
Deformation of skeleton based implicit objects

Sondre Langeland Hisdal∗

Supervised by: Julius Parulek†

Institute of Informatics
University of Bergen

Bergen / Norway

Abstract

In this paper we present a precise contact modeling en-
vironment for skeleton based implicit objects. To render
the scene composed of these implicit objects, we have im-
plemented the state-of-the-art raycasting algorithm, called
marching points, on GPU using CUDA. Further, we intro-
duce how to interactively deform the implicit objects when
they collide. To achieve this we studied several ways to
deform the objects. We implemented two well-known ap-
proaches, where we also proposed a new method created
as combination of both approaches. Both these approaches
as well as our method are described in this paper.

The implicit objects are implemented as distance sur-
faces. The field function for these only depend on the
distance from the skeleton, and are easy to evaluate. We
have achieved support for deformations of objects based
on point and line skeletons.

Keywords: Implicit objects, Deformations, GPU,
CUDA, Raycasting

1 Introduction

The goal of this project was to implement a precise con-
tact modeling environment for skeleton based implicit ob-
jects. This work is an extention of a previous work with
convolution surfaces, where convolution of skeleton prim-
itives and an implicit kernel function was used to model
merging of implicit objects. Figure 1 shows two spheri-
cal objects, made from point-skeletons, merging together.
As shown in the figure you can see the objects stretch and
merge together when they are brought closer to eachother.

In this project we were not interested in merging of ob-
jects, but the deformation of the objects when they col-
lide. Implicit objects can be used to model organic struc-
tures and it is interesting to see how these behave when
they intersect. It is neccessary to have a fast GPU based
deformation of implicit objects if this is going to be in-
teractive. By representing the objects with skeletons we
save a lot of memory compared to using meshes. We have
implemented support for point and line skeletons for this

∗shi015@student.uib.no
†parulek@gmail.com

Figure 1: Figure shows two surfaces of point-skeletons
merging together.

project. We looked at several ways to achieve deforma-
tion. We have implemented two well-known techniques,
as well as introduced a new technique which is a combi-
nation of both techniques.

To achieve an interactive rendering we have imple-
mented a raycasting algorithm called marching points on
GPU. Calculation of deformations is very expensive and
it needs to be parallelized to be interactive. The marching
points algorithm is easily parallelized and well suited for
rendering of implicit objects.

The rest of the paper is structured as follows. In Section
2 we discuss related work. In section 3 we describe the
modelling and deformation in detail. In section 4 we de-
scribe the marching points algorithm. In section 5 we de-
scribe implementation and show results. Finally we con-
clude and talk about future work.

2 Related Work

2.1 Skeleton based implicit objects

Skeleton based implicit objects are objects defined by a
skeleton primitive, like a point or a line, and some implicit
function. The implicit function creates a object around the
skeleton. We are on the surface of the object when the field
function equals some iso-value, f (p)− iso = 0, where p is
a position in space. By evaluating the field function from
any position we can tell if the position is inside or outside
the object. There are two main approaches to construct

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics (non-peer-reviewed)

an implicit surface from a skeleton, distance surfaces and
convolution surfaces. Distance surfaces use the distance
from a point to the closest point on the skeleton when cal-
culating the field function. Convolution surfaces integrate
the contribution from all points on the skeleton when eval-
uating the field function. We have used distance surfaces
for this project.

2.2 Deformation

For theoretical background for the deformations we have
looked at several papers [1, 2, 3, 4, 5] about deformable
objects. We have in particular looked at two of these
papers[4, 2] for this project, and have implemented the
techniques described in these. To our knowledge this has
not been done on GPU before, and very little work has
been done in this area the last years.

3 Deformations

Deformations should occur when two objects collide. To
achieve this a deformation term is added to the field func-
tion around the intersection. We will have a surface when

fi +de f orm(f j) = iso (1)

When looking at object i we calculate the field function
of that object and add the deformation term caused by ob-
ject j on object i. As a part of this project two different
approaches for modeling deformations were implemented.
We will describe each of these later in this section, but first
we will look at how collision detection is done, since the
same approach is used for both deformation techniques.

3.1 Collision detection

Before we can add a deformation term to the field func-
tion we need to check if the two objects actually intersect.
We have done this by checking if the closest middle point
between the two skeletons is inside both of the objects.
This is easy to do for point skeletons. For point skeletons
we just find the middle point between the two skeletons
and check if that is inside both. For line skeletons it is a
bit more difficult. The way it have implemented, we first
find the shortest line between the two line skeletons, and
then check if the middle of the line is inside both object.
In figure 2 the shortest line segment between the two line
segments AB and CD, is the line segment CE. If the ob-
jects defined by line segment AB and CD are intersecting,
the middle point of CE, point F in the figure, will be in-
side both objects. For intersection between point and line
skeletons we find the closest point on the line to the point
and check the middle point of the line going from that
point of the line to the point skeleton. This only works
when the objects have the same width. If the skeletons
have different widths we can not check the middle point,
but the same basic approach can be used. First we find

the shortest line between the skeletons and then instead of
finding the middle we find the point that corresponds to
the widths of the objects.

Figure 2: Showing closest middle point between two line
segments.

3.2 Dual layer implicit objects

3.2.1 Object representation

The first technique that was implemented uses objects with
two layers, one rigid inner layer and one deformable outer
layer. The deformable layer starts where the rigid layer
ends. This gives us two field functions for each object.
The field functions depends on the distance, r, to the clos-
est point on the skeleton. Figure 3 shows the profiles of
the field functions for the two layers. To control the form
of the objects we have three parameters. R is the scope
of influence, meaning the longest distance away from the
skeleton that should influence the object. r0 is the thick-
ness if the rigid layer, and k is the stiffness of the rigid
layer. The surface of the object will be at the edge between
the rigid and deformable layer.

f (r) =−kr+ kr0 +1, 0 ≤ r ≤ r0 (2)

f (r) = (r−R)2(
r(−k(r0 −R)−2

(r0 −R)3

+
kr0(r0 −R)−R+3r0

(r0 −R)3)
), r0 < r ≤ R

(3)

Both these functions evaluate to 1 when r = r0, giving a
smooth transition from the rigid to deformable layer. r is
the distance to the skeleton. This technique originally also
computed forces between the intersecting objects. Com-
putaion of forces has not been implemented, since the fo-
cus of this project was on the visual aspect of deformations
alone. This technique is described by Gascuel in [4].

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 3: Profile of field function for rigid layer of the
object (a) and for the deformable layer of the object (b).

3.2.2 Deformation term

As stated earlier, when two objects intersect they will be
deformed by adding a deformation term to the field func-
tion around the intersection area. In this approach this de-
formation term is a function dependent on the distance to
the object that is causing the deformation. See figure 4.
Along with the distance it requires the maximum com-
pression caused by the intersection. In areas that are in-
side both objects we need to compress the objects so they
end up just touching and not intersecting each other. The
maximum compression is used to see how large the de-
formations should be. Little compression gives little de-
formation. Besides this the function takes two parameters
that allow you to control the deformation. Parameter w
is the maximum distance that will be used and parameter
a controls the height of the deformations along with the
maximum compression term.

Figure 4: Distance used in deformation function. Figure
by Gascuel [4].

de f orm = 4
wk−4a0

w3 r3

+4
3a0 −wk

w2 r2 + kr, 0 < r ≤ w
2

de f orm =
4a0(r−w)2(4r−w)

w3 ,
w
2
< r ≤ w

(4)

a0 = a∗maximal−compression, r is the distance to the
intersecting objects surface, and k is the stiffness value as
described earlier. Figure 5 shows the profile of the defor-
mation function. a0 is maximum of the function and is
found when r equals w/2. There was a typo in the original
paper that lead to some confusion. The deformation func-
tion from w/2 to w had a plus sign where it should be a
multiplication. This lead to the two parts of the deforma-
tion function not matching at r equals w/2.

Figure 5: Profile of the deformation function. Figure by
Gascuel [4].

3.3 Single layer implicit objects

3.3.1 Object representation

The second technique that was implemented uses a more
simple way to represent the objects. It just uses one layer
which field function is only dependent on the distance to
the skeleton. The field function I have used is

f (r) =
1
r
−1, 0 < r ≤ 1 (5)

To support different widths of objects a width value k can

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics (non-peer-reviewed)

be added and r in the field function be replaced with r/k.
Figure 6 shows the profile of the field function.

Figure 6: Profile of the field function used in the second
technique.

3.3.2 Deformation term

This deformation technique was described by Angelidis et
al. in [2]. This technique uses the field function of the
intersecting object to deform the object. If object i and
object j intersect, deformation of object i uses the field
function, f j , of object j. To control the deformation we
have three parameters c j, m, and h. c j is the minimum
value of f j that should be part of the deformation area. m
is the value of f j where the top of the deformation should
be. h is the maximum of the deformation function.

de f ormi(f j) = (3−2
f j − c j

m− c j
)2h, c j ≤ f j ≤ m

de f ormi(f j) = h+((1−3h)+

2h−1)
f j −m

iso−m
)(

f j −m
iso−m

)2, m < f j ≤ iso

(6)

The profile of the deformation function can be seen in fig-
ure 7. In the paper by Angelidis et al. they also experi-
mented with other deformation functions. This function is
the one I found to be the best. It provides good control of
the deformation without too many parameters. It should
be noted however that there are other deformation func-
tions that may be better depending on what is needed. For
example, Angelidis et al. provided a function for creating
ripples, in their paper[2].

3.4 Improved deformation of single layer im-
plicit objects

A problem we found with the single layer technique was
that it created too much deformation when the objects
barely intersect. There was no smooth transition from no
deformation to big deformation. The dual layer technique
used the maximum compression term to control how big

Figure 7: Profile of the deformation function used in the
single layered technique. [2]

the deformation should be. By adding this to the single
layer technique we were able to get a smoother transition.
Instead of having a fixed maximum height of the deforma-
tion function we scale it by how much the object intersect.

4 Marching Points

Rendereing of implicit objects can be done by raycasting.
Singh and Narayanan have introduced a ray casting algo-
rithm for rendering implicit surfaces on GPU[6]. For each
ray you sample the ray at a set interval looking for a root.
Another way of looking at this is to have a point march
down the ray and take samples, hence the name marching
points. To find a root you do a sign test. You compare the
current sample to the previous one and check if the sign
has changed. If the sign has changed there is a root some-
where in the interval between the previous and the current
sample. In figure 8 the sign will change from the sample at
point B to the sample at point C. This means there is a root
in the interval [B,C]. When an interval with a root is found
the exact position of the root can be found using bisection.
If a too large step size is used objects can be missed com-
pletely. If the object falls inbetween two sample points,
the algorithm has no way of discovering the object. This
makes the quality and effectiveness of the algorithm very
dependent on the step size.

The rays cast using the Marching Points algorithm are
independent of eachother. This allows us to cast multiple
rays in parallel using the GPU. Using CUDA one thread
processes one ray. For each ray the algorithm marches
forward a small step at the time until it finds the interval
where there is a root. When this interval is found, the root
is found using bisection.

5 Implementation and Results

5.1 Framework

Our framework have been implemented using Python and
CUDA. The raycasting and all evaluation of surfaces and
deformations are performed on GPU using CUDA.

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 8: Illustration of Marching Points algorithm. A ray
is shot towards the surface. Sampling occurs on regular
intervals on the ray, like point A, B and C.

5.2 Dual layer implicit objects

The dual layer technique have been implemented as de-
scribed without any alterations. To define the object we
have used the parameters k = 0.5, r0 = 5, and R = 10. To
deform the object different parameters were tried but in the
end w = 10 and al pha = 0.3 were used as default values.
This technique gives very good control over the deforma-
tion and we can get deformations over a very large area if
we want to.

Figure 9: Rendering when using technique 1. Default pa-
rameters.

5.3 Single layer implicit objects

A problem with this technique was that the deformation
when two objects barely intersect was too big. To fix this
the height, parameter h, of the deformation was scaled by
the maximum compression in the same way as in the dual

layer technique. This gave a smoother transition from a
scenario where no deformation should occur to a scenario
where it should occur. This can be seen in figure 10. Fig-
ure 10 (a) does not have any scaling. This results in a too
large deformation. In the figure the objects are barely in-
tersecting and the deformation is already quite large. In
figure 10 (b) scaling is applied. We downscale the height
of the deformation when there is little intersection. This
gives a much smaller deformation which is more fitting to
how much the objects intersect.

Figure 10: Resulting deformation without scaling of pa-
rameter h (a) and with scaling of parameter h (b).

The deformation term in this technique has three param-
eters to help control the deformation. Parameter c j con-

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics (non-peer-reviewed)

trols the width of the deformation. The lower c j the wider
the deformation becomes. Parameter m controls where the
top of the deformation should be, and parameter h con-
trols how large the deformation should be. Figure 11 at
the end of the paper, shows comparisons of deformations
with different parameters. The figures illustrate how each
of the parameters effect the deformation. As default val-
ues c j = 0.4, m = 1.3 and h = 0.5 have been used. These
values gave nice results, with not too much deformation
and both the width and center of the deformation seemed
natural. Figure 12 shows resulting rendering using this
technique.

5.4 Performance

The implementation of the improved single layered tech-
nique have been tested with a 2.80GHz Intel Core i5 CPU,
8GB Memory, and a NVIDIA GeForce GTX 570 with
1280MB memory GPU. Results from testing can be seen
in the table below. We have used frames per second(FPS)
to measure performance.

Resolution No. Points No. Lines FPS
256x256 10 0 47
256x256 5 2 23
256x256 40 0 17
256x256 50 0 16
256x256 4 3 17
512x512 10 0 24
512x512 5 2 10
512x512 40 0 7
512x512 50 0 6
512x512 4 3 7

Using this technique with only point-skeletons performs
quite well. However, adding line-skeletons slows it down
fast. In any case, the results are promising. The imple-
mentation can be optimized in several ways, for example
by adding bounding boxes to the objects and by imple-
menting adaptive step size in the raycasting algorithm.

6 Conclusions and Future Work

In concusion, we have implemented a working environ-
ment for rendering imlicit skeleton based objects and the
deformation of these when they collide. The environment
is interactive for both point and line skeletons. This is
without any bounding boxes or any other optimizations.
For future work this could be implemented to give better
performance. The ray casting algorithm can be improved
by implementing adaptive step size. Currently the algo-
rithm use the same step size all the time. The step size can
be varied by looking at the distance to the closest object. If
the step size is set to the distance to the closest object, we
avoid a lot of calculations while we are stil sure that we
don’t miss anything. In addition future work could look

Figure 12: Resulting rendering using our technique. De-
fault parameters.

at the intersection of deformations. Currently the imple-
mentation does not check for any intersection of deformed
objects, but only the original objects. This means that if
the deformed sections of two objects intersect, the imple-
mentation does nothing to deform these objects further or
alter the deformations in any way.

A natural extension of this work is to add physical
forces to the objects. The focus of this paper was only
on the visual part and adding forces was outside the scope
of this work. For this paper we have used distance func-
tions to model the objects. For future work it would be
nice to have deformations working with convolution sur-
faces as well so it could be combined with the work from
the previous project mentioned in the introduction. An-
other thing to consider is deformation from deformations.

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics (non-peer-reviewed)

As of now only the original objects are taken into account
when calculating deformations.

References

[1] Alexis Angelidis. Adaptive implicit modeling using
subdivision curves and surfaces as skeletons. seventh
ACM symposium on Solid modeling, 2002.

[2] Alexis Angelidis, Pauline Jepp, and Marie-Paule Cani.
Implicit modeling with skeleton curves: Controlled
blending in contact situations. nternational Confer-
ence on Shape Modeling and Applications (SMI’02),
pages 137–144, 2002.

[3] MP Cani. Subdivision-curve primitives: a new solu-
tion for interactive implicit modeling. Shape Modeling
and Applications, SMI, 2001.

[4] M.P. Gascuel. An implicit formulation for precise con-
tact modeling between flexible solids. In Proceedings
of the 20th annual conference on Computer graph-
ics and interactive techniques, pages 313–320. ACM,
1993.

[5] Agata Opalach and Marie-Paule Cani. Local deforma-
tions for animation of implicit surfaces. 13th Spring
Conference on Computer, pages 1–9, 1997.

[6] Jag Mohan Singh and P J Narayanan. Real-time
ray tracing of implicit surfaces on the GPU. IEEE
transactions on visualization and computer graphics,
16(2):261–72.

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 11: Deformations using our technique with different parameters
Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics (non-peer-reviewed)

