
Ray-casting point-in-polyhedron test

Denis Horvat∗

Supervised by: Borut Žalik†

University of Maribor
Faculty of Electrical Engineering and Computer Science

Laboratory for Geometric Modelling and Multimedia Algorithms
Smetanova ulica 17, SI-2000 Maribor, Slovenia.

Abstract

This paper considers a ray-casting point-in polyhedron
test. Although it is conceptually the simple extension of a
well-known point-in-polygon ray-casting algorithm, vari-
ous practical problems appear in 3D, especially, when the
boundary of a geometric object is represented as a trian-
gulated surface. When a larger number of points have to
be tested regarding their positions on the considered ge-
ometric object, preprocessing may drastically reduce the
testing time. This paper considers comparisons between
three such methods: The first uses a k-dimensional tree
(kd-tree), the second an octree, and the last is based on a
three-dimensional uniform grid (3D grid). The core op-
eration for all three methods is the ray-casting, by which
the odd-even rule can be efficiently applied. Ray-casting
can be susceptible to the rounding errors, which are also
considered in this paper.

Keywords: 3D inclusion test, spatial subdivision, kd-
tree, 3D uniform grid, octree

1 Introduction

Knowing whether a certain point lies inside a given poly-
hedron can be beneficial within a wide-range of computer
graphic applications. This test is often called the inclusion
test and is usually used as a base operation in conjunction
with more complex ones, so it is essential that it satisfies
certain criteria. These usually involve speed, robustness,
and memory usage. The inclusion test has its well-known
usages in the field of collision detection, where it helps
to ensure that objects do not fall through the ground or
go through walls. It can also be found in physics simu-
lation and artificial intelligence. Many efficient methods
regarding the inclusion test were presented [15, 7, 3, 1]
that all have their advantages and disadvantages, depend-
ing on the tested object. They can be divided into two basic
groups: methods that require a data preprocessing phase,
and those that do not. The latter includes ray-crossing

∗denis.horvat@uni-mb.si
†zalik@uni-mb.si

methods [4, 3], the angular method [7], barycentric coordi-
nates [1], the winding number method [7], and others. The
time-complexity for a single tested point in those methods
without preprocessing is O(n) [15, 10], with n being the
number of vertices. Whilst these methods are suitable for
small a number of tested points, they become less and less
appropriate when the number of tested points increases. At
that stage it might be better to consider methods that per-
form data preprocessing before executing the actual inclu-
sion test. During the preprocessing phase, data is system-
atically organized, and is later used as input for the inclu-
sion test. Data preprocessing is usually the most intensive
operation, but is only performed once. Many structures
can be used for data preprocessing, such as uniform grids
[15, 12]. The expected time complexity of a inclusion test
for methods that use data preprocessing is O(log(n)) or
even O(1). In this paper, the advantages and drawbacks
of three data structures that can be used for the inclusion
test are analized, described, and compared with each other.
The problem of inclusion is solved for the boundary repre-
sentation (B-rep) of a polyhedra that consist of triangular
meshes.

The paper is organized in 7 sections. Section 2 briefly
describes the related works that have already success-
fully solved the problem of inclusion. Section 3 describes
how to find an intersection between a point and triangular
plane. Section 4 describes how to subdivide space using
a kd-tree and an octree. Solutions for how to traverse the
mentioned tree structures are also given. Section 5 ex-
plains how to voxelise a scene and use it for the inclusion
test. Section 6 tackles those problems that may arise from
rounding errors when using rays. Section 7 describes and
compares the results of experiments conducted on a single
workstation using the preprocessing methods described in
sections 4 and 5. Section 8 summarises the paper.

2 Related work

Very few original methods seem to have been developed
for the inclusion test in three-dimensional space. Most of
them are just extensions of their two-dimensional counter-
parts. Feito and Torres [2] solved the problem of inclusion

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics (non-peer-reviewed)



without the usage of trigonometric functions, and without
solving any equations. In [16], a layer-based structure was
used for scene preprocessing, where the occlusion relation
between faces and edges were calculated, and the faces
were then projected on sequentially arranged layers. Later,
a binary search algorithm was used on the preprocessing
data. The storage-space used during preprocessing was
greatly reduced because much of the information for the
polyhedrons is represented implicitly. Other various meth-
ods can be used by algorithms that are popular in computer
graphics. The inclusion test using rays is closely related to
ray-tracing, as each ray must be processed by a ray tracing-
algorithm in order to determine the intersection points (if
they exist) with the tested object. In his PhD thesis [6], V.
Havran conducted a comprehensive comparison between
twelve commonly used ray-tracing algorithms for a set of
thirty test scenes. His findings were, that ray-tracing algo-
rithms based on a kd-tree achieved the best results in com-
parison with other tested algorithms. Octrees were placed
second.

3 Inclusion test using ray-casting

Methods that involve ray-casting follow a simple principle
when it comes to the inclusion tests. The basic primitive
in ray-casting is a ray

−→
R , which is defined by its origin O

and a normalized direction vector
−→
D . The ray is cast from

a tested point p, that serves as its origin, in any direction.
Next, the number of intersections is determined between
the polyhedron and the ray. If this is an odd number, p lies
inside the polyhedron, otherwise it is outside (odd-even
rule). Each individual triangle that is a part of triangular
mesh is tested with the casted-ray in order to count the
number of intersections for a single point p. This is done
by first finding the intersection of a ray with a triangular
plane. Any point P lying on

−→
R can be defined by a para-

metric representation (1) of that ray, where t is the signed
distance.

P = O+ t
−→
D (1)

The signed distance t can be calculated from (2), where
d is the distance of the plane from the origin and

−→
N the

plane normal vector.

t =
−(O−→N +d)
−→
D
−→
N

(2)

If t < 0, then the triangular plane lies behind the vector
origin any tests for that particular triangle can be aborted
(figure 1a). This also happens when the ray and triangular
plane are parallel to each other (figure 1b), or in geome-
try terms, when a dot product between the triangular plane
and
−→
D equals zero. In the case of a positive t, intersection

P with a triangular plane is calculated (figure 1c) using (1).
This intersection point is then tested with one of the point
in polygon tests without preprocessing mentioned in sec-
tion 1. As already stated, this part can be susceptible to

rounding errors, which are addressed in section 6.
Thus, the basic inclusion test is already possible, but

every triangle is tested for each point, which leads to un-
desirable results regarding speed. Consequently, data pre-
processing is introduced to ensure that the minimal num-
ber of triangles is tested. There are many structures that
can be used for spatial subdivision that all have their ad-
vantages and disadvantages depending on the given scene
[6, 1]. The next two sections explore three of these struc-
tures: kd-tree, octree, and uniform grid.

It is also important to mention, that in order for the
described methods to provide valid results, the polyhedra
should not contain missing triangles or cracks, as the ray
could go through that hole and consequentially the point
would be classified incorrectly. This problem can be tack-
led by testing each point using more rays, and selecting
the result with the majority.

4 Using tree structures for spatial
subdivision

One of the ways to minimise the number of tested trian-
gles for each individual ray, is to recursively subdivide the
space by constructing a tree structure. The divided space
volume is presented in the form of axis-aligned bounding
boxes (AABB). Each node is associated with his AABB,
whiles the bounding box of the root node covers the whole
of scene S. Nodes that have no child nodes are called
leaves. Leaves that contain at least one object of S are
called full leaves, otherwise they are empty leaves.

4.1 Kd-trees

Space can be subdivided by a k dimensional tree (kd-tree).
Here, the number of dimensions k is limited to three. A kd-
tree is a binary tree, which recursively divides space into
two new AABB. The division stops after a given criteria
is reached. What makes the kd-tree unique is that AABB
is divided by a splitting plane, which can be positioned
anywhere as long it is perpendicular to its dividing axis.
One of the ways to choose the dividing axis is to change
it in the cyclic order x,y,z one axis per each depth, usually
starting with x. The method of always splitting the longest
axis can also be considered. An example of a simple sub-
division within a two-dimensional space using a kd-tree,
is shown in Figure 2.

At this stage, two important questions regarding the tree
construction need to be answered [6]:

• Where to position the splitting plane?

• When to stop dividing?

The answer regarding the first question is very important
as it can improve the overall speed of the tree-traversing
step. Several methods are known for the positioning of the
splitting plane:

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics (non-peer-reviewed)



(a) Plane lies behind ray origin (b) Ray and plane are parallel to ea-
chother

(c) Ray intersects plane in P

Figure 1: Different cases of ray-plane intersection

Figure 2: Example of a non-balanced kd tree

• Spatial Median: Existing AABB is always divided
into two halves by its splitting plane.

• Object Median: The splitting plane is positioned in
such a way, that the number of objects on each side
is roughly the same. This is generally a bad idea [6],
because no leaf in the kd-tree will be an empty leaf,
meaning that when the tree is traversed, all the objects
would need to be checked for each leaf the ray passes
through.

• Cost Model: This method determines the optimal
splitting plane position by calculating the splitting
cost using a heuristic for each considered plane. The
heuristics used is called the surface area heuristic or
SAH, as described in [6, 11]. SAH uses the idea that
the chance of a ray hitting an AABB is proportional
with its surface area. This means that it is best to iso-
late the bigger empty nodes, so that the ray has the
highest chance of passing through them unhindered.
The cost is calculated using (3), where Ct is the cost
of traversal, pl , pr the probability of a ray intersecting
the left or right node, and Cl ,Cr the estimated cost of
the left and right sub-node.

Cn =Ct + pl ·Cl + pr ·Cr (3)

Next, a termination criteria is determined for when to stop
dividing and classifying the current node as a leaf. The cri-
teria used is called ad hoc termination criteria, where the

current node Cn becomes a leaf when a tree depth reaches
a certain threshold Tmax, or the number of objects in Cn is
less than the constant Omin. Both constants are determined
by the user.

After space has been partitioned using a kd-tree, the data
obtained can be used when an inclusion test is performed.
Only those leaves that the ray intersects are examined in-
stead of the whole scene. This is done with the tree traver-
sal. The recursive ray traversal algorithm TAA

rec [6, 5] was
used to traverse the kd-tree. Intersections with a polyhedra
are determined by testing all the objects from intersected
leaves using the method described in Section 3. The algo-
rithm was published by [8] and uses near-far node classifi-
cation based on the ray’s origin. When a node is traversed,
it is calculated which one of his child nodes must be tra-
versed, and which can be skipped. Three cases of traversal
are possible: traverse near, traverse far, traverse near and
then far. The algorithm uses a stack structure to keep track
of the nodes that need to be traversed. The result of the
traversal can be seen in Figure 3.

Figure 3: Result after kd-tree traversal using Tmax = 21 and
Omin = 4 and SAH split division criteria.

4.2 Octrees

Octrees are usually used to partition three dimensional
space by dividing it into eight octants. Another difference

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics (non-peer-reviewed)



compared with the kd-tree is that all three planes are di-
vided per each depth, instead of just one. Each node has
its own AABB and the leaf nodes have a list of objects that
are contained within that AABB. Triangle-cube intersec-
tion algorithm [9] was used to classify objects to their in-
dividual AABB. The space is subdivided until the ad-hoc
termination criteria described in subsection 4.1 is reached.
Simple subdivision of the three-dimensional space using
octree, can be seen in Figure 4.

Figure 4: Example of an non-balanced octree.

The traversal step is performed by using an efficient
parametric algorithm for octree traversal as published in
[13]. Similarly to section 3, this algorithm leans on the fact
that any point lying on ray can be defined by a parametric
representation (1) of that ray

−→
R , where t is the signed dis-

tance. Let bmax be the AABB maximum boundary point
and bmin its minimum. If at least one positive distance t
exists on

−→
R that is between the AABB boundaries, then−→

R intersects that AABB. The algorithm works with dis-
tances from the ray origin O to the nodes limits bmax and
bmin. These distances tmaxi and tmini are calculated using
the equations (4), where

−→
D is the ray orientation and i one

of the coordinate.

tmaxi =
bmaxi −Oi
−→
Di

tmini =
bmini −Oi
−→
Di

(4)

This calculation is only done for the root node. Distances
for child nodes are incrementally calculated from parent
nodes using three additions and three shifts as the algo-
rithm recursively progresses. For each voxel, the first
crossed node is determined (if it exists). Based on the first
node, the next nodes can be found until ray exists the cur-
rent voxel. The algorithm recursively progresses until the
leaf nodes are reached. The result can be seen in Figure 5.

5 Uniform grids

For the inclusion test using uniform grids, the algorithm
from [12] was implemented. The mentioned algorithm
is a three-dimensional extension of the two-dimensional
cell-based containment algorithm (CBCA) [15]. During

Figure 5: Result of octree traversal for one ray using Tmax
= 20 and Omin = 50

the preprocessing phase, CBCA constructs a raster and
places it onto a given scene. Each cell is marked as: in-
side, outside, or as a border cell. Flood fill algorithm is
used in order to determine whether a cell is located inside
of a polygon. When the actual inclusion test is performed,
the algorithm calculates in which cell the tested point is lo-
cated, and then checks the cell’s status. In the case of a cell
being marked as inside, the point is declared to be inside,
otherwise it is outside. When it is marked as a border cell,
additional testing is performed, depending on whether a
detailed inclusion test is requested.

In a three-dimensional space, a grid of uniform voxels
is used instead of a raster, and ray casting is performed in-
stead of the flood fill algorithm. The object is voxelised,
but similarly to CBCA, not all the cells (here voxels) lie
completely inside or outside. If the approximation test suf-
fices, then the voxels are marked as inside if 50% of their
volume lies inside the tested object, and vice versa. When
a detailed test is required, then those voxels that contain
the object surface are marked with one more additional
bit. Additional tests are performed for those points that lie
inside such voxels.

5.1 Voxelisation

Voxelisation is done by an algorithm described in [14],
but the idea for uniform voxelisation of three-dimensional
polygonal objects or polyhedra comes from [17]. So-
called optimised ray-casting is used to determine whether
a voxel lies inside or outside of a given object. Voxelisa-
tion is performed in two steps:

• In the first step, the initial AABB of the scene is
calculated and its xy plane is partitioned using a
quadtree. Partitioning stops when the ad hoc termina-
tion criteria described in section 4.1 is reached. Each
leaf in the quadtree corresponds to an AABB with its
deph equal to the initial AABB. Each leaf keeps track
of all objects that are contained within its AABB. A

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics (non-peer-reviewed)



Cohen-Sutherland line clipping algorithm [3] is used
for determining the containment of an object to the
specific AABB. Once the space is partitioned and the
tree is built, the next step can commence.

• The second step begins by covering the scene with a
uniform grid, containing m×n× p voxels. The ques-
tion regarding the grid resolution must be answered,
as it influences the preprocessing speed, memory us-
age, and accuracy. In 2D, an equation can be used
to determine the grid’s size [15]. Here, three meth-
ods are considered [12]: The first method has a fixed
voxel size that is applied to all scenes. The voxel
size can also be determined by the user, which gives
him/her more control over each individual scene. The
third method calculates the voxel size in relation to
the scene’s extent. After the grid has been con-
structed, m× n rays are cast parallel to the positive
z axis. One of the m× n voxel’s center then serves
as the origin for each ray. The z value of each indi-
vidual origin is equal to the minimal z value of the
initial AABB. For each individual ray, an AABB is
found by recursively looking into the quadtree, ob-
tained during the previous step, and finding the leaf
that corresponds to the x,y coordinate of the ray’s ori-
gin. All objects in this AABB are checked for inter-
sections and for each intersection found, its z coordi-
nate value is stored inside a linked list. A new list is
always generated for each ray. This list is then sorted
in ascending order. For each voxel that is traversed
by a ray, the number of values in the list are counted
that are smaller than the current voxel center z value.
The odd-even rule is applied, which means that if the
number of values is odd, then the voxel lies inside of
the object, or outside if it is even. The result can be
seen in Figure 6.

Figure 6: Voxelisation using 1283 voxels.

5.2 Inclusion test

After the object has been fully voxelised and state of each
voxel is known, inclusion test is as simple as reading the
voxel’s state in which the tested point is contained. The
coordinates of a voxel v(mv, nv, pv) for a tested point p(xp,
yp, zp) can simply be calculated [12] using the following
equations (5):

mv =
xp− xmin

sizem
nv =

yp− ymin

sizen
pv =

zp− zmin

sizep
(5)

Problems occurs when the objects’ boundaries are passing
through the voxel. Part of the voxel may be located inside
and the other part outside the object, but the voxel can only
have one of the two states. This can cause that the result of
the inclusion test is incorrect. When the voxel is marked
as a boundary, a ray parallel to its z axis is cast from the
tested point. The ray stops after a non-boundary voxel is
encountered. Intersections are determined (as described in
subsection 5.1) and if their number is odd, the status of the
tested point is opposite to that of the voxel status in which
it is contained.

6 Numeric stability

Sadly computer arithmetic is finite. This causes rounding
errors to occur and consequently, inclusion tests can return
false results.

As shown in section 3, the intersection between a ray
and triangular plane is calculated. This intersection point
is then tested using one of the basic point-in-triangle tests
and if it is located inside, then intersection occurs. The
biggest occurs when this intersection point is located just
on the triangle’s edge (or very near). Rounding errors can
cause the calculated point to be slightly shifted and can
now be falsely located in one of the neighbouring trian-
gles. This means, no intersection with that triangle will be
found and the result from the inclusion test will be incor-
rect because the methods used rely on the fact that number
of intersections is calculated correctly, so that the odd-even
rule can be applied. Robustness was achieved through
shared calculations [1] between triangles that share a com-
mon edge, using the triple scalar product. All the float-
ing point numbers were compared using relative tolerance
comparison. It is important to say, that although the men-
tioned test improves the robustness when checking for in-
tersections, it is still not 100% accurate.

7 Results

The solutions were tested and compared on a desktop
workstation running on Windows 7 using the following

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics (non-peer-reviewed)



hardware: an Intel i5 processor with a clock speed of
3300 MHz and 4 GB (DDR3) of RAM. All the algorithms
were implemented in C++ using the Qt framework. The
OpenGL graphical library was used for visual presenta-
tion. The structure for storing the model data consisted of
a list of triangles and vertices. Normal vectors for each
of the triangles were precalculated, when the model was
loaded into the memory. Data about the models used for
testing, are shown in Table 1 and their thumbnails can be
seen in Figure 10. For each result, the average from three
measurements was used.

Table 1: Model data

model: num. vertices num. triangles
pumpkin 5002 10000
cat 7335 14634
owl 19884 39764
bust 47516 95028
gren1 122227 134016
isis 93823 187642
tiger 309403 618786
gren2 957507 1072128

Total of three methods were implemented for the point-
in-triangle test: the angle sum method, the winding num-
ber method and a method that uses barycentric coordi-
nates. In the presented tests the method using barycentric
coordinates came out on top as it was about 155% quicker
compared to the winding number method and more than
223% than the angle sum method. Consequently, the
method using barycentric coordinates was used in all the
future tests.

Table 2 shows the results for each method implemented.
The inclusion test was executed on 300,000 points that
were randomly placed on the scene. For the kd-tree (Kd
HS represents a tree built using the object median criteria,
whiles kd SAH uses the surface area heuristic) and the oc-
tree, ad-hoc termination criteria was used where Tmax = 16
and Omin = 6. The object was voxelised using a grid size
of 2563 voxels for approximate testing, where the results
were about 99.3% accurate. An accurate grid test was not
used for comparison because classification of the bound-
ary voxels took too long. If antialiasing is used during
voxelisation, as described in [14], some voxels can still be
missed and are not classified as boundaries. Consequently,
each voxel must be tested using the triangle-cube intersec-
tion algorithm [9] for all triangles that are contained within
the quadtree node that correspond to the current ray. As
soon as only one triangle is found, the boundary test for
that voxel can be aborted and the voxel classified as bound-
ary. For example, the preprocessing for the model cat took
more than 2.5 minutes, which is not even remotely com-
parable with other methods.

The preprocessing phase Tp and the executing phase Te
were measured for each method. The results for prepro-
cessing Tp are shown in Figure 7. Time required for pre-

Table 2: CPU(s) for times used for preprocessing and ex-
ecuting for all the tested models, using the implemented
methods.

model Kd HS Kd SAH Octree Grid AP
Tp Te Tp Te Tp Te Tp Te

pumpkin 0.02 2.19 0.12 2.01 0.12 3.18 2.29 0.05
cat 0.05 1.76 0.12 1.51 0.19 2.2 2.28 0.03
owl 0.06 2.90 0.28 2.70 0.45 4.01 4.07 0.06
gren1 0.08 5.26 0.70 1.95 2.72 2.26 8.85 0.05
bust 0.08 4.32 0.53 3.33 1.12 4.15 7.27 0.03
isis 0.13 7.98 1.33 5.28 2.46 5.51 14.6 0.05
tiger 0.20 11.1 2.95 4.92 10.9 4.31 36.7 0.05
gren2 0.29 21.7 4.49 11.85 20.3 2.84 62.3 0.05

processing rises with number of triangles on the scene.
Preprocessing for kd-trees executes faster than for octrees.
This happens because the algorithm for octree must clas-
sify each individual triangle to its octant by using the
triangle-cube intersection test, for each triangle. Classi-
fication for a kd-tree only consists of a test that simply
determines which side of the splitting plane the triangle is
located.

Figure 7: Tp for each model and using all the implemented
methods

The results featured in Figure 8 show the execution
times Te after the preprocessing has already been done.
The expected execution time for three-dimensional grids
is O(1) so it is constant and executed the fastest, but the
result is only a approximation. The kd-tree build with the
SAH heuristic performed best in almost all tested cases
when the results were expected to be accurate. It was out-
performed by octree in gren2 where the scene was heavily
divided.

Figure 9 shows the results, where each column repre-
sents the sum of Tp and Te for each method implemented
on the tested scenes. The kd-tree using the SAH heuristic
KD SAH perfomed the best in all scenes. The kd-tree build
with the half split criteria KD HS performed better than the
octree in almost all cases except on the gren1 scene where
it was outperformed by a small margin. Even if octree
traversal is sometimes done even faster than the traversal
of kd-trees, the preprocessing phase is always slower and

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics (non-peer-reviewed)



Figure 8: Te for each model and using all the implemented
methods

Figure 9: Tp + Te for each model using all the implemented
methods

that is why the total performance of kd-trees is usually bet-
ter.

8 Conclusion

In this paper, three different methods were used for solv-
ing the problem of inclusion using spatial subdivision as
preprocessing. Our conclusions support the ones of [6],
namely that for a small number of rays cast, data pre-
processing does not pay off. After testing the mentioned
scenes, the kd-tree using the SAH heuristic gave the best
results, except for densely occupied scenes where SAH
could not be fully utilized. There is still much that can be
done regarding preprocessing, such as cutting off empty
space in kd-trees or the usage of an octree special vari-
ant called octree-R. Therefore no final answer can yet be
given regarding the fastest method for the inclusion test
within three-dimensional spaces.

References

[1] C. Ericson. Real-Time Collision Detection. Morgan
Kaufman Publishers, 2005.

[2] F. Feito and J. Torres. Inclusion test for general poly-
hedra. Computers and Graphics, Volume 21 Issue 1,
pages 23–30, 1997.

[3] J. Foley, A. van Dam, S. Feiner, and J. Hudgens.
Computer graphics: principles and practice in C
(2nd ed.). Addison-Wesley Professional, 1996.

[4] M. Gombosi and B. Žalik. Point-in-polygon tests for
geometric buffers. Computers and Geosciences, Vol-
ume 31 Issue 10, pages 1201 – 1212, 2005.

[5] M. Hapala and V. Havran. Review: Kd-tree traver-
sal algorithms for ray tracing. Computer Graphics
Forum, Volume 30 Issue 1, pages 199–213, 2011.

[6] V. Havran. Heuristic Ray Shooting Algorithms.
PhD thesis, Faculty of Electrical Engineering, Czech
Technical University, 2000.

[7] P. Heckbert. Graphics Gems IV. Morgan Kaufman
Publishers, 1994.

[8] E. Jansen. Data structures for ray tracing. Data
Structures for Raster Graphics, pages 57–73, 1986.

[9] D. Kirk. Graphics Gems III. Morgan Kaufman Pub-
lishers, 1994.

[10] J. Li, W. Wang, and E. Wu. Point-in-polygon tests
by convex decomposition. Computers and Graphics,
Volume 31, Issue 4, pages 636–648, 2007.

[11] J. MacDonald and K. Booth. Heuristics for ray trac-
ing using space subdivision. The Visual Computer:
International Journal of Computer Graphics, Volume
6 Issue 3, pages 153–166, 1990.

[12] K. Ooms, P. De Maeyer, and T. Neutens. A 3d in-
clusion test on large dataset. Developments in 3D
Geo-Information Sciences, pages 181–199, 2010.

[13] J. Revelles, C. Urea, and M. Lastra. An effi-
cient parametric algorithm for octree traversal. In
WSCG’00, pages –1–1, 2000.

[14] S. Thon, G. Gesquire, and R. Raffin. A low cost an-
tialiased space filled voxelization of polygonal ob-
jects. GraphiCon 2004 proceedings, Moscou, pages
71–78, 2004.

[15] B. Žalik and I. Kolingerova. A cell-based point-in-
polygon algorithm suitable for large sets of points.
Computers and Geosciences, Volume 27 Issue 10,
pages 1135 – 1145, 2001.

[16] W. Wang, J.Li, H. Sun, and Enhua Wu. Layer-based
representation of polyhedrons for point containment
tests. Ieee transactions on visualization and com-
puter graphics, Volume 14, Issue 1, pages 73 – 83,
2008.

[17] Roni Yagel, Daniel Cohen, and Arie Kaufman. Dis-
crete ray tracing. IEEE Computer Graphics and Ap-
plications, 12, 1992.

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics (non-peer-reviewed)



(a) pumpkin (b) cat (c) owl (d) gren1

(e) bust (f) isis (g) tiger (h) gren2

Figure 10: Thumbnails of the used models

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics (non-peer-reviewed)


