
Priority-Based Task Management in a GPGPU Megakernel

Bernhard Kerbl∗

Supervised by: Markus Steinberger†

Institute for Computer Graphics and Vision
Graz University of Technology

Graz / Austria

Abstract

In this paper, we examine the challenges of implement-
ing priority-based task management with respect to user-
defined preferential attributes on a graphics processing
unit (GPU). Previous approaches usually rely on constant
synchronization with the CPU to determine the proper
chronological sequence for execution. We transfer the re-
sponsibility for evaluating and arranging planned tasks to
the GPU where they are continuously processed in a per-
sistent kernel. By implementing a dynamic work queue
with segments of variable size, we introduce possibili-
ties for gradually improving the overall order and iden-
tify necessary meta data required to avoid write-read con-
flicts in a massively parallel environment. We employ an
autonomous controller module to allow queue manage-
ment to run concurrently with task execution. We revise
Batcher’s bitonic merge sort and show its eligibility for
sorting partitioned work queues. The performance of the
algorithm for tasks with constant execution time is evalu-
ated with respect to multiple setups and priority types. An
implementation of a Monte Carlo Ray-Tracing engine is
presented in which we use appropriate priority functions
to direct the available resources of the GPU to areas of in-
terest. The results show increased precision for the desired
features at early rendering stages, demonstrating the selec-
tive preference established by our management system.

Keywords: GPGPU, megakernel, GPU sorting, priority-
based task management, dynamic work queue, Monte
Carlo Ray-Tracing

1 Introduction

Parallel computing has become a valuable tool for han-
dling time-consuming procedures that contain a high num-
ber of homogeneous, independent operations. Since the
rise of the Unified Shader Model which features explicit
programmability of GPUs, exploiting data level paral-
lelism on a customary personal computer has become
increasingly straightforward. The advent of NVIDIA’s
GeForce 8 Series introduced the first release of the CUDA

∗kerbl@student.tugraz.at
†steinberger@icg.tugraz.at

architecture and associated compilers for industry stan-
dard programming languages. With respect to certain re-
strictions, the architecture enables programmers to run
general purpose computations on compatible devices in
parallel. Newer models of GPUs supporting these features
are therefore often referred to as general purpose graph-
ics processing units (GPGPU). Several hundred Stream
Processors (SP), also referred to as thread blocks, which
are grouped in clusters called Streaming Multiprocessors
(SM) can be instructed to execute commands at the same
time – the programmer simply specifies the number of nec-
essary threads when launching a GPGPU kernel. The com-
bined capacities of these SPs have produced a significant
gap in raw speed between high-end GPUs and CPUs [12].
However, using the available resources to their full poten-
tial is not an easy task. Memory latencies, insufficient
parallelization or unfavorable occupancy at runtime may
cause implementations to fall short of their ideal behavior.

One particular cause of poor efficiency in CUDA ker-
nels is unbalanced work load distribution, which can have
a limiting effect on performance, especially when consid-
ering problems that exhibit irregular behavior, e. g. adap-
tive ray-tracing techniques [2]. Instead of relying on the
built-in CUDA work distribution units, custom task man-
agement strategies can be implemented to address these is-
sues [4]. One specific example is given in the OptiX Ray-
Tracing Engine and its dynamically load-balanced GPU
execution model [14].

In this context, the term megakernel refers to a solution
where improved work load distribution is achieved using
a persistent kernel in order to benefit from uninterrupted
computational activity. One or more queues are commonly
used to store tasks that are constantly being fetched and ex-
ecuted until the queues are empty. For static work queues,
tasks can only be added in between megakernel launches,
while dynamic implementations also allow for insertion of
new tasks at runtime [4].

When using a megakernel for processing diverse prob-
lems and the implied task level parallelism, assigning
meaningful priorities to each task can have a positive ef-
fect. Especially procedures that involve rendering may ex-
perience a considerable boost in usability through proper
task classification. Considering applications with guaran-
teed frame rates, the perceived quality of each frame can

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics (non-peer-reviewed)



be improved by focusing on areas that exhibit prominent
features [9]. High quality initial views of rendered scenes
can be generated by directing the resources of the GPU
based on priorities. In an interactive environment with
a modifiable view model, early perception of the visible
dataset enables efficient adjustment of the extrinsic param-
eters in order to obtain a desired setup. Similarly, priori-
tizing user interactions achieves faster response to input
commands and postpones time-consuming rendering pro-
cedures that are otherwise wasted on a setup that is inade-
quate.

Previous approaches based on priorities commonly ex-
ploit the sophisticated sorting methods on the CPU and
establish means for communicating the favored order of
execution to the GPU [10, 6]. Moving the responsi-
bility of organizing the runtime agenda to the GPU ex-
pectably eliminates the otherwise significant overhead of
inter-component communication. Therefore, we aim to
provide a functional autonomic task management system
for dynamic work queues on the GPU, in order to enable
adaptive behavior for CUDA applications without inter-
rupting the execution of tasks.

2 Previous Work

While analyzing the influences of possible limiting fac-
tors on ray-tracing kernels, Aila and Laine experimentally
bypassed the default CUDA work distribution units, sug-
gesting that this approach might show an improvement for
tasks with varying durations [2]. In their implementation,
they use a work queue from which tasks are constantly
fetched and executed in individual thread blocks, which
proved to be very effective. A detailed analysis of possi-
ble techniques for using work queues in a GPGPU kernel
was authored by Cederman and Tsigas, addressing sophis-
ticated load balancing schemes which are made possible
through the atomic hardware primitives supported by the
CUDA architecture [4].

In [14], Parker et al. successfully employed a self-
provided strategy for balancing work load with the goal of
improving efficiency in a ray-tracing engine using a per-
sistent megakernel. Furthermore, they use static prioriti-
zation to achieve fine-grained internal scheduling for tasks
to avoid penalties resulting from state divergence.

A recent example for a priority-based solution that
achieves GPU task management in real-time is TimeGraph
[10]. The routine relies on interrupts and substantial com-
munication between the GPU and the CPU which acts
as an executive supervisor. A similar system was imple-
mented by Chen et al., in which queues are shared and
accessed regularly by the CPU and GPU [6]. In recent de-
velopments, Kainz et al. employed prioritization in a ren-
dering application by sorting work queues between kernel
launches to achieve improved richness of detail for prede-
termined frame rates [9].

Efficient sorting algorithms for parallel systems, espe-

cially targeting GPGPUs, have become a popular research
topic. Following the implementations of Batcher’s bitonic
merge sort which was developed for parallel sorting net-
works [3], other algorithms designed for use on massive
datasets were adopted for the GPU as well [5, 7, 13, 15].

3 GPU Megakernel System

3.1 Available Resources and Challenges

We target dynamic GPGPU task management by introduc-
ing a global, self-organizing work queue in a megakernel
system which allows for arbitrary tasks to be added at run-
time. Apart from the functions to be invoked upon exe-
cution of a task, each queue entry provides additional at-
tributes that are considered during different stages of the
management process. Sorting the queue is a time-critical
problem, since the megakernel system constantly removes
the frontmost entries and processes the associated behav-
ior in the available SPs to achieve proper workload distri-
bution.

Due to the intended autonomy of our management sys-
tem, we cannot rely on the CPU to rearrange queue entries
based on their priorities. Instead, one thread block is re-
served and used as a controlling unit which is responsible
for sorting the queue at runtime. The remaining thread
blocks are henceforth referred to as working module to
clarify their intended purpose. Since both modules con-
stantly process the shared contents of the queue, leaving
them unprotected would cause interference and lead to se-
vere runtime errors. Therefore, we require secure methods
for classifying queue entries and deciding whether they are
safe to be processed by either module.

3.2 Work Queue Segmentation

Since the contents of a dynamic work queue are poten-
tially volatile, we partition the queue and thereby enable
faster detection of segments that are unlikely to change in
the near future. Consequently, the controller can quickly
select segments that are not yet in use and perform sorting
while the working module constantly removes entries from
segments in the front of the queue. Treating segments as
instances of classes gives us the advantage of storing ad-
ditional information about the contained queue entries as
attributes, such as a reference to the task with the shortest
execution time or current availability.

For using segments to restructure the work queue, we
identify two additional constraints in order to avoid access
conflicts. First, only full segments qualify as appropriate
candidates for sorting, which leads to entries at the back
being ignored if they are located in a partially populated
segment. Second, since we must not tamper with the en-
tries of segments whose contents are currently being ex-
ecuted, we cannot sort the tasks at the very front, which
leads to inevitable disarray for the leading segments.

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics (non-peer-reviewed)



Considering these limitations and their effects on ker-
nel execution, we provide settings to adapt the behavior
of the controller as required. The user may select a spe-
cific segment size for a particular purpose: while a smaller
size generates a finer granularity and reduces the number
of neglected entries both in the front and in the back of
the queue, it requires high organizational overhead and in-
creases the time needed for establishing a decent order. A
bigger segment size may improve the sorting performance
for a higher number of queue entries, but at the same time
larger chunks of the queue will be ignored due to incom-
plete segments.

3.3 Mutual Exclusion

Even though we established that unused segments can
be quickly identified by the controller using only work
queue partitioning, we need to consider overlapping ac-
cesses since sorting algorithms are time-consuming as
well and may take even longer than task execution. Deal-
ing with these situations requires an unambiguous system-
wide regulation for deciding which module is currently
allowed access to a segment. We decided to introduce
a thread-safe policy for checking and setting the current
availability state of a segment, combining two common
approaches in a multipurpose attribute variable.

The CUDA instruction set provides means to change the
contents of the attribute variable atomically. Each SP in
the system tests the state of a particular segment before
accessing its contents. For the working module, the state
variable behaves like a semaphore, allowing a specified
number of accesses before resetting it to the initial zero
value. If the controller requires the contents of an avail-
able segment, it exchanges the current state with a negative
integer. Threads in the working module that are trying to
acquire the contents of segments that are being sorted will
perform a busy wait until the controller signals comple-
tion of the sorting algorithm by assigning a positive value
to the variable.

4 Sorting the Queue

4.1 Bitonic Merge Sort

Our controller utilizes an adaptation of the bitonic merge
sort to rearrange the contents of the work queue. The al-
gorithm was devised by Ken Batcher for parallel sorting
networks as an alternative to the odd-even merge sort and
operates by constructing bitonic sequences of increasing
lengths and merging them to generate sorted output [3]. A
simple setup demonstrating the procedure for applying the
algorithm in parallel is illustrated in Figure 1. For an array
of length N and T concurrent threads, the algorithm re-
quires O(N

T · log2 N) parallel comparison operations. Pop-
ular fields of application include collision detection and
visibility calculation in particle systems [11]. The most

Figure 1: One possible implementation of the bitonic
merge sort using one thread per element index. The col-
ored rectangles indicate different comparison operators
being used for evaluating whether two values should be
exchanged. By forming bitonic sequences in each step,
the merge phases are applied consecutively until the input
is sorted in descending order.

efficient GPU implementations of the bitonic merge sort
were able to outperform the sophisticated std::sort meth-
ods on contemporary CPUs [15]. Recently developed
algorithms for sorting on the GPU are more commonly
based on radix or bucket sort, although some frameworks
implement hybrid variants in order to exploit the charac-
teristics of bitonic sequences [13, 7, 16].

4.2 Benefits

We aim to provide the user with the possibility of choosing
custom priority values. The bitonic merge sort is compari-
son based and is therefore applicable for any data type that
supports the logical operators < and >.

For smaller data sets, the bitonic merge sort is one of
the fastest algorithms if the underlying architecture is op-
timally exploited [8]. Ideally, the thread block size equals
the number of elements to be sorted. In such a case,
N
T = 1.0 and the algorithm requires exactly log2 N parallel
steps to execute.

Concatenating two arrays sorted in distinct order yields
a bitonic sequence by definition, which corresponds to
the input in the final top-level merge phase of the bitonic

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics (non-peer-reviewed)



Figure 2: A pair-wise sorting algorithm applied to the seg-
ments in a queue. Neighboring segments are combined to
achieve gradual restructuring of the contents, starting from
the back and advancing towards the front. If a segment
is encountered that is currently unavailable, the algorithm
restarts from the back.

merge sort. Based on these properties, we can reduce
the number of necessary comparison operations signifi-
cantly when sorting two preprocessed arrays by inverting
one array and appending it to the other, thereby creating a
bitonic sequence. For fusing two sorted arrays of length
N
2 , the worst-case complexity can thus be expressed as
O(N

T · log N).

4.3 Using Bitonic Merge Sort on Segments

We use an optimized bitonic merge sort to rearrange seg-
ments of the work queue sequentially in successive passes.
For each pass, we need to acquire available segments and
apply the bitonic algorithm to their combined data set. The
key-index pairs are retrieved from the work queue using
the segment indices as offsets for addressing the associated
tasks. We identified two basic qualities that the controller
should exhibit when sorting segments:

• Constant refinement: the accuracy of the resulting se-
quence should increase with the number of passes

• Effectiveness: high-priority work packages should
advance towards the front as soon as possible

The basic idea to improve the overall order is to com-
pare each segment with its predecessor iteratively. For a
work queue with N segments of size S, we need N − 1
passes to move the S most important tasks to the lead-
ing segment. This approach, though basic, continually im-
proves the order in the queue. If we reach a segment where

no predecessor can be acquired, we reinitiate the proce-
dure starting from the back, which is illustrated in Figure
2. The resulting accuracy of the sort is proportional to
the number of passes performed. Obtaining a fully sorted
list would require a total of N2+N

2 passes, but approximate
sorting with an emphasis on prioritizing important tasks
over regular ones is sufficient to induce adaptive behav-
ior. Also, as mentioned in Section 4.2, partially sorted
input can be processed much faster. This property trans-
lates well to the segment-based approach: by monitoring
a boolean member variable that is true for segments that
are revisited, we can decide whether it is sufficient to ap-
ply a top-level bitonic merge. We consider three different
combinations of segments and provide an optimized sort-
ing method for each of the following pairings:

• Unsorted – Unsorted

• Unsorted – Sorted or Sorted – Unsorted

• Sorted – Sorted

5 Time Management

5.1 Motivation

The system described thus far is capable of managing
queued tasks based on their priorities without assistance by
external components. However, due to the necessary syn-
chronization of controller and working module by mutual
exclusion, a significant delay is added to the total megak-
ernel execution time whenever a SP in the working mod-
ule transitions into a state of busy waiting, caused by seg-
ments being unavailable as they are currently being sorted.
We target this issue by implementing a management strat-
egy using time-based regulations for avoiding collisions
of the working module and the controller when accessing
the work queue. The chosen approach requires collection
and maintenance of related meta data for task duration and
sorting performance.

5.2 Avoiding Collisions

Usually, the primary objective of a megakernel is to ex-
ploit the resources of the GPU. Hence, we do not put any
additional constraints on accesses made by the working
module. Instead, the controller performs advanced san-
ity checks before locking two segments for sorting. Fol-
lowing the algorithm described in Section 4.3, we select
two qualified segments. The time needed for performing
the bitonic merge sort on the selected segments is stored
in timesorting. We then proceed to probe the anterior sec-
tions of the queue: segments in between the chosen can-
didates for sorting and those that are currently being exe-
cuted are regarded as time buffers. The required amount of
time for the working module to process a buffer segment is
estimated by the execution time of the shortest contained

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics (non-peer-reviewed)



task. The respective variables are read for each segment
and accumulated from back to front in a second variable
timebu f f ers. Once the condition timebu f f ers ≥ timesorting
is fulfilled, we abort the traversal stage and initiate the
bitonic merge sort procedure. If the available time is not
sufficient for sorting, the procedure is reinitiated at the
back of the queue to prevent possible collisions.

5.3 Collecting Meta Data

5.3.1 Task Execution

For each task, the working module records the time needed
for execution and compares it to previous results by de-
fault. It is necessary to monitor these values constantly
for automatic runtime detection since the execution time
of a task may fluctuate considerably and cannot be pre-
dicted without error. Whenever a new task is added to the
work queue, the corresponding segment updates its esti-
mated buffering effect based on these measurements. In
order to minimize the probability of collisions, we choose
the pessimistic approach and exclusively store the shortest
duration for each task measured so far.

5.3.2 Sorting Methods

For each of the three sorting modes, we measure and up-
date the number of clock cycles needed by the respective
method whenever it is invoked. The timesorting variable
can thus be estimated more accurately by the controller
based on the orderliness of tasks in the segments that are
selected for sorting. As opposed to task execution, mea-
surements are discarded if they are lower than previous re-
sults, although sorting performance is less likely to change
over time. This approach further reduces the likelihood of
collisions in the work queue, since always the longest du-
ration is assumed for each sorting method.

5.4 Custom Timing Settings

As an alternative to the default pessimistic behavior, we
provide settings for the advanced user to customize the
internal time management. A more flexible strategy can
be achieved by defining a global multiplier for the time
buffers. If a task is known to have a reliable average du-
ration or requires a fixed number of clock cycles defined
by its inherent complexity, the automatic runtime detec-
tion may be disabled selectively. Instead, a static value
can be provided to indicate how many clock cycles should
be assumed for execution.

For projects where priority sorting is of utmost impor-
tance, meta data acquisition may be disabled for all tasks.
The user can then define a constant global variable that is
substituted for each buffer segment.

32 64 128 256 512 1024
0

100

200

300

400

500

600

Elements

Sorting Performance

 

 

T
im

e
 (

µ
s)

CUDPP

Bitonic−32

Bitonic−64

Bitonic−128

Bitonic−256

Bitonic−512

Figure 3: Comparison of performance for the tested sorters
with the standard CUDPP radix sort for unsigned integers.
Our implementation of the bitonic merge sort yields al-
most constant results for setups where the number of ele-
ments does not exceed the number of threads used.

6 Results

6.1 Bitonic Merge Sort Performance

The performance of the bitonic merge sort in our system
is based on two factors, namely the segment size and the
number of active threads. The segment size can be mod-
ified in order to achieve a desired granularity for the sort.
Furthermore, the selected block size for a kernel also de-
fines the dimension of the controller. The algorithm was
therefore evaluated using a representative selection of set-
tings. In order to compare its potential efficiency to ex-
isting sophisticated routines, the optimized bitonic merge
sort was executed using a single thread block for sorting a
limited number of keys outside of the megakernel system.
This procedure is equivalent to a sorting pass of the con-
troller module and thus models the expected behavior for
sorting two segments. We chose thread block dimensions
and array lengths as powers of 2. Thread block dimensions
range from common CUDA warp size of 32 threads to the
largest possible block size of 512 threads. Array lengths
start at 32 and end at 1024 elements, which equates to dou-
ble the maximum segment size in our megakernel system.
The tests were conducted using a GeForce 560 Ti. A visu-
alization of the parametrized setups and the resulting run-
times for sorting unsigned integers can be found in Figure
3. We compared our results with the recorded times from
the CUDPP test suite [1]. Even for our most unfavorable
setting with 32 threads sorting an array of 1024 values,
the optimized bitonic merge sort beat the CUDPP radix
sort by little over 100 µs (∼ 20%). For more balanced
setups, our implementation was up to 56 times faster in
comparison. We would like to point out that the CUDPP
project targets larger data sets and is indeed very potent
for lengthy input [16]. Considering the non-linear growth
rates, the emergent trend suggests that with increasing ar-
ray sizes the bitonic sorter will eventually be bested. How-

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics (non-peer-reviewed)



0 10.000 20.000 30.000 40.000 50.000 60.000
0

10

20

30

40

50

60

70

80

90

100

No. of Queued Tasks

Sorting Performance with 100 µs per Task

 

 

A
c
c
u
ra

c
y
 (

%
)

Bitonic−32

Bitonic−64

Bitonic−128

Bitonic−256

Bitonic−512

Figure 4: Algorithm performance with a fixed task dura-
tion of 100 µs. Starting at 10,000 tasks, we observe a
steady decline in accuracy. This suggests that although the
negative influence of unreachable segments is constantly
reduced, the performance eventually drops due to insuffi-
cient time buffers.

ever, given that we intend to frequently sort pairs of seg-
ments containing 512 tasks or less using only one thread
block, it appears to be a very suitable solution.

6.2 Sorting the Queue at Runtime

We evaluated the performance of the presented strategy
for sorting the queue segment-wise in our megakernel sys-
tem. Since the duration of a megakernel is implicitly de-
termined by the tasks it executes, we assessed the accuracy
of our management system for a given number of tasks in-
stead. We used blocking tasks to occupy thread blocks for
a specified number of clock cycles. The segment size for
the work queue was set to 256 tasks in order to balance
granularity and sorting efficiency. Since both modules in
the megakernel start simultaneously, the leading segments
are immediately locked by the working module and can
never be processed by the controller, which makes it im-
possible to achieve a fully sorted queue at runtime. Re-
garding these constraints, we estimated the actual perfor-
mance by rating each executed task based on its predeces-
sors. We enabled automatic runtime detection and stored
the priorities of executed tasks chronologically in a list of
entries L which was subsequently evaluated. Ideally, we
anticipate a descending sequence of values where an entry
at index i (starting from 0) has i previous entries represent-
ing tasks with higher priorities. Hence, the score for each
tested setup with the specified number of tasks n is defined
as follows:

S(n) =

n−1
∑

i=1

i−1
∑
j=0

f (i, j)

n−1
, f (a,b) =

{
1
a , if L(b)≥ L(a)
0, else

Assuming worst case conditions for our test setup, the
queue was initiated with task priorities in ascending order,

0 20.000 40.000 60.000 80.000 100.000 120.000
0

10

20

30

40

50

60

70

80

90

100

Sorting Performance with 1 ms per Task

No. of Queued Tasks

A
c
c
u
ra

c
y
 (

%
)

 

 

Bitonic−32

Bitonic−64

Bitonic−128

Bitonic−256

Bitonic−512

Figure 5: Evaluation of the algorithm performance for
complex tasks with runtimes exceeding 1 ms. For smaller
thread block sizes, we observe an early decline due to the
increased effort for sorting a high number of entries with
fewer threads. The highest recorded score of 95% is ob-
tained using 512 threads.

which would yield a total score of 0. The results for a
given number of entries where each associated task took
at least 100 µs are illustrated in Figure 4. The accuracy
of the order in which they were executed peaked at 74%
when using a block size of 512 threads for 10,000 tasks.
Lower values preceding the apex of each function were
caused by the statistical influence of the reserved leading
segments which were not sorted before execution.

Due to device-related delays between fetching and pro-
cessing, tasks may not be executed precisely in the same
order as they are ranked in the queue. The resulting ef-
fect caused slightly lower scores when using 512 threads
compared with a block size of 256 threads for a higher
number of tasks. For time-consuming procedures, such
as those found in elaborate ray-tracing engines, we con-
sidered the results after raising the blocking interval to 1
ms (see Figure 5). With the highest possible number of
threads, we achieve a maximum score of 95% for 80,000
entries. Based on these results, we can conclude that the
accuracy in the order of execution increases with the com-
plexity of planned tasks, since the prolonged execution
time can be utilized to issue additional sorting passes.

6.3 Adaptive Monte Carlo Ray-Tracing

We demonstrate the effects of using custom priorities in
a progressive Monte Carlo Ray-Tracing engine and two
different scenes. The engine evaluates 512 paths per pixel
with a resolution of 800x600 and checks intersections with
objects iteratively. Pixels are grouped as patches of 4x4
and each patch is assigned to a designated task instead of
using one task for each pixel. The reduced number of work
queue entries to be sorted improves the efficiency of the
task management system. A task that is executed com-
putes two random traversal paths for each pixel in a patch

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics (non-peer-reviewed)



and evaluates the new priority based on different strate-
gies, two of which are presented in this section. Tasks
repeatedly append themselves to the end of the queue un-
til all rays for the associated pixels have been cast. We
provide representative snapshots of both scenes after ex-
ecuting ∼60% of all planned tasks. In order to illustrate
the associated progress, we use heat maps to indicate the
number of rays cast for each pixel patch.

Figure 6: Snapshot of a scene containing objects whose
eventual surface colors are influenced by illumination and
reflection. Prioritizing patches with high accumulated in-
tensity leads to selective rendering of light sources and
white surfaces, which enables a faster perception of details
in these areas.

In our first test case, color values returned by rays for
each pixel were simply accumulated and the image was
then rendered using maximum to white mapping. The
examined scene shows the interior of a softly lit room
containing reflecting objects and light sources. We used
our task management system to focus on high intensity
color values. This eventually led to a global preference of
brighter areas. Figure 6 shows the scene at an intermediate
stage. We can clearly discern the objects that are emitting
or reflecting light and observe the increased detail for the
left sphere and the ceiling. The priority for each patch was
calculated using priority = ∑

pixels
i=1 color.

Figure 7: Using difference values as priorities leads to
preference of patches with low convergence rates. We
observe more rays being cast early on for reflections of
spheres on the floor since the surface generates diverse
color values depending on the direction of rebounded rays.

For our second example, the output was normalized at
each pixel using the heat map data. The selected setup al-
lowed for detection of pixel patches with low convergence
rates and prioritization of these areas to achieve enhanced
initial views. A large portion of the scene could be ne-

glected at first due to an opaque, unlit wall at the far end
of the room (see Figure 7). In Figure 8, we emphasize im-
proved image quality when compared with uniform ren-
dering by magnifying the affected regions of images gen-
erated 210 ms after initiation. The applied priority formula
can be as expressed as priority=∑

pixels
i=1 (color−colorold).

Figure 8: We compare the conventional approach of dis-
tributing rays uniformly with the priority-based procedure.
The left side shows an early closeup of the scene using the
default method and exhibits more noise than the image on
the right, which features smooth color reflections as a re-
sult of proper task management.

We used the normalized output images from the second
test case to assess the mean squared error (MSE) for de-
fault and priority-based rendering when compared to the
ground truth. Even though evaluating the priority formula
required expensive atomic operations, we noticed a clear
reduction of the MSE at each point in time (see Figure 9).

7 Conclusion

We presented a priority-based task management system
with elaborate timing strategies to enable adaptive behav-
ior for GPGPU programs. We successfully incorporate a
controller module in a megakernel system and prevent it
from interfering with the continuous execution of queued
tasks. We eliminate inter-component communication and
the associated overhead by sorting the contents of our dy-
namic work queue at runtime using a designated thread
block. By optimizing the bitonic merge sort algorithm, we
establish a basis for iteratively rearranging the segments of
the queue. We evaluate the effectiveness of the sorting al-
gorithm by invoking large numbers of tasks and compare
performance for tasks with different durations. For more
complex tasks, we reach promising scores regarding the
order of execution even in unfavorable setups. A Monte
Carlo Ray-Tracing engine running in our system shows
adaptive behavior and demonstrates how prioritization in
a rendering application can speed up the assessment of de-
sired features in a scene. Adaptive rendering offers an ex-
tensive field of research for possible priority functions and
their impact on image quality. Since the effects of complex
formulas do not necessarily outweigh the corresponding
overhead, the development of new, efficient priorities re-
quires profound research and sophisticated methodology.

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics (non-peer-reviewed)



0,5 1,0 2,0 3,0 4,0 5,0 6,0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

−4

Time (s)

M
S

E

MSE Comparison for Rendering Methods

 

 

Default Rendering

Priority Rendering

Figure 9: We calculate the mean squared error by subtract-
ing snapshots of the rendered scene generated at regular
intervals from the ground truth and evaluating the differ-
ence of pixel values. Prioritization of pixel patches that
return ambiguous color values leads to improved results
for our second test case.

References

[1] Cudpp: Cuda data-parallel primitives library, 2012.
http://gpgpu.org/developer/cudpp.

[2] Timo Aila and Samuli Laine. Understanding the ef-
ficiency of ray traversal on gpus. In Proceedings
of the Conference on High Performance Graphics
2009, HPG ’09, pages 145–149, New York, NY,
USA, 2009. ACM.

[3] K. E. Batcher. Sorting networks and their appli-
cations. In Proceedings of the April 30–May 2,
1968, spring joint computer conference, AFIPS ’68
(Spring), pages 307–314, New York, NY, USA,
1968. ACM.

[4] Daniel Cederman and Philippas Tsigas. On
dynamic load balancing on graphics proces-
sors. In Proceedings of the 23rd ACM SIG-
GRAPH/EUROGRAPHICS symposium on Graphics
hardware, GH ’08, pages 57–64, Aire-la-Ville,
Switzerland, Switzerland, 2008. Eurographics
Association.

[5] Daniel Cederman and Philippas Tsigas. On sorting
and load balancing on gpus. SIGARCH Comput. Ar-
chit. News, 36:11–18, June 2009.

[6] Long Chen, Oreste Villa, Sriram Krishnamoorthy,
and Guang R. Gao. Dynamic load balancing on
single- and multi-gpu systems. In IPDPS, pages 1–
12. IEEE, 2010.

[7] Naga Govindaraju, Jim Gray, Ritesh Kumar, and
Dinesh Manocha. Gputerasort: high performance

graphics co-processor sorting for large database
management. In Proceedings of the 2006 ACM SIG-
MOD international conference on Management of
data, SIGMOD ’06, pages 325–336, New York, NY,
USA, 2006. ACM.

[8] Mihai F. Ionescu. Optimizing parallel bitonic sort.
In Proceedings of the 11th International Symposium
on Parallel Processing, IPPS ’97, pages 303–309,
Washington, DC, USA, 1997. IEEE Computer So-
ciety.

[9] Bernhard Kainz, Markus Steinberger, Stefan
Hauswiesner, Rostislav Khlebnikov, and Dieter
Schmalstieg. Stylization-based ray prioritization
for guaranteed frame rates. In Proceedings of
the ACM SIGGRAPH/Eurographics Symposium
on Non-Photorealistic Animation and Rendering,
NPAR ’11, pages 43–54, New York, NY, USA,
2011. ACM.

[10] Shinpei Kato, Karthik Lakshmanan, Ragunathan Ra-
jkumar, and Yutaka Ishikawa. Timegraph: Gpu
scheduling for real-time multi-tasking environments.
In Proceedings of the 2011 USENIX conference
on USENIX annual technical conference, USENIX-
ATC’11, Berkeley, CA, USA, 2011. USENIX Asso-
ciation.

[11] Peter Kipfer, Mark Segal, and Rüdiger Wester-
mann. Uberflow: a gpu-based particle engine.
In HWWS ’04: Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics
hardware, pages 115–122, New York, NY, USA,
2004. ACM Press.

[12] David B. Kirk and Wen-mei W. Hwu. Program-
ming Massively Parallel Processors: A Hands-on
Approach. Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 1st edition, 2010.

[13] Hubert Nguyen. GPU Gems 3. Addison-Wesley Pro-
fessional, first edition, 2007.

[14] Steven G. Parker, James Bigler, Andreas Dietrich,
Heiko Friedrich, Jared Hoberock, David Luebke,
David McAllister, Morgan McGuire, Keith Morley,
Austin Robison, and Martin Stich. Optix: A general
purpose ray tracing engine. ACM Transactions on
Graphics, August 2010.

[15] Matt Pharr and Randima Fernando. GPU Gems
2: Programming Techniques for High-Performance
Graphics and General-Purpose Computation (Gpu
Gems). Addison-Wesley Professional, 2005.

[16] Nadathur Satish, Mark Harris, and Michael Garland.
Designing efficient sorting algorithms for manycore
gpus. NVIDIA Technical Report NVR-2008-001,
NVIDIA Corporation, September 2008.

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics (non-peer-reviewed)


