
Discovering molecules: Pass planning through a gap

Mgr. Jan Byška∗

Supervised by: doc. Ing. Jiřı́ Sochor, CSc.†

Department of Computer Graphics and Design
Faculty of Informatics, Masaryk University

Brno, Czech Republic

Abstract

We present a new algorithm for a molecular pass planning
through a circle. Our algorithm can solve the given prob-
lem with the significant improvement of accuracy for ar-
bitrary shaped molecules in comparison with the method
using a minimal bounding sphere. This accuracy is gained
by eliminating the overestimation of the substrate size by
the bounding volume approaches. Our approach is partic-
ularly beneficial in cases where the bounding volume fits
poorly to the substrate geometry as is the case with oblong
shaped substrates. We are using a sampling-based version
of the motion path planning and the Delaunay triangula-
tion to arrange the substrate for the space search. The
successor configurations are then computed incrementally
from the already known configurations until we find a con-
nected path of the substrate through a circle or we can
claim that such path does not exist.

Keywords: motion path planing, Delaunay triangulation,
computational chemistry

1 Introduction

Proteins are irreplaceable parts of every life form. They
are involved in many vital processes, for instance they cat-
alyze various chemical reactions, work as antibodies or
even transfer signals between distant cells. The detailed
analysis of the complex protein structures using methods
of computational geometry can significantly help under-
standing the purpose and chemical principles of specific
protein molecules.

One of the most researched properties of the protein
molecule is the existence of a protein channel. The chan-
nel represents an empty space connecting the inner part of
the protein, called active site, with its surface. They al-
low, upon certain conditions, other molecules (substrates
or ligands) to reach the active site, where the reaction be-
tween protein amino acids and the substrate can undergo.
For biochemists, the knowledge, whether the substrate can
enter the protein or not, is important for instance in the
process of drug design.

∗xbyska@fi.muni.cz
†sochor@fi.muni.cz

As was shown by Petr Medek et al. [3], protein channels
can be represented as circular-profile shaped tunnels. The
current methods use a minimal bounding sphere (MBS) ap-
proach to compute whether a substrate can pass through
the protein channel. This method is simple because we
only need to compute the MBS enclosing all atoms of
the substrate and then compare its radius with the nar-
rowest cross-section radius of the channel. However, it
is not suitable in cases where the substrate has an oblong
or polymer-like shape. In these cases the protein channel
has to be significantly bigger to let through the overesti-
mated MBS in comparison with the real scenario, where
the oblong substrate can pass through a narrower channel.

The method could be improved by using different types
of bounding volumes. The real molecules, however, have
often very complicated structures and therefore this solu-
tion will not suffice in general cases. We decided to de-
velop a new algorithm based on the motion path planning.
Our algorithm can solve the given problem for arbitrary
shaped molecules since it is not using any bounding vol-
ume but the substrate geometry itself. It computes a path
of a set of spheres (which represent atoms of a substrate)
through a gap approximated by a circle. Moreover, the al-
gorithm can be generalized to use a cross-section of the
arbitrary shape.

As such it can be used in the process of detection
whether the ligand can pass through the protein channel.
If we make an assumption that these channels consist of
large and wide corridors connected by narrow gaps we can
then, without loss of generality, anticipate that these wide
channel segments are large enough for the substrate to pass
through in an arbitrary configuration. Hence, we can use
previous inaccurate but fast algorithms for these parts of
the channel and focus rather on the narrow holes connect-
ing them. The narrow parts of the protein channel can be,
for instance, sampled by a set of circles and our algorithm
can handle each circle individually.

The goal of this paper is to present the new algorithm
that can detect whether a given substrate can pass through
a circle. In the section 3 we briefly remind some of the
basic terms of motion planning theory. In the section 4
we focus on the detail description of the algorithm. The
evaluation of the complexity of the algorithm is presented
in the section 5 and we conclude with the section 6.

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics



2 Previous work

One of the most important task in the computational chem-
istry is called a channel detection. The approach based on
the computational geometry that uses the Voronoi diagram
and the Delaunay triangulation to compute a protein chan-
nel as a set of spheres, was described by Petr Medek et
al. [3]. The connected channel can be created from this
set by an interpolation. The problem of a substrate passing
through the protein channel can then be solved by compar-
ing the bounding sphere of the substrate with the smallest
radius of the channel.

Another method for solving this problem was presented
by Haranczyk and Sethian [1]. They sampled the high-
dimensional configuration space to find a path through a
protein.

There are generally two possible approaches to handle
the motion path planning problem. The combinatorial ap-
proach [2] or the sampling-based approach [2]. We will
describe them in detail in the next section, after the neces-
sary background is given. The motion path planning the-
ory was initially developed for the navigation of the robot
through the complex environment. In molecular chem-
istry, however, several major problems were successfully
solved by motion planning approaches, such as protein
folding or ligand docking.

The protein folding is the process when a polypeptide is
folded and connected into a final protein structure. It was
solved by the motion planning by Song and Amato [5].
The second problem – the ligand docking – refers to the
issue of a substrate inserting itself into a protein cavity
while satisfying other constraints, such as maintaining the
low energy. An algorithm using the probabilistic motion
planning to compute the most energetically favorable path
between any initial and goal ligand shape was presented
by Singh et al. [4].

3 Motion planning concept

Since the motion planning theory was initially developed
for the navigation of a robot through a complex environ-
ment, it is using terms such as a robot or a path. In this sec-
tion we briefly remind some of this basic terms and show
how to adapt them for a substrate passing through a pro-
tein channel (for more information about motion planning
see LaValle 2006 [2]).

The basic element of the motion planning theory is a
state. Each state represents a specific transformation that
can by applied to the robot and thus defines a specific po-
sition and orientation of the robot in a world space W .
In our case, the world space is three-dimensional and the
robotR ⊂ W represents the substrate moving in it. There-
fore the state representing the substrate will be actually
a six-dimensional vector ~q(xt, yt, zt, ut, vt, wt) with three
positional and three rotational coordinates.

The set of all states is called the configuration space

and it is often denoted as C. Formally, for each state holds
~q ∈ C and the configuration space of a fixed robot in three-
dimensional space creates a six-dimensional manifold.

Since C contains all possible configurations of the sub-
strate (robotR) inW it as well contains the states that rep-
resent situations in which the substrate will collide with
a channel wall. The motion planning theory divides the
configuration space into two subspaces, which are called
the obstacle space and the free space denoted as Cobs and
Cfree respectively. The obstacle space contains all states
that represent cases when the robot have a collision with
an obstacle and the free space contains the rest of them.

Formally, let the O ⊂ W be an obstacle; R ⊂ W be a
substrate and ~q ∈ C. If the substrate position in the world
space is denoted by R(~q) then the Cobs and Cfree can be
defined as:

Cobs = {~q ∈ C | R(~q) ∩ O 6= ∅} (1)
Cfree = C \ Cobs (2)

To solve the motion path planning problem it is essen-
tial to find a connected path P from a starting state ~qs
to a goal state ~qg . Furthermore, the path has to satisfy
∀~p ∈ P | ~p ∈ Cfree otherwise the solution would not
be valid (see Figure 1).

Cobs

Cfree

Cobs

Cobs

Cobs

Cobs

qs

qg

Figure 1: The connected path from ~qs to ~qg .

Generally, there are two possible approaches to solve
this problem. The combinatorial approach solves the
problem without any approximations. The basic idea is
to evaluate the whole free and obstacle space and then
find a connected path P from ~qs to ~qg that lies completely
in Cfree. Unfortunately this method has a high computa-
tional complexity and therefore is not sufficient for solving
practical problems.

Most of the current algorithms are therefore using the
sampling-based approaches. The configuration space is
sampled (usually in a deterministic way) into a finite set
of samples. The main concept of this approach is to find
only a limited set of points on the path P instead of the ex-
plicit construction of the whole configuration space. The
connected path is computed by an interpolation between
the nearby samples. On one hand, the complexity of this
method is lower but on the other hand the accuracy is lower
as well. Both factors usually depend on the number of

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics



samples – the lower number produces more errors while
the higher number increases the computational time.

4 Algorithm

In this section we present a new algorithm based on the
motion path planning that alleviates the need for a bound-
ing volume approximation of a substrate.We will first de-
scribe the algorithm background, then provide an overview
of the algorithm after which the necessary conditions for
boundary configurations and three running modes of the
algorithm will be described. The primary goal of the al-
gorithm is to detect whether a given substrate can pass
through a circle. The input of the algorithm is a set of
spheres defining the substrate geometry and the radius of
the circle through which the substrate should pass.

4.1 Algorithm Background

As shown in Figure 2, the radius of a protein channel varies
over its length. Our measurements indicate that some parts
of the channel will be wide enough for the substrate to pass
through in an arbitrary configuration R(~q). However, in
the real scenario this does not hold for the whole length of
the channel. The narrower parts of channel (gaps) create
channel bottlenecks where the substrate will collide with
the channel ”wall” (the atoms of the protein) in some con-
figurations or will not pass through them at all. This basi-
cally means that if the molecule can pass through all these
gaps it can as well pass through the whole channel.

gaps

Figure 2: Gaps in the protein channel (adapted from [3]).

Hence we can approximate the problem of substrate
passing through the whole channel to the problem of sub-
strate passing through a set of gaps. Moreover, the pro-
tein channel can be approximated as a circle-profile shaped
tunnel [3] and we can simplify the previous problem to the
problem of the substrate passing through a set of circles.

Our algorithm solves the passing problem for each cir-
cle individually. The basic idea is to find a sequence of ro-
tations and shifts that will result in the successful passing
of the given substrate through the circle, from one side to
the other. In this section, we will show that it can be done
by using the motion path planning. Note, that if there are

two or more circles close enough, we can generalize the
problem and for the second circle start in the middle of the
passage provided that we have appropriately modified the
collision detection and marked all already passed atoms.

The problem of passing substrate through the circle,
however, can be inverted to a problem of pulling the cir-
cular ring over the static substrate, from one side to the
other. Both concepts are almost identical except that the
transformations will be inverted. The second view is eas-
ier for explanation of the algorithm and therefore will be
used in this paper.

Note that R from now on will denote the new circle
robot and the obstacles set O refers to the spheres defin-
ing the substrate geometry. We can also use the fact that
the circle robot R is invariant under the rotation around
one of the axis. Hence, the state defining the circle po-
sition R(~q) in the space can be actually reduced to five-
dimensional vector ~q(xt, yt, zt, ut, vt). Obviously, the re-
duction of the state-space dimensionality leads to the sig-
nificant speedups.

4.2 Molecular Pass Planning

We will start with an overview of the algorithm and de-
scribe it in detail later. The main idea of this algorithm is
to incrementally compute the continuous path of the circle
over the substrate from already known configurations.

Pseudocode 1 Molecular pass planning algorithm.
Input: a set of spheres (connected by red and green lines),

the circle radius
Output: a connected path of the circle over the substrate

1: find the starting configurationR(~qs)
2: S ← R(~qs) {S is a stack}
3: loop
4: if S is empty then
5: exit −→ fail: the circle is to small
6: else
7: R ← S.top()
8: R.markAsUsed()
9: R.previous.successor ← R

10: ifR satisfy conditions forR(~qg) then
11: end loop −→ success: there is a path P
12: else
13: find the next possible configurations N from

R according to the mode and put each n ∈ N
onto the stack S

14: end if
15: end if
16: end loop
17: create a connected path P using .successor attributes

We have observed that: If there is a connected collision-
free path P of the circle R from one side of the substrate
O to the other we can cut the substrate at any time by the
hyperplane containing R. The cut will then produce a set

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics



of additional circles, which represent the crosscuts of the
atoms lying in the cut plane. These circles must not col-
lide with the circle R otherwise the path P would not be
collision-free (see Figure 3).

R(qi)R(qi)

Figure 3: The crosscuts of atoms lying in the hyperplane
containingR.

We utilize the fact that all atoms of the substrate have
to pass through the circle. In other words each atom has
to cross the hyperplane containing the circleR. Therefore
we can sample the path P at this moments which with the
previous observation allows us to use the sampling-based
version of the motion path planning.

To create a connected path P of the circle R over the
substrate we need to find a sufficient number of samples
and then interpolate between them. The interpolation be-
tween two configurations has to be collision-free as well.
To achieve that we need to test whether the computed path
of the circle will not collide with any atom of the substrate.

This can be done either by the continuous collision de-
tection or by using the sampling-based approach. The
continuous collision detection is very computationally de-
manding in this case because we have to compute the inter-
sections of a collapsed torus with a set of spheres. Hence,
we decided to use the sampling approach based on colli-
sion detection between the circle and a set of spheres.

Additionally, for a valid detection whether the substrate
can pass through the protein channel we need to test it for
collisions with the atoms of the protein as well.

Figure 4: Left: The substrate molecule as a set of spheres
connected by red (solid) lines. Right: The ball-and-
stick model with the Delaunay triangulation represented
by green (dashed) lines.

The approximation of the substrate as a set of spheres
is simple enough for computing all collisions during the
interpolation process. However, this model is not suitable
for the other part of the algorithm. To be able to compute

all samples efficiently we need to consider the structure of
the substrate, namely bonds between atoms. The appro-
priate data structure is based on the ball-and-stick model
with additional information stored in green lines (see Fig-
ure 4). The extra lines represent the edges of the Delaunay
triangulation computed on the atoms of the substrate and
are used for the samples computing.

Our algorithm employs the sample-based approach. As
we are only interested in the knowledge whether the sub-
strate can pass through the circle, we can use an incre-
mental sampling. In other words, we do not compute all
samples in advance but we compute the first configura-
tionR(~qs) and then compute a next possible configuration
R(~qs+1). If there are more then one successor configu-
rations we will pick one randomly and push the rest onto
the stack for further processing. The whole process is then
repeated until we reach the goal configuration R(~qg) that
represents the case when the substrate had passed through
the circle, or we end if there is no valid successor of the
previous configuration.

The algorithm is similar to a depth-first search for
traversing a tree structure. However, the algorithm does
not need the tree structure itself. The only two needed
structures are the stack S and the hash table for remem-
bering already visited configurations, to avoid cycling.

The successor configurations are computed incremen-
tally from the known configurations. The successor con-
figuration R(~qi+1) can be created from the previous con-
figuration R(~qi) by replacing one of it’s atoms. The con-
figuration can be represented either by one, two or three
atoms, see section 4.4. The conditions for the replaced
atom in R(~qi) and for the new one in R(~qi+1) are as fol-
lows:

For the atom that will be replaced, there is no limita-
tion at all. In other words we can replace any atom in
the set. From practical point of view, however, the choice
can influence whether the incrementally built path P will
lead to the successful passing of the circle over the sub-
strate. Therefore, during the search, we need to compute
the whole set of successor configurations for every atom.
Then we randomly pick one and store the remaining con-
figurations for eventual processing in the future.

The new atom has to be connected by either red or green
line with the atom which will be replaced. This condition
will assure that we will not try to make too long jumps.
The short steps are necessary because between two dis-
tant configurations we cannot easily interpolate to create a
connected path.

4.3 Boundary configurations

The motion path planning solves the problem of finding a
connected path from ~qs to ~qg . The starting configuration
R(~qs) has to satisfy two conditions. Firstly, the plane con-
taining the circle in starting configuration R(~qs) should
cut only one atom. This condition is not compulsory, its
purpose is to simplify the problem of correct orientation of

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics



the first configuration in the space. Secondly, all remain-
ing atoms of the substrate have to lie on the same side from
the plane defined by the circle.

The problem, that can occur when violating the second
condition, is illustrated in Figure 5. If we select the red
atomA as a starting point, the configuration would assume
that some atoms had already passed through the gap. To
avoid this, we reduce the set of possible starting atoms to
atoms lying on the convex hull of the substrate (see Figure
5 right).

A

Figure 5: Left: The unappropriate atom choice. Right:
The convex hull of the substrate.

However this will not solve the problem completely. We
also have to be careful about the size of the circle. Because
even though that we choose the starting atom at the con-
vex hull a problem can occurs. There can be another atom
B such that the intersection of its connection line and the
hyperplane containing the circle R will lie inside the cir-
cle R (see Figure 6). This is the case where the second
condition will be violated.

A

B

Figure 6: The problem with the convex hull.

In this case, we have to explicitly check whether all
atoms of the substrate are lying on one side of the circle
defined by the configurationR(~qs).

Similar to the starting configuration there can be more
than one end configuration. The conditions and rules that
affect the end configuration are almost the same. The dif-
ference is that all atoms have to be on the other side of the
circle than at the beginning.

4.4 Modes

The algorithm has to deal with all types of molecules.
Therefore we propose to use it in three modes, 1D, 2D and
3D, each named by a number of atoms they are using for
a configuration representation. The 4D or higher modes
are not necessary because in real scenarios there are only
rare occasions when four or more nearby atoms are lying
in one plane and if they do, the situation can be handled
by two or more subsequent 3D configurations. Algorithm
selects the current mode according to the complexity of
the substrate in the specific area. It is possible to switch
between modes by adding/removing one atom to/from the
current configuration. In one algorithmic step, it is possi-
ble to switch between 1D and 2D, or 2D and 3D modes
only.

4.4.1 1D Mode

The first mode is responsible for handling polymer-like
molecules or parts of complex molecules where atom
bonds can be represented as a polygonal chain (Figure 7).

There is always at least one starting configuration rep-
resented by a single atom (see section 4.3). Let the current
configurationR1D(~qi) be such configuration. At this point
the algorithm has two basic possibilities how to compute
the successor configuration. It can be another configura-
tion represented by one atom R1D(~qi+1) or the algorithm
can switch from the 1D mode to the 2D mode. The 2D
configuration R2D(~qi+1) is then created by adding an ad-
ditional atom into the current configurationR1D(~qi).

Pseudocode 2 The 1D mode traversing.
Input: Ci – current configurationR1D(~qi) from stack S
Output: a successor configuration Ci+1

1: A ← Ci.getAtom()
2: N ← A.getAllNeighbours()
3: for all B in N do
4: if B is a complex atom then
5: Ci+1 ← the new 2D configuration represented by

the atoms A and B
6: else
7: Ci+1 ← the new 1D configuration placed in B
8: end if
9: if Ci+1 was not used and a collision-free path from

Ci to Ci+1 exists then
10: Ci+1.previous← Ci
11: put Ci+1 onto the stack S for further processing
12: end if
13: end for

In this mode the configuration R(~qi) is represented by
one atom A. It is clear that one atom (or rather one point)
cannot define the orientation of the circle R in the three-
dimensional space. Hence, we need to define normal vec-
tor ~n of the circle R. We utilize the fact that atoms of the
substrate’s molecule are connected. This mean that every

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics



atomA has at least one neighborB and we denote this con-
nection by the red line. We call the vector −→AB a segment.
The normal vector ~n of the circle R then corresponds to
the segment originating from the atom by which the con-
figuration is represented – in this case atom A (see Fig-
ure 7).

A

B

Figure 7: The 1D mode traversing.

As shown in Figure 7, the interpolation between two 1D
configurations is a simple translation along the segment
and a rotation at the end. The rotation is necessary to orient
the circle properly before traversing to the next segment of
the polynomial curve defining the substrate.

Whether the successor configuration will be 1D or 2D
is determined by the complexity of the molecular structure
in the specific part of the substrate. More precisely, if the
current atom A has more then two neighbors or there is at
least one green line connecting A with another atom, then
our algorithm will switch to the 2D mode. In this case we
call the atom A a complex atom (see Figure 8). Other-
wise the algorithm will stay in the current mode and will
compute another 1D configuration. The switch from 1D to
2D is done simply by including one of the neighbor atoms
connected to A with red (solid) or green line (dashed).

Figure 8: Complex atoms in substrate model.

4.4.2 2D Mode

While in the 1D mode the circle moves from one config-
uration to another by translation, in the 2D mode the path
is built by rotations. The example of such rotational move

is shown in Figure 9. The algorithm proceeds from the
state ~qi that represents the position R2D(~qi) of the cir-
cle in space and searches for a configuration R2D(~qi+1).
The successor configuration in the 2D mode can be com-
puted by replacing one of the atomsA or B by a new atom
C. If the smallest circle containing the triangle 4ABC is
smaller thanR, the algorithm will switch to the 3D mode.

R2D(qi)

B

A

C C

A

B

R2D(qi+1) R2D(qi+1)

R2D(qi)

Figure 9: The 2D mode traversing.

Obviously, in 2D mode there may be more then one suc-
cessor configuration R2D(~qi+1) If such situation occurs,
the algorithm randomly selects one of the possible config-
urations and others are stored for later processing.

Pseudocode 3 The 2D mode traversing.
Input: Ci – current configurationR2D(~qi) from stack S
Output: a set of successor configurations Ci+1

1: Atoms← Ci.getAllAtoms()
2: for all A in Atoms do
3: {note that the second atom in Ci is denoted B}
4: N ← A.getAllNeighbours()
5: for all C in N do
6: if the smallest circle containing4ABC is smaller

thenR then
7: Ci+1 ← the new 3D configuration represented

by the atoms A, B and C
8: else
9: Ci+1 ← the new 2D configuration represented

by the atoms B and C
10: end if
11: if Ci+1 was not used and a collision-free path

from Ci to Ci+1 exists then
12: Ci+1.previous← Ci
13: put Ci+1 onto the stack S
14: end if
15: end for
16: end for

The 2D configuration R2D(~qi) is represented by two
atoms A and B. The center is situated in the middle of the
line connecting the atoms. To represent a circle orientation
in the three-dimensional space, we need to compute the
normal vector ~n.

Let the current configurationR2D(~qi) be defined by two
atoms A and C and the previous configurationR2D(~qi−1)

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics



be defined by atoms A and B. The normal vector ~n of
the circle R2D(~qi) can be then computed as a cross prod-
uct −→AC × ~R, where ~R is a vector of the rotation from
R2D(~qi−1) toR2D(~qi) and can be computed as−→AB×−→AC.
That gives us the equation for the normal vector:

~n =
−→AC × (

−→AB ×−→AC) (3)

Note that the orientation of this normal depends on the
order of the vectors in the equation. However, if we as-
sume that the rotation fromR2D(~qi−1) toR2D(~qi) is done
with the smallest possible angle then the correct orienta-
tion of the ~n can than be ensured by a simple rule. We
denote the half-spaces induced by the plane containing R
according to Figure 10 and let a point p be the center of
the line connecting the centers of both configurations. In
order to ensure the correct orientation of the normal ~n the
point p has to lie in a differently signed half space.

A

C

B
+

+

ni

half-space signed +,-

ni+1

p

I

I

half-space signed: -, -

half-space signed: +, +

R2D(qi)

R2D(qi+1)

Figure 10: Space divided by two configurations.

Similarly to the 1D mode, it is necessary to apply a
small position correction between each step. While in the
1D mode we needed a rotation to put the circle into the
right orientation before we could traverse the next seg-
ment, here it is a shift which solves the problem of differ-
ent emplacement of the circle centers. If we simply rotate
from R2D(~qi) to R2D(~qi+1) we would get a different cir-
cle center than we have originally computed by replacing
atom B by atom C (see Figure 11). Hence, before we rotate
or after rotation we have to shift the appropriate configu-
ration into the right position.

A

C

B

I

I

center gained
from the rotation

I

computed center

necessary shift

R2D(qi+1)

R2D(qi)

Figure 11: The position correction between each step.

4.4.3 3D Mode

The difference of the 3D mode compared to the previous
is that circle in this mode is represented by three atoms A,
B and C. This mode provides more degrees of freedom
for the rotations between configurations then the previous
ones. Additionaly, we do not need to compute the nor-
mal vector ~n. The center of the circle is defined as a cen-
ter of the smallest circle containing the triangle 4ABC.
The problem caused by center difference during the pass-
ing from R3D(~qi) to R3D(~qi+1) is the same as in the 2D
mode and it may be also solved by applying translation
before the rotation.

Pseudocode 4 The 3D mode traversing.
Input: Ci – current configurationR3D(~qi) from stack S
Output: a set of successor configurations Ci+1

1: Atoms← Ci.getAllAtoms()
2: for all A in Atoms do
3: {the remaining atoms in Ci are denoted B and C}
4: N ← A.getAllNeighbours()
5: for all D in N do
6: if the smallest circle containing4BCD is smaller

then radius ofR then
7: Ci+1 ← the new 3D configuration represented

by the atoms B, C and D
8: end if
9: if Ci+1 was not used and a collision-free path

from Ci to Ci+1 exists then
10: Ci+1.previous← Ci
11: put Ci+1 onto the stack S
12: end if
13: end for
14: end for

5 Results

The algorithm was tested nearly on the 250 real ligands
downloaded from the protein database1. The number of
atoms in ligands used for the testing varied from 5 to 168.
The starting point for each ligand was chosen by a user
to satisfy conditions described in the section 4.3. Using
binomial search we determined the smallest circle for
which the algorithm would still return positive answer on
question whether the ligand would pass through it or not.
The radius of the smallest circle was then compared with
the radius of the bounding sphere. The final results are
shown in Figure 12. According to these results we are
able to find a path through a 40% (in average) narrower
channel in comparison with the bounding sphere approach.

The number of steps needed to compute the path of a
ligand from one side of the circle to the other one is shown
in the next graph (Figure 13). Our experiments show that

1http://www.rcsb.org/pdb/home/home.do

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics



0 20 40 60 80 100 120 140

-40

-20

0

20

40

60

80

100

Number of atoms

Im
p

ro
ve

m
e

nt
in

%

Figure 12: The improvement of the channel radius in com-
parison to the bounding sphere method.

the average time complexity for the ligands used for test-
ing tends to be between O(n ln n) and O(n ln2 n) where
n denotes the number of atoms in ligand.

Algorithm results

x3

x * ln(x)

x2
x * ln(x)2

0 20 40 60 80 100 120 140
0

2000

4000

6000

8000

10000

12000

14000

Number of atoms

N
um

be
r

of
st

ep
s

Figure 13: The number of steps needed to compute the
path of the ligand through the smallest possible gap repre-
sented by a circle.

As it can be seen in Figure 12, our algorithm has some
limitations. In some cases the method provides the worse
solution than the bounding sphere method (see the points
with negative values). These cases occur due to the fact
that in our implementation the circle is using only a simple
hard-coded sequence of a translation followed by a rota-
tion. The collision detection on the molecule structure can
then, in particular cases, prevent the circle from switching
from one configuration to another even though the differ-
ent sequence of movements would allow it.

We believe that this problem can be removed entirely by
implementing a more complex system of movements. The
proposed algorithm, however, would still not be optimal
in the sense of minimizing the circle radius. The radius of
the minimal circle found by our algorithm is limited by the
distance of the connected atoms (see Figure 14).

optimal
solution

so
lu

tio
n 

fo
un

d

 b
y 

ou
r a

lg
or

ih
tm

Figure 14: The limitations of the presented algorithm.

6 Conclusion

We have described a simple and fast algorithm based on
the motion path planning that computes a path of a set
of spheres through a circular-profile shaped gap. Three
modes of the algorithm was purposed. Each of them solv-
ing part of the given problem according to the complex-
ity of the substrate in the specific area. It was shown that
the purposed algorithm has the average time complexity
somewhere between O(n ln n) and O(n ln2 n) where n
denotes the number of atoms in ligand and can find a path
through a 40% (in average) narrower channel in compari-
son with the bounding sphere approach.

Acknowledgements

I would like to thank to my colleague Mgr. Petr To-
bola, Ph.D for his original idea which is the base of my
diploma thesis and this paper.

References

[1] Maciej Haranczyk and James A. Sethian. Navigat-
ing molecular worms inside chemical labyrinths. Pro-
ceedings of National Academy of Science (PNAS),
pages 21472–21477, 2009.

[2] Steven M. LaValle. Planning Algorithms. Cambridge
University Press, 2006.

[3] Peter Medek, Petr Beneš, and Jiřı́ Sochor. Compu-
tation of tunnels in protein molecules using delaunay
triangulation. Journal of WSCG, pages 107–114.

[4] Amit P. Singh, Jean-Claude Latombe, and Douglas L.
Brutlag. A motion planning approach to flexible lig-
and binding. ISMB-99 Proceedings, pages 252–261.

[5] Guang Song and Nancy M. Amato. A motion-
planning approach to folding: from paper craft to pro-
tein folding. Robotics and Automation, IEEE Trans-
actions on, 20(1):60 – 71, feb. 2004.

Proceedings of CESCG 2012: The 16th Central European Seminar on Computer Graphics


