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Abstract

This paper presents a new approach to automatic 3D
building reconstruction from LiDAR data. While tradi-
tional approaches use random sampling or Hugh trans-
form for extracting subsets of coplanar points from noisy
point clouds, our method is based on locally fitted sur-
faces (LoFS). These are planes, best-fitted to the K-
neighbourhood of each LiDAR point. In this way, a set
of candidate patches for a building surface is obtained.
The clustering of patches is then performed based on the
planes’ normals and the positions of neighbourhoods, in
order to obtain a rough approximation of flat roof sides.
An adjacent graph is generated between them and inter-
sections between neighbouring sides are estimated in or-
der to define ridges, while intersections between buildings
and ground points are considered in footprint definition.
This defines the vertical walls. This method was tested on
buildings of different architectural styles, sizes, and com-
plexity. Most buildings are successfully reconstructed,
however with increased building details, the accuracy of
reconstruction is often decreased.
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1 Introduction

Light Detection And Ranging (LiDAR) has become a pop-
ular research topic over the last decade, as more atten-
tion is directed towards Earth observations [10, 9]. Li-
DAR is an active remote sensing technology that utilises
laser light in order to scan surface topographies, usually
from an airborne platform. The result of such scanning
is a dense cloud of topologically unstructured 3D points
that allows accurate monitoring of the Earth’s surface. Re-
cently, 3D reconstruction of urban environment has be-
come increasingly important and is being used for many
applications such as urban planning [4], wireless commu-
nications’ modelling [18], tourism or grand-scale virtual
geographical information programs [19]. As manual re-
construction is exhausting, it is imperative to be able to
reconstruct buildings automatically or semi-automatically.
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This paper presents a novel method for automatic build-
ing reconstruction from LiDAR data that uses locally fit-
ted surfaces (LoFS) in combination with clustering and an
adjacency graph to find primary buildings’ vertexes and
borders. The paper is structured into 4 sections. The next
section provides an overview of the related work. Sec-
tion 3 describes the proposed method for reconstruction of
buildings, followed by the results. The last section con-
cludes this paper.

2 Related work

Automatic reconstruction of buildings from LiDAR data
is an intensive research field, where a number of solutions
have already been proposed. In most common cases, pla-
nar patches are extracted from point clouds in order to
obtain approximated flat roof sides. Random sampling
consensus (RANSAC) [2, 21, 22, 12, 1], Hugh transform
[13, 20, 23], or region growing on surfaces [15, 7, 5, 17]
are the most often used methods for this purpose.

An early attempt at semi-automatic reconstruction was
done by Haala and Brenner [3]. In addition to LiDAR data
they used 2D ground plans of buildings for their automatic
3D reconstruction. The ground plans are divided into
rectangles, for each of which 3D primitives are instanti-
ated. Final reconstruction is obtained by merging selected
3D primitives. Later, Brenner [2] presented a bottom-up
approach that extracts faces from laser scan data using
RANSAC. A set of rules was developed to decide which
segments are selected for this purpose. The roof is then
built from the selected segments, closing any gaps. Re-
cently, Arikan et. al [1] introduced a reconstruction and
modelling pipeline to create polygonal models from un-
structured point clouds. They extracted planar patches us-
ing RANSAC and then snapped them together using an
iterative optimisation approach.

In contrast, Vosselman [23] developed a method that
uses Hough transform in order to extract planar faces from
laser scan data, followed by a connected component anal-
ysis. The roof topology is determined by considering geo-
metric constraints and bridging gaps along detected edges.
Vosselman and Dijkman [24] upgraded this method by in-
tegrating the information obtained from ground plans.
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In 2003, region growing on surfaces was utilised for re-
construction by Rottensteinter and Breise [17]. They pro-
posed a method that uses LiDAR data in combination with
aerial images. Roof planes are detected by a curvature-
based segmentation technique [16]. They are grouped to
create polyhedral building models and then improved with
the usage of all available sensor information. A region
growing algorithm based on an adjacency graph was pro-
posed by Milde et al. [7]. Simple roof shapes are extracted
by finding subgraphs, whereas complex roof structures are
derived using formal grammar.

The idea of presenting topological relations between ap-
proximated roof sides using adjacency graph was first in-
troduced by Verma et al. [22], where two faces are con-
sidered as adjacent if at least one pair of line segments
from their approximated 3D boundaries is close enough.
Several other approaches have also been proposed for es-
tablishing adjacency relations. Milde et al. [7] used the
perpendicular distance between oriented parallel bounding
boxes of faces. Oude Elberink [14] considered the length
of a segment, determined by points within a flexible dis-
tance from intersection lines between two faces.

3 Reconstruction of buildings

Reconstruciton is performed over four steps. Firstly, lo-
cally fitted surfaces (LoFS) are estimated for each point.
In the next step DBSCAN clustering is applied on the nor-
mals and position of the neighbourhood in order to obtain
approximated flat roof sides. An adjacency graph is con-
structed in the third step and in the last step main build-
ings’ borders and sides are estimated. Every step is sepa-
rately described in detail in the following subsection.

3.1 Estimation of LoFS

The method’s input is a LiDAR point cloud, where each
point is georeferenced and classified as building, terrain
or vegetation [8]. Firstly, for each building point, the
K-nearest points are located using fast approximate K-
nearest neighbours algorithm [11]. A plane is fitted to the
K-neighbourhood of each point using locally fitted sur-
faces (LoFS). LoFS is a set of best-fitted surfaces to the
K-neighbourhood of each point [8]. If the neighbourhood
of each point does not belong to the same surface, large-
fitting error occurs. In this case, a surface with better-fit
should exist. In order to determine it, the neighbourhood
of each point is inspected. For better understanding, con-
sider the example in Figure 1a), where a case of six points
from a roof surface and a point within the building is pre-
sented. Firstly, a set of best-fitting surfaces is estimated
in Figure 1b) with a fitting window size set to 3 and link-
ing window size to 5. Window size defines the number
of points considered when fitting or linking surfaces. In
our case this means that each surface is fitted to a given
point by also considering its neighbour on each side. Ev-

Figure 1: Estimation of LoFS with window size for fitting
set at 3 and for linking at 5 in the case of a noisy surface
a). A set of best-fitted surfaces is obtained and linked with
the corresponding points b). The neighbourhood of each
point is inspected to link it with a surface with the best fit
c) in order to obtain the final set of surfaces d).

ery point is linked to the fitted surface, as shown in Fig-
ure 1b). During the linking step, the neighbourhood of 2
points on each side of the given point are inspected for the
defined window size. The surface from this neighbour-
hood with the lowest distance (error) to a given point is
linked with it. Thus, the darkened point is linked with the
surface corresponding to the second neighbour on its right
(as shown in Figure 1c)). The final set of surfaces can be
seen in Figure 1d).

3.2 Clustering

Points linked with their LoFS are then clustered separately
by normals and then by position in order to obtain a rough
approximation of flat roof sides. Clustering is a process
of dividing data into groups of similar objects (clusters).
Density based spatial clustering (DBSCAN) within large
datasets with noise is used [6], as LiDAR point cloud is a
representative of such datasets. DBSCAN is based on the
idea that the density within a neighbourhood for an object
has to be high enough to belong to a cluster. Each cluster
is created from a single data object by absorbing all ob-
jects in its neighbourhood. DBSCAN is independent of
data order. It is controlled by two parameters: the minimal
number of points required to be considered as a cluster and
density treshold for neighbourhoods. In this step clusters
of points that belong to the same flat roof side are obtained.
The problem of using density within a neighbourhood for
clustering is that DBSCAN also clusters points within the
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neighbourhood that might be a part of a curved surface.
This only occurs when the curvature is small enough for
the distance between neighbours to be lower than the den-
sity threshold. Each cluster with an averaged plane equa-
tion is considered as a node of the adjacency graph that is
constructed in the next step. The result of such clustering
is presented in Figure 2.

Figure 2: Example of clusters of points that belong to the
same flat roof side (i. e. nodes) for a building’s roof.

3.3 Adjacency graph construction

The topological relations between approximated roof sides
are usually presented in an adjacency graph. Adjacency is
commonly defined as a pair-wise connection by an edge
between two roof sides that share a common border [22].
In order to be able to detect common ridge points, we
define adjacency as edges between roof sides that share
at least one ridge point. Adjacency is tested using en-
larged and oriented bounding boxes of the approximated
roof sides. If two bounding boxes overlap, they are adja-
cent. In this way an undirected graph is constructed, as
shown in Figure 3.

Figure 3: Adjacency graph for a roof with four nodes
that share the same ridge point. Black segments represent
graph edges.

3.4 Modelling

In order to reconstruct a building we need to determine its
boundary points and edges. Firstly, ridge points that are
shared between at least three roof sides are estimated. This

is performed by searching for maximal cliques in the adja-
cency graph. Clique is a subset of nodes in an undirected
graph where every two nodes in the subset are connected
by an edge. It is maximal when it does not exist within a
larger clique. From every clique we select three nodes that
share at least one border with the other two nodes. To test
if two nodes share a common border, an intersection line
between pairs of nodes is first calculated. Then the points
of each node that are within a certain distance d from the
intersection line are projected perpendicularly on the line,
as shown in Figure 4.

Figure 4: Shared common border between a pair of nodes.
Points within a distance d from both nodes are perpendic-
ularly projected on the intersection line. The longest seg-
ment between projected points l needs to be long enough.

If the longest segment l between the projected points
from both nodes is long enough (e.g. 1m), it is consid-
ered that there is a border between these nodes. Using the
selected three nodes we calculate a shared ridge point as
the intersection point of three planes. The calculated ridge
point is shared amongst all nodes in the clique. After we
have obtained ridge points, the borders between nodes are
estimated. A border is a segment on an intersection line
between two nodes. A segment is bounded by either a
ridge point or the projection of a bounding point of a node.
There are two types of bounding points of a node used for
projection.

Figure 5: Border bounding points determination based on
the type of a border (A - horizontal, B - inclined).
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Suppose we have a building designed as shown in Fig-
ure 5, we already know the marked ridge point and we
need to determine borders A and B. If an intersection line
is horizontal (A), it represents a ridge, thus the bounding
point of a border is the perpendicular projection of a node
point to the intersection line in such a way that the bor-
der is maximally long. If it is not horizontal (B), then the
bounding point of a border is the point on the intersection
line with the same height as for the lowest point from both
intersecting nodes. After the bounding points and borders
of a roof are determined, we need to determine the build-
ing’s exterior walls’ height. This height is obtained from
LiDAR data as the difference to the lowest ground point in
direct proximity to the building.

4 Results

The presented method was tested on LiDAR datasets with
a wide variety of building types. The tested buildings were
of different sizes, architecture and complexity. We were
limited by LiDAR data sparsity as the number of points on
each planar surface needs to be large enough for success-
ful extraction of flat roof sides. Consequently, only those
flat roof sides that are large enough were successfully ex-
tracted and used during the process of reconstruction.

During the first step we fitted to the neighourhood of 8
points (K=8). The fitting and linking window sizes were
also set to 8. At least 5 points were needed to form a clus-
ter in the next step. When clustering by position and nor-
mals were performed, densities of 1.4 and 0.12 were used,
respectively. In the third step for the adjacency test the
oriented bounding boxes were enlarged by 1m in all direc-
tions. For the shared common border test d and the min-
imum length of l were both set to 1m. All the presented
results were tested using these settings. The result of the
reconstruction of a single building without complex parts
is presented in Figure 6.

Figure 6: Reconstruction of a building with large surfaces.

Common ridge points and borders were successfully de-
termined. Additionally we are able to reconstruct more
complex buildings with smaller roof surfaces, as shown in

Figures 7 and 8. For better comparison, LiDAR datasets
for these two reconstructed buildings are shown in Figures
7a) and 8a), where the building points are red and ground
points brown. The capabilities of reconstruction include a
hipped roof and embedding gable to the larger roof sides,
as can be seen in Figure 7.

Figure 7: Reconstruction of a building b) with embedded
gable and hipped roof on the left side from LiDAR data a).

Figure 8 presents an example of a reconstruction that
incorporates shed dormer into the building. Dormers can
be located anywhere on the larger roof surface as long as
the first two steps have successfully extracted its planar
surfaces. In addition we performed testing on larger Li-

Figure 8: Reconstruction of a building b) with embedded
shed dormer from LiDAR data a).
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DAR datasets. As can be seen in Figures 9 and 10, this
method provides good reconstruction of buildings from Li-
DAR datasets with a greater number of buildings.

Figure 9: Example of successfully reconstructed buildings
of a small settlement from LiDAR dataset.

Figure 10: Reconstruction of a settlement.

5 Conclusions

This paper proposed a novel method for the reconstruction
of buildings from LiDAR data. For the extraction of ap-
proximated roofs’ planar faces the locally fitted surfaces
(LoFS) and DBSCAN clustering were used. Between the
obtained planar faces an adjacency graph was constructed
for extracting the common ridge points. The borders be-
tween the faces and building’s exterior walls were esti-
mated for the final building model. To our knowledge this
is the first method using this concept of LoFS for the esti-
mation of planar surfaces. The results confirmed that the
method can successfully reconstruct most regularly com-
plex buildings with sufficient accuracy.

There are many possibilities for the improvement of re-
construction during all steps. Different clustering algo-
rithm could provide better planar faces extraction results
as DBSCAN clusters points within the neighbourhood that
might also be a part of a curved surface. For faster com-
putation a subgraph of the adjacency graph from the third
step, that would define adjacency more strictly, could be
used for border estimation. Modelling improvements are
possible on many levels such as multi-layered building
roofs, curved roofs or facade design.
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and S. Maierhofer. O-snap: Optimization-based
snapping for modeling architecture. ACM Trans.
Graph., 32(1):1–15, 2013.

[2] C. Brenner. Towards fully automatic generation of
city models. International Archives of Photogram-
metry and Remote Sensing, 33(B3/1):84–92, 2000.

[3] C. Brenner and N. Haala. Rapid acquisition of vir-
tual reality city models from multiple data sources.
International Archives of Photogrammetry and Re-
mote Sensing, 32:323–330, 1998.
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