
Progressive Hulls: Application on Biomedical Data

David Cholt∗

Supervised by: Josef Kohout†

Department of Computer Science and Engineering
University of West Bohemia

Pilsen / Czech Republic

Abstract

A coarse outer hull of a mesh is a good tool used in com-
puter graphics to reduce algorithm complexity, especially,
in applications such as collision detection or ray-tracing.
It is often required that the hull has some very specific pa-
rameters concerning its shape and quality since these in-
fluence general flexibility and numerical stability of the
algorithms. This paper overviews existing problem ap-
proaches, their downsides for coarse outer hull creation,
and describes Progressive Hull algorithm, which produces
coarse hulls that maintain the general shape of the origi-
nal triangulated mesh while containing the original mesh
inside its interior. However, when this algorithm is used
on a biomedical mesh extracted from volumetric data, one
can observe frequent artifacts in the produced hull caused
by local imperfections in the meshes. In this paper, we,
therefore, present a few modifications to the original Pro-
gressive Hull algorithm that result not only in a suppres-
sion of hull artifacts and a better overall hull quality but
also in a shorter execution time.

Keywords: Progressive Hull, Coarse Hull, Outer Hull,
Mesh Decimation, Progressive Hull Application

1 Introduction

A coarse outer hull of a mesh is any hull that encapsulates
the mesh completely and has a lower number of primitives
(vertices, triangles) and, if possible, preserves the shape of
the mesh. It can be used in many applications, for example
in ray-tracing where one can detect the possibility of a ray
intersecting the mesh by finding the intersection with the
hull first. Given that the hull contains less polygons than
the original mesh, the hull intersection test is faster. Fur-
thermore it is more precise than tests using bounding box
or convex hull, since the shape of the coarse outer hull is
more similar to the shape of the mesh.

In our case we exploited the properties of the hull in in
our project aiming at a simulation of human musculoskele-
tal system. Every muscle in this system is represented by a
triangulated surface mesh which is wrapped around bones

∗cholt@students.zcu.cz
†besoft@kiv.zcu.cz

and gets deformed as these bones move. The deforma-
tion method, which is based on gradient domain deforma-
tion technique and described in [4], requires a very specific
coarse outer hull of the muscle mesh as its input in order to
speed up the deformation process. The deformation is per-
formed on the hull and projected on the muscle mesh using
barycentric coordinates that were previously constructed.
This allows the method to be more numerically stable and
faster. The coarse hull of the mesh therefore must meet
following criteria:

• Low primitive count compared to original mesh - the
hull has to be simple enough, so that later complex
computations can be performed on a limited number
of primitives. Less than 1

10 of the original primitive
count is desired

• Outer hull - all primitives of the hull must be outside
of the mesh, leaving some spacing between the mesh
and the hull. This is due to barycentric coordinates
requirements

• Shape preservation - the hull has to ”trace” the shape
of the original mesh. In other words, the spacing be-
tween the original mesh and the hull has to be consis-
tent

• Non-self-intersecting hull - edges and triangles of the
hull may not intersect the hull as this would cause
instability in deformation computation

• The hull has to be manifold and should be smooth
(depending on the muscle data), otherwise this would
cause deformation instability as well

Outline of this paper follows. Section 2 describes exam-
ples of methods used to obtain coarse outer hulls and their
disadvantages, Section 3 describes Progressive Hull algo-
rithm, which should produce hulls that meet the criteria
above, Section 4 introduces our modifications of the algo-
rithm for better results on our biomedical data, followed by
Sections 5 presenting experimental results, a hull quality
comparison and execution time measurements. Our paper
is concluded in Section 6.

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics (non-peer-reviewed)



2 State of the art

In this section we briefly describe the methods, that can be
used to obtain a coarse outer hull of a triangulated mesh.
Since we use the coarse hull in the deformation method de-
scribed in [4], here we discuss some possible approaches
to obtain a specific hull that meets all the criteria described
in Section 1. This paper does not provide an overview of
methods used in collision detection, raytracing, silhouette
clipping or another methods that use the coarse outer hull
as we did not use it for those purposes.

Bounding box, as an example of a very simple coarse
hull, does not preserve the shape of the original mesh.
Convex hull meets more of the criteria specified, but the
spacing between the mesh and the hull varies significantly,
especially if the mesh is rugged.

Better approach to the problem is to create an alpha
shape [2], which is an object created from a finite set of
vertices, in our case the mesh vertices. For the sake of
simplicity, we will describe the construction and problems
of an alpha shape in two dimensions. The method has
one tuning parameter α that defines a radius of an abstract
disc. The method finds such discs that have the property
that two of the vertices lie on their boundary and they
do not contain any other vertices. Vertices of the alpha
shape are generated at the intersection of two neighboring
discs. The situation is similar for three-dimensional space,
only one has to use spheres instead of discs and search for
intersections of three neighboring spheres. We can addi-
tionally implement a restriction that the intersection must
lie outside of the original mesh in order to achieve outer
hull. This method for finding an ”alpha hull” from a set of
points allows one to create an object, that is not necessar-
ily convex and therefore, to certain extent, resembles the
shape of the original mesh. However, this approach has
four main problems:

1. If the α parameter is too large, the resulting hull suf-
fers from the same problem as convex hull, i.e. the
spacing between the alpha hull and the mesh varies
significantly (for α → ∞ the alpha hull is equal to
convex hull; see Fig. 1a)

2. If the α parameter is too small, the hull would in-
tersect the original mesh (see Fig. 1b). Very small
α parameter also causes the hull to be divided into
number of components that can not form the hull of
the original mesh by definition.

3. Some (arguably important) details in the original
mesh may be lost in the process (Fig. 1a)

4. Even if we would be able find an optimal α param-
eter that ensures the alpha hull is a coarse outer hull
of the object, the primitive count of the hull would
be too high, approximately the same as the primitive
count of the original mesh. In general, the number of
primitives in resulting hull cannot be controlled well
enough in alpha shapes

(a) (b)

Figure 1: (a) alpha shape with too large α parameter. (b) alpha
shape with too small α parameter.

Another possible approach is to decimate the mesh and
therefore obtain a coarse mesh directly from the original
mesh. Decimated mesh maintains the shape of the mesh
by definition and has desired lower primitive count. One
can assume that enlarging the mesh by moving its vertices
outwards in the direction of their surface normal would
create a coarse outer hull.

The problem is how much we need to enlarge the dec-
imated mesh. If we enlarge the mesh too much, self-
intersections may occur (see Fig. 2 for example). How-
ever, if we do not enlarge it enough, the decimated mesh
would intersect the original mesh, as many decimation al-
gorithms are based on volume preservation.

(a) (b)

Figure 2: (a) Decimated mesh. (b) Enlarged decimated mesh
with self-intersection introduced.

Nevertheless, this approach is simple to implement and
has a sufficient shape and primitive count control, though
it may give inconsistent results. We need an algorithm
that creates an outer hull of the mesh by decimating and
enlarging it at the same time, with a better control of how
the decimation is performed.

3 Progressive hull

Progressive Hull [7] is a generalized mesh simplification
process that meets all the criteria described in Section 1.
The method is based on decimation of the mesh by a se-
quence of edge collapses, that ensures that progressively
created hull contains the whole original mesh in its inte-
rior volume.

Figure 3 shows how the edge e, surrounded by faces
{ f0, f1, ..., fm, fd1, fm+1, ..., fn, fd2} and defined by ver-
tices Ve1 and Ve2 collapses. Vertices Ve1 and Ve2 are joined

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics (non-peer-reviewed)



Figure 3: Edge collapse

by this operation to form a new vertex Vnew and affected
primitives are adjusted accordingly. Note that faces fd1
and fd2 are removed from the mesh and therefore every
collapse reduces the number of faces in the mesh by two.

In order for the sequence of such collapses to result in
a progressive hull, we need to calculate a specific position
for the vertex Vnew. Paper [7] shows that in order for the
mesh Mi (after one edge collapse) in every iteration i to
be an outer hull of the mesh Mi−1 (before the collapse),
the volume of the mesh Mi must be greater or equal to the
volume of the mesh Mi−1. This can be achieved by placing
the vertex Vnew inside the intersection of half spaces above
faces { f0, f1, ..., fm, fd1, fm+1, ..., fn, fd2} (see Fig. 4 for
simplified two-dimensional case).

Figure 4: Position of vertex V constrained to lie in intersection
of half spaces defined by planes with normals n1 and n2

The volumes of the meshes Mi−1 and Mi are computed
as a sum of the tetrahedral volumes defined by each mesh
triangle’s vertices and the origin point. Since we need the
hull to be similar to the original mesh as much as possible,
we place the vertex Vnew in a way that it causes the smallest
possible volume gain. That is a linear programming prob-
lem with an objective of mesh volume gain minimization
and constrains defined by equations of half spaces above
faces { f0, f1, ..., fm, fd1, fm+1, ..., fn, fd2}.

Every mesh edge enters a priority queue with a priority
based on the volume gain introduced by its collapse.
The lower is the change, the higher is the priority. The
algorithm follows:

1. For every edge in the mesh, compute the
volume change that would be introduced
by collapsing the edge. That requires
solving linear programming problem. Store
the solution for later use.

2. Insert the edge to a priority queue, low
mesh volume gain represents a high priority
in the queue

3. While the queue is not empty and the target
primitive count is not reached:

(a) Remove the edge from the priority
queue and collapse it

(b) Recalculate priority of every edge
that was affected by this collapse
and update their position in the
priority queue by solving the linear
programming problem again

One can see that this algorithm can be quite slow. Many
of the linear programming problem solutions are redun-
dant, as they are invalidated by a later nearby edge col-
lapse. Additionally, a time-consuming solution of the lin-
ear programming problem is required for every edge pri-
ority update.

Platis and Theoharis [6] suggested using a faster ap-
proach to priority computation. Instead of using vertex
Vnew computed by solving the linear programming prob-
lem to determine the volume of the mesh Mi after the edge
collapses, they proposed using an arithmetic average of
the vertices in the one ring area surrounding the collapsing
edge, Vavg.

The volume computed using this average scales simi-
larly to the volume originally computed using vertex Vnew,
i.e. in relatively flat area adjacent to the edge e, the volume
gain caused by imaginary collapse into the vertex Vavg is
lower than in rugged area and therefore the induced pri-
ority is higher. This approach is considerably faster than
solving the linear programming problem.

4 Modified progressive hull

Papers [7] and [6] do not mention any major problems
regarding the quality of the resulting progressive hulls.
However, our implementation of described methods per-
formed irregular hull construction, showed significant nu-
merical instability and produced low quality triangles in
the hull. This was caused by imperfections in our meshes,
presence of nearly or fully parallel triangles, local non-
manifold areas in the mesh and other problems, which
were probably not considered in [7] and [6]. Therefore, we
introduced several modifications to the algorithm in order
to resolve these issues.

4.1 Volume increase computation

The original paper [7] suggests the volume of object
formed by faces { f0, f1, ..., fm, fd1, fm+1, ..., fn, fd2} be-
fore and after a single edge collapse (see Fig. 3) to be used

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics (non-peer-reviewed)



as collapse priority. Note that faces fd1 and fd2 become
singular after the collapse and therefore their contribution
to the volume after the collapse is zero.

(a) (b)

Figure 5: Sphere decimation from 480 to 250 triangles. (a) Ir-
regular decimation (b) Regular decimation after priority compu-
tation fix

However, a priority computed from this volume gain
makes the algorithm to process the shorter edges first,
since their smaller adjacent triangles are more likely to
introduce a smaller volume change. The areas formed by
small triangles are progressively decimated into areas with
presumably a bit larger, but still small enough triangles,
forcing the algorithm to process them early again. As a
result, the decimation runs irregularly around the mesh.
Example can be seen in Figure 5a. One can see that the
area around the sphere equator remains untouched as the
caps of the sphere contain smaller areas with smaller local
volumes.

To address this issue, we use global mesh volume gain
to compute the priority. The volume gain caused by the
edge collapse is computed relatively to the volume of the
original mesh, not to the collapse area, i.e. as the sum of
volume gains caused by all previous edge collapses and
the volume gain caused by the edge collapse1. When
the area with small triangles is progressively decimated,
it grows outwards, the global volume gain increases and
the computed priority decreases. Consequently the prior-
ity gets lower than the priority in unchanged areas with
larger triangles, resulting in regularly performed decima-
tion around the whole mesh (see Fig. 5b) and limiting the
undesired variation of spacing between the hull and the
original mesh.

4.2 Algorithm stability

The mesh deformation method, which is described in [4],
uses a hull of the mesh to speed up the computation. The
vertices of the mesh are linked using barycentric coordi-
nates to the near vertices of the hull, the deformation is
then computed on the hull and the results are projected
back to the mesh, deforming it accordingly. Because of
this, the hull has to preserve the shape of the original mesh
closely. Ideally, the spacing between the hull and the mesh
is constant and the computed deformation is distributed

1The collapse of the edge for which the priority is computed

evenly to the vertices of the original mesh. Note that one
vertex of the hull represents a number of vertices of the
original mesh and therefore any artifact present on the hull
can cause the deformation projection to behave very unex-
pectedly.

When we used the original algorithm on the surface
biomedical data extracted from volumetric data, we ob-
served its high instability, artifacts resembling ”spikes”
were often present on the produced hull.

If there are two nearly parallel triangles in the edge col-
lapse area (see Figure 6a), the optimal solution to the linear
programming problem is a very distant vertex. Provided
that the collapsing edge is short, the volume gain caused
by the collapse is relatively small, the collapse priority is
high and the edge is collapsed, resulting in a ”spike” on
the surface of the hull (see Figure 6b).

As the number of iterations rises, the artifacts are more
common and accumulate. The resulting hull is then unus-
able for any later use. In order to prevent these artifacts
from developing, we added a test that disallows the edge
collapses causing them.

(a) (b)

Figure 6: Algorithm instability. (a) Cause of the problem (b)
Spikes on the hull

Our test is inspired by Platis and Theoharis [6].
They proposed using Gueziec’s [3] test of triangle de-
viation in progressive hulls to prevent creases on the
hull. They test the angle between normals of triangles
{ f0, f1, ..., fm, fm+1, ..., fn} before and after collapsing the
edge they are adjacent to (again, see Fig. 6a). However,
as these normals are often unchanged, the spikes may still
occur.

We use a slightly different method of checking the dec-
imation quality. We compute angles αn between normals
of triangles { f0, f1, ..., fm, fm+1, ..., fn} adjacent to the ver-
tex Vnew in pairs. If any angle αn is larger than the user-
specified threshold αt , we disallow the collapse, because a
large angle between the normals of the triangles implies a
small angle between the triangles. This small angle be-
tween two neighboring triangles indicates an undesired
spike on the hull. Figure 7 shows, how are the angles the
situation illustrated in Fig. 6a evaluated and since αn >αt ,
the collapse is therefore disallowed.

Since our biomedical data mainly consists of smooth
surfaces (such as bones and muscles), any local decima-

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics (non-peer-reviewed)



Figure 7: Triangle normal angle check

tion has to be relatively smooth, without any spikes. If
some spikes are already present in the original mesh and
would result in spike-like area on the hull, they are simply
skipped. Experimental results show that these artifacts in
the mesh are later ”absorbed” by the hull as the surround-
ing areas are decimated. Therefore, these artifacts do not
occur on the hull and the method becomes very stable in
the required (and usually large) number of iterations.

4.3 Vertex and triangle quality

Many decimation methods (e.g. [5, 3, 6]) perform ver-
tex valence test. Due to our better priority computation
(see Section 4.1), our algorithm creates a regular hull of
the mesh. Experimental results show that this test is not
needed and the vertex valence is balanced automatically.

The shape of the triangles is also important. Generally,
any computations are more stable if performed on compact
triangles. Platis and Theoharis [6] suggest performing a
triangle compactness test analogically to the test used by
Gueziec [3]:

c =
4
√

3a
l2
0 + l2

1 + l2
2

where a is a positive area of the triangle and l0, l1 and l2
are the lengths of its three sides. This number represents
a quality of a triangle, smaller for ”sliver” triangles that
cause numerical instability in later use. Therefore, dis-
allowing the edge collapse if the triangle compactness of
any of the faces { f0, f1, ..., fm, fm+1, ..., fn} is lower than
an user-specified threshold results in a hull, which con-
tains only sufficient quality triangles.

We use a different simple test. We check the largest in-
ner angle of each triangle (based on the largest dot product
of two of the three triangle sides’ vectors). If this angle
is larger than the user-specified value, the triangle is con-
sidered to be narrow, and therefore undesired. If such an
angle is present already in the original mesh, we check, if
it gets smaller by the planned edge collapse. If the out-
come of this test is negative, naturally, we disallow the
collapse. This method is slightly more simple to imple-
ment and does not require additional triangle area compu-
tation, while the results are sufficiently good enough. On
the other hand, if the mesh contains many narrow trian-
gles, the algorithm disallows most of the edge collapses
and desired number if primitives in the hull is not reached.

4.4 Self-intersection

Sander et al. [7] hypothesize that self-intersection preven-
tion may be unnecessary. In our tests we did not observe
any self-intersections caused by our algorithm.

Nevertheless, a self-intersection in the hull is caused by
introducing a sharp crease in the mesh. This type of self-
intersection may be introduced by possible local imper-
fections in our data. Figure 8 illustrates an example of this
situation. One can see that by adjusting the αt parameter
(see Section 4.2), we can define what constitutes a sharp
crease and therefore prevent the possible self-intersection.

This adjustment however globally affects the whole dec-
imation process. Using a very small αt parameter forces
the algorithm to limit the degree of decimation in rough
and creased mesh areas. This behavior can be desired (pre-
serving subtle details in the mesh), but results in an uneven
mesh decimation.

Figure 8: Possible introduction of hull self-intersection.

The self-intersection can also be caused by the very
shape of the original mesh, where two mesh surfaces, even
without any creases, are close together, resulting in a self-
intersection in the hull. In this case, additional set of con-
strains defined by triangles that could be intersected by the
edge collapse has to be added to the linear programming
problem, as described in paper [7]. Our algorithm does not
prevent this type of self-intersections, since our biomedi-
cal data consists mainly of convex and smooth surfaces.

5 Experiments and Results

The method described above was implemented in C++
(MS Visual Studio 2010) and integrated into the Mus-
cleWrapping application2, which is a part of LHPBuilder
software being developed within the VPHOP project [1].
The algorithm was tested on data sets included with this
software. The software uses the Multimod Application
Framework (MAF) [9], a rapid development visualiza-
tion system mainly based on Visualization Toolkit (VTK)
[8]. For our experiments, a Dell Precision 470 desktop
computer (2x Intel Xeon 3.4 GHz, 2 GB DDR2 400MHz
RAM, 2x HDD 137 GB SCSI with 10,000rpm, Windows
XP Pro) was used.

2http://graphics.zcu.cz/Projects/Muskuloskeletal-Modeling

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics (non-peer-reviewed)



5.1 Hull quality and spike prevention

In this section we visually compare the stability of our al-
gorithm to the stability of algorithms based on the Pro-
gressive Hull method described in this paper. The spike
artifacts are commonly present on the hulls created by the
original method [7] (see Figure 9a) and the method with a
fast priority computation described in Section 3 (see Fig-
ure 9b). Hulls created by our implementation of these
methods are obviously unusable for later use. Results of
the method with a triangle deviation test used by Platis et
al. [6] (see Section 4.2, Figure 9c) are slightly better, but
the spikes are still present on hull. As we prevent the form-
ing of the spikes specifically, the hull constructed by our
algorithm does not contain any (see Figure 9d) and there-
fore is safely usable for later computations.

(a) Sander et al

(b) Faster priority computation

(c) Platis et al

(d) Our method

Figure 9: Comparison of hull quality across the different Pro-
gressive Hull based methods

The tests shown in Figure 9 were performed on a
biomedical mesh of the left Piriformis (again extracted
from volumetric muscle data) that contains 15000 trian-
gles. The target mesh decimation was set to 90% (90% of
the primitives removed), the resulting hull in all four tests
contained 1496 triangles.

5.2 Triangle quality improvement

Using the method described in Section 4.3, we achieved a
reduction of narrow and sliver triangles on the hull. Visual
example can be seen in Figure (see Fig. 10). One can
observe a significant triangle shape quality increase.

(a)

(b)

Figure 10: Comparison of triangle quality (a) before triangle an-
gle check (b) after triangle angle check

To confirm this observation, we analyzed the mesh and
computed each triangle’s compactness using the formula
by Gueziec [3] described in Section 4.3. Histograms in
Figure 11 show that the most of the low compactness and
therefore low quality triangles are removed from the hull.

Figure 11: Triangle compactness histograms

In both tests, 90% target decimation was used. The Fe-
mur mesh was decimated from 13946 to 697 triangles.

5.3 Time consumption

In this section we compare the time consumption of our
implementation of the original method [7], the modi-
fied method using faster priority computation [6] and our
method. We performed tests on 3 meshes with the same
setting of 90% decimation.

The results in Table 1 show that our method is ap-
proximately nine times faster than the original method by
Sander et al. and it may be a couple of seconds slower
than the method by Platis et al. [6], however, the addi-
tional time consumption is an acceptable trade-off for high
quality hulls. Furthermore, considering that the method is
typically used in pre-processing, we came to a conclusion
that the slowdown of our algorithm in comparison with
Platis et al. [6] is insignificant.

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics (non-peer-reviewed)



Mesh Method execution time [s]
Sander et al. Platis et al. Our method

Gluteus Minimus
104,3 8,6 14,7Mesh: 79804

Hull: 7764
Femur

215,6 17,9 19,9Mesh: 139464
Hull: 13844
Left Piriformis

193,4 28,6 23,6Mesh: 150004
Hull: 14964

Table 1: Method execution time comparison

5.4 Execution time dependency on the tar-
get decimation level

Figure 12 shows the execution time of the algorithm as a
variable of a target decimation level. This test was per-
formed on high polygon mesh representation of a Pelvis
bone. The decimation level denotes how many primitives
were removed from the mesh, for example 10% decima-
tion level means that 1

10 of the original primitive count
is removed from the mesh. For this test and default set-
tings, the maximum decimation level was 99.4% (1130 tri-
angles). Note that the preparation time is constant as the
measurements were performed using the same mesh and
therefore the number of edges entering the priority queue
is constant.

Figure 12: Execution time dependency on target decimation level

In the preparation phase, the priority queue is con-
structed. Since the priority queue is implemented using
a heap data structure, the queue construction is equiva-
lent to a sorting problem and therefore the complexity of
the preparation phase is O(Cp ∗N ∗ log(N)), where N de-
notes a number of edges in the mesh and Cp denotes a time
needed to compute the priority.

The decimation itself performs edge collapse on every
edge in the queue. The number of the edges in the queue
decreases by three with every successful edge collapse.
One edge is removed for the collapse itself and two are
removed during the area reconstruction process (edges of
the triangles, that become singular by this operation, see
Section 3). The priorities of the affected edges are up-
dated after every collapse, and the heap property is re-

stored. Since we use a data structure that maintains the
neighbors of every primitive in the mesh, the edges that
need to be updated in the queue are found in constant time.
If we presume that the number of primitives in collapse
area is constant, the overall decimation phase complexity
is O(Cc ∗Cp ∗ N

3 ∗ log(N
3 )), where N denotes a number of

edges in the mesh, Cp denotes a time needed to compute
the priority and Cc denotes a time needed to collapse the
edge. Note that Cc�Cp, as collapsing the edge requires a
linear programming problem solution.

5.5 Additional hull results

In figures 13-17 we present the results of our algorithm on
several other biomedical meshes.

Figure 13: Vastus Lateralis, 199704; 19804 in the hull

Figure 14: Vastus Medialis, 199864; 19824 in the hull

Figure 15: Psoas, 99884; 9844 in the hull

Figure 16: Iliacus, 99684; 9644 in the hull

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics (non-peer-reviewed)



Figure 17: Pelvis, 1799944; 11304 in the hull

6 Conclusion and future work

The proposed method constructs coarse outer hulls that
do not contain artifacts that may appear when using the
original Progressive Hull method [7]. It also offers a bet-
ter overall quality results. Our algorithm was successfully
used in a mesh deformation technique [4] and allowed it to
be more precise, due to the fact that the Progressive Hull
shape preservation is very high and consistent.

Time consumption of the algorithm is a problem that
remains unsolved. The method, though it is nine times
faster than the original one (see Section 5.3), is still time
consuming. For many applications (including ours) this is
not a serious drawback, since the method runs only once
in the pre-processing.

The future and current work includes usage of a graph-
ics processing unit (GPU) for a faster hull construction as
well as further triangle quality enhancement using a better
triangle compactness test in order to allow the algorithm to
always perform enough iterations to create a coarse outer
hull, that contains the desired number of primitives.

7 Acknowledgment

This work was supported by the Information Society Tech-
nologies Programme of the European Commission under
the project VPHOP (FP7 ICT-223865) and by the Min-
istry of Education of The Czech Republic under the project
7E11016.

References

[1] VPHOP: The osteoporotic virtual physiological hu-
man. http://www.vphop.eu/.

[2] Herbert Edelsbrunner and Ernst P. Mücke. Three-
dimensional alpha shape. ACM Transactions on
Graphics, volume 13(1):pp 43–72, 1994.

[3] André Guéziec. Locally toleranced surface simplifi-
cation. IEEE Transactions on Visualization and Com-
puter Graphics, volume 5:pp 168–189, April 1999.
Chapter 5: Description of the Algorithm.

[4] Josef Kohout, Petr Kellnhofer, and Saulo Martelli.
Fast deformation for modelling of musculoskeletal
system. In Proceedings of the International Confer-
ence on Computer Graphics Theory and Applications:
GRAPP 2012, pages 16–25, Rome, February 2012.

[5] Peter Lindstrom and Greg Turk. Fast and Memory Ef-
ficient Polygonal Simplification. Visualization Con-
ference, IEEE, pages 279+, 1998.

[6] Nikos Platis and Theoharis Theoharis. Progressive
hulls for intersection applications. Comput. Graph.
Forum, volume 22(2):pp 107–116, 2003.

[7] Pedro V. Sander, Xianfeng Gu, Steven J. Gortler,
Hugues Hoppe, and John Snyder. Silhouette clip-
ping. In Proceedings of the 27th annual conference on
Computer graphics and interactive techniques, SIG-
GRAPH ’00, pages 328–329, New York, NY, USA,
2000. ACM Press/Addison-Wesley Publishing Co.

[8] Will Schroeder, Ken Martin, and Bill Lorensen. The
Visualization Toolkit, Third Edition. Kitware Inc., Au-
gust 2004. ISBN: 1-930934-12-2.

[9] Marco Viceconti, Luca Astolfi, Alberto Leardini, Sil-
vano Imboden, Marco Petrone, Paolo Quadrani, Ful-
via Taddei, Debora Testi, and Cinzia Zannoni. The
multimod application framework. In Proceedings of
the Information Visualisation, Eighth International
Conference, pages 15–20, Washington, DC, USA,
2004. IEEE Computer Society.

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics (non-peer-reviewed)


