
Accelerated gSLIC for Superpixel Generation used in Object
Segmentation

Robert Birkus∗

Supervised by: Ing. Wanda Benesova, PhD.†

Institute of Applied Informatics
Faculty of Informatics and Information Technologies STU

Bratislava

Abstract

The goal of our work is to create a robust object segmen-
tation method which is based on superpixels and will be
able to run in real-time applications.

The SLIC algorithm proposed by Achanta et al. [2] is a
superpixel segmentation algorithm based on k-means clus-
tering , which efficiently generates superpixels. It seems
to be a good trade-off between the time consumption and
robustness. Important advancement towards the real time
applications using superpixels has been proposed by the
authors of the gSLIC - a modified SLIC implementation
on the GPU (Graphics Processing Unit) [11].

In this paper, we present a significant acceleration
of this superpixel segmentation algorithm gSLIC imple-
mented for the GPU. A different strategy of the implemen-
tation on the GPU speeds up the calculation time twice
and more over the presented GPU implementation. This
implementation can work in real-time even for high res-
olution images. We also present our method for merging
of similar superpixels. This method uses an adaptive de-
cision procedure for merging of superpixels. Accelerated
gSLIC is the first part of this proposed object segmentation
method.

Keywords: Superpixel, Image segmentation, GPU,
SLIC, gSLIC, Region merging, Real-time

1 Introduction

Superpixels are produced by a deliberate oversegmenta-
tion of an image with the goal to generate segments which
can serve as basic units in the further image process-
ing. Superpixels are able to increase calculation efficiency
viewed from the next processing task because of the re-
duction of the redundancy in the image. Superpixels are
expected to be regular sized as often as possible but on
the other hand, they should follow the saliency edges in
the image. To distinguish between a high salience and a
low salience edge is quite a complicated task, mainly if the

∗rbirkus@gmail.com
†vanda benesova@stuba.sk

processing is performed on a small local area in the image.
Hence, the development of a robust superpixel segmenta-
tion algorithm, which could run in the real-time applica-
tions, remains a challenge in the computer vision tasks. In
many areas of application, the effort involved in comput-
ing in real-time is of high importance.

Typical real-time applications are from the area of video
processing using superpixels, where several approaches
could be combined with frame-based superpixel segmen-
tation as, for example, the approach which has been pre-
sented in the paper by Chang et al. [3]. A reduction of
the time consumption in the superpixel segmentation is
needed also in applications based on still images, espe-
cially if we need to process large images.

One of the further image processing tasks after super-
pixel segmentation is the object segmentation. Automatic
universal object segmentation is one of the most common
problems in computer vision. To achieve object segmen-
tation using the superpixels, superpixels, which belong to
the same object must be merged. This seems to be a simple
task, but in fact it is a big challenge. The real difficulties
are already open in the implementation. The basic idea is
to merge similar superpixels together, but the real ques-
tion is: which superpixels are similar? There are lots of
features and variables to consider.

In this paper we firstly summarize some selected al-
ready published methods of superpixel segmentation. We
focus on the SLIC algorithm. Further, we also summa-
rize some GPU implementations of superpixel segmenta-
tion algorithms. The focus is predominantly on the paral-
lel implementation of the SLIC algorithm on GPU, called
gSLIC. Our main contribution is the acceleration of the
gSLIC implementation using parallel reduction. We de-
scribe our implementation in detail and discuss different
key points of our implementation, specially those which
are important from the point of view of efficiency. We
also describe our CPU implementation of our superpixels
merging algorithm, which merges the superpixels based
on an adaptive threshold according to the color difference
of the most similar neighbor. We also show some results
of the merging procedure. The paper contains detailed re-
sults of the segmentation quality of SLIC and gSLIC and

Proceedings of CESCG 2015: The 19th Central European Seminar on Computer Graphics (non-peer-reviewed)



also the speedups of our implementation compared to the
gSLIC implementation. At the end of this paper we briefly
discuss our achieved results and present our future work.

2 Related work

Selected already published methods of superpixel segmen-
tation and region merging are briefly summarized in this
section.

2.1 Superpixel segmentation

In Spatially Coherent Clustering using Graph Cuts [14],
Zabih and Kolmogorov propose a method with the goal to
overcome the absence of spatial coherence in segmenta-
tion while a clustering in feature space is used. An energy
function which consists of a term representing the energy
in the spatial space and a term representing the energy in
the feature space has to be minimized using graph cuts.

Veksler and Boykov [13] formulate the superpixel par-
titioning problem in an energy minimization framework,
and optimize with graph cuts. The presented energy
function explicitly encourages regular superpixels and this
method is also suitable for 3D supervoxel segmentation.
An image is covered with overlapping square patches of
fixed size. Hence, each pixel is covered by several patches,
and the task is to assign a pixel to one of them. Tur-
boPixels [8] is an iterative algorithm which starts by evo-
lution from seeds placed regularly in the image. The al-
gorithm then iterates until no further evolution is possible,
i.e., when the speed at all boundary pixels is close to zero.
The iteration loop involves: an evolution of this boundary,
estimation of the skeleton of the unassigned region and up-
dating of the speed of each pixel on the boundary and of
unassigned pixels in the immediate vicinity of the bound-
ary.

Shi and Malik [12] propose a graph-theoretic criterion
for measuring the goodness of an image partition - the nor-
malized cut. The authors showed that the minimization
of this criterion can be formulated as a generalized eigen-
value problem. A computational method based on this idea
has been developed and presented by the authors and ap-
plied to segmentation of brightness, color, and texture im-
ages.

Felzenszwalb and Huttenlocher [5] define a predicate
for evaluating two regions of an image whether or not there
is evidence for a boundary between two components in a
segmentation. This predicate is based on measuring the
dissimilarity between elements along the boundary of the
two components relative to a measure of the dissimilarity
among neighboring elements within each of the two com-
ponents.

2.1.1 SLIC algorithm

R. Achanta et al. introduced the Simple Linear Itera-
tive Clustering (SLIC) [1] method for producing compact
and nearly uniform superpixels. The efficiency, simplic-
ity and the performance of the algorithm makes it widely
used and often modified with the goal to achieve even bet-
ter performance. Yuheng Ren and Ian Reid introduced a
parallel implementation of the SLIC superpixel segmenta-
tion [11], called gSLIC. The gSLIC implementation uses
GPU and the NVIDIA CUDA framework and is able to
achieve speedups of about 10x to 20x over the native SLIC
sequential implementation.

The SLIC algorithm is based on the k-means clustering
principles. Each pixel is associated with a 5-dimensional
feature vector [L*a*b x y], where L*a*b are color coordi-
nates in CIE L*a*b space and x,y are spatial coordinates.
L*a*b color space was designed, so that color differences
measured as Euclidean distance in the L*a*b space corre-
spond with color differences given by human perception.
Although the used conversion from RGB to L*a*b in-
cludes conversion errors due to missing information about
the spectral characteristics of the used camera, this error
seems to be irrelevant and using L*a*b coordinates better
results could be achieved than with using RGB color coor-
dinates. In the initialization step, positions of all seeds are
defined in a regular grid step S, up to a small shift to avoid
image edges. The grid size is calculated as in Equation 1,
where N is the number of pixels in the given image and k
is the required number of segments.

S =

√
N
k

(1)

The rough size of each superpixel is then given as a
square of the grid size S. After the mentioned initializa-
tion step the k-means clustering will be calculated for each
seed and subsequently the position of the seed will be it-
eratively updated - shifted into the center of the newly de-
rived cluster. More iterations (typically 5 to 20) are nec-
essary for the useful segmentation result. Finally, in the
last step named enforce connectivity, extremely small su-
perpixels will be removed - included within another super-
pixel. For a balance between a regular form of the super-
pixels and a form of superpixels given by the color differ-
ences, a compactness constant has to be defined and used
in the distance measure definition as a weighting factor.

2.2 Superpixels - GPU implementations

Brian Fulkerson and Stefano Soatto introduced a parallel
GPU implementation of Quick Shift: they called it Really
Quick Shift [6]. This implementation is able to achieve
speeding up of 10x to 50x over the original CPU version of
Quick Shift. Quick Shift operates on each pixel in the im-
age independently of its distant surroundings. Hence, the
GPU implementation basically follows the steps of native

Proceedings of CESCG 2015: The 19th Central European Seminar on Computer Graphics (non-peer-reviewed)



Quick Shift because the Quick Shift is a good paralleliz-
able algorithm. Fulkerson et al. first built a simple GPU
version of Quick Shift that simply copies the image to the
device and breaks the computation of the density and the
neighbors into blocks for the GPU to process. This sim-
ple GPU version is faster than the CPU version. However,
Quick Shift needs many memory accesses and the global
memory of the GPU is slow. Memory latency is a bot-
tleneck for this GPU version. To avoid memory latency
they used the advantage of GPUs shared memory. They
load an apron of pixels surrounding the block into shared
memory. However, this operation is not easily separable
and the shared memory is quickly exhausted. So, instead
of this solution they map the image and the estimate of
the density to a 3D and 2D texture. This GPU version is
faster than the previous one. They evaluated both GPU im-
plementations and the CPU implementation as well. This
GPU implementation of Quick Shift provides a 10 to 50
times speedup over the CPU implementation, resulting in
a super-pixelization algorithm which can run at 10Hz on
256x256 images.

2.2.1 gSLIC implementation

Parallel implementation of the Simple Linear Iterative
Clustering (SLIC) superpixel segmentation (gSLIC) is
proposed by Carl Yuheng Ren and Ian Reid [11]. The
implementation was applied and tested using GPU and
NVIDIA CUDA framework. The authors have presented
speedups of 10x to 20x on a single graphics card com-
pared with the CPU sequential implementation. The pre-
sented gSLIC algorithm differs from the originally pro-
posed SLIC algorithm in the way in which the clustering
is carried out. Whereas the SLIC algorithm uses a cluster-
ing procedure based on an evaluation in the surrounding of
each seed in the 2S x 2S region of pixels, gSLIC algorithm
is running in the opposite way. Each pixel is associated
with the 9 nearest cluster centers and the search is running
for the nearest of the nearby 9 cluster centers. Therefore,
the pixel will be labeled with the nearest cluster’s index.

Hence, gSLIC has been modified in order to carry out
the reasonable part of the parallel computing on GPU by
one-thread-per-pixel computing. In general, gSLIC can be
split into two parts: CPU and GPU. The image has to be
acquired by the host function running on the CPU, then
it can be transferred to the GPU device memory. Hence-
forth, the main part of the algorithm: color space transfor-
mation (RGB to L*a*b) and clustering will be carried out
on the GPU. Subsequently the derived segmentation mask
will be transferred back to the host function again, where
a recursion-based post processing function runs to enforce
the connectivity of all superpixels.

The color space transformation part is naturally pixel-
wise parallelizable, so gSLIC uses one thread per pixel on
16 x 16 blocks. Then one thread per cluster will be used
to initialize cluster centers. Next in the assignment step
each thread takes care of one pixel. However, the block

assignment is a little more complex. The initial size of
each cluster is determined by S, where S is the grid inter-
val calculated as in Equation 1. In most cases, the size of
each cluster is larger than the thread block size, thus clus-
ters consist of multiple thread blocks. This block assign-
ment guarantees that all threads of the thread block need
to search the same set of cluster centers in the neighbor-
hood for the nearest one. Thus gSLIC pre-load the cluster
centers’ information into local shared memory for higher
efficiency. In each iteration after all pixels have been as-
signed with a label (which is the index of the nearest cen-
ter), gSLIC uses one thread per cluster to update the clus-
ter center. After the k-means iteration has converged, the
labeled image will be transferred back to the host as a seg-
mentation mask. The post-processing to enforce connec-
tivity is the same implementation as in SLIC.

2.3 Region merging

J. Ning et al. [10] present a region merging based inter-
active image segmentation method. The image is initially
segmented by mean shift segmentation and the users only
need to roughly indicate the main features of the object and
background by using some strokes, which are called mark-
ers. With the similarity-based merging rule, a two-stage it-
erative merging algorithm was presented in the paper [10]
to gradually label each non-marker region as either object
or background.

H. Dunlop et al. [4] propose a detection and seg-
mentation method incorporating features from multiple
scales. This method was tested for the identification of
rock appearances and has been evaluated on represen-
tative images from the Mars Exploration Rover catalog.
This method uses a superpixel segmentation followed by
region-merging to search for the most probable groups
of superpixels. The authors believe that the method pro-
vides promising results for object identification in natural
scenes.

3 Our contributions

In this section we summarize all of our contributions in
detail.

3.1 Accelerated gSLIC

Our main contribution is a different strategy of the im-
plementation which has been done in the cluster centers
updating part. It is also mentioned by the authors of
gSLIC [11] that this part could be accelerated by using a
parallel reduction algorithm. Based on the technical report
by Mark Harris [7] using all of the optimization techniques
a significant improvement of the time consumption has
been achieved. We also optimized the color space conver-
sion (RGB to Lab) using floating-point constants instead

Proceedings of CESCG 2015: The 19th Central European Seminar on Computer Graphics (non-peer-reviewed)



of double-precision constants. This optimization elimi-
nates the redundant conversions from double to float.1

The principle of our implementation does not differ
from the principle of gSLIC. The only difference is in the
work management of threads. To calculate the new cluster
center gSLIC searches over a 2S x 2S region around the
current cluster center with one thread. The reason why
the authors of gSLIC used only one thread to calculate
the mean value of this region of pixels is to avoid atomic
operation. To avoid both the atomic operation and using
only one thread an implementation of parallel reduction
is needed. In contrast to gSLIC, our implementation also
works with the 2S x 2S region of pixels around the cur-
rent cluster center, but instead of one thread we are using
a block of threads to do the mean value calculation.

In most cases the size of the 2S x 2S region is larger
than the size of thread block. To maximize the number of
threads working on one region we could use more thread
blocks than gSLIC did at the k-means iteration. However
in parallel reduction the threads need to share some data.
To efficiently share data between threads we have to use
the shared memory of CUDA, even if we can use only one
block of threads per region due to the shared memory’s
block restriction. We also considered using the global
memory to share data between multiple blocks of threads,
but it is much slower than the shared memory and even
with L1 cache memory it cannot compete with the shared
memory in this task. However, in case of extremely large
regions, maybe the solution with multiple thread blocks
using global memory would be better. We have not tested
it yet.

In the first step of our implementation due to the larger
region size as the block size each thread of the thread
block calculates preliminary results from multiple pixels
and stores it in the shared memory. When the amount of
data is reduced to the number of threads per block the par-
allel reduction begins.

3.1.1 Occupancy

The occupancy can be defined as a proportion of active
threads and maximum active threads. To hide the latency
and gain maximum efficiency we must have as many ac-
tive threads as possible. Let us consider Kepler GK104
architecture in the following calculations. Its limitations
are shown in the Table 1.

In our implementation we need 24 bytes of shared mem-
ory per thread to store the temporary results. So, on
GK104 architecture we can have 48kB/24B = 2048 active
threads per multiprocessor, which is the maximum. That
means the shared memory usage does not degrade our ef-
ficiency. However, if we would need, we can decrease the
usage of shared memory by using short int variables in-
stead of int variables. We decided to set the block size to
128. This block size gives us occupancy equal to 1. If we

1The source code will be available on the web site
http://vgg.fiit.stuba.sk/image-segmentation-on-gpu/

KEPLER
GK104

Compute Capability 3.0
Threads / Warp 32
Max Warps / Multiprocessor 64
Max Threads / Multiprocessor 2048
Max Thread Blocks / Multiprocessor 16
32-bit Registers / Multiprocessor 65536
Max Registers / Thread 63
Max Threads / Thread Block 1024
Shared Memory Size (bytes) 48K

Table 1: Limitations of Kepler GK104 architecture

would choose a smaller block size, for example 64, due to
the maximum number of blocks per multiprocessor (16)
we could have only 64∗16 = 1024 active threads per mul-
tiprocessor. However, we could choose larger block sizes
up to 1024 and the occupancy would be still equal to 1.
The reason why we chose the block size 128 is explained
in the next section. The most efficient block size for our
implementation is architecture-dependent. The register us-
age does not affect the efficiency of our implementation
because each thread can use up to 65536/2048 = 32 reg-
isters without decreasing the occupancy and in our imple-
mentation each thread uses only 28 registers.

3.1.2 Parallel reduction optimization

After the amount of data is reduced to the number of
threads per block we make a parallel reduction in shared
memory. We are using almost all of the optimization tech-
niques by Mark Harris [7]. We are avoiding using % oper-
ator wherever it is possible because it is very slow.

To achieve high memory bandwidth for concurrent ac-
cesses, shared memory is divided into equally sized mem-
ory modules, called banks, that can be accessed simultane-
ously. To avoid bank conflicts we are using sequential ad-
dressing instead of interleaved addressing. In Figure 1 we
show the two types of addressing. Let us consider mem-
ory banks of size 4 bytes. To access four elements sequen-
tially we need only one transaction because all of the ac-
cessed elements are in the same memory bank. However,
using the interleaved addressing we need two transactions
because those four accessed elements are situated in two
different memory banks.

Figure 1: Sequential addressing (left) and interleaved ad-
dressing (right)

In parallel programming to achieve high efficiency we
have to avoid idle threads as much as we can. Thankfully

Proceedings of CESCG 2015: The 19th Central European Seminar on Computer Graphics (non-peer-reviewed)



for the cases in which the region size is larger than the
block size, each thread has to handle multiple pixels and
there are no idle threads. Mark Harris also mentioned in
his technical report [7] based on Brent’s theorem that it is
beneficial for each thread to do more sequential work and
this is the reason why we chose the smallest block size
(128), which give us occupancy equal to 1. If we would
choose larger block sizes then the sequential work for each
thread would be less and there could be idle threads.

To save useless work in all threads of the thread block
we unrolled the for loop by putting #pragma unroll direc-
tive right before the loop. #pragma unrolls is a compiler
optimization which unroll the loop. However, the number
of iterations of the loop have to be known in compile time.
In our case the number of iterations is determined by the
block size, which is defined as a macro constant. With-
out unrolling the for loop, all threads would do additional
operations every iteration of the loop.

3.2 Superpixel merging

Accelerated gSLIC is the first part of the object segmenta-
tion algorithm proposed as bottom-up segmentation using
superpixels. The main idea can be briefly described as the
merging of similar superpixels. Despite this quite simple
and native approach, more challenges are already open in
the implementation. The first one is a decision about the
similarity of two superpixels. This is quite a complicated
task which is a crucial part of our research. The second
one is time optimization of the whole segmentation proce-
dure using GPU.

In this paper we present the results of our CPU imple-
mentation of the presented merging algorithm using the
metric:

∆DLab =
√
(L∗

2 −L∗
1)

2 +(a∗2 −a∗1)
2 +(b∗2 −b∗1)

2 (2)

where (L∗
1,a

∗
1,b

∗
1) is the mean L∗a∗b∗ of the first super-

pixel and (L∗
2,a

∗
2,b

∗
2) is the mean L∗a∗b∗ of the second

superpixel. The whole merging algorithm is presented in
Figure 2.

Fast superpixel oversegmentation has been imple-
mented by accelerated gSLIC as presented in the previous
section.

The goal of the next section is to label all similar neigh-
bor superpixels of each given superpixel. As mentioned,
the decision about the similarity is a complicated task. We
wanted to avoid a fixed threshold in the decision about the
similarity because of the low invariance of such a thresh-
old. Our decision is based on the relative threshold in re-
lation to the superpixel whose distance ∆DLab is the least
of all neighboring superpixels. The decision about the ac-
cepted similar superpixels is the following:

The neighboring superpixel will be labeled as similar if
it satisfy the condition:

Dist <C ∗Distmin (3)

Figure 2: Merging algorithm

(a) orginal (b) C = 2.0

(c) C = 2.3 (d) C = 2.5

Figure 3: First example of merged superpixels

where Dist is distance between the superpixels and C is
a constant. Our results have been evaluated for C = 2.0,
C = 2.3 and C = 2.5.

In last step ”Merging”, all superpixels labeled as similar
will be recursively merged into one segment.

Examples of merged superpixels can be seen in Figure 3
and Figure 4. Merging using a higher constant C produces
less new segments, but the undersegmentation error will
be probably higher.

4 Results

The time needed for the superpixel calculation using mod-
ified gSLIC in comparison with the gSLIC [11] has been
evaluated. Table 2 gives the profiling of the clustering part
of the algorithm calculated on the NVIDIA GT 740m. The
table gives the evaluation of the clustering part of the SLIC
algorithm. Time profiling using the NVIDIA GTX 770 for
the SLIC clustering is presented in the Table 3. The trans-
fer times between host and GPU memory are not consid-
ered in the presented results.

Proceedings of CESCG 2015: The 19th Central European Seminar on Computer Graphics (non-peer-reviewed)



(a) orginal (b) C = 2.0

(c) C = 2.3 (d) C = 2.5

Figure 4: Second example of merged superpixels

Image size gSLIC Accelerated gSLIC Speed-up
CC 1.0 CC 1.0 CC 3.0 CC 1.0

320x240 7.06 [ms] 1.69[ms] 1.61 [ms] 4.18x
640x480 17.08 [ms] 6.72 [ms] 6.45 [ms] 2.54x
1280x960 66.16 [ms] 27.89 [ms] 26.31 [ms] 2.37x

Table 2: Time evaluation on the NVIDIA GT 740m.

As mentioned, SLIC and gSLIC clustering work differ-
ently. Actually the gSLIC is limited in the searching area
of every pixel. Although this limitation is marginal, the
question is, if this limitation has influence on the quality
of the clustering. Therefore, we have evaluated the quality
of the segmentation using SLIC and gSLIC and also the
modification of the post-processing using the Superpixel
Benchmark Toolbox [9] in order to achieve comparable
results. The evaluation requires a ground truth segmen-
tation made by humans, available in the dataset. Bound-
ary recall (BR) is the fraction of hand-segmented edges
which lie within a threshold distance k of any superpixel
edge (in our experiments, k = 2). Since there can be multi-
ple ground truth images for a single input image, they are
added together using the OR operation.

The true positives (TP) count is the number of pixels
in hand-segmented image, for which there is a superpixel
boundary pixel in range k. The false negative (FN) count
is the number of pixels in the hand-segmented image for
which there is no superpixel boundary pixel in range k.
Given these, we can calculate the boundary recall BR as in
Equation 4:

BR =
T P

T P+FN
(4)

The disadvantage of this metric is that it does not take
into account the direction of the edges. Superpixel borders
which intersect hand-segmented edges also contribute to
the boundary recall. This metric also does not distinguish
between superpixel edges which are off by 0, 1 and 2 pix-
els they all contribute to the boundary recall equivalently.

Results of the evaluation are presented in Figure 5. The

Image Size gSLIC Accelerated gSLIC Speed-up
320x240 5.326 [ms] 0.426 [ms] 12.5x
640x480 8.0 [ms] 1.539 [ms] 5.20x
1280x960 19 [ms] 6 [ms] 3.17x

2560x1920 87.68 [ms] 24.12 [ms] 3.63x

Table 3: Time evaluation on the NVIDIA GTX 770 (using
Compute Capability 1.0).

number of iterations was 5 and 10 and the compactness
constant was set to 10 and 20. More detailed compari-
son for the nominal number of superpixels 150 is shown
in Figure 6 and Figure 8. From Figure 5 it can be seen
that with the rising number of segments the boundary re-
call results are better. We also can see that the increased
number of iterations have not improved the quality of the
segmentation that much. However, the compactness con-
stant has a much bigger impact on the segmentation qual-
ity. Compactness constant 10 gives much better results
than the compactness constant 20. From the evaluation of
boundary recall on multiple images in Figure 6 we can see
that results are unequivocal. In some of the images SLIC
has better results and in others gSLIC has better results,
but in average gSLIC gives us better results in boundary
recall than SLIC.

Figure 5: Boundary recall

Figure 6: Comparison of the boundary recall for 73 images
(No. of superpixels:150)

The undersegmentation error (UE) describes how much
area of superpixels crosses the hand-segmented edges.
Please refer to the original paper [9] for more information

Proceedings of CESCG 2015: The 19th Central European Seminar on Computer Graphics (non-peer-reviewed)



Figure 7: Undersegmentation error

Figure 8: Comparison of the undersegmentation error for
73 images (No. of superpixels:150)

on its calculation. The evaluation of the undersegmenta-
tion error is presented in Figure 7 and Figure 8. From Fig-
ure 7 it can be seen that with the rising number of segments
the undersegmentation error evaluation is better. We can
also see that the different number of iterations or different
compactness constants have very little impact on the re-
sults of the undersegmentation error evaluation. From the
evaluation of undersegmentation error on multiple images
in Figure 8 we can see that in some images SLIC is better
and in others gSLIC is the better one. However, in average
SLIC gives better results in undersegmentation error than
gSLIC.

The goal of the merging of the superpixels is to reduce
the number of segments while the boundary recall is high.
The best possible value of boundary recall is the value at
the original number of superpixels. In our case the original
number of superpixels is 1027 as presented in the Figure 9.
Boundary recall values of merged segments are remark-
ably better compared to the original SLIC segmentation.

5 Conclusions

We have presented modifications in the clustering part of
the gSLIC algorithm. We implemented a parallel reduc-
tion and achieved significant acceleration as you can see
above in Table 2 and Table 3. The modification does not
have impact on the quality of the segmentation. We have
also presented a comparison between SLIC and gSLIC.

Figure 9: Boundary recall of the merged SLIC superpixels
(C = 2.0, C = 2.25 and C = 2.5) in comparison with original
SLIC and gSLIC

The results of the comparison is in average the same, de-
pending on the evaluation method. SLIC has better results
in undersegmentation error, in Boundary recall gSLIC is
the better one. Finally, we have also presented in this pa-
per a bottom-up method of segmentation using superpix-
els. The achieved results in boundary recall values are bet-
ter than with using the orginal SLIC segmentation.

6 Future work

The gSLIC image segmentation algorithm consists of two
parts. We successfully accelerate the clustering part, but
the ”enforce label connectivity” part is hardly paralleliz-
able because it is a recursive function. We tried a com-
pletely different strategy based on the morphological pro-
cessing. We achieved some small acceleration, but it was
at the cost of segmentation quality. In our future work we
would like to continue in this task to achieve acceleration
without any quality degradation.

We presented an algorithm of merging superpixels. In
the future we would like to accelerate the presented algo-
rithm using the GPU implementation.

Our future work also contains research of features and
decision-making procedures about the similarity of two
superpixels. Our next experiments will include texture de-
scription and advanced classifications.

7 Acknowledgments

This research has been supported by a grant VEGA
1/0625/14.

References

[1] R. Achanta, A. Shaji, K. Smith, A. Lucchi, P. Fua,
and S. Süsstrunk. Slic superpixels. Technical report,
Ecole Polytechnique Fedrale de Lausanne , Report
No. EPFL-REPORT-149300, 2010.

Proceedings of CESCG 2015: The 19th Central European Seminar on Computer Graphics (non-peer-reviewed)



[2] Radhakrishna Achanta, Appu Shaji, Kevin Smith,
Aurelien Lucchi, Pascal Fua, and Sabine Susstrunk.
SLIC Superpixels. Technical report, EPFL, 2010.

[3] Jason Chang, Donglai Wei, Fisher III, and John W. A
Video Representation Using Temporal Superpixels.
Computer Vision and Pattern Recognition (CVPR),
2013 IEEE Conference on, pages 2051–2058, June
2013.

[4] Heather Dunlop, David R Thompson, and David
Wettergreen. Multi-scale features for detection and
segmentation of rocks in mars images. In Computer
Vision and Pattern Recognition, 2007. CVPR’07.
IEEE Conference on, pages 1–7. IEEE, 2007.

[5] Pedro F. Felzenszwalb and Daniel P. Huttenlocher.
Efficient graph-based image segmentation. Int. J.
Comput. Vision, 59(2):167–181, September 2004.

[6] Brian Fulkerson and Stefano Soatto. Really quick
shift: Image segmentation on a gpu. Technical re-
port, Department of Computer Science, University
of California, Los Angeles, 2010.

[7] Mark Harris. Optimizing Parallel Reduction in
CUDA. Technical report, nVidia, 2008.

[8] Alex Levinshtein, Adrian Stere, Kiriakos N. Kutu-
lakos, David J. Fleet, Sven J. Dickinson, and Kaleem
Siddiqi. Turbopixels: Fast superpixels using geomet-
ric flows. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 31(12):2290–2297, 2009.

[9] P. Neubert and P. Protzel. Superpixel benchmark and
comparison. In Proc. of Forum Bildverarbeitung,
2012. Regensburg, Germany.

[10] Jifeng Ning, Lei Zhang, David Zhang, and Chengke
Wu. Interactive image segmentation by maximal
similarity based region merging. Pattern Recogni-
tion, 43(2):445–456, 2010.

[11] Carl Yuheng Ren and Ian Reid. gSLIC: a real-
time implementation of SLIC superpixel segmenta-
tion. Technical report, University of Oxford, De-
partment of Engineering, Technical Report (2011).,
2011.

[12] Jianbo Shi and Jitendra Malik. Normalized cuts and
image segmentation. In Proceedings of the 1997
Conference on Computer Vision and Pattern Recog-
nition (CVPR ’97), CVPR ’97, pages 731–, Wash-
ington, DC, USA, 1997. IEEE Computer Society.

[13] Olga Veksler, Yuri Boykov, and Paria Mehrani. Su-
perpixels and supervoxels in an energy optimization
framework. In Proceedings of the 11th European
conference on Computer vision: Part V, ECCV’10,
pages 211–224, Berlin, Heidelberg, 2010. Springer-
Verlag.

[14] Ramin Zabih and Vladimir Kolmogorov. Spatially
coherent clustering using graph cuts. In CVPR (2),
pages 437–444, 2004.

Proceedings of CESCG 2015: The 19th Central European Seminar on Computer Graphics (non-peer-reviewed)


