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Abstract

The majority of computer applications employ numerical
data types with a fixed amount of precision for their com-
putations. Their limited numerical range and precision are
sufficient for most use cases. However, for some purposes,
such as cryptography or geometrical computations, the re-
quired range and precision can become arbitrarily large.
Numerical types that can handle such demands have higher
memory requirements and are not natively supported by
common hardware, which leads to increased computational
complexity. In this paper, we examine how basic arithmetic
operations on arbitrary-precision integers can be adapted to
many-core architectures in the form of graphics processing
units, which are widely available as commodity hardware.
Apart from a detailed description of our method, we show
superior performance characteristics of our implementation
in comparison to state-of-the-art CPU libraries for high
computational loads.

Keywords: gpu, cuda, integer arithmetics, parallel,
arbitrary-precision

1 Introduction
Fixed-Precision Number Formats Arithmetic computa-
tions in most programs are performed using number for-
mats with a fixed precision. These types allocate a constant
amount of memory for each number to store its value and,
therefore, only a limited amount of different values is avail-
able. A set of fixed precision formats is natively supported
by common processing hardware, usually given by power-
of-two binary lengths, e.g., 8-64 bits. Other arbitrary but
fixed lengths have to be mapped to the hardware capabili-
ties by software means.

Two main types of numbers can be differentiated: Fixed-
precision integers are mostly used for counting or address-
ing purposes and are limited to a specific numerical range.
Arithmetic operations on such numbers can result in an
under- (resp. overflow), where the result of a computation
is larger than the largest (resp. smaller than the small-
est) possible value of the given data type. Fixed-precision
floating-point numbers are used to represent approxima-
tions of real numbers and are limited both in precision
and range. Consequently, rounding errors are a common
downside, with implications depending on the application
scenario.

Arbitrary-Precision Number Formats In some cases,
fixed-length number types are not sufficient; for example,
if the largest occurring value of an integer is not known
prior to execution or if rounding errors of floating point
arithmetics cannot be tolerated. In these cases, we can
make use of arbitrary-precision number formats, for which
the numeric range and precision are chosen dynamically.
Arbitrary-precision arithmetics are essential to many appli-
cations, such as geometric algorithms or public-key cryp-
tography [4].

Standard number formats are part of every major pro-
gramming language, however only few of them provide
arbitrary-precision number types (e.g., Lisp, Erlang, Java,
Perl). For other languages, third party libraries have been
developed to support such formats, such as the GNU Multi-
Precision library (GMP) [8] or the Library for Efficient
Data types and Algorithms (LEDA) [1]. Note that they
explicitly target CPU hardware architectures.

Such computations are more complex when compared
to regular hardware-supported 32/64-bit arithmetics. Basic
addition/subtraction has a cost of O(n) with n being the
length in bits, while multiplication ranges between O(n2)
and the conjectured optimum of O(n log(n)) [5, 7, 10, 18].

To combat these performance issues, our overall goal
in this paper is to leverage the capabilities of many-core
hardware architectures to speed up arbitrary-precision com-
putations. Specifically, we will make use of Graphics Pro-
cessing Units (GPUs) by designing suitable data types and
parallel algorithms. We present an implementation using
a general and widely used GPU framework, the Compute
Unified Architecture Framework (CUDA).

2 Related Work

Since General Purpose Computing on Graphics Process-
ing Units (GPGPU) is a relatively new field, the major-
ity of the work on arbitrary-precision arithmetics targets
CPUs, which spawned several libraries. We already men-
tioned LEDA [14] and GMP [6] in the previous section
and another established library is ARPREC [3] which it-
self is based on MPFUN [2], a multiple precision library
for Fortran. Although many of them already provide a
rich set of different data-types and operations, our goal
is to accelerate the underlying computations for the use
in time-critical applications. To our knowledge, there is
no arbitrary-precision library for GPUs available and we
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cover the existing works on fixed-precision arithmetics in
the following.

GPU Multiple-Precision library (GPUMP) In 2010 Kaiy-
ong Zhao and Xiaowen Chu created the GPUMP [23], a
multiple-precision library for CUDA. GPUMP performs
its operations on integer types with an arbitrary but fixed
length. The functionality of GPUMP includes operations
such as (modular) addition and subtraction, multiplication,
division, Montgomery reduction/multiplication, exponenti-
ation as well as comparators. GPUMP applies sequential
arithmetic algorithms on pairs of numbers in parallel. It
fails if the number grow beyond the predefined length limit
and becomes inefficient for small numbers in terms of both
computation time and memory usage. Since GPUMP is
only applicable on integers with fixed length, its use in
areas like geometry is very limited, whereas our work is
based on arbitrary-precision integers.

Multi-Precision Floating-Point on GPUs A multiple-
precision library for floating-point number types, the
CUDA Multi-Precision library (CUMP), was presented by
Takatoshi Nakayama and Daisuke Takahashi in 2011 [15].
Additional work has been done by Andrew Thall [22], Mian
Lu et al. [13], as well as Mioara Joldes et al. [11].

2.1 Algorithms

In this section, we shortly review relevant parallel algo-
rithms for our setting.

Parallel Algorithms in CUDA The use of parallel primi-
tives on graphics hardware architectures was pioneered by
Mark Harris and colleagues. We build on these concepts
and refer to them [9, 19] for a detailed overview on the nec-
essary considerations for algorithms to map well to GPUs
and CUDA in particular, such as the usage of shared mem-
ory buffers, optimal memory access schemes and issues
with code path divergence.

Integer Multiplication While integer addition is rather
straightforward, their optimal multiplication is still an open
problem. We use the standard school method with complex-
ity O(n2). More advanced approaches, such as the divide-
and-conquer approach by Anatolii Karatsuba [12] have
lower complexity of O(3nlog2 3), the conjectured optimum
of O(n log(n)) is most closely reached by methods employ-
ing the Fast Fourier Transformation (FFT) [7, 18]. Such
methods either show their advantage only for huge numbers
(>103 decimal digits) or they are hard to efficiently map to
graphics hardware. We show that our simple approach still
runs significantly faster than current state-of-the-art CPU
implementations.

3 Methodology

Arbitrary-precision arithmetics can be performed on var-
ious different number types such as integers, rationals or

algebraic. The fundamental number type is the unsigned
integer type, additional signs can be handled separately. As
arbitrary-precision rational numbers are usually composed
of a sign and two integers, we target the unsigned integer
type in this paper. Our arbitrary-length integer representa-
tion format is based on an array of unsigned sub-integers of
fixed length, which we denote as words. The word length
should be chosen to map well to the underlying arithmetic
hardware and in the following, we assume that common
arithmetic operations (e.g., +,−,×) are natively supported
on words. Furthermore, we expect such operations to ‘wrap
around’ in case of an overflow, i.e., all operations are com-
puted modulo the largest representable value of a word plus
one. Note that this is the standard behavior for unsigned
integers in all common languages. While theoretically un-
bounded, the amount of available memory will limit the
number of words that can be stored and will act as a prac-
tical limit on the maximal size of our arbitrary-precision
integers, which we will simply denote as numbers.

According to standard literature, the many-core process-
ing hardware (i.e., the graphics card in our implementation)
is referred to as device, while host refers to the CPU (plus
the standard system memory). Furthermore, the part of
the program executed on the device will be referred to as
kernel [17].

3.1 Parallelization Strategy

While we target graphics hardware in particular, our work
generalizes to most common many-core architectures (e.g.
Intel Xeon Phi), which exhibit Single Instruction, Multiple
Data (SIMD) computation units as their atomic elements.
Each unit computes `SIMD-many data elements in parallel
in each execution cycle. Our algorithmic design is strongly
motivated by the observation that instruction divergences
are costly if they happen inside a SIMD unit but incur no
additional cost when different SIMD units follow diverging
code paths.

A key assumption is that we expect the word count of the
numbers, which we operate on, to be larger than the SIMD
units’ length. For smaller numbers, the parallel extensions
of CPUs (e.g., SSE or AVX) can be efficiently used. In
our case, we employ a two-level parallelization strategy.
First, we distribute each issued computation to one SIMD
unit and compute them independently and in parallel. As
different computations generally handle input numbers of
different lengths and employ different operators (+,−,×),
significant instruction divergence is expected between them.
All associated downsides are negated since SIMD units act
independently from each other on our targeted architectures.
Each SIMD unit itself operates on `SIMD-many words in
parallel and we rely the provided intra-SIMD synchroniza-
tion capabilities to handle sequential sections of the algo-
rithms. After a computation is finished, the responsible
SIMD unit fetches the next item from the computation pool
until its depletion. Note that this approach is only efficient
on large data set, where more computations than SIMD
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Figure 1: Memory layout of our numbers showing one ex-
ample computation with two input and one output numbers
as well as the operation type (+,−,×) to be performed.
The computation array holds the offset and size of the cor-
responding words in the global array of words.

units are issued.

3.2 Memory Management

A global array stores all words and the numbers can be
identified by their offset into this array and their size (see
Figure 1). A separate array holds all the computations that
are issued. For each computation, the offset and length
are stored for two input and one result number as well as
the type of operation to be performed. As the offset and
size of the results is generally not known in beforehand, we
supply the functionality to reserve additional space in the
global array of words. We keep a sophisticated memory
allocator [20] as future work and just point to the first free
memory location. Note that if host and device manage
separate memory spaces (as is the case with graphic cards),
data transfers have to be issued.

3.3 Addition

Sequential Addition Before moving to parallel algo-
rithms, we first take a look on how two numbers X and Y
are added by a sequential method. As already mentioned,
the numbers are composed of several words, which we enu-
merate as x0, . . . ,xm and y0, . . . ,yn with x0 and y0 holding
the Least-Significant-Bits (LSBs). We assume without loss
of generality that n ≤ m holds for the word counts of the
two numbers.

As addition is natively supported on words, we still have
to account for potential carries. We will add each word-pair
xi, yi sequentially and in case of an overflow due to the
finite range of the numeric type of the words, we pass a
carry ci to the next addition. This can be achieved with a
simple loop over all words. In each iteration, we compute
the sum si = xi + yi + ci−1. In case of an overflow, we rely
on the wrapping behavior for si and issue a carry ci = 1
(instead of ci = 0) for the next addition. Note that for
iterations i > n, we set xi = 0 and terminate with the last
iteration i = m+1, where xm+1 = ym+1 = 0.

Parallel Addition with Word Counts < `SIMD While one
can trivially add the corresponding words (i.e., each xi +yi)
in a parallel manner, synchronization issues arise from the
carry propagation due to its sequential nature. In this sec-
tion and the next, we describe the addition of numbers
whose word count is smaller than the width `SIMD of the
SIMD units. We generalize for numbers of arbitrary length
afterwards. All m < `SIMD additions of the terms are exe-
cuted in parallel by a SIMD unit. Each addition potentially
issues a carry that has to be propagated to the more signifi-
cant words.

1 1 9 9

1 9 0 0

2 0 9 9

X

Y

Sum before

carry prop. 

C

N G G P

N G G G

LSW MSW

2 0 0 0
Sum after

carry prop. 

Carry out

N G P P

Figure 2: Illustration of the carry propagation with decimal
number type as words: We compute the sum of numbers X
and Y with lengths n = 4 for each word separately and
perform the parallel carry propagation using the additional
array C with values G for generation, P for propagation
and N for no carry. The numbers are ordered from Least-
Significant-Word (LSW) on the left to Most-Significant-
Word (MSW) on the right. The carries are propagated in
log(n) = 2 many steps and added to the sums to obtain the
final result (bottom).

Parallel Carry Propagation To perform the carry prop-
agation in parallel, we will use the prefix scan algorithm
illustrated in Figure 2. Since we perform the addition of X
and Y in parallel, we will store these carries in a temporary
array C, where each addition xi+yi can produce a carry that
is stored in ci. A carry ci−1 can only be propagated if xi+yi
is the maximum value vmax of a single word. A little con-
venient detail is that carry propagation and generation can
not occur at the same time. Even if xi and yi are at the high-
est value, we have vmax +vmax mod (vmax +1) = vmax−1.
Thus it is possible to store both cases (propagation and
generation) in the same carry array C. We denote the three
distinctive values in this array with G for generation, P for
propagation and N for no carry.

Now we have to find a generalized associative opera-
tion ⊗ that can perform this propagation. Given a pair of
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Ci Ci−1 Ci⊗Ci−1 Ci Ci−1 Ci⊗Ci−1

N N N G P G
N G N P N N
N P N P G G
G N G P P P
G G G

Table 1: Results for carry propagation function ⊗. G for
carry generation, N for no generation and P for possible
carry propagation

carry values, it computes the resulting behavior and when
iteratively applied to all pairs, it correctly adds carries to
the relevant values. We list all possible combinations in
Table 1. In the case that ci is already set to N or G it does
not matter which value ci−1 has as the initial value remains
the same. In the last three cases, where ci is set to P , it
will inherit the value from ci−1, therefore P is our identity
element.

Parallel Addition with Word Counts≥ `SIMD For longer
numbers, we can use a simple loop as described above for
a sequential addition algorithm. The only difference is,
that we do not iterate over every single word but instead
over chunks of `SIMD-many words. Thus, each SIMD unit
performs chunk-wise addition sequentially. For additional
work parallel approaches are suggested.

3.4 Parallel Multiplication

We employ a parallel version of the school algorithm to
multiply two numbers. Again, we assume two numbers X
and Y , each composed of m and n words x0, . . . ,xm and
y0, . . . ,yn. In contrast to addition, where the upper bound on
the length of the result is max(m,n)+1, for multiplication
it is m+ n and we thus store the result in an array P of
words p0, . . . , pm+n.

Multiplication with Word Counts ≤ `SIMD For sim-
plicity, we will first take a look at multiplication
of two numbers with a maximum length of lSIMD
words each. Again, a single SIMD unit performs
this computation, with all others running in parallel.

5 1 2
1 2 8

4 0 9 6
1 0 2 4
5 1 2
6 5 5 3 6

×

The basic idea is to compute each line
of the example on the right sequentially,
while the workload of a single line is dis-
tributed across the processing elements
of a SIMD unit. Note that in this exam-
ple one word corresponds to one decimal
place with 10 possible values. We start by
multiplying x0, ...,xm with y0 and writing
the result in p0, ..., pm+1. Keep in mind
that the first sub-product is of the length ≤ m+ 1. Then
we compute the second sub-product of x0, ...,xm with y1,
which is added to the previous result but shifted by one
word to the left, i.e., we add it to p1, ..., pm+2 using our

addition algorithm from before. We will continue this until
the last sub-product of x0, ...,xm with yn that will reside in
the result array in pn−1, ..., pm+n.

Sub-Products We now take a look at how to perform
the jth line of the example. Within the SIMD unit, each
element i will perform the multiplication xiy j. Although
we assume that the multiplication of two single words is
supported, we cannot directly apply it, as the result will be
two words long.

Alternatively, we will split the numbers xi and y j in two
words of half size each, with xhigh being the most significant
bits and xlow being the least significant bits of xi. Then
we will perform four multiplications xhighyhigh, xhighylow,
xlowyhigh, xlowylow and store the (shifted) results in the two
words phigh and plow. Each processing element i adds its
result plow to the result array at pi+ j in parallel. After that,
we perform a carry propagation. Finally, each element adds
its result phigh to the result array at pi+ j+1 where another
carry propagation is performed.

Multiplication with Word Counts > `SIMD If we only
increase the length of Y , the algorithm works just fine,
since the limitation given by the SIMD length `SIMD only
concerns the length of X . For longer X , we split it into
chunks of `SIMD words each and process them sequen-
tially. For the k-th chunk of X and the j-th word of Y ,
for example, the SIMD unit would compute the product
(xk `SIMD , ...,x(k+1)`SIMD−1)y j.

4 Implementation in CUDA

In our implementation we mapped our parallel algorithms
to CUDA [16]. The natively supported integer data type
has 32 bits while the length of a SIMD unit – called warp –
is also 32. Thus, both our word length (in bits) and SIMD
length `SIMD are set to 32, making a SIMD-sized chunk
1024 bits long. Carry propagation was performed with intra-
warp prefix scans using shared memory, while result space
reservation employed global and shared memory atomics.
At kernel start, we spawned as many warps as the device
supported in blocks of integer size and terminated them
only after the computation pool was depleted. No intra-
block synchronization primitives were used as we rely on
the implicit intra-warp synchronization.

5 Results

For different test cases, we compare the timings of code
execution on the CPU with the timings on the GPU on
a test system with an Intel Core i7 4700MQ CPU and a
nVidia K2100M GPU. We organize the test cases according
to computation type (+,−,×) and the amount of compu-
tations that are issued. The length of our numbers are
randomly sampled from a normal distribution with mean µ
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Figure 3: Addition benchmarks. Integer lengths in multiples of 1024 bits with deviation σ are shown on the x-axis. The
timing of our GPU implementation is shown with and without data transfer to and from the device on the y-axis. For small
computational loads, the GPU is not sufficiently occupied, while for a sufficiently large amount of computations, superior
performance is obtained.
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Figure 4: Multiplication benchmarks. Integer lengths in multiples of 1024 bits with deviation σ are shown on the x-axis.
Due to the higher complexity of the multiplication, the GPU outperforms the CPU already at 256 multiplications and the
advantage grows slightly as we raise the computation count.

and standard deviation σ to reveal possible code divergence
issues.

Benchmarks We compute our benchmarks for the opera-
tions +, − and ×. For each of these operations we instruct
the GPU and CPU to perform a predefined number of oper-
ations. We create a pool of 1024 randomly generated large
integers sampled from the standard distribution with µ and
σ and each operation is performed on two randomly chosen
numbers from this pool. The benchmark results shown in
the plots are the averaged timings of 32 executions. The
GPU benchmarks are computed with our own framework,
while we generate the CPU benchmarks with the state-of-
the-art LEDA library [14] as an objective reference and
leave optimizations on the CPU as future work.

Addition and Subtraction Comparison The operation
types addition and subtraction perform almost identically,
since they use the same algorithms and the conclusions
in this section hold for both operations. In the first test
case with only 256 operations (see Figure 3), the CPU
computations are still performed faster compared to our
own framework or almost equal if we do not take the data
transfers into account, since the computational load is too

small and the GPU not fully occupied. As we increase
the amount of operations to be performed, we can see an
advantage of the GPU – data transfer taken into account
– at around 1024 operations. The advantage of the GPU
and the performance gap between CPU and GPU increases
with every raise of the operation count as we saturate the
full compute capabilities of the graphics hardware.

Multiplication Comparison Due to the higher computa-
tional complexity of multiplications, we already see the per-
formance advantages of the GPU compared to the CPU at
the first test case with 256 operations, although the lengths
of the integers are only a fourth of the lengths in the ad-
ditions and subtractions benchmark. Due to the shorter
numbers used for the multiplication benchmarks, the data
transfer happens relatively fast, and the two cases with and
without transfer behave the same. Already at 256 opera-
tions, the GPU performs around three times as fast as the
CPU and this performance gap almost remains throughout
our test cases, as shown in Figure 4. At 4096 operations
the GPU performs about four times as fast as the CPU.
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6 Limitations and Future Work

As our work is a pioneering effort into arbitrary-precision
integer arithmetics on graphics hardware, there are multiple
venues for future work:

Faster Multiplication One could replace our school-
method multiplication with the Karatsuba Algorithm [12]
for a better computational complexity. Even better perfor-
mance on longer numbers can be achieved with the use of
FFT based methods [21].

Parallelization Strategies For small numbers, a per-
thread parallelization can yield better device occupancy
for a smaller amount of computations. For huge numbers,
a per-block or per-device parallelization can lead to better
occupancy as well.

Additional Formats A support for rational numbers as
quotients of two integers would add implicit division ca-
pabilities. However, an efficient method to compute the
greatest common divisor would be needed to reduce the
memory requirements. Furthermore, the framework can
be extended to support algebraic number formats, which
is highly non-trivial due to the conceptual and algorithmic
complexities involved.

Additional Operations Although the framework is a
proof of concept, it can be extended to make it practically
usable. For that it needs to support more mathematical
operations than simple arithmetics, such as exponential
functions, least common multiple, greatest common divi-
sor, min/max functions and comparators.

7 Conclusion

We presented a method to perform arbitrary-precision inte-
ger arithmetics on massively parallel hardware in the form
of graphic cards. By employing a two-level parallelization
scheme, we ensure minimal code divergence within the
SIMD units while still providing effective load balancing
across all units. By employing parallel prefix sum com-
putations we allow for an efficient carry propagation and
dynamic computation of memory offsets to both read and
write integers of arbitrary length. Our CUDA implementa-
tion was compared to a state-of-the-art CPU-based libraries
and with several benchmarks we showed that method is
several times faster for large computation loads.
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