendered
the Crytek Sponza scene using our bidirectional path trac-
ing renderer and the iRay from a similar viewpoint (see
Table 4).
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Renderer Image RMSE

Single-step 0.1584

K-step (K=3) 0.0701

Full 0.0095

Table 2: Equal-time comparison between three different
implementations of bidirectional path tracing and their dis-
tance to ground truth in terms of RMSE.

Renderer 5s 10s

Single-step

K-step (K=3)

Full

Table 3: Comparison of a caustic scene with three dif-
ferent implementations of bidirectional path tracing. The
contrast was intentionally enhanced so it is possible to see
the difference in sampling inside caustics casted by a glass
sphere. Single step join has very slow convergence and so
the resulting image is darker compared to the others.

NVidia iRay Bidirectional

5s

10s

Table 4: Comparison between iRay and our bidirectional
path tracing implementation. The brightness/contrast dif-
ference is caused by different handling of output between
both implementations.

Again we target images generated after 5 and 10 sec-
onds, which shows the quality achievable using an inter-
active preview on low end graphics card.

The resulting images are untextured, as there is not a
full support for textured surfaces in iRay, and the scene
was lit using single directional light. This setting also al-
lows for an easier comparison of the quality of the global
illumination without the masking effect of the textures.

The technique iRay uses is actually standard path trac-
ing, in comparison it is clearly visible that our Bidirec-
tional technique produces smoother results for a similar
time budget.

LuxRender
LuxRender is a physically based and unbiased render-

ing engine. The LuxRender package was used through
Blender software, possibly limiting some options leading
to slightly decreased quality (see Table 5).

LuxRender uses a technique called LuxRays to produce
the image, it is an unbiased technique similar to bidirec-
tional path tracing. The implemented bidirectional solu-
tion might seem to converge better, although it is important
to state, that LuxRender is a very large package supporting
complex material setup (along with subsurface scattering
effects for example), while the implemented solution does
not.
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LuxRender Bidirectional

10s

20s

Table 5: Comparison between LuxRenderer and our
bidirectional path tracing implementation. The bright-
ness/contrast difference is caused by different handling of
output between both implementations.

7 Summary

Path tracing, in general, excels in exterior scenes or when
there are large light sources. Bidirectional path trac-
ing is an extension that allows for faster computation of
more complex situations, like interior scenes or small light
sources.

The created GPU-based implementation showed, that
bidirectional path tracing is also suitable for massively
parallel implementation. The results confirmed, that con-
vergence rates are in general better for bidirectional path
tracer, which effectively reduces computation time.

Full path joining proved to lead to the highest quality
global illumination, although keeping large memory foot-
print. However, on modern GPU architectures, the mem-
ory footprint required by full path joining is bearable.

K-path join proved to be an interesting alternative to full
path join. Even though the full path join actually results in
better convergence rates, it is possible to alter the number
of joins for K-join on the fly. This can be used to achieve
a constant refresh rate when running the algorithm in pro-
gressive mode. Such approach can be interesting for inter-
active preview of rendered scene.
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[10] Jaroslav Křivánek, Iliyan Georgiev, Toshiya
Hachisuka, Petr Vévoda, Martin Šik, Derek
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