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Abstract

In recent years, biochemistry is gaining more and more at-
tention. The research involves analysis of large molecules,
such as proteins. One of many properties we can study are
molecular cavities, where cavity is understood as a free
space inside a molecule. As we are usually interested only
in a certain subset of cavities, the common approach is to
use a spherical probe of a given radius to find the cavities.
The probe can be imagined as a sphere which we try to
slip through the molecule.

In this paper we discuss an algorithm to find inner cav-
ities in a molecule for a given size of the probe. The
algorithm has a preprocessing stage where an additively
weighted Voronoi diagram of a molecule is computed.
This diagram is then used to accomplish the task of finding
cavities for varying probe sizes.

The algorithm presented proved to be very fast for a
probe with a variable size. The implementation shows it
is able to operate in real-time even on large structures,
such as the Thermus Thermophilus 70S ribosome (PDB
ID 3OH5, approximately 87 000 atoms).

Keywords: molecular cavity, molecule analysis, addi-
tively weighted Voronoi diagram

1 Introduction

A protein structure can be very complicated. This includes
depressions on the molecular surface (often called pock-
ets) and empty space inside the molecule. This empty
space can form tunnels and cavities which are not con-
nected to the surface (inner cavities). It can be represented
as a union of spheres (Figure 1). When searching cavities,
we usually introduce a spherical probe which we try to slip
through the molecule. This is useful, because it allows us
to specify the minimal radius of the cavity (the radius is
usually measured in angstroms [Å], where 1Å = 10−10 m).

The protein structure affects the behavior of protein in-
teractions. These interactions are a part of biological pro-
cesses. This has led to the study of protein structures
and using the knowledge of these structures to design new
drugs. A lot of research has been done on so-called active
sites, which are the places where the proteins can mutually

Figure 1: Cavity formed by gray atoms.

interact. These sites are generally found on the surface of
a protein. However, as protein molecules are not perfectly
stationary, some of the inner cavities may become acces-
sible from the outside at some point of time and become a
part of an active site. Therefore, it is desirable to identify
these cavities.

The inner cavities can also hold buried residui of other
molecules, such as water [21, 23]. This is important as it
can influence the stability of protein structure [23].

The existing cavity searching algorithms are proficient
in searching the cavities, however, they are slow when it
comes to a variable probe size, because they need to re-
run all computations when the probe size changes. Our
method improves the run time when different radii of
probe are used by moving some of the computational
complexity into the preprocessing stage. The preprocess-
ing allows the algorithm to operate very quickly on large
molecules (about 100 000 atoms).

Our algorithm has been implemented as a Java library,
because in the future we would like to use it as a plugin in
CAVER [2], a software tool for protein analysis and visu-
alization.

In Section 2 the current methods used for finding inner
cavities will be presented. In Section 3 the necessary the-
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oretical background of the ordinary Voronoi diagram and
the additively weighted Voronoi diagram with its dual rep-
resentation will be given. In Section 4 the algorithm using
the additively weighted Voronoi diagram for finding inner
cavities will be described. In Section 5 we will present
results of our implementation. Finally, Section 6 summa-
rizes our findings.

2 State of the Art

The algorithm to find cavities in a molecule using alpha-
shape [6] has been presented by Liang et al [15, 16]. First,
the radii of all atoms are increased by the radius of probe to
obtain the “solvent accessible” model [14, 15] – the model
which is accessible by the given probe. Then a regular
triangulation of atom centers is computed and the cavities
are searched within the weighted alpha shape.

The weighted alpha shape is a subset of the regular tri-
angulation. This subset is determined by the parameter α ,
which can be imagined as the radius of a probe is rolling
over the molecular surface. This probe removes edges and
thus collapses some of the tetrahedra.

The weighted alpha shape used in this algorithm is con-
structed by removing edges which are dual to Voronoi
vertices (see Section 3) outside of the enlarged molecule
atoms. This corresponds to using a probe of a zero radius.
It has been shown [5] that voids in the alpha shape corre-
spond to cavities in a molecule. The cavities are identified
by searching the tetrahedra that were removed when the
alpha-shape was constructed. Only the tetrahedra which
were completely enclosed in the alpha shape are consid-
ered. The downside of this algorithm is that the alpha-
shape has to be rebuilt whenever the probe size is changed.

Several algorithms using a regular grid exist [7, 8, 22].
The first step of these algorithms is construction of a reg-
ular grid, where each grid cell stores information whether
it lies inside or outside of the molecular surface. The grid
is then processed to identify cavities. The processing de-
pends on the algorithm.

The algorithm described in [7] identifies cavities by
checking the neighboring cells of an empty cell in the di-
rection of each axis. The algorithm described in [8] iden-
tifies cavities by scanning the grid in the direction of each
axis and diagonals. Another approach was presented by
Tripathi and Kellogg [22] as the VICE algorithm (Vecto-
rial Identification of Cavity Extents). This algorithm con-
structs a set of vectors from every empty grid cell. The
visibility of the molecular surface for each vector is de-
termined. The visibility describes how much the grid cell
is enclosed within the molecule. The inner cavities are
formed by points fully enclosed within the molecule.

Our algorithm uses the additively weighted Voronoi di-
agram in the preprocessing stage. This diagram has many
other uses apart from searching cavities, such as finding
pockets [9] or determining how spherical the molecule is
[13]. The algorithm for the construction of the diagram

has been described in [11, 12, 18]. To improve the speed
of the edge-tracing algorithms for the diagram construc-
tion, spatial filtering is often used [17, 24, 3].

3 Geometric Background

To fully understand the idea of the algorithm, some of the
properties of Voronoi diagrams need to be mentioned first.
We will begin with the description of an ordinary Voronoi
diagram. Then a basics of the additively weighted diagram
and its dual representation called quasi-triangulation will
be given.

3.1 Voronoi Diagram

A Voronoi diagram [19] is a decomposition of the space
determined by a set of points. These points are often called
generators. We can describe the Voronoi diagram as a tes-
sellation of space, such that for every generator we define
a Voronoi region, consisting of all points in space which
have the smallest Euclidean distance to its generator. That
means for each generator pi there exists a Voronoi region
Ri, such that:

Ri = {x : ‖pi− x‖ ≤ ‖p j− x‖,∀ j 6= i}

where i, j ∈ {1,2, . . .n} and n is the number of generators.
For an example of a two-dimensional Voronoi diagram see
Figure 2.

Figure 2: Two-dimensional Voronoi diagram.

Region boundaries are called Voronoi edges. It can be
seen that in the two-dimensional Voronoi diagram each
edge is shared among neighboring regions. In the three-
dimensional Voronoi diagram the Voronoi edge is shared
among three regions. Each point of an edge is equidis-
tant to the edge generators, because the points lying on the
edge have to meet the definition of Voronoi region for all
regions containing the edge.

The point where multiple edges meet is called a Voronoi
vertex. A Voronoi vertex can be also defined as the end-
point of the Voronoi edge. In two dimensions we can
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also say that the Voronoi vertex is the point shared among
three Voronoi regions. Similarly, in the three-dimensional
Voronoi diagram the Voronoi vertex is a point shared by
four regions.

The Voronoi diagram is usually seen as a graph of the
Voronoi edges and the Voronoi vertices. The diagram is
often stored in its dual representation, called the Delau-
nay triangulation. Edges in the triangulation are created
by connecting the closest pair of generators, i.e., genera-
tors that share an edge. As a result we obtain a triangle in
the Delaunay triangulation for each Voronoi vertex in two
dimensions and a tetrahedron in three dimensions.

3.2 Additively Weighted Voronoi Diagram

It can be seen that all generators affect the resulting
Voronoi diagram equally when the Euclidean metric is
used. However, this is not always desired, consequently
many variations exist. One of these variations is the ad-
ditively weighted Voronoi diagram, also known as the
Apollonius diagram or the Euclidean Voronoi diagram of
spheres.

Each generator in the additively weighted Voronoi dia-
gram has a weight. Unlike the ordinary Voronoi diagram,
where generators are imagined as points, generators in the
additively weighted Voronoi diagram are imagined as cir-
cles in 2D or spheres in 3D with the radius equal to their
weight.

An additively weighted distance, which is defined as
the Euclidean distance minus the weight of the generator
[19, 11], is used instead of the Euclidean distance. Let
i, j ∈ {1,2, . . .n}, where n is the number of generators.
We define the Voronoi region Ri for a generator pi with
a weight wi as:

Ri = {x : ‖pi− x‖−wi ≤ ‖p j− x‖−w j,∀ j 6= i}

Due to the used distance, the Voronoi region can be inter-
preted as a set of points closest to the sphere pi with the ra-
dius wi. This has a few important implications. The edges
are no longer necessarily line segments or half-lines. For
an example of the additively weighted Voronoi diagram in
two dimensions, see Figure 3.

Unfortunately, some anomalies can occur in the addi-
tively weighted Voronoi diagram. It is possible that two
generators define more than one edge if there is a gener-
ator with a small weight among the generators with a big
weight assigned (e.g., a small sphere among three large
spheres). This small generator can split the edge into two
parts which are connected by the edges generated by the
small generator and the big generators. The generator with
a small weight can also generate an elliptic edge (Figure
4). For more details about these anomalies see [12].

Similarly to the ordinary Voronoi diagram, a dual rep-
resentation exists. This representation is called a quasi-
triangulation [12]. This dual representation is not a valid
triangulation (hence quasi-), because the anomalies break

Figure 3: 2D additively weighted Voronoi diagram.

Figure 4: Eliptic edges in the 3D additively weighted
Voronoi diagram.

the validity of the triangulation. For example, if an elliptic
edge exists in the three-dimensional additively weighted
Voronoi diagram, it may not be possible to construct a
tetrahedron, because no Voronoi vertex lies on the edge.
A triangle is stored in this case. Another example of an
anomaly is that a split edge in three dimensions is repre-
sented by multiple tetrahedra with two or more common
triangles.

4 Proposed method

Our method finds inner cavities in a molecule. Its input is
a set of molecule atoms, which are represented as spheres.
The output is a set of subgraphs of the graph representing
the additively weighted Voronoi diagram. Each subgraph
forms a connected cavity, as the probe can be slipped along
the subgraph.

We can leverage the additively weighted Voronoi dia-
gram for computing a diagram of molecules. The addi-
tively weighted Voronoi diagram, where the generators are
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atoms of a molecule with the weight given by their radius,
has an important feature, which can be used to quickly find
cavities using a probe of a given size. It is the fact that an
edge in such a diagram can be considered as an optimal
path among the generators.

A very simple proof is that if we moved away from one
generator, we would always get nearer to at least one other
generator. We can use this knowledge to slip a spherical
probe through the molecule. If the probe was not moved
along the edge, it would be possible that the probe “hits”
one of the generators, while there was a space between
the probe and another generator. Moving the probe along
the Voronoi edge ensures that the distance to the nearest
generators, which are likely to collide with the probe, is
equal.

The algorithm is built on the fact that the probe can pass
among the generators if and only if it can pass on the edge
through the narrowest place. As the algorithm does not
need the position where this narrowest place is, only the
radius of the probe which can pass among the generators is
stored. We will call the radius of the probe on the narrow-
est place a bottleneck. We use the bottleneck to determine
whether the probe can slip along an edge. Figure 5 illus-
trates the idea in two dimensions. This idea also applies in
three dimensions.

+

+

+
+

+

Figure 5: We try to slip a probe among the generators
(light-gray circles). The position of the narrowest place
is marked by a cross. If the probe can pass through, it is il-
lustrated as a dark circle. If the probe cannot pass through
the edge, it is shown as an empty circle.

Our algorithm consists of the following steps:

1. Creation of the additively weighted Voronoi diagram
of molecule atoms.

2. Computation of the bottlenecks.
3. Sorting the Voronoi vertices using the distance from

the vertex to its generators.
4. Traversal of a diagram using a graph traversal algo-

rithm.

Steps 1–3 are done in a preprocessing step.

4.1 Preprocessing

The algorithm starts with the preprocessing stage. In this
stage, the additively weighted Voronoi diagram of atoms
is computed. Next, edge bottlenecks are computed, as de-
scribed later. We also add a boolean flag “is outer” which
we will set on for all Voronoi vertices which have at least
one edge extending to the infinity. This flag will help us
to discover an outer cavity. Finally, Voronoi vertices are
sorted by the distance from a vertex to the surface of its
generators.

The bottleneck can occur anywhere on the Voronoi
edge. To compute the bottleneck we first compute a point
that has the minimal distance from the generators defining
this edge. Next, we must check whether this point lies on
the edge, for which we want to obtain the bottleneck.

This check is done by defining vectors from the cen-
ter of the generator with the smallest weight to the edge
endpoints and a vector to the point with the minimal dis-
tance to the generators. The generator with the smallest
weight needs to be used because of the elliptic edges. If
the vector to the tested point lies within the angle between
vectors to the edge endpoints, we store its distance to the
surface of the edge generators as the bottleneck for the
edge. Otherwise we use the endpoint for which the bottle-
neck is smaller. Figure 6 illustrates the possible positions
of bottlenecks. For details see [11, 18].

+
+

+

Figure 6: Bottlenecks. Crosses are positions of points with
the minimum distance from the edge generators, black cir-
cles are actual positions of bottlenecks.

Now, it would be already possible to find the cavities by
traversing the graph defined by the Voronoi vertices and
edges and checking whether the bottleneck is larger than
the probe size. However, this would be very inefficient,
because it would require visiting all vertices every time
the size of the probe changes.

The efficiency can be greatly improved by sorting the
vertices. We store the distance from the vertex to its gen-
erators with other vertex information. We call this distance
a maximal bottleneck. The maximal bottleneck allows us
to quickly decide whether the given probe can fit among
the generators. Its value is always greater or equal to the
maximum of the bottlenecks. This ensures that we cannot
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skip any vertex which has large enough bottlenecks during
finding cavities.

The last step of preprocessing stage is sorting the ver-
tices using the now obtained maximal bottleneck. The rea-
son to include the distance among the generators and the
vertex itself is that we need to take the space among the
vertex generators into account. This is important, because
the bottlenecks of all edges may be too small, but there is
still enough space among the generators of the vertex (see
Figure 7).

Figure 7: The empty space among generators in 2D. This
may occur in three dimensions, too.

4.2 Finding Cavities

The input of this part of the algorithm is the additively
weighted Voronoi diagram, represented as a graph of
Voronoi vertices and edges and a sorted order of vertices
from the preprocessing stage.

The search for cavities is performed as a graph traver-
sal. We start from the vertex with the largest maximal bot-
tleneck. First, we check whether the maximum of bottle-
necks of the starting vertex is greater than the probe radius.
If this condition is met, we recursively traverse the graph.
During the traversal we mark the visited vertices, so we do
not visit a vertex multiple times. The traversed part of the
Voronoi diagram forms a cavity.

When it is not possible to continue with the traversal,
we move to the vertex with the second largest bottleneck
and start the traversal from there if possible. We repeat
this procedure until a the first vertex is found, for which
its maximal bottleneck is large enough for probe to slip
through. We can safely stop the algorithm here, as all cavi-
ties were found. Since vertices are sorted using their max-
imal bottleneck, none of the remaining vertices has any
bottleneck bigger than the probe radius.

Now, we have found all cavities in the molecule. How-
ever, they include the outer void, too. To remove it, we
will utilize the flag “is outer” introduced earlier. After the
graph has been traversed, we check the “is outer” flag for
each visited vertex. If any of the visited vertices has the
flag set to true, we disregard this part of the graph, because

it is connected to the outer space, hence it cannot be an in-
ner cavity. We can also modify the algorithm to identify
first the outer cavity and then search cavities only within
the remaining vertices. The advantage of such a modifica-
tion is that it is possible to use a probe of a different size
to remove the outer cavity, which would allow us to use
the algorithm to find pockets on the surface of a molecule,
too. This is similar to the creation of β -shape [10] prior
to the search if the quasi-triangulation was used instead of
the additively weighted Voronoi diagram.

5 Experiments and Results

We have developed a Java library implementing the al-
gorithm and a simple visualization tool, the output of
which can be seen in Figure 8. The visualization approx-
imates the shape of a cavity by putting spheres into the
Voronoi vertices forming the cavity. The implementation
uses the awVoronoi library [1] for computing the quasi-
triangulation. For that reason the algorithm described had
to be converted to the dual representation.

The system used for experiments was a PC with Core
i7 920 CPU (four cores at 2.7GHz with Hyper-Threading)
and 12 GB RAM running Arch Linux 64bit. In all mea-
surements, we evaluated our algorithm twelve times with
the given parameters, removed the shortest and longest
measured time and finally computed average of the ten re-
maining times.

5.1 Algorithm Run Time

We have evaluated the run time of our algorithm with re-
gard to a variable probe size and a variable molecule size.

Table 1 and Figure 9 shows the measured algorithm
run time for the variable size of the probe. We used
the Thermus Thermophilus 70S ribosome complexed with
chloramphenicol (PDB ID 3OH5, approximately 87 000
atoms) in this experiment.

Probe Size [Å] Time [ms]
0.2 174
0.4 146
0.6 114
0.8 91
1.0 75
1.2 64
1.4 55
1.6 47
1.8 41
2.0 35

Table 1: Dependency of the algorithm run time on the
probe size.

Next, we have evaluated the run time of our algorithm
on several molecules of different sizes. The measured
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(a)

(b)

Figure 8: (a) Some of the cavities in the molecule 1AKD
for the probe with the radius 1.4Å. (b) The cavities (dark)
with the atoms forming them (light). Small dots represent
centers of the molecule atoms.

times without preprocessing are presented in Table 2. In
the first column, the PDB IDs of the tested molecules are
presented. In the second column, the number of atoms is
given. In the third column, the measured time is given.
Figure 10 shows that the algorithm scales linearly for a
variable molecule size.

Molecule No. of atoms Time [ms]
1CQW 2 754 3
3VMN 5 621 2
3AOB 23 385 14
3UXS 49 743 33
3OH5 87 539 55

Table 2: Algorithm run time for molecules of various
sizes.
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Figure 9: Dependency of the algorithm run time on the
probe size.
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Figure 10: Dependency between the number of atoms and
the run time for the probe with the radius of 1.4Å.

5.2 Comparison With Other Software

We have compared run time of our algorithm with Voro-
prot 0.7.6.4 [20], which implements similar algorithm us-
ing the additively weighted Voronoi diagram for finding
cavities. We chose Voroprot also because we had prob-
lems running other implementations, such as CASTp [4]
which is offered only as a web service.

Transaldolase from Corynebacterium glutamicum
(PDB ID 3R5E, 2 957 atoms) was used for the compari-
son. The reason of the choice of such a small molecule
was that we encountered the problems with processing
larger molecules in Voroprot. The times for Voroprot are
approximate, as the application has a graphical interface
only. The measured times are in Table 3. It can be
seen that our algorithm is several orders of magnitude
faster than Voroprot. The reason is that Voroprot always
searches all Voronoi vertices while our algorithm uses
sorting to reduce the size of searched set.
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Probe Size Run Time [s] Algorithm
[Å] Our Algorithm Voroprot Speedup
0.2 7 ×10−3 3.5 500
0.4 4 ×10−3 2.5 625
0.6 3 ×10−3 1.9 633
0.8 2 ×10−3 1.4 700
1.0 2 ×10−3 1.0 500

Table 3: Comparison with Voroprot.

5.3 Results, Summary and Future Work

We used the visualization tool to check the results visu-
ally. As far as we know, exact evaluation of results has not
been developped yet. We have also compared the largest
cavities found using our implementation with the cavities
found using Voroprot.

Since Voroprot provides only a graphical interface, it
was not possible to do exact run time measurements.
Therefore, more exact time comparison should be carried
out in the future.

Our algorithm currently does not handle elliptic edges.
These edges may or may not be incident to any Voronoi
vertex. It is also possible that only a part of an elliptic
edge forms a cavity. Fortunately, elliptic edges are rare in
proteins, because the difference among atom radii is small.
This is left for future work.

6 Conclusion

We have presented the algorithm for finding inner cavi-
ties in a molecule. The algorithm computes the additively
weighted Voronoi diagram of molecule atoms and sorts the
Voronoi vertices using the distance to their generators in
the preprocessing. The cavities are then found using a
graph traversal, starting from the vertex with largest dis-
tance and ending when all cavities are found.

Our experiments shows that our algorithm is excellent
for a variable probe size thanks to the preprocessing. The
algorithm is able to process even large protein structures
very quickly.
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