
Stochastic Particle-Based Volume Rendering

Philip Voglreiter∗

Supervised by: Bernhard Kainz†

Institute for Computer Graphics and Vision
Graz University of Technology

Graz / Austria

Abstract

In this paper we propose a particle-based volume render-
ing approach for unstructured three-dimensional tetrahe-
dral polygon meshes. We stochastically generate millions
of particles per second that are projected on the screen in
real-time. In contrast to previous rendering techniques of
tetrahedral volume meshes, our method does not need a
prior depth sorting of geometry. Instead, the rendered im-
age is generated by choosing particles closest to the cam-
era. Furthermore, we use spatial superimposing. Each
pixel is constructed from multiple subpixels. This ap-
proach not only increases projection accuracy, but allows
also a combination of subpixels into one superpixel that
creates the well-known translucency effect of volume ren-
dering. We show that our method is fast enough for the
visualization of unstructured three-dimensional grids with
hard real-time constraints and that it scales well for a high
number of particles.

Keywords: volume rendering, GPGPU, particle-based,
object space

1 Introduction

Volume rendering is used in many disciplines. Visual-
ization of medical data or simulated data arising from fi-
nite element methods are just a few examples. The data
to be rendered can be represented as regular or irregu-
lar structure. Regularly structured data originates mostly
from medical imaging devices (MRI, CT, etc.). Direct vi-
sualization of these volumetric datasets is well researched
and various methods exist. A good overview over standard
methods is given by Hadwiger et al. [8].

Irregular datasets – or unstructured grids –, are mainly
used for simulations, for example for finite element anal-
ysis [3], which normally uses an input of irregular shape
and which requires connectivity information of the grid’s
nodes. Rendering such grids is an ongoing field of re-
search. Early approaches use standard geometric algo-
rithms such as plane sweep techniques. Other algorithms
directly exploit the grid structure. Using tetrahedral grids

∗philip.voglreiter@student.tugraz.at
†kainz@icg.tugraz.at

is the most prominent method. The grids can either be pro-
jected directly, or they can be rendered in a preprocessed
state to speed up the rendering process [14].

Basically, all methods for volume rendering can be di-
vided into two main areas. They either are image-based
or object-based. Image-based methods, like ray casting,
generally scale with image resolution. Their performance
highly depends on the amount of pixels to be displayed.
In contrast, object-based approaches like point splatting
are less dependent on image resolution. The complex-
ity of rendering is strongly tied to volume complexity.
Particle-based volume rendering (PBVR) belongs to the
object space approaches. In contrast to many other meth-
ods in this category, PBVR does not require depth sorting
of any kind. Instead, we treat projected particles in a way
that is similar to z-buffering.

Modern applications demand fast visualization tech-
niques. Real-time generation of images with an acceptable
frame rate is essential for visualization techniques such
as Augmented Reality [5] or other applications with hard
real-time contstraints. Often, several tasks need to be per-
formed in parallel. Especially medical applications need
to provide a wide field of techniques concurrently to the
visualization of data. Recorded images often need to be
segmented. Also, simulations need to be performed si-
multaneously to visualization.

Modern GPUs give an option for fast visualization
methods and allow solving a vast amount of parallel prob-
lems in real-time. In this paper, we introduce a novel
way of stochastic PBVR on modern GPUs. In contrast
to the highly sophisticated particle generation methods
(Metropolis [12]) used by former approaches, we intro-
duce a method of particle generation with little computa-
tional effort. Our proposed method also allows online con-
trol of the number of generated particles. This is crucial
for applications with hard real-time constraints and allows
to alter visual effects such as density during runtime. Be-
cause the number of particles also influences the computa-
tional effort and memory consumption, our proposed on-
line control can also be used to steer the use of resources.
This is necessary for applications that require an execution
of different critical GPU accelerated tasks concurrently.

Furthermore, most PBVR methods for unstructured
grids do not take final opacity values of rendered volumet-

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics (non-peer-reviewed)



ric cells into account. On the one hand, many approaches
do not allow this because of inherent problems of the par-
ticle generation method. On the other hand, most methods
consider particles as completely opaque primitives. Thus,
the opacity of a particle is neglected.

Contribution We provide a fast, on the fly method for
parallel, real-time particle generation in tetrahedral grids
and simultaneous rendering. The proposed method pre-
vents visual patterns such as streaks or clusters in the final
images. We also introduce an improved method for parti-
cle superimposing. Thereby, we address perceptive issues
occurring at different depth levels of the rendered volumes.

2 Previous work

In [2], Avila et al. propose an approach of direct vol-
ume rendering and define a rendering pipeline for irregular
datasets. They refer to the plane-sweep technique, which
is widely used to solve geometrical problems. Shirley et
al. [17] first describe a method of projecting tetrahedrons
onto the image plane. The tetrahedrons need to be sorted
before projection. Sorting is known to be O(n log n) for
most sorting algorithms, and thus a larger grid size means
more computational effort.

Approaches like projected tetras have already been im-
plemented on the GPU [11]. The authors exploit the ca-
pabilities of shaders and CUDA to perform depth sorting
of the tetrahedrons. Sorting large numbers of tetrahedrons
is a time-consuming task and can be inefficient. As alter-
native approach, Challinger [6] describes a method for ray
casting of unstructured grids. Ray casting generates im-
ages of a higher quality but shows an O(n3) complexity in
the worst case. However, ray casting offers ways to ben-
efit from modern GPU capabilities as was shown in [21].
Still, the rendering itself requires a high computational ef-
fort and is usually too slow for real-time applications.

Point splatting [20] is a method very similar to particle-
based approaches. The authors show an efficient way
to generate oval splats with low memory cost, but point
splatting inherently produces artifacts in the rendering
process.

In [16], Sakamoto et al. describe a general approach
of PBVR. They base their particle generation algorithm
on the Metropolis Method [12]. The Metropolis method
is a well-known, efficent Monte-Carlo algorithm [13] for
random number generation. Generally, the Metropo-
lis method is rather inefficient concerning computational
speed. In [15], the authors go deeper into detail of their
particle generation method. Also, they consider rendering
tetrahedral grids by voxelizing them. Voxelizing a tetrahe-
dral grid can be rather time-consuming, depending on the
vertex distribution. Vertices, which are not located exactly
at corner points of the rectilinear grid, which characterizes
a voxelized volume, need to be interpolated. But the voxel

values need to be interpolated again for actual rendering.
Interpolation inherently produces erroneous results. Inter-
polating interpolated values increases the amount of error
even further. Pelt et al. [19] use a particle-based method
to perform illustrative volume rendering. They describe
hatching and stippling techniques using particles and also
visualize contours of datasets with their method.

3 Particle-based volume rendering

The main idea of PBVR is to construct a dense field
of light-emitting, opague particles inside a volumetric
dataset. These particles are used to perform object-based
rendering by simulating the light emission of particles.
Mutual occlusion induced by completely opague particles
plays a major role during rendering. Sakamoto et. al. [16]
describe the basic model in more detail. Generally, PBVR
involves two major steps. First, a proper particle distribu-
tion inside the volume needs to be generated, which is de-
scribed in Section 3.1. Second, in Section 3.2 we outline
how the particles are projected onto the image plane. In
these two sections, we give a detailed description of those
two steps as well as some detail on methods to increase the
visual performance of the algorithm.

3.1 Particle Generation

In this paper we use a stochastic process to generate the
field of particles. It is desirable to generate particles uni-
formly distributed over the whole volume. This results in
images without visual artifacts, namely streaks, holes, or
clusters. We split the volume into tetrahedral cells and per-
form particle generation per cell. This divide and conquer
approach has several effects. On the one hand, particle
generation is parallelizable. On the other hand, the gener-
ated particles do not necessarily resemble a uniform ran-
dom distribution over the whole volume anymore. Thus,
we will show how to treat this situation effectively in the
following paragraphs.

Particle Distribution over Cells We consider a maxi-
mum number of particles pmax for the whole model. This
number comprises the maximum amount of particles to be
rendered throughout the whole volume. Note that the max-
imum amount of particles is rarely fully exploited. To ac-
complish a visually acceptable distribution of particles, we
need to determine the amount of particles pcell that each
cell may project. We calculate this number by using the
proportion of cell volume Vcell to the total volume of the
grid Vgrid . This ratio directly describes how many particles
of the total quantity we may use for a given cell. There-
fore, the number of particles per cell is

pcell =Vcell/Vgrid ∗ pmax. (1)

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics (non-peer-reviewed)



This can be proven easily for one dimension. General-
ization to the third dimension thereafter is trivial, but un-
fortunately both exceed the length of this paper.

Using this method, we generate one single dense distri-
bution for each cell. What we actually want to achieve is a
uniform distribution over the whole volume. Our method
of splitting the whole volume into separate sub-volumes
shows a statistical benefit. In short, we can distribute the
particles over the cells in a way that resembles the distri-
bution of the mean values of the generated particles for
different spatial regions. The mean value of the gener-
ated particles in a cell – considering a distribution over
the whole volume rather than over single cells – is exactly
the proportion of the cell volume Vcell to the total volume
Vgrid . Thus, we may generate the particles per cell and still
statistically achieve a uniform distribution over the whole
data space.

Particle Position For the positions of the particles,
we use barycentric coordinates on the tetrahedral cells.
Barycentric coordinates describe a point that is guaranteed
to be within the borders of a given polygon. In case of
tetrahedrons, the barycentric notation of a point inside it is

P = α ∗V 1+β ∗V 2+ γ ∗V 3+δ ∗V 4 (2)

where V1,V2,V3 and V4 denote the corner points of
the tetrahedron and α through δ resemble the barycentric
parameters. However, some constraints apply to these pa-
rameters. First, each parameter must be greater than zero.
Second, all four parameters must sum up to one. Thus, we
can rewrite the parameter δ to

δ = 1− (α +β + γ) (3)

and after replacing δ in Equation 2, the barycentric de-
scription of a point results in

P=α ∗V 1+β ∗V 2+γ ∗V 3+(1−(α+β +γ))∗V 4 (4)

This means that we only need to randomly generate pa-
rameters α , β and γ for each particle. By using Equa-
tion 3, we can calculate δ directly.

Figure 1: Generated particles clustered near the edges of a tetra-
hedron on the left and near the center on the right. This effect is
created due to using an incorrect distribution

There are several ways to generate barycentric coordi-
nates randomly. Many of those approaches possess sta-
tistically correct mean values but still introduce disturbing
visual patterns. The most straight-forward way is random
generation of all four parameters and dividing them by
their sum. This leads to a statistically recorded mean value
of 0.25 for each parameter. But the parameters are not sta-
tistically independent if generated this way. The following
Definition shows the computation of the parameters:

Definition 3.1 Barycentric parameters generated as ran-
dom numbers over the interval (0,1) and their expected
values after applying the barycentric summation con-
straint are given as

E(x) =
0.5

E(α)+E(β )+E(γ)+E(δ )
(5)

x ∈ { α,β ,γ,δ} (6)

However, the particles tend to concentrate in the cell
centers, which leads to disturbing visual effects. The bor-
der regions of the cell remain very sparse. Another method
involves parameter generation within the mentioned con-
straints. After each parameter is generated, the remaining
maximum is updated and used for the generation of the
next parameter. This leads to the mean values

E(α) = 0.5,E(β ) = 0.25,E(γ) = 0.125,E(δ ) = 0.125
(7)

To equalize the distribution, parameters can be shuffled
randomly. This circumvents the situation of the first
parameter averagely using half of the parameter range
and leads to statistically recorded mean values of 0.25 for
each parameter. But this method suffers a problem similar
to the one of the straight-forward method. The generated
stochastic variables are not independent. This approach
produces the opposite of the simplistic generation. Cell
centers are sparsely covered with particles and cell borders
show a strong visual pattern. Both problematic methods
of particle generation are illustrated in Figure 1

A method to generate particles with a statistically cor-
rect, patternless distribution was introduced by Glass-
ner [7]. The method bases on folding geometry. The
barycentric parameters are randomly generated in a paral-
lelepiped, which comprises of the desired tetrahedron and
its mirrored counterparts. After generation, the parame-
ters are fitted to the desired tetrahedron. In detail, we first
randomly generate the parameters α , β and γ within the
range (0,1). In the next step we calculate sum=α+β +γ .
If that sum is greater than one, we need to manipulate the
generated parameters as we violate the barycentric con-
straint of parameter summation equaling one. Therefore,
we compute p = 1− p for each parameter. In the final step
we calculate δ = 1−(α +β +γ). Figure 2 shows a proper
particle distribution achieved by the described method.

Summarizing, the particles are generated uniformly dis-
tributed in a parallelepiped. Points which are outside the

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics (non-peer-reviewed)



Figure 2: Uniform random distribution of particles over a tetra-
hedral cell showing no visual patterns

tetrahedron are transformed inside. This method generates
a patternless uniform random distribution of coordinates
within the constraints of barycentric parameters.

Particle Scalar Value So far we are able to generate
a cloud of uniformly random distributed particles. The
scalar value corresponding to each particle is easy to cal-
culate. We already know the geometric influence of each
corner point to a given particle, namely the barycentric co-
ordinates. We can reuse those parameters to calculate the
scalar value of a particle as

s = α ∗ s1+β ∗ s2+ γ ∗ s3+(1− (α +β + γ))∗ s4, (8)

where s1 through s4 denote the scalar values of the
corner points.

Particle Emission Probability In section 3.1 we de-
scribe a uniform particle distribution over the whole grid.
Simply projecting all generated particles would lead to a
high density of particles hitting the screen regardless of
cell opacity. So we need to thin out the particle field. As
we still want to avoid patterns within the rendered images,
we do this stochastically.

Using the scalar value and a transfer function, we first
determine the opacity that a particle would anticipate.
Based on this calculated opacity, we use the rejection
method [13] to decide whether a particle is emitted or not.
Generally speaking, the determined opacity of a particle
op, which is in the interval (0,1) describes the emission
probability. Corresponding to each particle we next gen-
erate a stochastic variable x within the interval (0,1) on
the real line. Now we perform an emission check, i.e. if
x is smaller than op, the particle is accepted and emitted.
Otherwise, the particle is discarded. When applying this
method, cells with a mean opacity close to 1 emit almost
all of their generated particles, while cells with a low opac-
ity end up with sparse particle coverage.

3.2 Particle projection and Image Genera-
tion

Particle projection involves two steps. First, the screen
space location of the particle needs to be determined. We
need the virtual camera parameters and volume transform
to achieve this. Second, a color value needs to be assigned
to each particle.

Projection from Object Space to Image Space By us-
ing the modelview-projection matrix of the viewing cam-
era, we determine the image-space position of each emit-
ted particle. Further, we calculate its distance to the cam-
era. This involves a simple matrix - vector multiplication.
Should two particles hit the same fragment on the image
plane, the one closer to the camera is chosen to be dis-
played. The particle with a bigger distance is discarded.
This way, no depth sorting of any kind is necessary before
or during rendering. We only need to compare the depth
values of subpixels. This approach is comparable to z-
buffering. Therefore, it is necessary to create two buffers,
one for color, and one for depth.

Transfer function Looking up the corresponding color
of a given scalar value in a transfer function is possible
at three different stages of our approach. The first pos-
sible lookup can happen before projection. This means
assigning the corresponding color to the corner points of
the cells. To calculate the color of a particle, one needs to
interpolate the colors of the corner points. This method
is called pre-classification. The next possible lookup
may happen during projection of a particle. In post-
classification, as opposed to pre-classification, the scalar
values of the corner points are interpolated. Assigning a
color value to a particle is done by applying the transfer
function to the interpolated scalar value. Both pre- and
post-classification have the same memory footprint, due
to the fact that the RGBA value of a pixel uses the same
amount of memory as a floating point scalar value. Also,
the computational effort for both methods is roughly the
same. Our approach offers one more possibility. One
can store the scalar value until subpixel aggregation and
perform the lookup for the final interpolated scalar of a
pixel.

We use post classification per default because of the ad-
vantage in interpolation accuracy. Figure 3 illustrates the
difference between pre- and post-classification.

3.3 Spatial superimposing

To achieve a higher degree of projection accuracy as well
as a translucent appearance of the grid we use spatial su-
perimposing. This means that each pixel is subdivided
into several subpixels. The subpixel level l describes the
amount of subpixels per pixel, where the number of actual
subpixels equals l ∗ l. The particles are thereby projected

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics (non-peer-reviewed)



(a) pre-classification

(b) post-classification

Figure 3: The difference in interpolation between different clas-
sification strategies. Figure (a) shows pre-classification where
final opacity and color values are interpolated. In (b) scalar val-
ues are interpolated using post-classification and the application
of the transfer function is performed using the interpolated scalar.

(a) l=3 (b) l=6

Figure 4: Stanford Dragon rendered with 60 million particles per
frame, subpixel level 3 (a) and subpixel level 6 (b) on a resolution
of 1200x800 pixels

onto a subpixel instead of a whole pixel. This increases
the amount of particles actually reaching the image plane.
Finally, the resulting pixel is calculated by averaging the
values of the subpixels.

Translucency Translucency is controlled by two pa-
rameters. Firstly, the amount of generated particles
influence how opaque the volume seems to be. The
more particles are generated, the more subpixels are hit.
Secondly, the subpixel level increases or decreases the
level of transparency. When there are more subpixels in
total, there are also more subpixels, which are not hit
by particles. Hence, in the aggregation process we find
more empty subpixels, decreasing the mean opacity of a
superpixel and making the color appear to be brighter.

Unfortunately, increasing the subpixel level also
increases the amount of used memory on the GPU
drastically. Therefore, a proper subpixel level considering
the tradeoff between accuracy and feasibility needs to be
found for each GPU model. Also, the number of particles
and the subpixel level need to be balanced for reaching
the desired level of transparency and computational per-
formance. This balance needs to be adjusted individually
for each graphics card and desired volume translucency.

Particle Depth Enhancement Simple averaging of sub-
pixels results in an unwanted visual effect. The original
particle position and thereby the distance to the camera
is not taken into account. Thus, averaging treats each sub-
pixel as the same, resulting in an equal visualization of par-
ticles disregarding their distance to the camera. The effect
is best compared to front face culling in mesh rendering.
It might lead to a wrong depth perception while viewing
rendered volumes. While it is hardly perceivable on static
images, the viewer might become aware of it when rotat-
ing or panning the volume. Perceivably, the rendered vol-
ume does not respond to transformation as expected. To
circumvent this effect, we use the already present depth
information of displayed particles.

In detail, we analyze the current depth of each subpixel
zcurr and record minimum zmin and maximum depth zmax
for a pixel. We then calculate the depth range. Next, we
calculate a depth ratio ζ , considering the gap to the maxi-
mum value.

ζ = (zmax− zcurr)/(zmax− zmin) (9)

Using ζ as factor for the RGBA values of subpixels, we
achieve a linear differentiation of particles respective to
their depth values. Particles with a higher distance to the
viewer have a smaller impact on final pixels than particles
close to the camera.

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics (non-peer-reviewed)



4 Implementation

We implemented our method using CUDA 3.2 [1], C++
and OpenGL using a NVidia GForce GTX 470 graphics
card. We use GLUT to create an OpenGL viewer and to
provide necessary camera controls.

4.1 Preprocessing of Datasets

We preprocess the datasets using the Visualization Toolkit
[10]. We iterate over all cells and determine their type. If
we encounter a non-tetrahedral cell we tetrahedralize the
cell if possible. In the next step we convert the VTK Un-
structured Grid to a VBO containing a simple data struc-
ture. Each tetrahedron consists of four vertices plus their
corresponding scalar value. We then map this VBO to the
GPU for final processing.

4.2 GPU Preparation

We need to store the transfer function for the scalar value
lookup and we also need to transfer the current model-
view-projection matrix to the device. Cuda random num-
ber generation needs an array of states, which we allocate
and setup on the GPU once. Furthermore, we allocate
different buffers in the GPU’s memory. We create two
buffers for storing the projected particles in subpixels, one
for color and one for depth. Finally, we use a pixelbuffer
for the final image, which we can map to a texture on the
screen.

4.3 Cuda Kernels

Projection Kernel The computing grid of this kernel is
linear. We use a blocksize of 256×1×1 and calculate the
grid size to be #tetras/256× 1× 1. Each thread handles
one tetrahedron. First we calculate the number of parti-
cles to be generated by the current thread. For each parti-
cle, we perform the following steps. First, we generate the
barycentric parameters according to Section 3.1. Next we
calculate the particle’s scalar as described in Section 3.1
and perform an opacity-only lookup for this scalar. We test
this scalar against a random number, which we generate to
determine whether it is projected or not. This process is
depicted in the flow chart of Figure 5. If this test succeeds,
we calculate the position of the particle and finally project
it via multiplication with the model-view-projection ma-
trix. This generates screenspace coordinates, which we
look up in our buffer. If the corresponding subpixel is al-
ready covered by a particle, we perform a depth check to
determine whether we need to overwrite the current sub-
pixel and the depth value accordingly. A visualized flow
of this process can be seen in Figure 6.

Superimposing Kernel We define a block size of
16 × 16 × 1 and a grid size of windowwidth/16 ×
windowheight/16× 1. Each thread handles one block of

Figure 5: Flow chart depicting particle generation

Figure 6: Flow chart depicting particle projection

subpixels corresponding to the number of subpixels per
pixel. In a preliminary step we determine the minimum
and maximum depth value in the current subpixel block
as well as the distance between those extremes. We con-
secutively look up each subpixel, multiply it by the value
described in Section 3.3, and add them up. Finally we di-
vide the summation by the total amount of subpixels per

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics (non-peer-reviewed)



pixel and store the calculated value in our pixelbuffer.

Gaussian Smoothing As an optional step for improving
visual results of our renderer, we post process the images
we generate. Using the same computation grid as above,
we apply a 3×3 gaussian blur to the pixelbuffer and store
the result in the final pixelbuffer, which is displayed. Fig-
ure 7 shows a comparison of two images, one of which
was smoothed, and the other was not.

Figure 7: Stanford Dragon with 60 million particles, subpixel
level 3. The figure on the left shows the unsmoothed version.
The figure on the right contains the same area of the volume, but
with a 3x3 gaussian kernel applied to it.

4.4 Displaying Rendered Images

To finally display the rendered image, we use a screen-
sized texture quad and map the filled final pixelbuffer to it.
As all our data structures are already OpenGL-conform,
there is no further processing neccessary.

5 Results

For testing we use several volumetric datasets. One of our
main test volumes is the Stanford Dragon volume [18].
We have tetrahedralized a voxel volume to obtain a regular
tetrahedron grid. This grid consists of 588245 tetrahedral
cells. Another test volume is a completely unstructured
grid obtained from a simulated radio frequency ablation
in liver tissue as described in [4] and [9]. This test volume
consists of 55527 cells.

Figure 4 shows two images of the Stanford Dragon ren-
dered with a maximum amount of 60 million particles on
subpixel level 3 and 6. A comparison of those images ex-
poses the importance of balancing the amount of particles
with the subpixel level to obtain the desired transparency
of the volume.

In Figure 8 we show the decrease in performance with
increasing number of particles and increasing subpixel lev-
els tested with the Stanford Dragon volume. From a cer-
tain point, neither increasing the subpixel level nor in-
creasing the particles by one step drastically decreases the
frame rate. Taking the high amount of cells of this dataset
into account, the recorded data show that our approach
scales well with a high amount of particles and a high sub-
pixel level.

Figure 8: Frames per second for different amounts of particles
and subpixel levels while rendering the Stanford Dragon volume.
Lines depict the flow of performance for fixed subpixel levels.

Figure 9: Radio frequency ablation simulation, subpixel level 3
and 6 million particles per frame at 55 fps

Figure 9 shows the radio frequency ablation simulation
dataset. The dataset was constructed from a finite element
simulation, using an unstructured grid. We have prepro-
cessed this grid to split up non-tetrahedral cells. The vol-
ume itself shows probability of cell death during a radio
frequency ablation. The saturated, red areas in the cen-
ter have a high probability of cell death while the blueish
border regions are more likely to survive the treatment.
Hinted on the left and obvious in the center, the viewer
can see veins penetrating the area, working as a heat sink
and thereby increasing probability of cell survival. This
is depicted in the hazy border regions as those areas have
lower opacity, and thereby a lower amount of particles to
be emitted.

6 Conclusion

We have shown that our method is able to render millions
of particles per second in real-time. This is mainly possi-
ble achieved by our particle generation process. We gener-
ate the particles per-frame and in real-time, and take care
of proper distribution over the volume. Further, our ap-
proach offers capabilities to render arbitrary volumetric
data structures as most data sets can easily be converted
to a tetrahedral structure. The opposite, correct voxeliza-
tion of unstructured data, is a lot harder to achieve.

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics (non-peer-reviewed)



In the future, this approach might be expanded to enable
rendering multiple volumes. Also, the approach could be
modified to distributedly render very high resolution im-
ages for large displays. A detailed benchmark test and
comparison against other volume rendering approaches is
also part of future work.

References

[1] NVIDIA CUDA Compute Unified Device Architec-
ture - Programming Guide, 2007.

[2] R. Avila, Taosong H., Lichan H., A. Kaufman,
H. Pfister, C. Silva, L. Sobierajski, and S. Wang.
VolVis: a diversified volume visualization system. In
Visualization, 1994., Visualization ’94, Proceedings.,
IEEE Conference on, pages 31 –38, CP3, Oct. 1994.

[3] I. Babuska. Generalized Finite Element Methods :
Main Ideas , Results , and Perspective. Security,
1(1):67–103, 2004.

[4] T. Bien, G. Rose, and M. Skalej. FEM modeling
of radio frequency ablation in the spinal column.
In Biomedical Engineering and Informatics (BMEI),
2010 3rd International Conference on, volume 5,
pages 1867 –1871, oct. 2010.

[5] T.P. Caudell and D.W. Mizell. Augmented reality: an
application of heads-up display technology to man-
ual manufacturing processes. In System Sciences,
1992. Proceedings of the Twenty-Fifth Hawaii Inter-
national Conference on, volume ii, pages 659 –669
vol.2, jan 1992.

[6] J. Challinger. Scalable parallel volume raycasting for
nonrectilinear computational grids. In Proceedings
of the 1993 symposium on Parallel rendering, PRS
’93, pages 81–88, New York, NY, USA, 1993. ACM.

[7] A.S. Glassner. Generating random points in trian-
gles. In Graphic Gems, pages 24 – 28. Academic
Press, 1990.

[8] Markus Hadwiger, Joe M. Kniss, Christof Rezk-
salama, Daniel Weiskopf, and Klaus Engel. Real-
time Volume Graphics. A. K. Peters, Ltd., Natick,
MA, USA, 2006.

[9] D. Haemmerich, S. Tungjitkusolmun, S.T. Staelin, Jr.
Lee, F.T., D.M. Mahvi, and J.G. Webster. Finite-
element analysis of hepatic multiple probe radio-
frequency ablation. Biomedical Engineering, IEEE
Transactions on, 49(8):836 –842, Aug. 2002.

[10] Kitware Inc. The Visualization Toolkit. http://
www.vtk.org, February 2012.

[11] A. Maximo, Marroquim R., and Farias R. Hardware-
Assisted Projected Tetrahedra. Computer Graphics
Forum, 29, Issue 3:903–912, 2010.

[12] Nicholas Metropolis, Arianna W. Rosenbluth, Mar-
shall N. Rosenbluth, Augusta H. Teller, and Edward
Teller. Equation of State Calculations by Fast Com-
puting Machines. The Journal of Chemical Physics,
21(6):1087–1092, 1953.

[13] Christian P. Robert and George Casella. Monte
Carlo Statistical Methods (Springer Texts in Statis-
tics). Springer-Verlag New York, Inc., Secaucus, NJ,
USA, 2005.

[14] S. Roettger and T. Ertl. A two-step approach for in-
teractive pre-integrated volume rendering of unstruc-
tured grids. In Volume Visualization and Graphics,
2002. Proceedings. IEEE / ACM SIGGRAPH Sym-
posium on, pages 23–28, Oct. 2002.

[15] N. Sakamoto, J. Nonaka, K. Koyamada, and
S. Tanaka. Particle-based volume rendering. In Visu-
alization, 2007. APVIS ’07. 2007 6th International
Asia-Pacific Symposium on, pages 129 –132, Feb.
2007.

[16] Naohisa Sakamoto, Jorji Nonaka, Koji Koyamada,
and Satoshi Tanaka. Volume Rendering Using Tiny
Particles. In Multimedia, 2006. ISM’06. Eighth IEEE
International Symposium on, pages 734 –737, Dec.
2006.

[17] Peter Shirley and Allan Tuchman. A polygonal ap-
proximation to direct scalar volume rendering. In
Proceedings of the 1990 workshop on Volume visu-
alization, VVS ’90, pages 63–70, New York, NY,
USA, 1990. ACM.

[18] Stanford University. The Stanford 3D Scanning
Repository. http://graphics.stanford.
edu/data/3Dscanrep/, February 2012.

[19] R. van Pelt, A. Vilanova, and H. van de Weter-
ing. Illustrative Volume Visualization Using GPU-
Based Particle Systems. Visualization and Computer
Graphics, IEEE Transactions on, 16(4):571 –582,
July-Aug. 2010.

[20] F. Vega-Higuera, P. Hastreiter, R. Fahlbusch, and
G. Greiner. High performance volume splatting for
visualization of neurovascular data. In Visualization,
2005. VIS 05. IEEE, pages 271 – 278, Oct. 2005.

[21] Changgong Zhang, Ping Xi, and Chaoxin Zhang.
CUDA-Based Volume Ray-Casting Using Cubic B-
spline. In Virtual Reality and Visualization (ICVRV),
2011 International Conference on, pages 84 –88,
Nov. 2011.

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics (non-peer-reviewed)


