
CellUnity - an Interactive Tool for Illustrative Visualization of
Molecular Reactions

Daniel Gehrer∗

Supervised by: Mathieu Le Muzic†, Ivan Viola‡

Institute of Computer Graphics and Algorithms
University of Technology

Vienna / Austria

Abstract

CellUnity is a tool for interactive visualization of molec-
ular reactions using the Unity game engine. Current
mesoscale visualizations commonly utilize the results of
particle-based simulations, which account for spatial in-
formation of each single particle and are supposed to
mimic a realistic behavior of the metabolites. How-
ever, this approach employs stochastic simulation methods
which do not offer any control over the visualized output.
CellUnity, on the other hand, exploits the results of de-
terministic simulations which are purely quantitative and
in that way offering full user control over the spatial lo-
cations of the reactions in the visualization. The user is
able to trigger reactions on demand instead of having to
wait or search for a specific type of reaction event, while
the quantities of displayed molecules would still be in
accordance with real scientific data. CellUnity exploits
the simulation results in real time and allows the user to
freely modify simulation parameters while the system is
running. The tool was realized in Unity, a cross-platform
game engine that also comprises a free version with ade-
quate functionality and therefore enables easy deployment
of the project.

Keywords: Unity, visualization, molecular reactions,
quantitative simulation, interactive visualization

1 Introduction

Biochemistry allows a deep insight into cells and the syn-
ergy of molecular processes. Without any visual expla-
nation, biochemistry can be difficult to understand [1].
Hence, it is necessary to visualize these processes to gain a
better and more intuitive understanding of what is happen-
ing inside a cell [2]. For learning and comprehension pur-
poses it is also important to provide an interactive, game-
like environment in order that students can immediately
experience the impact of modifications in a cellular envi-

∗daniel.gehrer@student.tuwien.ac.at
†mathieu.muzic@tuwien.ac.at
‡ivan.viola@tuwien.ac.at

ronment [3]. Scientific illustrators usually utilize animated
storytelling principles to visually explain molecular activ-
ities, e.g. a metabolic pathway. To achieve this, corre-
sponding particles and reaction events have to be shown in
a story-structured manner [1]. Available mesoscale visual-
ization tools commonly utilize the results of particle-based
simulations to generate illustrations depicting reactions of
a given biochemical process. Particle-based simulations
determine spatial information of each single particle and
are supposed to mimic a realistic behavior of the metabo-
lites. However, this approach do not offer any control over
the visualized output [1]. In particle-based simulations it
is extremely difficult to track a specific particle due to the
chaotic motion. Also reactions cannot easily be observed
in the complex environment [2]. Due to this problem, it
is challenging to comprehend reactions describing a bio-
chemical process. Even when single particles are tracked
and brought to focus, there is still no guarantee that a de-
sired or an interesting event will happen [1].

The goal of this project is to create a tool for interac-
tive visualization of an illustrative molecular environment.
The functionality and the implementation is inspired by
the paper of Le Muzic et al. [1]. CellUnity exploits the re-
sults of deterministic simulations which are purely quanti-
tative. This offers, in contrast to the existing approaches,
full user control over the spatial locations of the reactions
and avoids the chaotic diffusion motion [1]. The user is
able to trigger reactions on demand instead of having to
wait or search for a specific type of reaction event, while
the quantities of the displayed molecules would still be in
accordance with real scientific data. This makes it possible
for the user to follow a specific reaction chain in a realistic
environment, which is greatly valuable for the user’s com-
prehension and for illustration purposes. Parameters such
as reaction rates and particle quantities can be changed
while the system is running. The impacts of these changes
are immediately visualized.

Often, existing visual simulation environments like Zig-
Cell3D are implemented as proprietary research proto-
types that cannot be freely deployed on any machine [4].
Other tools like Molecular Maya or BioBlender are great
for visualization but the created environments cannot be

Proceedings of CESCG 2015: The 19th Central European Seminar on Computer Graphics (non-peer-reviewed)



animated using a simulator [5][6]. The main contribu-
tion of this work is the implementation of such a visual-
ization and simulation tool in Unity to enable easy and
free deployment. Unity is a cross-platform game engine
that also comprises a free version with adequate function-
ality [7]. CellUnity provides a user interface to create sim-
ple bio-molecular environments. It is possible to import
molecular structures available from public databases, de-
fine molecule quantities, reaction rates, and even to locate
individual particles in the environment. The settings can
also be exported to bioinformatics standard formats for the
usage in external applications.

2 State of the Art

There are already tools for visualizing molecular reactions
depicting a biological pathway. All of them have been de-
signed for a slightly different purpose. Yet they all share
the goal to provide insight into biological processes by vi-
sualizing a cellular environment at mesoscale levels. In
this chapter various available tools are examined in re-
spect to their visualization capabilities for scientific cor-
rect mesoscopic storytelling to explain cellular activities.

2.1 Tools for Molecular Visualization only

Some tools like Molecular Maya, BioBlender and
ePMV focus solely on visualizing cellular environments
[5][6][8]. These tools are all implemented as plugins for
3D computer graphics software and use the host appli-
cation for visualization. They are all capable of import-
ing molecules from the RCSB Protein Data Bank and
they are all available for free [9]. Molecular Maya uses
Maya as host application, BioBlender uses Blender and
ePMV can be used with Blender, Cinema4D and Maya
[5][10][6][11][8][12].

Molecular Maya supports various representation forms
and also enables the user to easily extend structures, for
example creating surface meshes and biological units [5].
BioBlender can animate transitions of conformations and
visualize various molecular features, e.g. the electrostatic
potential (EP) and the molecular lipophilicity potential
(MLP). This kind of representation makes the nano scale
world more understandable and is making it easier to con-
ceive invisible phenomena such as hydropathy or charge
[6]. The embedded Python Molecular Viewer (ePMV)
does not only import molecules from different file for-
mats but also keeps the link between structure file and the
model. That way changes that are applied to the struc-
ture file after the import, are also applied to the model.
The generated model is not just a static structure but can
also be manipulated by the 3D host program or by python
scripts that interact with ePMV.

All mentioned tools can be used to illustrate molecules
but the models do not convey information about its func-
tion. To illustrate a cellular environment, the illustrator has

to model the molecular processes manually using the host
applications default tool set, which is a time-consuming
and expensive task, taking up to months or years [1].

2.2 Tools for Molecular Visualization and
Simulation

2.2.1 Visualization of Signal Transduction Processes

Falk et al. developed a visualization framework to explore
simulation data of a virtual cellular environment [2]. The
goal of the work was to highlight events of interest in the
confusing environment. It especially helps Biologists to
follow signaling molecules through the cell. The user can
interactively select individual molecules and zoom into the
virtual cell. It is possible to visualize individual molecules,
their tracks, or reactions. The work is suitable for detailed,
realistic, spatial simulations, where each molecule is an
independent agent. A simulation usually covers several
hundred frames. The user can step through each frame by
keystrokes. The work also includes a virtual microscope
to create images which can be compared with results from
wet lab experiments. While the analyzing tool is interac-
tive, the simulation is not [2]. The user has to perform the
simulation again before it is possible to see the effects of
the changes made. Also the tool is not openly available
and therefore only used by a small set of users [2].

2.2.2 MCell and CellBlender

MCell (Monte Carlo Cell) is referring itself as micro phys-
iological simulator [13]. It is a program to simulate the
movements and reactions of molecules within and between
cellular regions. For simulation, MCell uses spatially real-
istic 3D models and specialized Monte Carlo algorithms.
It is intended to realize as realistic simulations as possible.
The model can contain multiple compartments, which rep-
resent enclosed parts, e.g. organelles [13]. The meshes can
be obtained from segmented volumetric imaging data or
from CAD (computer-aided design) software [14]. MCell
is free of charge and available for Linux, OS X, and Win-
dows [13]. The model and the simulation conditions are
defined in modular, human-readable text files, using a
model description language [14].

CellBlender is an add-on for the free and open-source
3D computer graphics software Blender [11] [15]. The
add-on is closely linked to MCell and enables the user to
perform integral modeling tasks in Blender. It is possible
to create, edit and visualize cellular models for the use in
MCell. The simulation results generated by MCell, again,
can be visualized in Blender, including the locations and
states of participating meshes and molecules [15].

2.2.3 ZigCell3D

ZigCell3D is a software for modeling, simulating and vi-
sualizing an entire cell. The visualization covers several

Proceedings of CESCG 2015: The 19th Central European Seminar on Computer Graphics (non-peer-reviewed)



orders of magnitudes, the full range from the cell surface
to organelles and molecules down to the atomic level. The
system also includes a virtual fluorescence microscope.
For simulation two different approaches are used. On the
one hand particle-based Brownian dynamics simulation,
and on the other hand simulations based on Reaction Dif-
fusion Master Equations (RDME), which have less spatial
resolution but better performance [4].

ZigCell3D provides a real time interactive environment,
where model parameters can be changed and the resulting
effect can be analyzed in the 3D visualization of the cell.
The user can select particles and can analyze the underly-
ing rules and mathematical expressions that are responsi-
ble for the creation of the selected component or molecule.
That frees the user from guessing the possible origin and
bridges the divide between quantitative sciences and math-
free wet-lab biology [4].

3 Methods

In CellUnity, the user has to set up the molecular envi-
ronment before it can be simulated. The setup consists
of importing different molecule species, setting the initial
quantities, defining the reaction equations and setting the
compartment size. The tool is interactive, so that the user
is able to explore and immerse into a virtual 3D cellular
environment. It is possible to track molecular compounds
and also trigger reactions manually, while respecting quan-
tities obtained via scientific simulation. In this chapter, the
concepts and tools used in CellUnity are introduced. In the
next chapter the concrete implementation is explained.

3.1 Development Environment

The project is built in Unity, a cross-platform game en-
gine. Unity is not only a game engine but also includes
an integrated development environment (IDE). Unity was
chosen as framework because it is easy to use, quick to
learn and there is also a free version with adequate func-
tionality to realize this tool. Moreover, this enables the
project to be easily shared and deployed, and allows the
user to modify or extend the project with little effort. Ad-
ditionally, Unity provides built-in methods for visualizing
3D objects and has a built-in physics engine. These fea-
tures speed up development and avoid that the project has
to be created from scratch. Furthermore, the Unity editor
can be extended easily to include custom plugins, which
seamlessly integrate into the Unity interface [7].

3.2 Visualization of Molecules

Molecules are visualized at atomic resolution. CellUnity
can import molecule species from the file system using
PDB files or can download the structure information auto-
matically from the PDB webserver using a given PDB ID

Figure 1: Visualization of an ubiquitin [16] molecule in
CellUnity

[9]. The representation of a molecule is automatically cre-
ated using the atom definitions in that PDB file. The im-
ported molecules are displayed as bunch of spheres, each
representing an atom. The locations of the atoms are in
accordance with the PDB file. The size of each atom cor-
responds with the Van der Waals radius of the associated
element. This representation is often referred as Van der
Waals representation [1]. An example is shown in figure 1.

3.3 Simulation

CellUnity is coupled to a simulator to mimic a realistic be-
havior in the visualization. For simulation the biochemical
simulator COPASI is used [17].

As soon as the simulation is started, the user defined ini-
tial state is transmitted to the simulator. Since CellUnity
only needs the number of reactions occurred, the simula-
tion is purely quantitative. The simulation is performed
step by step. After each step, the results are transmitted
back to CellUnity and the reactions are performed in the
visualization. It is also possible to modify simulation pa-
rameters after each step. The duration of such a step is
adjustable by the user.

Reaction events are solely triggered by an omniscient
intelligence (OI), like proposed by Le Muzic et al. [1]. In
this system, molecules are passive agents, according to the
definition by Kubera et al. [18]. Unlike in spatial-based
simulation methods, molecules in CellUnity are unable to
initiate reactions but can only receive reaction orders from
the OI. The OI is influenced by the simulator and controls
the molecules accordingly. Thus reactions in CellUnity
do not just happen but are actively forced. The OI uses
the current simulation state and takes action to achieve the
same state in the visualization. Concretely, the OI reads
out the quantity of reactions that occurred in the simu-
lation for each reaction type, and forces the same quan-
tity of reactions to happen in the visualization. Therefore
the simulation and the visualization are quantitatively syn-
chronized [1].

When a reaction is initiated, the OI selects random or
user selected candidates according to the species of the

Proceedings of CESCG 2015: The 19th Central European Seminar on Computer Graphics (non-peer-reviewed)



Simulation Step 
Result

Find Random 
Reactants in 
Visualization 
Environment

e.g.:
1x A + B   C
2x A + C   D

A

A

A

B

B

C

C

C

D

A

B C

C

D

A

A

A

B

B

C

C

C

D

Find Random 
Reactants in 
Visualization 
Environment

Apply mutual 
attraction forces

C

A

B

A

On Collision: 
Replace by reaction 

products B C

D

D

D

C

Wait for next 
Simulation Result

Figure 2: Example: Apply simulation results in visualiza-
tion.

reactants and applies mutual attraction forces to force re-
action partners to meet. As soon as they collide, the re-
actants are replaced by the reaction products. An exam-
ple is shown in figure 2. The motion of molecules and
also the collision detection is realized using Unity’s built-
in physics engine. Depending on if colliding molecules
should react, the reaction takes place, if not, they repel
each other via bouncing motion [1].

3.4 Navigation and Storytelling

To allow the user to navigate through the molecular en-
vironment, a navigation similar to a first-person-game is
enabled. The user can turn around using the mouse and
move with the W, A, S, D keys. Clicking on a molecule
selects it. The user can adjust the view to automatically
follow the selected molecule in the space or tag it for a re-
action. If a molecule is tagged for a reaction, its priority
will be set to react first when the OI initiates a new reac-
tion. This allows the user to easily follow a reaction chain
along a metabolic pathway. This is an easy way to compre-
hend reaction chains without having to wait until reactions
happen on themselves, and is useful for storytelling.

3.5 Data Persistence

Unity usually serializes game data into so-called assets to
persistently save them [7]. CellUnity uses this feature to

save environmental data like molecule species and reac-
tions. Molecules are implemented as GameObjects and
therefore can be saved and restored in scenes when Unity
is in edit mode. The position of every molecule is also pre-
served that way. In game mode the scene cannot be saved
but the current state can be exported to an SBML file. The
export functionality is available in edit mode as well. The
SBML functionality is acquired by an external library.

4 Implementation

CellUnity is implemented as a project inside Unity. Cus-
tom editors are used to allow the user to configure the
molecular environment. CellUnity’s implementation is di-
vided into individual classes. It is heeded that respon-
sibilities of each class is well defined, to ensure coher-
ent program modules that are as independent as possi-
ble. The CellUnity Environment (CUE) implements the
model of the cell, the custom editor serves as controller
for this model and Unity provides the visualization. To-
gether these components form a model-view-controller.

One custom editor window is implemented for CellU-
nity. Via this editor the user can model and modify the en-
vironment. It is possible to import molecule species from
PDB, to add and remove reactions from the system, con-
figure simulation properties and export the environment to
an SBML file. The target of the changes made in the edi-
tor is the CUE, which holds all the environment properties
and definitions.

4.1 CellUnity Environment

The CellUnity Environment (CUE) is the class that holds
all environmental properties and definitions. The entire
system can only contain one instance of a CUE, there-
fore it is implemented as singleton. The CUE contains
the defined molecule species and reactions, the volume of
the compartment, a molecule manager, a reaction manager
and a simulation manager. Each manager focuses on a sep-
arate task. They are described in detail in later sections.

4.2 Saving

Because all the environmental information is stored in the
CUE, it makes sense to simply serialize the instance to
persistently save the entire model when Unity is closed.
Unity already provides automatic serialization methods.
However, a few specific characteristics must be consid-
ered when used. Multiple references to one instance of
a class are serialized multiple times, therefore, for every
reference a new instance is created after restoring. This
behavior is not satisfactory for species and reaction in-
stances. Therefore these classes are derived from Script-
ableObject. ScriptableObjects are serialized only once and
multiple references are restored correctly [7].

Proceedings of CESCG 2015: The 19th Central European Seminar on Computer Graphics (non-peer-reviewed)



4.3 Compartment

The CUE currently only supports one compartment and it
has to be in the shape of a sphere. To keep the molecules
inside the compartment, collisions with the compartment
wall must be detected and the particles must bounce off.
The physics engine of Unity does not support inverted col-
liders, which would be required. Therefore the desired be-
havior must be implemented by user code [7]. For each
molecule, the distance to the compartment center is calcu-
lated. If the distance exceeds the radius, the distance is set
to the value of the radius and the velocity of the molecule
is inverted.

4.4 Molecules

In CellUnity, molecule representations are GameObjects
with a Molecule-script attached. The Molecule-script
applies molecular behavior to the GameObject. Each
molecule is an instance of a specific molecule species. To
make it easy to insert new molecules, each species has a
prefab asset. A prefab is a Unity asset type that allows to
store a GameObject with all components and properties. It
acts as a template from which it is possible to create new
instances in the environment [7]. The prefab is automati-
cally created when a new species is imported.

4.5 PDB Import

CellUnity can either import PDB files from the file system
or download them directly from the PDB website. PDB
files are text files which contain 3D structure information
of biological macromolecules [19]. For the molecule rep-
resentation, only the atom positions in the file are consid-
ered. To gather this information, a simple PDB parser was
written.

When a new molecule species is imported, at first, a
new MoleculeSpecies-instance is created and added to
the CUE. Then an empty GameObject is created, which
serves as the main object of the molecule. The main ob-
ject gets the Molecule-script attached and the newly cre-
ated species-instance assigned. All atoms defined in the
PDB file are now created as sphere-primitives and are
added as sub-objects to the main object. To get a Van der
Waals representation of the molecule, the size, location
and color of each sphere is set accordingly. For perfor-
mance reasons only one spherical collider that is consid-
ered by the physics engine is used for the whole molecule.
The newly created molecule is then saved to a new prefab
asset and assigned to the new species as the template for
the molecules.

4.6 Molecule Manager

The assignment of the MoleculeManager is to keep track
of all molecules in the system. When the play mode
in Unity is activated, each molecule registers itself to

 

Species 1 

Free 

Reacting 

Molecule Molecule ... Molecule 

Molecule Molecule ... Molecule 

Species 2 

Free 

Reacting 

Molecule Molecule ... Molecule 

Molecule Molecule ... Molecule 

... 

Figure 3: Schematic Diagram of the Molecule Manager

the MoleculeManager of the CUE. In the manager, all
molecules are organized in separate lists, depending on
their species and whether they are free or already in use for
a reaction. These lists are implemented as double linked
lists. One molecule can only be in one list at a time. This
enables to find free molecules quickly and efficient, which
is important for the preparation of reactions. The organi-
zation of the molecule manager is depicted in figure 3.

When a new reaction is initiated, the reaction manager
asks the molecule manager to find a set of molecules of
specific species that are near together. Due to the organi-
zation in the molecule manager, the nearest free molecule
of a specific species can be found in O(n+m) where n is
the number of species, which is usually very small, and
m is the number of molecules which are “free” and of the
defined species, meaning only a fraction of all molecules.
When a molecule’s state changes from “free” to “react-
ing”, it has to be removed from the “free” list and added to
the “reacting” list. This state change can be performed in
O(1).

4.7 Automatic Molecule Placement

Since it is impractical to place each molecule manually,
CellUnity offers to place a defined initial quantity of
molecules automatically and randomly. The initial quan-
tity can be set in the species editor. A problem that can
possibly occur is that due to the randomness two or more
molecules are placed too near together so that their col-
liders intersect. When this happens in Unity, particles re-
pel each other with an unusually strong collision response
which we ought to avoid. In CellUnity the problem is
solved using the physics engine itself. The initial drag
of the molecules is set to a very high value. As a result,
colliding molecules repel each other gently until they do
not intersect each other any longer and then remain steady
next to each other. This procedure is only performed once,
when the molecules are placed.

4.8 Reactions

Reactions that are possible in the system must be defined
to the CUE. They are defined as ReactionType-instances.
A reaction type consists of one or more reactants, zero
or more products and a reaction rate. Reactants are the
molecule species that are needed to perform a reaction.

Proceedings of CESCG 2015: The 19th Central European Seminar on Computer Graphics (non-peer-reviewed)



Products are molecule species that are produced when a
reaction was performed. The rate defines how many reac-
tions should happen in a given amount of time. The re-
action law is by default “Mass action (irreversible)” and
cannot be changed in the current version of CellUnity.

4.9 Reaction Manager

The assignment of the ReactionManager is to initiate re-
actions and to perform them when all reactants collide.
Reactions are usually initiated by the simulation manager.
When a reaction of a specific reaction type is started, a
new ReactionPrep (short for reaction preparation) object
is created, which stores all important information about
the reaction. Then the reaction manager asks the molecule
manager to choose some free molecules of the species
of the reactants for the reaction. The user can influence
which molecules are chosen next by selecting them. If no
molecule is selected, the reactants are picked randomly. If
not enough molecules are available, the reaction is noted
and delayed until enough molecules are available. This is
important to guarantee correct molecule quantities on the
long run. Such a delay can happen when the visualization
is slower than the simulation, for example when the react-
ing molecules are located far apart, or when they hit ob-
stacles which slow them down before reacting. However,
if enough molecules are available, they are linked with the
ReactionPrep object. Every molecule can only be linked
to one ReactionPrep object at a time. Molecules linked to
the same ReactionPrep instance and therefore are reactants
of the same reaction, attract each other. This ensures that
they will collide. When two molecules collide, they in-
form the reaction manager. The reaction manager checks
if they belong to the same reaction, if yes, they are both
tagged as “ready”. As soon as all reactants are ready, the
reaction is performed. The reactants are then replaced by
new product molecules.

When a reaction is initiated, the reactants attract each
other and accelerate towards each other. Due to their phys-
ical properties they possibly do not collide immediately
but start to orbit the common barycenter. This can re-
sult in an endless circulation with the molecules never col-
lide. To avoid this, a drag is set in the environment for
all molecules. As a consequence orbiting molecules slow
down and collide after a short time.

4.10 Simulation

CellUnity is coupled with COPASI, a tool for quantitative
modeling and simulation. COPASI is used to simulate the
user defined molecular environment. The communication
is enabled via the C# application programming interface
(API) provided by COPASI [17]. The simulation is started
and administered by the simulation manager. The manager
is also responsible for the data transfer with the simulator
as well as the utilization of the simulation results.

4.11 Simulation Manager

Prior to the real-time simulation of the environment, the
CellUnity model has to be transferred to COPASI. The
compartment, the species and the reactions from the CUE
are added to COPASI via the API. The initial quanti-
ties of the species in COPASI are set to the count of the
species currently located in the CUE. When the model is
changed, it is re-transferred to COPASI. Because CellU-
nity only pursuits of quantitative correctness, everything
needed from the simulator are the number and types of re-
actions performed in the simulation. To gather this value
for each reaction type, a “global quantity” model value
is added. The value is defined as the ParticleFlux of the
particular reaction. The type of the model value is set to
“ode”, so the value is the total value of performed reactions
of this type.

The simulation is performed in steps. In CellUnity,
there is a time for the “visualization step” and a time for
the “simulation step” that the user can define. The “visual-
ization step” is the real time interval of a step. The “simu-
lation step” is the time simulated in such a step. After each
simulation step, the ParticleFlux of each reaction is com-
pared with the value before that step. The difference is the
number of reactions performed during this step. The same
number of reactions is then initiated in the visualization.

5 Summary

This paper presents an interactive tool for illustrative vi-
sualization of molecular reactions. It enables the user to
build a simple molecular environment and simulate it in
real time. It is possible to import molecular structures
available from public databases, define reactions, and lo-
cate molecules in a compartment. Existing visualization
tools commonly utilize particle-based simulations to gen-
erate illustrations depicting reactions. This approach pro-
vides highly realistic visualization, however, it does not
offer any control about the visual output. Due to this, it
can be hard to follow a specific chain of reactions, be-
cause reactions occur randomly and it is not guaranteed
that anything interesting will happen in the user’s sight.
CellUnity, on the other hand, allows the user to trigger re-
actions and can automatically follow molecular reactions
along a metabolic pathway. Even though the user inter-
acts with the environment, the visualization remains in ac-
cordance with real scientific data. This enables the user
to experience and comprehend metabolic processes. The
model created in CellUnity can be exported as SBML file
and used in other applications. Another advantage is that
only free software is used to develop CellUnity. Hence,
CellUnity can be easily deployed, modified and extended
by everyone.

Proceedings of CESCG 2015: The 19th Central European Seminar on Computer Graphics (non-peer-reviewed)



References

[1] Mathieu Le Muzic, Julius Parulek, Anne-Kristin
Stavrum, and Ivan Viola. Illustrative visualization
of molecular reactions using omniscient intelligence
and passive agents. Computer Graphics Forum,
33(3):141–150, June 2014.

[2] Martin Falk, Michael Klann, Matthias Reuss, and
Thomas Ertl. Visualization of signal transduction
processes in the crowded environment of the cell.
In Proceedings of the 2009 IEEE Pacific Visualiza-
tion Symposium, PACIFICVIS ’09, pages 169–176,
Washington, DC, USA, 2009. IEEE Computer Soci-
ety.

[3] Marc Prensky. Computer games and learning: Dig-
ital game-based learning. Handbook of computer
game studies, 18:97–122, 2005.

[4] P. de Heras Ciechomski, M. Klann, R. Mange, and
H. Koeppl. From biochemical reaction networks to
3d dynamics in the cell: The zigcell3d modeling,
simulation and visualisation framework. In Biologi-
cal Data Visualization (BioVis), 2013 IEEE Sympo-
sium on, pages 41–48, Oct 2013.

[5] Molecular Maya Toolkit website.
http://www.molecularmovies.com/toolkit/. Ac-
cessed: 2014-08-21.

[6] Raluca Mihaela Andrei, Marco Callieri,
Maria Francesca Zini, Tiziana Loni, Giuseppe
Maraziti, Mike Chen Pan, and Monica Zoppè.
Bioblender: A software for intuitive representation
of surface properties of biomolecules. CoRR, 2010.

[7] Unity Technologies. http://www.unity3d.com/. Ac-
cessed: 2014-08-21.

[8] Graham T. Johnson, Ludovic Autin, David S. Good-
sell, Michel F. Sanner, and Arthur J. Olson. epmv
embeds molecular modeling into professional anima-
tion software environments. Structure, 19(3):293–
303, 2014.

[9] Helen M. Berman, John Westbrook, Zukang Feng,
Gary Gilliland, T. N. Bhat, Helge Weissig, Ilya N.
Shindyalov, and Philip E. Bourne. The protein data
bank. Nucleic Acids Research, 28(1):235–242, 2000.

[10] Autodesk Maya. http://www.autodesk.de/
products/maya/. Accessed: 2014-08-21.

[11] Blender Online Community. Blender -
a 3d modelling and rendering package,
http://www.blender.org. Accessed: 2014-08-21.

[12] Maxon Cinema4D.
http://www.maxon.net/de/products/cinema-4d-
studio.html. Accessed: 2014-08-21.

[13] MCell website. http://mcell.org/. Accessed: 2014-
08-21.

[14] Rex A. Kerr, Thomas M. Bartol, Boris Kamub-
sky, Markus Dittrich, Jenchien Jack Chang, Scott B.
Baden, Terrence J. Sejnowski, and Joel R. Stiles.
Fast monte carlo simulation methods for biological
reaction-diffusion systems in solution and on sur-
faces. Nucleic Acids Research, 2008.

[15] CellBlender website.
https://code.google.com/p/cellblender/. Accessed:
2014-08-21.

[16] PDB ID: 1UBI
Ramage, R. and Green, J. and Muir, T.W. and Ogun-
jobi, O.M. and Love, S. and Shaw, K. Synthetic,
structural and biological studies of the ubiquitin sys-
tem: the total chemical synthesis of ubiquitin.

[17] Stefan Hoops, Sven Sahle, Ralph Gauges, Christine
Lee, Jrgen Pahle, Natalia Simus, Mudita Singhal,
Liang Xu, Pedro Mendes, and Ursula Kummer. Co-
pasia complex pathway simulator. Bioinformatics,
22(24):3067–3074, 2006.

[18] Yoann Kubera, Philippe Mathieu, and Sébastien Pi-
cault. Everything can be agent! In Proceedings of the
9th International Conference on Autonomous Agents
and Multiagent Systems: Volume 1 - Volume 1, AA-
MAS ’10, pages 1547–1548, Richland, SC, 2010. In-
ternational Foundation for Autonomous Agents and
Multiagent Systems.

[19] wwPDB. Protein data bank contents guide: Atomic
coordinate entry format description version 3.30.
ftp://ftp.wwpdb.org/pub/pdb/doc/
format_descriptions/Format_v33_A4.
pdf.

Proceedings of CESCG 2015: The 19th Central European Seminar on Computer Graphics (non-peer-reviewed)

http://www.autodesk.de/products/maya/
http://www.autodesk.de/products/maya/
ftp://ftp.wwpdb.org/pub/pdb/doc/format_descriptions/Format_v33_A4.pdf
ftp://ftp.wwpdb.org/pub/pdb/doc/format_descriptions/Format_v33_A4.pdf
ftp://ftp.wwpdb.org/pub/pdb/doc/format_descriptions/Format_v33_A4.pdf

	Introduction
	State of the Art
	Tools for Molecular Visualization only
	Tools for Molecular Visualization and Simulation
	Visualization of Signal Transduction Processes
	MCell and CellBlender
	ZigCell3D


	Methods
	Development Environment
	Visualization of Molecules
	Simulation
	Navigation and Storytelling
	Data Persistence

	Implementation
	CellUnity Environment
	Saving
	Compartment
	Molecules
	PDB Import
	Molecule Manager
	Automatic Molecule Placement
	Reactions
	Reaction Manager
	Simulation
	Simulation Manager

	Summary

