
Proceedings of the
15th Central European Seminar
on Computer Graphics

 May 2 - 4, 2011
 Viničné, Slovakia

Co-organized with SCCG

Institute of Computer Graphics and Algorithms
Vienna University of Technology

Faculty of Mathematics, Physics and Informatics
Comenius University Bratislava

Sponsors

 Edited by Michael Wimmer, Jiří Hladůvka, and Martin Ilčík © 2011
ISBN: 978-3-9502533-3-7

Slovak Society of
Computer Science

Impressum

Vienna University of Technology
Institute of Computer Graphics and Algorithms
Favoritenstraße 9-11/186
1040 Vienna

ISBN 978-3-9502533-3-7

Welcome to CESCG 2011!

This book contains the proceedings of the 15th Central European Seminar on
Computer Graphics, short CESCG, which continues a history of very successful
seminars. Again this year, CESCG proceedings have an ISBN (978-3-9502533-3-7)
and will therefore remain retrievable as long as there are libraries!

The long history of CESCG has started in 1997 in a medium-sized lecture room
in Bratislava, bringing together students from Bratislava, Brno, Budapest, Graz,
Prague, and Vienna. The idea found wide appraisal and the seminar moved to the
beautiful castle of Budmerice, where it was held for 8 consecutive years, constantly
growing in size and attraction. It was just in the 10th anniversary year 2006 that
CESCG had to take a detour to move to Častá-Papiernička Centre, while it was
back in Budmerice castle since 2007. Unfortunately, this year another anniversary
has to be celebrated outside of the castle in an old mill in Viničné.

Who are the CESCG heroes who made this year’s seminar happen? In no
particular order – because many people were involved equally – we would like
to thank the organizers from Vienna, especially Martin Ilč́ık for taking care of
the complete reviewing process and scientific program preparation. We are very
thankful to the CESCG organizers from Bratislava, mainly Andrej Ferko, always
an inspiration to CESCG; and Matej Novotný, Ela Šikudová, Iwka Varhańıková
(for Wienislava exhibition), David Běhal, Janka Dadová, Martin Florek, Stanislav
Stanek, Roman Ďurikovič, and Ján Lacko for the excellent preparations and on-
site organization.

The main idea of CESCG is to bring students of computer graphics together
across boundaries of universities and countries. Therefore we are proud to state
that we have achieved again a very high number of 13 participating institutions
and a very tight time schedule of 20 valuable student works and two invited talks.
We welcome groups from Bratislava (UK and STU), Slovakia; Brno and Prague
(CTU and KU), Czech Republic; Budapest, Hungary; Bonn, Germany; Graz and
Vienna, Austria; Szczecin, Poland; Warwick, United Kingdom; Maribor, Slovenia;
and Sarajevo (Univ. and SSST), Bosnia and Herzegovina.

We assembled a large International Program Committee of 16 members, allow-
ing us to have each paper reviewed by three IPC members during the informal
reviewing process. We would like to thank the members of the IPC for their con-
tribution to the reviewing process. The IPC of CESCG 2011 consists of:

Martin Šperka Radoslaw Mantiuk
Borut Žalik Jozef Pelikán
Jǐŕı Bittner Selma Rizvić
Alan Chalmers Marc Streit
Andrej Ferko László Szirmay-Kalos
Jasminka Hasić Ania Tomaszewska
Reinhard Klein Michael Wimmer
Ivana Kolingerová Pavel Zemč́ık

The first invited talk “Realistic Rendering of Natural Phenomena” will be held
by Tomoyuki Nishita from Department of Complexity Science and Engineering
of University of Tokyo, Japan. The second invited talk by Chris Wojtan from
Computer Graphics Group of Institute of Science and Technology, Austria, will
be about “Deformable Surfaces with Topology Changes for Physics-Based Ani-
mation”.

The seminar is held under the auspices of the Austrian Ambassador to Slo-
vakia, His Excellency Dr. Josef Marcus Wuketich, and is co-organized with
the Spring Conference on Computer Graphics (SCCG), which takes place before
the seminar.

The organization of a seminar where there are only low expenses for the stu-
dents requires funding. We are very thankful to the sponsors of CESCG 2011:

– OCG, the Austrian Computer Association
– VRVis, a research center for virtual reality and visualization in Vienna
– KAUST, King Abdullah University of Science and Technology
– Qualcomm, wireless telecommunications research and development company
– Brno University of Technology, Faculty of Information Technology, Department

of Computer Graphics and Multimedia
– Czech Technical University in Prague, Faculty of Electrical Engineering, Com-

puter Graphics Group
– Graz University of Technology, Institute for Computer Graphics and Vision
– Johannes Kepler University in Linz, Institute for Applied Geometry
– The Ministry of Education, of the Slovak Republic
– SISp, Slovak Society for Computer Science

Please note that the electronic version of these proceedings is also available at
http://www.cescg.org/CESCG-2011/.

April 2011, Michael Wimmer
Jǐŕı Hlad̊uvka

Martin Ilč́ık

iv

Table of Contents

Invited Talks

Realistic Rendering of Natural Phenomena . 3
Tomoyuki Nishita. University of Tokyo, Japan

Deformable Surfaces with Topology Changes for Physics-Based Animation 5
Chris Wojtan. Institute of Science and Technology, Austria

Lighting

Augmented Reality platform for enhancing integration of virtual objects 9
Mohamed El-Zayat. Faculty of Electrical Engineering, University of Sarajevo, Bosnia-Hercegovina

Modern Methods of Realistic Lighting in Real Time . 17
István Szentandrási. Brno University of Technology, Czech Republic

Bidirectional Photon Mapping . 25
Jǐŕı Vorba. Charles University, Czech Republic

Rendering

Workflow Optimization for a Graphic Artist working on large Texture Sets using Virtual Texturing 35
Michael Birsak. Vienna University of Technology, Austria

Particle-based Visualization of Large Cosmological Datasets . 43
Niko Lukač. University of Maribor, Slovenia

Order Independent Transparency with Per-Pixel Linked Lists . 51
Pál Barta and Balázs Kovács. Technical University of Budapest, Hungary

Attention & Entertainment

Saliency map augmentation with facial detection . 61
Julia Kucerova. Comenius University, Slovakia

Do-It-Yourself Eye Tracker: Impact of the Viewing Angle on the Eye Tracking Accuracy 67
Michal Kowalik. West Pomeranian University of Technology, Poland

Content Creation for a 3D Game with Maya and Unity 3D . 75
Labschütz Matthias et al. Vienna University of Technology, Austria

Human Computer Interfaces

Multiplatform framework for managing windows . 85
Michal Kevický. Comenius University, Slovakia

Multi-touch Table with Image Capturing . 91
Jakub Hušek. Czech Technical University, Czech Republic

Overview of current developments in haptic APIs . 99
Petr Kadleček. Charles University, Czech Republic

Real-time hand tracking using Flocks of Features . 107
Andrej Fogelton. Slovak University of Technology, Slovakia

Natural Phenomena & GPU

Towards Supporting Volumetric Data in FurryBall GPU Renderer . 117
Michal Benátský. Czech Technical University, Czech Republic

Sparse-Matrix-CG-Solver in CUDA . 123
Dominik Michels. University of Bonn, Germany

Physical Animation of Wetting Terrain and Erosion . 131
Matej Hudak. Comenius University, Slovakia

Fast Hydraulic and Thermal Erosion on GPU . 139
Balázs Jákó. Technical University of Budapest, Hungary

Visualization

Maximum Intensity Projection Weighted by Statistical Cues . 149
Peter Mindek. Slovak University of Technology, Slovakia

Visualizing the Effects of Logically Combined Filters . 157
Thomas Geymayer. Graz University of Technology, Austria

A Problem of Automatic Segmentation of Digital Dental Panoramic X-Ray Images for Forensic
Human Identification . 165

Robert Wanat. West Pomeranian University of Technology, Poland

Color Plates

Sponsors of CESCG 2011

vi

Invited Talks

Realistic Rendering of Natural Phenomena

Tomoyuki Nishita

University of Tokyo
Japan

Abstract

The simulation of various natural phenomena is one of the important research fields in computer
graphics. In particular, aspects such as clouds, water, smoke, and sands are indispensable for cre-
ating realistic images of natural scenes. Therefore, a lot of researchers have been trying to develop
methods for simulating and rendering these scenes. In my presentation I focus on water, granular
materials, clouds, atmospheric effects. These phenomena have the common feature that they are
consist of the effects of small particles. And the color greatly depends on the properties of light
scattering due to particles. To create realistic images, physical based simulation and rendering are
required. In particular, the color greatly depends on the properties of light scattering due to particles.
I would like to introduce efficient methods for creating realistic images of such natural phenomena.
Recently, the results of particle-based simulations have been often visualized using a large number
of metaballs. I introduce a fast technique for rendering metaballs on the GPU.

4

Deformable Surfaces with Topology Changes for Physics-Based
Animation

Chris Wojtan

Institute of Science and Technology
Austria

Abstract

Accurate computational representations of highly deformable surfaces are indispensable in the fields
of computer animation, medical simulation, computer vision, digital modeling, and computational
physics. After reviewing common representations of deformable surfaces, I will present some of my
recent contributions to the field of computer graphics.
I will first present results from an algorithm that generates highly detailed continuum mechanics
animations by combining a finite element method with a tetrahedral mesh generator and a high
resolution surface mesh. Next, I will present an efficient solution for the challenging problem of
computing topological changes between detailed surface meshes, allowing us to track surfaces in
computational fluid dynamics applications with unprecedented levels of accuracy and detail. This
surface tracking technique also opens the door for a unique coupling between surficial finite element
methods and volumetric finite difference methods, in order to simulate liquid surface tension phe-
nomena more efficiently than any previous method. Due to its dramatic increase in computational
resolution and efficiency, this method yielded the first computer simulations of a fully developed
crown splash with droplet pinch off.

6

Lighting

Augmented Reality platform for enhancing integration of virtual
objects

Mohamed El-Zayat∗

Supervised by: Selma Rizvic†

Faculty of Electrical Engineering, Sarajevo, Bosnia and Herzegovina

Abstract

With the wide spread of high end processors integrated in
mobile devices, ranging from 1GHz processors, to dual
core processors and hybrid processors (GPU and CPU on
one chip), augmented reality became more popular solu-
tion for visualization and navigation. This paper proposes
an augmented reality platform for organizing and enhanc-
ing integration of computer generated objects by introduc-
ing lights, shaders and shadows, in pursuing for better ex-
perience for the end user, emphasizing on outdoor envi-
ronments.

Keywords: Augmented Reality, Platform, Enhancing In-
tegration, Real Time sun Tracking

1 Introduction

Augmented reality (AR) is a relatively new and promising
concept. The ability of superimposing digital elements on
a physical world with means of interaction with the sur-
rounding world is quite intriguing idea, since AR introduc-
tion in 1968 by Ivan Sutherland [4]. However, the technol-
ogy by that time and for almost next 3 decades was quite
limited to lab research, since the mobility nature of AR,
and lack of capable mobile processors.

The rapid development of mobile GPUs, CPUs and re-
cently hybrid processors, leads to an increase in popular-
ity of the AR technology. Mobile devices play important
role in AR technology as they combine processor, mem-
ory, display and interaction technology into one single de-
vice [14]. There are two main trends in AR research:
registration, where researchers try to solve misalignment
and world tracking problems; and integration, where re-
searchers are directed towards the enhancement of com-
puter generated object integration with the surrounding en-
vironment. This work proposes an AR mobile platform
for enhancing integration of virtual objects in outdoor en-
vironments.

The rest of the paper is organized as follows: Section
2 gives an overview of the related work in the field; Sec-
tion 3 illustrates the proposed AR mobile platform; Sec-

∗mohamed@fit.ba
†srizvic@etf.unsa.ba

tion 4 covers registration and Section 5 covers integration,
proposing a real time sun tracking system for capturing the
current lighting conditions of the environment. In Section
6 we present the algorithm. Section 7 presents results com-
pared to other AR platforms. Finally, in Section 8 we con-
clude the paper and give some directions for future work.

2 Related Work

In recent years we have seen significant advances in two
fields of user interface research: virtual environments, in
which 3D displays and interaction devices immerse the
user in a synthesized world, and mobile computing. Pre-
vious research in mobile AR has addressed a variety of
application areas including 3D mobile AR systems for
exploring urban environments [6], enhancing registration
through making a hybrid registration for outdoor AR [1],
improving teaching with mobile AR for learning and train-
ing [11], location based AR for indoor environments [9],
enhanced computer generated objects rendering using en-
vironment illumination [7]. In pursuing better registration
of AR objects, researchers are trying to combine computer
vision with sensors for achieving more accurate results [5].
Additionally, a combined solution for illumination tech-
niques for AR objects is discussed in [8]. One commercial
platform that caught many mobile device users’ attention
is Layar AR browser [13] (Figure 1).

Figure 1: Layar Browser,the original appearance of the
Berlin wall (image courtesy of layar.com)

This paper proposes the AR mobile platform for arrang-
ing AR objects with an emphasis on enhancing the integra-

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 2: AR Mobile Platform architecture

tion of computer generated objects in the outdoor environ-
ment, by introducing lights and shaders to the augmented
objects.

3 AR platform

Making AR systems that work outdoors is a natural step
in the development of AR toward the ultimate goal of AR
displays that can operate in any environment [2]. A user,
walking outdoors, could see spatially located information
directly displayed over live camera stream, helping to nav-
igate and identify features of interest [1].

While designing the platform, the mobility and op-
timization factors were taken into consideration as de-
scribed in the upcoming sections. Figure 2 shows the over-
all architecture of the platform.

In order to achieve higher performance and decrease the
disk usage by 3D models and their associated textures, all
3D models are stored on a web server, and will be down-
loaded on the mobile device once the user is near the loca-
tion where the virtual object should be displayed.

Comparing current revision of the proposed AR plat-
form architecture (figure 2) and Layar architecture as
shown in Figure 4, more support to developers and con-
tent providers is given from Layar, in contrast with the
presented AR platform. Although the developers support
was not considered in this current revision yet, one of the
improvement ideas over Layar is saving 3D objects in re-

lational SQL database as shown in Figure 3. This gives
the opportunity to permitted organizations to run analysis
and data mining techniques using off-the-shelf software to
collect more data from users to further enhance the public
service at certain most visited areas, thus further enhanc-
ing the proposed AR platform.

3.1 Server Side

A database containing 3D models along with the associ-
ated textures, and additional lighting data for improving
the integration of the virtual object, resides on the server
side. Lighting details are covered in Section 5.

The Virtual Objects Manager (VOM)is a web service
responsible for handling authentication and requests to the
database. This component would be crucial in case this
platform is implemented for a mobile provider. In case that
authentication is not needed, VOM will add the security
layer needed to protect models database. 3D models are
stored in a relational SQL database as shown in Figure 3:

3D models are indexed using their GPS coordinates.
Geometry table contains the actual geometry data of the
3D model, stored as an array of doubles for each of Ver-
tex, Vertex Normal and Texture Coordinate. Furthermore,
the texture field holds compressed texture atlas for the ge-
ometry.

The illumination data (i.e. Artificial light) of the objects
are stored in Lighting Data table, where color and position
of the light are stored as array of doubles.

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
10

Figure 3: 3D models database

Organizing augmented objects in a relational SQL
database provides the opportunity for other mobile de-
vices/platforms that support connecting to SQL databases
to benefit from the proposed AR platform. Therefore, it is
possible to port the AR platform to wider variety of mobile
devices.

Using the server side for managing virtual objects will
relieve the users from constantly updating and download-
ing the complete application once 3D models get updated,
thus increasing the performance and saving unnecessary
storage load.

3.2 Client Side

This platform requires a mobile device that is GPS capable
along with at least accelerometer and compass. Since most
mobile device vendors are integrating these sensors as a
standard in their devices, we believe that in few years these
devices will be common among users.

Mobile devices contain two major components: regis-
tration and integration components. Registration compo-
nent is responsible for AR registration, which could be
done using a complete sensor based registration (i.e. com-
bining GPS, accelerometer and compass data as discussed
in Section 4), or hybrid one as discussed in [1]. A hybrid
registration could combine some elements of computer vi-
sion and sensor data to improve the integration of com-
puter generated objects. Therefore, the registration system
could handle unstructured and unprepared environments
[5], and in this case, the AR engine will be activated in the
augmentation pipeline.

Once the user gets to a desired location detected by
GPS, where a virtual object resides, registration compo-
nent will generate the frustum that will be handed to the
rendering engine. Rendering engine will send a request
to the communication layer to load 3D object and its as-
sociated data from the server side, thus rendering the vir-
tual object and ”clearing” the background with the cam-
era feed, hence superimposing the virtual object over the
physical world.

4 AR Registration

In order to enhance the integration of augmented objects,
improving registration is required. GPS data is required to
determine the position of the virtual object in the physical
world and the position of the user according to the posi-
tion of virtual object, hence calculating the position of the
frustum according to the physical world using equation 1:

(x2− x1)
2 +(y2− y1)

2 < r2 (1)

x1,y1 represents user position, while x2,y2 represents
the virtual object’s position. r is the range value .If the
user is in the range of the detected object, he/she will be
notified and the frustum will be generated.

In order to detect the rotation of the user, a compass will
be used for azimuth rotation direction, and the accelerom-
eter will control frustum altitude as shown in figure 5:

Figure 5: Frustum controlled by sensors

The registration is sensor based, similar to [14] and [13],
in pursuing for saving CPU/GPU cycles to enhance the
rendering of augmented objects, hence improving the in-
tegration. One of the registration types that are crucial for
displaying correct imagery in augmented reality is precise
alignment between the projected image and the features on
the display surface [16]. Therefore, the elevation of the 3D
object is determined from elevation data provided by the
GPS, in addition to the developer adjustment to that value,
because of the inaccuracy percentage of GPS in mobile
devices.

5 AR Integration

There are several factors that have to be taken into consid-
eration for outdoor rendering of augmented objects. One
of these factors is lighting, which is a crucial component
in rendering any object in a scene.

In order to improve the integration and create a realistic
scene, AR platform should track sun position in real time,
thus approximating lighting conditions of physical objects
along with their shadows. Therefore a directional light is
used to simulate sunrays.

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
11

Figure 4: Layar Architecture as presented in Layar Developer Conference 2011 (image courtesy of Layar.com)

Earth is relatively spherical celestial object that rotates
around itself eastwards every approximately 24 hours and
around the Sun approximately every 365 days. The axis
on which Earth rotates is the Polar axis. The great circles
that intersect with the Polar axis are called meridians. The
great circle equidistant from the North and South Pole is
the equator [12]. Earth rotation axis is tilted by 23.4` which
results in changing the relative position of the Sun as the
Earth moves in orbit. This change reflects on the angle of
the Sun rays according to the equatorial plane. This angle
is called declination.

Figure 6 shows the Sun position towards the Earth along
with the above described angles.

Figure 6: Sun position towards the Earth [12]

γ is the altitude of the Sun above the ground (horizon)
plane and z is the azimuth, which is the compass direction
of the Sun on the ground plane. Declination is calculated
using equation 2:

Declination = 23.4× sin(
360× (284+N)

365
)degrees (2)

Symbol Variable Definition
D Declination The angle of the Sun rays to

the equatorial plane, positive
in the summer.

L Latitude The angle from the equa-
tor to the position on Earth’s
surface

H Hour angle The angle the Earth needs to
rotate to bring the meridian
to noon. Each hour of time
is equivalent to 15 deg.

N Day number The day number, Jan-
uary1stis 1.

Table 1: Azimuth Altitude equation legend

where N is the number of the day for which the declina-
tion is being calculated, January1st being day number 1.
The Azimuth may be expressed in two ways: either as the
angle clockwise from North or as the angle East of or West
of South. Although the former is most often used, we used
the latter convention. Azimuth and altitude of the sun can
be calculated using the following equations [12]:

sinγ = (cosD× cosL× cosH)+(sinD× sinL) (3)

cosz =
(cosD× cosH× sinL)− (sinD× cosL)

cosγ
(4)

Table 5.1 shows the legend for the above equations:
The color of the Sun rays plays an important role in

displaying the time of the day, and also determines the
color temperature of objects. This problem can be ap-

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
12

Source RGB(0-255) RGB(0-1)
Sun at sunrise or sunset 182 126 91 0.71 0.49 0.36
Direct sun at noon 192 191 173 0.75 0.75 0.68
Sun through clouds/haze 189 190 192 0.74 0.75 0.75

Table 2: Sun color at different times of the day

proached by implementing atmospheric scattering algo-
rithms to change sun and atmosphere’s color depending
on the time of the day. However in order to decrease the
CPU/GPU load, and increase the frame rate, Sun color
could be determined through basic hard coded RGB val-
ues [3] as shown in table 5.2:

Using those values, the RGB numbers between the two
stages of the sun during the day could be extrapolated
based on the starting time of the simulation.

Another factor that has to be taken into consideration is
the night time, where no sun or any light source is available
except the presence of the Moon, at a certain times of the
month. In real life, the moonlight illumination is almost
unnoticeable in urban or artificially illuminated areas, thus
the moonlight factor will be neglected in this case (Figure
7).

Figure 7: Logarithmic scale of light intensity (image cour-
tesy of Canadian conversation institute)

In order to compensate the loss of Sun light, Rendering
Engine component queries for artificial light that is asso-
ciated with the desired model from database on the server
side. The artificial light data contain position, light type,
and the diffuse components. At the early dawn or late sun-
set, where Sun’s illumination is not strong enough to illu-
minate the augmented object, the directional light is turned
off, and the queried artificial lights are activated.

One possible way to speed up lighting calculations is
by performing the light map, which is especially useful
when used in conjunction with multi-texturing. Addition-
ally, texture baking could be used as an alternative tech-
nique for increasing the frame rate [10].

6 Algorithm

In previous sections, registration, organization and inte-
gration techniques used in this AR platform were dis-
cussed. This section discusses the pseudo flow of events
that are triggered in the AR platform, starting with user
authentication and ending by augmenting the 3D model
on the user’s screen.

1. Authenticate user.

2. Get all GPS coordinates from server.
3. For every x period of seconds, check if user is at a

close distance from a target area.
4. If user is close to a target, get permission to down-

load the 3D object from user.
5. Create frustum based on the gravity vector extracted

from the accelerometer and get rotation angle from com-
pass.

6. Start calculating light position.
6.1 If it is day:
6.1.1 Create directional light resembling sun light.
6.1.2 Rotate light in .. axis for degrees.
6.1.3 Rotate light in .. axis for degrees.
6.1.4 Set directional light diffuse RGB values based on

sun diffuse RGB lookup table.
6.2 If it is night:
6.2.1 Get artificial light data from server.
6.2.2 Create artificial lights based on their types.
7. Augment 3D object on the video stream.
When working with mobile devices, it is important

to optimize mobile - server communication frequency.
Therefore, after user authentication, all GPS coordinates
are queried and stored in a list on the client side of the AR
platform as shown in line 1. Thus it is not necessary to
connect to the server unless the user permitted the client
to download the target object as in line 4, or when it is
night time and the client downloaded the artificial light
data from the database as in line 6.2.1.

For every user-defined period of seconds, the applica-
tion checks if the user is in the radius of the target location
(i.e. line 3). When user confirmed to download the 3D ob-
ject, the rest of the calculations are carried on the mobile
device to minimize the communication frequency with the
server.

Sun rotations around x and y axis are calculated using
formulas 3 and 4.The altitude and azimuth of the frus-
tum are derived from the accelerometer and compass data.
Finally after all calculations are done, the object is ren-
dered on mobile device’s screen, and the frustum is up-
dated based on the GPS, accelerometer and compass data.

7 Results

Figure 8: Layar Augmented 3D object at noon (image
courtesy of Layar.com)

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
13

Figure 9: Default OpenGL Light (i.e. OpenGL lights not
enabled)

Figure 10: Direct Sun at noon (image courtesy of La-
yar.com)

By the time of writing this paper, tests have been run-
ning under iPhone emulator, and since computers video
cards can handle OpenGLES2.0 with almost no frame rate
loss, as a result, frame rate data will be neglected for the
time being. Current models are using per-vertex illumina-
tion, and the shaders component of this platform is still un-
der development. As a consequence, directional light and
spotlight with insignificant diffuse values for smoothing
shadows have been added. However, the loss of per-pixel
illumination does not highly affect the outcome; an image
displaying the color temperature of the models at different
times of the day is shown in Figure 8 compared with Layar
render for the augmented 3D zeppelin model:

Initially, comparing Figure 8 with Figure 9, that Layar
AR Platform did not include any lights for illuminating its
3D objects. Nevertheless we could see a dramatic change
even on per-vertex lighting when comparing 10 and 11
renders. It is worth noting that comparing Figure 10 and
11 carefully, the latter has lighting temperature close to
the camera feed and almost has the same sunray direction.
Color temperature of objects during noon could have a bit
of yellow tint to it, as shown in Figure 10 on the build-
ing bellow the zeppelin and the test zeppelin render (Fig-
ure 11). Figure 12 shows the zeppelin model under sunset
lighting condition, while for the cloudy or hazy weather
as showed in 14 light color tends to be white. We believe
that, completing the shader component we will gain bet-
ter results. After several tests, one could disagree with the

Figure 11: Test render direct sun at noon

Figure 12: Sunset

approach proposed by Birn for using same values for sun-
rise and sunset [3]. The reason is that during sunrise (i.e.
dawn), objects’ color temperature tends to be cold, thus
has blue tint to it as shown in Figure 13. Therefore, one
could suggest adding an additional RGB value for sunrise.
We suggest that these values would be (0.50 0.49 0.60) for
R, G and B, assuming that RGB values goes from 0 to 1.

8 Conclusions and Future Work

In this paper a solution for AR organization and integra-
tion problems, in a context of generic AR platform is pre-
sented. This solution deals with two major topics: integra-
tion where virtual objects are illuminated according to the
time of the day, by tracking sun position in real time, thus
estimating the correct color temperature and shadows; and
organization where all objects are organized in a relational
SQL database along with its illumination data on remote
server. 3D objects are downloaded upon a query from the
client side (i.e. mobile device), hence superimposing the
downloaded object after light calculations are finished.

The presented platform is still under development,
though several features could be implemented, such as cal-
culating length of shadows, compensating for rainy, snowy
or cloudy weather, where most of the objects tend to have
no shadows since light distortion is very high and the ob-
ject is illuminated almost from all sides. Implementing
several lighting techniques, such as light mapping or tex-
ture baking could assist in increasing the frame rate.

Expanding database to include the ability to subscribe to

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
14

Figure 13: Sun at Dawn

Figure 14: Cloudy/Hazy weather

the web server could encourage developers and/or clients
to upload their own content. Furthermore, database could
be expanded to contain other types of multimedia, such as
audio, that could be associated to a certain 3D model.

Other improvements to this AR platform would include
giving the ability to developers and content providers to
add to and enhance the platform. Current calculations for
predicting Sun position still lack a very important param-
eter, which describes the accurate position of the user on
Earth. Therefore Sun position would be calculated with a
higher precision.

Another important factor that could affect the experi-
ence of the users is the quality of the camera in their mo-
bile device. Since modern mobile devices are equipped
with autofocus and/or have automatic exposure correction,
one possibly would notice the difference of color temper-
atures and light intensity between the augmented object
and the physical world. This platform could not fully en-
hance the integration if augmented objects exist in urban
areas, as when the augmented object’s position has special
geological properties, or it is surrounded by other higher
objects that cast shadows on it.

References

[1] A hybrid registration method for outdoor aug-
mented reality. In Proceedings of the IEEE and
ACM International Symposium on Augmented Re-
ality (ISAR’01), pages 67–, Washington, DC, USA,
2001. IEEE Computer Society.

[2] Ronald T. Azuma. The challenge of making aug-
mented reality work outdoors. In In Mixed Reality:
Merging Real and Virtual, pages 379–390. Springer-
Verlag, 1999.

[3] J. Birn. Digital Lighting & Rendering. New Riders,
2006.

[4] S. Cawood and M. Fiala. Augmented Reality: A
Practical guide. The Pragmatic Programmers. 2007.

[5] Lin Chai, William A. Hoff, William A. Hoff (corre-
sponding, and Tyrone Vincent. 3-d motion and struc-
ture estimation using inertial sensors and computer
vision for augmented reality. Presence, 11:474–492,
2000.

[6] Steven Feiner, Blair MacIntyre, Tobias Hllerer,
and Anthony Webster. A touring machine:
Prototyping 3d mobile augmented reality sys-
tems for exploring the urban environment. Per-
sonal and Ubiquitous Computing, 1:208–217, 1997.
10.1007/BF01682023.

[7] Masayuki Kanbara and Naokazu Yokoya. Real-time
estimation of light source environment for photore-
alistic augmented reality. In Proceedings of the Pat-
tern Recognition, 17th International Conference on
(ICPR’04) Volume 2 - Volume 02, ICPR ’04, pages
911–914, Washington, DC, USA, 2004. IEEE Com-
puter Society.

[8] Saulo A. Pessoa, Eduardo L. Apolinario, Guilherme
de S. Moura, Joao Paulo S. do M. Lima, Marcio A. S.
Bueno, Veronica Teichrieb, and Judith Kelner. Illu-
mination techniques for photorealistic rendering in
augmented reality. In SVR2008, 2008.

[9] Gerhard Reitmayr and Dieter Schmalstieg. Loca-
tion based applications for mobile augmented reality,
2003.

[10] P. Ridout. iPhone 3D Programming. O-REILLY,
2010.

[11] Reiner Wichert. A mobile augmented reality
environment for collaborative learning and train-
ing. In Margaret Driscoll and Thomas C. Reeves,
editors, Proceedings of World Conference on E-
Learning in Corporate, Government, Healthcare,
and Higher Education 2002, pages 2386–2389,
Montreal, Canada, 2002. AACE.

[12] M. Wilkinson. Building Enironment 1. University of
Bath.

[13] www.layar.com.

[14] Suya You, Ulrich Neumann, and Ronald Azuma.
Orientation tracking for outdoor augmented reality
registration. IEEE Computer Graphics and Applica-
tions, 19:36–42, 1999.

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
15

16

Modern Methods of Realistic Lighting in Real Time

István Szentandrási
Supervised by: Adam Herout

Faculty of Information Technology
Brno University of Technology

Brno / Czech Republic

Abstract

Physically plausible illumination in real-time is often
achieved using approximations. Recent methods approxi-
mate global illumination in the screen space by exploiting
the capabilities of modern graphics cards. Two of these
techniques, screen-space ambient occlusion and screen-
space directional occlusion, are described in this work.
Screen-space directional occlusion is a generalized version
of screen-space ambient occlusion. It supports one indirect
bounce of diffuse light and depends on the direction of in-
coming light. The main goal of this project is to further
experiment with these methods and improve them. For
a uniform distribution of the sampling points, the Halton
sequence is used. In order to reduce the noise, geometry-
aware bilateral filtering is presented. Methods are further
sped up by computing them in a lower resolution, and they
are restored to full resolution using joint bilateral upsam-
pling in order to create the final image.

Keywords: global illumination, ambient occlusion,
screen-space ambient occlusion, screen-space directional
occlusion, halton sequence, bilateral filtering

1 Introduction

Computing global illumination in real-time has been and
still is a major challenge in computer graphics. Due to the
complexity of light transport and some material properties,
real-time frame rates can only be achieved at the cost of
trade-offs and rough approximations. Perceptually among
the most important optical phenomena belong soft shad-
ows and indirect lighting. There have been many attempts
to simulate either of these in real time. A handful of these
attempts are based on ambient occlusion (AO) [13], which
is very popular in the film industry as well as in games.
The main advantage of these techniques lies in their speed
and simple implementation.

As in every approximation, ambient occlusion has some
limitations, too. The basic method [13] displays darkening
of cavities; however, it does not take into account the di-
rection and intensity of light coming from light sources or
environmental maps. A better method has been introduced
by Ritschell et al. [11] called screen-space directional oc-

clusion (SSDO). SSDO provides more realistic illumina-
tion: it accounts for the direction of the incoming light
and supports a single indirect bounce of light.

The aim of this work is to experiment with these meth-
ods and improve them. The improvements are mostly fo-
cused around speeding up the methods. This work is struc-
tured as follows. In Section 2 we describe the present
state of methods used in the area. Then Section 3 we
will present screen-space ambient occlusion (SSAO) and
SSDO.

Section 4 presents possible modifications and optimiza-
tions to the SSDO method: speed optimizations, an alter-
native method for uniform distribution of sampling points
using Halton sequence and using a variable number of
sampling points for each pixel based on local scene com-
plexity. Section 5 summarizes the achieved results.

2 Related Work

Ray tracing and radiosity have always been the two ba-
sic approaches to approximate physically correct lighting.
However, both methods require massive computations. In
the case of radiosity, it solves a system of equations. In the
case of ray tracing, the major slowing factors are the num-
ber of object-ray intersections and visibility tests. There
are many techniques to accelerate these methods, such as
final gathering, irradiance caching, sparse sampling, ad-
vanced space division structures, etc. Even with the re-
cent growth in processor speeds and the introduction of
GPGPU solutions, these methods are still too slow for in-
teractive applications. Rendering on GPU remains the su-
perior solution for real-time rendering. It still has a major
lead, especially for dynamic scenes. This barrier caused
the development of alternative methods which did not try
to simulate physically correct lighting. They just aim to
give perceptually convincing approximations.

Since the introduction of ambient occlusion [2][13], it
has been widely adopted both in gaming and the film in-
dustry. Ambient occlusion computes the visibility of the
hemisphere at each point of the scene. The method is often
calculated by casting rays in every direction over the hemi-
sphere using Monte Carlo sampling. The calculated factor
is used to modulate ambient lighting, just as the name sug-
gests. [4]

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)

Casting rays in every point still requires too much com-
puting power, so a few alternative methods were intro-
duced. These methods compute AO less accurately in or-
der to achieve higher frame-rates. Instead of computing
occlusion over surfaces in 3D, these methods usually ap-
proximate AO in the screen space [12][8][1][5]. SSAO is
very popular due to its simplicity and speed. It does not
require any additional data and can be applied as a post-
process to the scene.

Ambient occlusion is just a rough approximation of gen-
eral light transport. It does not take into account any di-
rectional information or other more expensive illumination
effects (interreflections, caustics, subsurface scattering). A
different family of techniques, the precomputed radiance
transfer (PRT) [4], does support the aforementioned fea-
tures. On the other hand, PRT algorithms typically assume
static scenes, distant lights or environment maps.

Screen-space directional occlusion (SSDO) [11] tries to
combine the speed and simplicity of SSAO methods with
directional information of lighting and near field indirect
color bleeding.

In order to avoid some limitations of screen space am-
bient occlusion, a hybrid method was introduced by Rein-
bothe et al. [10]. This method works in 3D space by
voxelization of the scene, calculating occlusion based on
this information and finally using bilateral filtering in the
screen space to smooth the shadows.

A completely different approach was taken by Ka-
planyan et al. [6]. They approximate indirect illumination
in fully dynamic scenes using cascaded light propagation
volumes. This method supports single bounce illumina-
tion with occlusion, but it can be extended to support mul-
tiple bounces and to handle participating media.

These techniques show that in order to generate visually
convincing images, no physically precise computations are
needed. Simple approximations using soft shadows, am-
bient occlusion, and optionally, a single bounce of indirect
light can give out acceptable results even in real-time.

3 Real-Time Global Illumination
Techniques

There are many techniques to approximate global illumi-
nation in real time. We focused on methods that can be
computed in a postprocessing step so as to improve over-
all quality of the rendered images.

3.1 Screen-Space Ambient Occlusion

Screen-space ambient occlusion (SSAO) is a coarse ap-
proximation of ambient occlusion that works in the screen
space in order to achieve real-time frame rates. The idea
behind SSAO is to reuse the z-buffer data, which was al-
ready computed during the rendering of the scene. This
approach is based on sampling the surrounding pixels
combined with simple depth comparisons. Based on these

results, an average visibility value can be computed. This
visibility property is used as a darkening factor for cavities
and corners in the scene. This way SSAO can be computed
in one pass as a post-process over the image.

z-buffernormal

camera

sampling
directions

original point

occluders

surface

hemisphere

Figure 1: SSAO principle. An area around the pixel is
sampled in 2D (bottom image). Based on the normal, sam-
pling points are generated inside the hemisphere (top im-
age). The generated depths for each sampling point are
compared to the depth of the appropriate pixel to deter-
mine if the pixel corresponds to an occluder object (yellow
(light) and red (dark) points. Based on the results of the
depth comparisons, the pixel’s intensity will be darkened
(on the image to half, since half of the sampling points are
below scene surface).

Additional information can be used to achieve more pre-
cision and hence better looking results. The normals for
each pixel could be a good choice. Without taking the
normal into account and just randomly generating points
in a close proximity of the pixel may cause darkening of
unwanted parts of the scene, such as planes that are al-
most parallel with the view direction. Using the normal
of the pixel sampling directions outside the hemisphere
can be filtered out (Figure 1). However, random sampling
may cause problems in the image which have to be sorted
out. So as to avoid artifacts, the distribution of the gen-
erated random samples over the hemisphere is needed to
be as uniform as possible. Also, the noise caused by non-
uniform sampling should be smoothed.

Usually in SSAO methods, the problem of generating

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
18

samples randomly with a uniform distribution is solved by
precomputing a few uniformly distributed random direc-
tions in a sphere. Variation to the sampling points is added
using random normals to reflect the directions. These new
directions are then optionally reversed to be in the hemi-
sphere around the normal of the pixel. In this project
we used the Halton sequences with appropriately chosen
bases.

Computing ambient occlusion from simple depth values
has some drawbacks, too. First the precision of SSAO is
highly dependent on the size of the scene. The bigger the
scene, the coarser the object shape approximation. This
can lead to unwanted effects, like darkening the whole sil-
houette of an object.

The second problem is caused by the limited area that is
sampled for occluders. Let us consider two objects close to
each other in the scene in 3D. Using a classical ambient oc-
clusion method, such as using ray tracing, the two objects
are darkened. However, using SSAO the distance between
the projected positions of the objects might be larger then
the sampled area. As a consequence SSAO will not detect
any occluders and the objects will not be darkened.

3.2 Screen-Space Directional Occlusion

SSDO is a fast approximation of global illumination. It
works in the screen space, takes into account the direc-
tion of the light, and is able to handle one indirect bounce
of diffuse light [11]. In order to compute light transport,
SSDO uses the 3D positions and normals of each pixel in
the screen space as input. The output is created in two
passes. In the first pass, the direct illumination is com-
puted. In the second pass, the indirect bounce of light is
computed using the data from the previous pass.

3.2.1 Direct Illumination Using Directional Occlusion

While standard SSAO methods use only the positions and
normals of each pixel, SSDO also takes into account the
direction of the incoming light. The amount of directional
light is computed as follows for each point P and normal
N:

Ldir(P) =
1
π

∫

Ω

ρ
π

Lin(ω)V (ω)(N ·ω)dω, (1)

where ρ
π is the diffuse BRDF, Lin is the incoming radiance

from direction ω in the hemisphere Ω and V is the visi-
bility test. When using Monte Carlo sampling the integral
is replaced by a sum of K samples each covering a solid
angle of ∆ω = 2π/K:

Ldir(P) =
K

∑
i=1

ρ
π

Lin(ωi)V (ωi)(N ·ωi)∆ω. (2)

This method assumes that Lin can be efficiently computed
from environment maps or point lights. Similar to SSAO,
so as to avoid ray-tracing, the occluders are approximated
in the screen space. The difference is that while in SSAO

the samples are generated in 2D in image space, SSDO
uses sample points generated in the hemisphere in 3D us-
ing the normal and the 3D position of the pixel. The sam-
ple points are then backprojected into the image space in
order to determine if within the given direction is an oc-
cluder or not. This way SSDO does not suffer from the
problem mentioned in SSAO, that is: objects further away
in the screen-space, but closer in 3D in the scene may
cause occlusion.

The sampling of the hemisphere is done in the follow-
ing way: for every generated direction ωi and a random
step ri ∈ [0 .. rmax], the position of the sampling points is
computed as P+ riωi. The generated points are located in
the hemisphere with a center of P and oriented around the
normal N. The depth of the backprojected sampling points
is compared with the values from the original z-buffer. If
the depth value from the original z-buffer is smaller than
the depth of the sampling point, the sampling point is be-
low the surface. The light from this direction is blocked
by an occluder. Otherwise, the light has a clear path from
this direction and the incoming radiance can be computed.

B

C

rMax

Camera

Not in the
hemisphere,

discard for bounce

occluder

environment
map or light

source
computation

A
Dbounce

no bounce

A,B,C,D pseudo-randomly
generated points

C,B - light comes from this
direction

A - occluder, but no bounce
D - occluder, bounce

C - no bounce

normal

original
point

Figure 2: SSDO principle. Random samples are gener-
ated in 3D in the hemisphere. Samples under the surface
are classified as occluders. Otherwise, the incoming radi-
ance can be computed from the direction defined by the
sampling point. The sampling points classified as occlud-
ers are projected on the surface. Based on the color and
position of the pixels on the surface, indirect bounces are
computed.

The method is demonstrated in Figure 2 for four sam-
pling points A, B, C, D (red dots). The sampling points
are generated randomly with a uniform distribution over
the hemisphere with a random step from the original point
and then backprojected onto the image. Now that the im-
age space coordinates are known, the 3D coordinates can
be computed or read from a frame buffer (green, orange
and black dots). These points are again projected into the
image in order to get the distance from the camera. If the
sampling point is further than the appropriate point on a
surface in the scene, the sampling point is classified as an

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
19

occluder (A and D points). Otherwise, the illumination
can be computed from the direction defined by the point
and the origin (B and C points). The direction is shown by
the yellow line.

3.2.2 Indirect Bounce

Since the 3D position and normal are available for each
sampling point projected to the surface, they can be used to
get one indirect bounce of light from the given directions.
In the original paper, only the points on the surface pro-
jected from sampling points classified as occluders were
taken into account (A and D points). For each of these
pixels the computed directional light intensity and the cor-
responding pixel color from the direct illumination pass is
used as the base for indirect light. In order to calculate the
indirect radiance sent to the origin, these pixels are treated
as small patches oriented around the normal. Using the
sender normal, back facing patches can be filtered out (for
example, for sampling point A).

The equation for the additional incoming indirect radi-
ance for a point P:

Lind(P) =
1
π

∫

Ω

ρ
π

Ldir(Pω)(1−V (ω)) ·
As(N ·ω)(Nω · (−ω))

|P−Pω |2
dω, (3)

where Pω and Nω are the point and normal from point
and normal buffer, each corresponding to a sampling point
taken from the hemisphere in direction ω . As is the area
associated with the sender patch. This equation respects
the mutual orientation of the surfaces based on the normals
((N ·ω)(Nω ·(−ω))) and that the intensity of the incoming
radiance decreases quadratically with the distance of the
surfaces.

The modified version of the equations for K samples is
then:

Lind(P) =
K

∑
i=1

ρ
π

Li(1−V (ωi))
As(N ·ωi)(Ni · (−ωi))

|P−Pi|2
∆ω,

(4)
For the initial value for As, the base circle is subdivided
into K regions, each covering As = πr2

max/K. This value
can also be used as a parameter to control the strength of
the color bleeding manually.

In the example above (Figure 2), points A and D are
the only occluders. After projecting these points onto the
surface from the cameras viewpoint, the information about
the normal, position and color are also available. The pro-
jected point for A has a back facing normal, so it will not
contribute to the final bounce. The patch for sampling
point D, on the other hand, will qualify as a sender of in-
direct light towards point P.

4 Modifications and Implementation
Notes

The aim of this project is to experiment with the meth-
ods described in the previous chapter and to potentially
improve them. We will next describe three modifications
and improvements we experimented with and which are
potentially beneficial.

4.1 SSDO for Directional and Point Lights

When SSDO is computed for scenes with directional and
point lights, several modifications are possible. Comput-
ing the pixels intensity in real implementations based on
the equation (2), due to the random or pseudo-random
sampling of the directions in the hemisphere, causes noise
even on plain surfaces with no occluders nearby. So as to
avoid this, SSDO can be computed as follows: when ren-
dering the scene before computing SSDO to get the ma-
terial, normal, depth information, the overall intensity of
the pixels can be computed using the appropriate light-
ing model. The overall intensity should be equal to the
value computed using equation (1) without the visibility
function. When computing direct illumination (first step)
in SSDO, instead of computing the intensity for the pix-
els, a modulation factor can be computed for each pixel.
This modulation factor is the ratio of the intensity com-
puted with the visibility function and without it using
equation (2). The modulation factor can be used to darken
the diffuse and/or the ambient component of the overall
intensity when creating the final image. The modulation
factor can either be per channel or a single value based
on scene and lighting properties. When there are multiple
lights in the scene with radically different colors, a dark-
ening factor for each color channel is best. However, for
most scenes a single modulation factor is sufficient, since
the lights are usually white or the distance between them is
large enough, so they have only a minor effect on objects
close to other lights. A single modulation factor also helps
to reduce memory usage.

This modulation factor can be further processed. In or-
der to reduce noise, smoothing can be used. A simple
Gaussian blur is not enough in this case. The usage of
geometric information is necessary to prevent bleeding of
values over edges and between distant pixels in 3D, but
close in 2D. A geometry-aware filtering, like a modified
bilateral filtering on the base of normals and depth value,
is suitable. Firstly, this method was used by Reinbothe et
al. [10]. So as to approximate the results of a full bilat-
eral filtering, they separated the calculations into a vertical
and horizontal pass. A combination of the results of these
two one-dimensional filters improves the frame rates sig-
nificantly and still provides an acceptable quality.

Since this modulation factor is actually a generalized
version of the darkening factor computed with ambient oc-
clusion, it changes, similar to the ambient occlusion fac-

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
20

(a) No filtering, 10 sampling
points - 74FPS

(b) 2x subsampling (3x3 upsam-
pling kernel, 20 sampling points
per pixel and 11x11 bilateral filter-
ing - 78 FPS

Figure 3: Comparison of non-filtered and smoothed re-
sults. Regions with the yellow border are shown in more
detail on the right side of the images.

tor, slowly over spatial space on surfaces. This permits
one to compute it in lower resolutions. As a consequence
the method could be sped up radically; on the other side,
the result should be upsampled correctly. For this joint
bilateral upsampling [7] can be used with the same mod-
ifications as for smoothing to honor geometry properties
(Figure 3).

More speed improvement can be achieved by merging
the two steps of SSDO together. This means that the
source color for the bounces is taken from the scene ren-
dered without SSDO darkening (the same image, that is
later darkened by SSDO). The modulation factor and indi-
rect bounces are stored and filtered separately. In order to
avoid pixels being too bright in darkened corners, the indi-
rect bounces should also be darkened using the modulation
factor.

4.2 Sampling and the Halton Sequence

In both SSAO and SSDO, Monte Carlo sampling is used to
approximate the correct solutions. Absolute random dis-
tribution of samples in Monte Carlo methods can cause
problems; one of the worst of these is clumping (when for
small number of random numbers, the variance between
the values is low). So as to decrease the effect of clumping
in samples, quasi-Monte Carlo methods eliminate the ran-
domness completely. Samples are deterministically com-
puted to achieve a stochastic distribution as close to the
uniform distribution as possible.

In order to describe how much the point distribution of a
given method derivates from an ideal solution, a measure
called discrepancy is used. Quasi-Monte Carlo methods
try to minimize this discrepancy. There are several low-
discrepancy sequences that are used for generating sam-
pling points: Hammersley, Halton, Sobol, Niederreiter,
etc. [4]

The Halton sequence generation is based on the radical

inverse function applied to an integer i. This integer can
be expressed in a base b with terms a j:

i =
∞

∑
j=0

a j(i)b j. (5)

The radical inverse function is computed by reflecting the
resulting digit sequence around the decimal point:

Φb(i) =
∞

∑
j=0

a j(i)b− j−1. (6)

For generating multi-dimensional low-discrepancy se-
quences, a different radical-inverse sequence is used in
each dimension. The ith point in the sequence is given
as:

xi = (Φb1(i),Φb2(i), . . . ,Φbd (i)), (7)

where the bases b j are relatively prime and d is the dimen-
sion of the sequence.

An intuitive explanation of the uniformness of the Hal-
ton sequence is as follows. Let us consider the gen-
erated floating point numbers as digit sequences in the
given base expressed as strings. Before generating strings
of length m + 1, all the strings of length m are pro-
duced. This means that before generating a new point
on an interval, all intervals of size b− m will be vis-
ited first. This fact also suggests some kind of peri-
odicity in similarity of the generated values. For ex-
ample, let us consider a Halton sequence with base 2:
Φ2(50) = 0.296875,Φ2(50 + 16) = 0.2578125,Φ2(50 +
32) = 0.2890625,Φ2(50+64) = 0.3046875. This period-
icity can be expressed [3]:

∣∣(Φb(i)−Φb(i+mNg)
∣∣< 1

bk ;Ng = lbk, l > 0,k ≥ 0, (8)

where l, m, k are integers, and Ng is the period to generate
similar sampling points. For multidimensional Halton se-
quences, the least common multiple of the periods for each
dimension is used as Ng. This property is demonstrated in
Figure 4.

This periodicity can be exploited to control the number
of sampling points and still have a quasi uniform distribu-
tion. For example, with a period 10, 10 samples can be
used for pixels where the low number of sampling points
does not matter. For pixels, where more sampling points
are needed to get a smoother result, 20,30, ...,k ·10;k ∈ N
sampling points can be used (see Section 4.3). Another
possibility for future improvements may be, for example,
in the case of occlusion detection to filter out directions,
where an occluder was already found.

4.3 Preprocessing

In SSDO, the same amount of sampling points is gener-
ated for every pixel. Setting this amount higher means
better results, but it will cause a performance drop. Gen-
erating more samples for planes which do not have any

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
21

Figure 4: Projected view of the hemisphere - Halton se-
quences with bases 2, 5 and period 10. Each pixel is col-
ored based on the index in the sequence and the period.
Every 10th pixel has the same color.

occluders nearby is a waste of computing power. The solu-
tion would be to generate more sampling points for pixels
which are potentially occluded and less for pixels where
the probability of finding an occluder is low. The number
of occluders is usually higher at parts of the image where
the normals or the depth values differ significantly. So as
to get areas where the higher number of sampling points
should be generated, a preprocessing step could be added
to SSDO calculations. In this preprocessing step, a weight
is calculated to define the number of sampling points to be
used. Areas where the changes in normal and depth values
are bigger are given a higher weight. Planes, on the other
hand, will have much smaller weight since the normals are
constant for pixels on the same plane.

Figure 5: Preprocessed images with different sizes of fil-
tered images. The darker regions represent higher number
of sampling points. The blue color just shows the com-
puted SSDO darkening factor.

In order to calculate this weight, a simple filtering using
the normal and depth values can be used to get the gradient
magnitude. This value can be used to determine the num-
ber of sampling points. So as to get wider areas around
discontinuities and in order to speed up the filtering, it can
be computed in much lower resolutions. Optionally com-
bining results from different resolutions should give more

precise results of areas where SSDO values may change
more. Using just one resolution is not the best solution.
A more advanced method was used by Nichols et al. [9]
to get locations where higher resolution was required for
computing image space radiosity.

5 Results

With both methods (SSAO and SSDO) we were able to
produce realistic images in real-time (Figure 7). The re-
sults of the achieved frame rates are summarized in Ta-
ble 1. The methods were tested on three scenes with reso-
lution 1024x768 (Figure 6). These numbers are just exem-
plary. The speed of these methods depends also to a great
extent on the resolution, graphics hardware, as well as the
degree of required smoothing.

SSAO was naturally the fastest. The additional compu-
tation and texture reads to get bounces for SSDO makes
it 25% slower with the same number of sampling points.
However, to get good results for SSDO with a larger hemi-
sphere radius, many sampling directions are needed. From
the measured frame-rates it is clear that the limiting factor
for SSDO computation is the speed of the fragment shader
and the number of texture lookups per pixel. These are the
areas that should be more optimized in the future.

Due to the fact that SSDO is computed in the screen
space, a few problems arise. The lack of complete knowl-
edge of 3D causes occluders not visible from the camera’s
point of view to be discarded, hence making the results
highly view-dependent. For more complex scenes even a
small change in camera position may reveal parts of the
scene previously hidden and cause new shadows and indi-
rect bounces. The authors of the original paper suggested
using depth peeling for partly solving this problem. Stor-
ing multiple depth values for each point in multiple passes
gives more information on the scene structure; however,
it makes the speed of the technique dependent on scene
complexity. It also further slows down occlusion computa-
tions by forcing it to read values from multiple buffers and
calculating the depth test for each. Alternatively, the au-
thors also suggest using multiple viewpoints. This in the-
ory could give better results than depth peeling, but correct
positioning of the cameras may vary based on the scene
type.

A comparison of SSAO and SSDO can be seen in Fig-
ure 8. The difference in the two techniques can be eas-
ily observed on the darkening factor around the tail of the
dragon. While SSAO darkens only the silhouette, the tail
in SSDO darkens the wall close to it in 3D. The next differ-
ence is when the light position is changed. While SSAO
remains static with moving light, the shadows caused by
occlusion in SSDO move a little in the opposite direction.
This nice feature of SSDO with the addition of the bounce
gives us much more believable results than SSAO.

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
22

(a) Pyramids (b) Cornell box (c) Dragon

Figure 6: Scenes rendered using SSDO with variable number of sampling points based on preprocessing (20, 30, 40 or
50), 2x subsampling, 11x11 kernel for bilateral smoothing and 3x3 upsampling filter. (Dragon model is from the The
Stanford 3D Scanning Repository)

(a) SSDO 2 step (b) SSDO 10 points (c) SSDO with preprocessing and
subsampling

(d) SSAO

Figure 7: SSDO 2 step – separate step for computing direct and indirect illumination; SSDO 10 points – SSDO computed
in one step using modulation factor; SSDO with preprocessing and subsampling – SSDO computed in one step with 2x
subsampling, 3x3 kernel for upsampling and variable number of sampling points per pixel based on a preprocessing step
(20, 30, 40 or 50 samples). For all methods 11x11 smoothing kernel was used. Regions with the green border are shown
in more detail on the left side of the images.

[FPS] Number of Pyramids Cornell box Dragon
sampling points (15804 faces) (30 faces) (201037 faces)

SSAO no subsampling 10 72 77 72
SSDO 2 steps 10 42 37 33

SSDO no subsampling 10 51 46 42
SSAO 20 115 127 113
SSDO 20 90.5 83 74
SSDO 50 67 55 49

SSDO with preprocessing 20-50 74 67 60

Table 1: Frame rates for each scene and method with 11x11 kernel for bilateral smoothing and 3x3 kernel for upsampling,
if not specified otherwise. In the second column are the number of sampling points used per pixel. For the ’SSDO with
preprocessing’ row variable number of sampling points (20, 30, 40 or 50) was used based on a preprocessing step. For
the rest of the rows constant number of sampling points was used. The ’SSDO 2 steps’ row represents the original two-
step algorithm with a separate step for computing direct and indirect illumination. For the other SSDO rows indirect
illumination and modulation factor was computed in one pass. For testing an ATI RadeonTM HD 4850 GPU was used.

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
23

Figure 8: On the left SSAO; on the right SSDO with dif-
ferent light positions for the rows. The light is placed in
front of the dragon, closer to the left wall in the top row of
images and behind the dragon, closer to the right wall for
the bottom row images.

6 Conclusions

Screen-space ambient occlusion is a very fast approxima-
tion of ambient occlusion, but it has some limitations.
Screen-space directional occlusion includes two general-
izations that add directional occlusion and diffuse indirect
bounces. Both extensions improve realism considerably
for a minor computational cost.

In this paper, a few experiments were made to the
screen-space directional occlusion. Sample point genera-
tion based on the Halton sequence is an easy way to get
uniform distribution of the sampling points. The peri-
odic properties of the Halton sequence can also be used
to potentially further optimize the method. This was ex-
ploited to generate a variable amount of sampling points,
but still have a pseudo-uniform distribution. So as to re-
duce noise, a modified version of bilateral filtering was
used, which took into account the geometry information
as well to avoid color bleeding over edges and between
objects. The SSAO and SSDO methods were computed in
lower resolutions to speed up the method. For upsampling
to the original resolution, joint bilateral upsampling was
used to honor geometry properties.

In the future, more experiments can be made to SSAO
and SSDO accompanied with more comprehensive test-
ing based on the controllable features of each method. In
order to get a clearer picture where these methods stand
performance-wise, a few other methods could be explored,
too.

References

[1] Louis Bavoil, Miguel Sainz, and Rouslan Dimitrov.
Image-space horizon-based ambient occlusion. In
ACM SIGGRAPH 2008 talks, SIGGRAPH ’08, page
22:1, New York, NY, USA, 2008. ACM.

[2] Robert L. Cook and Kenneth E. Torrance. A re-
flectance model for computer graphics. SIGGRAPH
Comput. Graph., 15:307–316, August 1981.

[3] Kirill Dmitriev, Stefan Brabec, Karol Myszkowski,
and Hans-Peter Seidel. Interactive global illumina-
tion using selective photon tracing. In Proceedings
of the 13th Eurographics workshop on Rendering,
EGRW ’02, pages 25–36, Aire-la-Ville, Switzerland,
Switzerland, 2002. Eurographics Association.

[4] P. Dutré, K. Bala, and P. Bekaert. Advanced global
illumination. Ak Peters Series. AK Peters, 2006.

[5] Dominic Filion and Rob McNaughton. Effects &
techniques. In ACM SIGGRAPH 2008 classes, SIG-
GRAPH ’08, pages 133–164, New York, NY, USA,
2008. ACM.

[6] Anton Kaplanyan and Carsten Dachsbacher. Cas-
caded light propagation volumes for real-time indi-
rect illumination. In Proceedings of the 2010 ACM
SIGGRAPH symposium on Interactive 3D Graphics
and Games, I3D ’10, pages 99–107, New York, NY,
USA, 2010. ACM.

[7] Johannes Kopf, Michael F. Cohen, Dani Lischinski,
and Matt Uyttendaele. Joint bilateral upsampling.
In ACM SIGGRAPH 2007 papers, SIGGRAPH ’07,
New York, NY, USA, 2007. ACM.

[8] Martin Mittring. Finding next gen: Cryengine 2.
In ACM SIGGRAPH 2007 courses, SIGGRAPH ’07,
pages 97–121, New York, NY, USA, 2007. ACM.

[9] G. Nichols, J. Shopf, and C. Wyman. Hierarchical
image-space radiosity for interactive global illumi-
nation. page 11411149, 2009.

[10] C. Reinbothe, T. Boubekeur, and M. Alexa. Hybrid
ambient occlusion. EUROGRAPHICS 2009 Areas
Papers, 2009.

[11] Tobias Ritschel, Thorsten Grosch, and Hans-Peter
Seidel. Approximating dynamic global illumination
in image space. In Proceedings of the 2009 sympo-
sium on Interactive 3D graphics and games, I3D ’09,
pages 75–82, New York, NY, USA, 2009. ACM.

[12] Perumaal Shanmugam and Okan Arikan. Hardware
accelerated ambient occlusion techniques on gpus. In
Proceedings of the 2007 symposium on Interactive
3D graphics and games, I3D ’07, pages 73–80, New
York, NY, USA, 2007. ACM.

[13] S. Zhukov, A. Inoes, and G. Kronin. An ambient
light illumination model. In proceedings of the Eu-
rographics Workshop in Vienna, Austria, Rendering
Techniques ’98, pages 45–56, Springer, 1998.

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
24

Bidirectional Photon Mapping

Jiřı́ Vorba
Supervised by: Jaroslav Křivánek

Charles University, Prague

Abstract

This paper introduces a method for optimal combination of
light paths generated from the camera and from the light
sources in the photon mapping algorithm used for comput-
ing global illumination. Our method is based on Multiple
Importance Sampling, a general approach, introduced by
Veach, for adaptive path connection in bi-directional path-
tracing. Our goal is to examine this method in connec-
tion with the biased algorithm of photon mapping and to
improve the ineffective final gather heuristic used in the
original version of this algorithm. This heuristic is usu-
ally problematic when applied to the scenes where highly
glossy materials prevail.

1 Introduction

Bi-directional methods for computing global illumination
generate light paths both from light sources and from cam-
era and afterwards they connect them together. A prov-
ably good strategy for connecting light paths introduced by
Veach [1] is known for bi-directional path tracing (BDPT)
[2]. However, the algorithm is not put to use that often in
practice because of the slow convergence of some parts of
the light transport.

On the other hand, for popular bi-directional method
like photon mapping [3] the optimal strategy for path con-
nection is not known. The consequence is poor image
quality in scenes containing many glossy materials. There
are two reasons why objectionable artifacts usually occur
when using photon mapping on glossy objects. First, radi-
ance estimate on highly glossy materials suffers from high
variance. Second, distribution rays cast during final gath-
ering will usually hit the scene too close to each other be-
cause of the narrow BRDF peak. This results in highly cor-
related radiance estimates and the desired error averaging
of rough information in the photon map is not achieved.
Both of these issues result in the objectionable artifacts es-
pecially visible in the corners and on glossy surfaces.

The contribution of our paper consists in formulating
the algorithm of bi-directional photon mapping (BDPM)
capable of handling various scenes with prevailing highly
glossy materials without exhibiting the aforementioned ar-
tifacts. We do not attempt to address the former issue by
increasing the number of photons. Such approaches are
described for instance in [4, 5]. Instead, we deal with

the latter by replacing the final gather heuristic by a more
principled approach. The original photon mapping per-
forms the radiance estimate from the photon map only at
the end of the final gather rays and differ between ”global”
and ”caustic” photon map while we use a combination of
various path connection strategies corresponding to a pho-
ton map estimate performed at different vertices of the full
camera path. Our approach is inspired by Veach’s multiple
importance sampling technique [1] for adaptive light path
connection used in bi-directional path-tracing.

Figure 1 shows an example of two different strategies
used for computing the light transport of length three
and the result of their combination by BDPM. Image 1a)
demonstrates the high variance of radiance estimate on
glossy surfaces while the image 1b) shows how this vari-
ance exhibits itself as a grainy noise when one level of dis-
tribution ray-tracing is used to render diffuse surfaces. Im-
age 1c) demonstrates the superior image quality produced
by our bidirectional photon mapping.

The BDPM algorithm is essentially the combination of
path-tracing algorithm which follows the light paths from
camera and with photon mapping algorithm which trace
light paths from light sources. The photon map query is
performed in every vertex along the path from the cam-
era. To avoid computing the same light transport multiple
times weighting functions summing to unity are used with
each photon-camera path pair. This is analogous to the
approach taken in BDPT [1, 2].

In the following section we review the Photon Mapping
algorithm. To be able to combine various strategies for
computing the same light transport we need to treat each
connection of a single photon with a path from the camera
as a single path. The weighted contribution to the image
pixel is computed along that path. To be able to do that,
section 2.1 gives a formulation of photon mapping consis-
tent with Veach’s path integration framework [1, chapter
4.A]. This formalism allows us not to think about the pho-
ton mapping in terms of radiance estimate but rather in
terms of individual paths which can be sampled from var-
ious strategies. Based on this fact we derive the formula
describing the BDPM algorithm in section 3. Section 4
gives an overview of the algorithm and specifies some de-
tails about computing path weights. Finally, in section 5
we present our results.

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)

a) PM, no final gather b) PM, final gather c) BDPM (our method)

Figure 1: All images show rendering of the same scene and the same light transport of length exactly 3. The scene consists
of diffuse walls and two highly glossy objects. The image to the left was rendered without final gather while the image in
the middle uses final gather everywhere. Note how each strategy works well for different parts of illumination. The image
to the right demonstrates combination of both strategies by our bidirectional photon mapping method.

2 Background: Photon Mapping

The original photon mapping algorithm [3] consists of two
passes. In the first pass, little quanta of energy called pho-
tons are emitted from the light sources and traced through
the scene. When the photon hits a surface we store the in-
formation about the hit into a data structure called photon
map. At the end of the first pass the information stored in
the photon map approximates the overall global illumina-
tion of the scene.

In the second pass we cast camera rays into the scene
through the image plane to compute the pixel values and
whenever the ray hits the surface we can either compute
the reflected radiance by means of distribution ray-tracing,
i.e. estimating the integral over the hemisphere by casting
secondary rays, or we can exploit the information in the
photon map and estimate the outgoing radiance value. Ac-
cording to the formula

L(x,ωo)≈
1

πr2

N

∑
p=1

fr(x,ωo,ωp)Φp(x,ωp) (1)

where we estimate the outgoing radiance from x in the di-
rection ωo, the radiance estimate procedure can be inter-
preted as expanding the sphere around the point x until we
catch N photons within the disk of radius r [3]. Each pho-
ton coming from the direction ωp found within the disk
contributes by its energy Φp multiplied by the BRDF fr
evaluated right at point x. This interpolation step intro-
duces bias into the image which exhibits itself as a low-
frequency noise observed as blurriness in the image.

2.1 PM in Terms of Particle Tracing

We describe our bidirectional photon mapping algorithm
within the framework introduced by Veach [1]. This al-
lows us not to think in terms of an aggregate radiance es-
timate but rather in terms of contributions of individual

paths sampled from various strategies. Under these con-
ditions we are able to apply multiple importance sampling
for weighting the contribution of various paths. In this sec-
tion we relate the radiance estimate procedure described
by Jensen to the particle tracing characterization described
by Veach.

In [1, chapter 4.A] Veach describes particle tracing as a
method which generates a set of N sample particle paths
ρp with their corresponding weights denoted as αp. From
now on to avoid any confusion we will rather use a term
photon instead of particle. Sample paths are constructed
by following a random walk of a photon through the scene.
Their corresponding weights are computed by multiplying
the initial energy of a photon in each bounce by the ap-
propriate BRDF value and cosine term and divided by the
probability of sampling a new direction and probability of
terminating the particle path.

In general each path ρ has its own importance We(ρ)
for the measurement which the photon is used for. Us-
ing Monte Carlo estimation general measurement can be
expressed as a weighted sum over sample paths

I = E

[
1
N

N

∑
p=1

We(ρp)αp

]
. (2)

We implement this measurement as a radiance func-
tion value estimation. To estimate L(x,ωo) we define
We(x,ωp) := fr(x,ωo,ωp). ωp denotes the direction of the
incident photon in point x:

L(x,ωo) = E

[
1
N

N

∑
p=1

fr(x,ωo,ωp)αp

]
. (3)

In this formulation, photons which end their path out of
the point x will yield no contribution.

Last step towards the photon mapping within Veach’s
formulation is using the biased estimator in form of den-

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
26

sity estimation method [6] instead of the unbiased one. In-
troducing the kernel

κ(d) =

{
0 if d > r

1
πr2 if d ≤ r,

(4)

where r is the radius, the formula for the radiance estima-
tion now reads

L(x,ωo)≈ E

[
N

∑
p=1

κ(‖x− xp‖) fr(x,ωo,ωp)αp

]
. (5)

The point xp represents the last vertex on the photon path
ρp (i.e. the photon position) with corresponding weight
αp. This equation suggests that only those photon paths
which end within the support of kernel κ will contribute to
the radiance estimate.

Of course, we ended basically with the same formula
as we have already stated in (1). The purpose of this sec-
tion was to put the radiance estimate into the context of
Veach’s light transport framework that servers as basis for
our BDPM formulation.

3 BDPM formulation

Veach in his dissertation presented the path integral for-
mulation which is the measurement equation describing
the whole light transport in the form of one non-recursive
equation where the computation is concentrated around a
geometric primitive - the path [1]. In this framework he
derived Bi-Directional Path Tracing originally introduced
by Lafortune [2], an unbiased algorithm in which he com-
bines paths from light sources and paths from the camera.
After connecting one path from the camera to one path
from the light source, the contribution of the resulting path
is weighted so that no light transport is taken into account
more than once. Each strategy, defined by the length of the
light and camera paths, is better at computing some parts
of the whole light transport while being worse at comput-
ing the other. Nevertheless, each of them converges to the
correct result. Their combination just exploits their respec-
tive advantages and makes the overall light transport com-
putation faster and more robust.

In Photon Mapping we can interpret the radiance esti-
mate procedure as connection of one path from camera to
N paths from the light source as opposed to BDPT where
paths are connected in a one-to-one manner. To be able to
apply Multiple Importance Sampling we need to separate
these N paths which share the same camera prefix and then
weight each path alone.

In the following section we show the derivation of
the formula which describes the BDPM algorithm itself.
Overview of the algorithm is given in section 4.

3.1 Derivation

We aim to combine the path-tracing algorithm with the
photon mapping. To describe path-tracing we use a stan-

dard Monte Carlo quadrature which describes the mea-
surement of discrete pixel value I j of pixel j

I j = E

[
1
M

M

∑
l=1

TlLe(x,ωo)

]
(6)

where Tl is a throughput of the whole camera path ρ∗l and
is computed by multiplying the initial importance value of
that path in every bounce by appropriate BRDF and cosine
term and divided by the probability of sampling the new
direction and by the probability of terminating the path.
Point x is the last vertex on the camera path ρ∗l and ωo
is the direction pointing towards the direction from which
the last segment was sampled. Le is the source radiance
function. Note the obvious duality to the particle tracing
described in previous section.

Let M = 1 so that we have the following one-sample
estimator

I j = E [T Le(x,ωo)] (7)

and let us consider the scenario where we have only pho-
tons which bounced along the paths ρp of the same length
s segments and its corresponding weights are αs

p. From the
camera point of view we will take into account only one
path from camera ρ∗ of t segments with its throughput T t .

Under these conditions we can perform connection of
light sub-paths by replacing Le in the equation (7) by equa-
tion (5) so that we compute only the pixel value In

j due to
the light transport of length n = s+ t

In
j ≈ E

[
T t

N

∑
p=1

κ(‖x− xp‖) fr(x,ωo,ωp)αs
p

]
. (8)

We cannot write the equal sign because using the radiance
estimate introduces bias into the pixel value estimation.
The equation describes the process of tracing the path of
fixed length from the camera and then querying the photon
map in point x. In the photon map query only those pho-
tons are taken into account which traveled along the path
of fixed length. End points x and xp as well as the direc-
tions ωo and ωp depend on the sampled sub-paths and for
simplicity will be omitted in the following formulas. By
simple multiplication we get the biased estimator for In

j

In
j ≈ E

[
N

∑
p=1

κT t frαs
p

]
. (9)

In this formula we put the term T t inside the sum to em-
phasize that the formula treats all N paths in the estimator
as N separate light paths sharing the same camera sub-
path.

Next we will introduce the following notation

Xs,t := ρs
pρ∗t (10)

to depict the path consisting of s segments from light
source and t segments from camera.

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
27

Now we can apply Veach’s multiple importance sam-
pling technique (MIS) to combine more estimators in form
of (9) so that we account for contributions of paths with
various length of sub-paths from camera and from light
source. Our multi-sample estimator looks as follows:

In
j ≈ E

[
n

∑
i=1

N

∑
p=1

w(Xn−i,i)κT i frαn−i
p

]
, (11)

where w(Xn−i,i) is MIS weight function for path of length
n and index i runs through n various strategies where i
means the number of segments on the path from camera
before it is connected with paths from light.

Knowing how to weight the path contributions we can
rearrange the quadrature so that we can use the N-nearest
neighbour query into the photon map after tracing the path
from camera:

In
j ≈ E

[
n

∑
i=1

T i

(
N

∑
p=1

κw(Xn−i,i) frαn−i
p

)]
. (12)

The expression in the round brackets is the radiance esti-
mate restricted to fixed photon path length and enriched
by MIS weight function which takes into account even the
sub-path traced from camera.

It was necessary to fix the sub-paths length to show how
to weight the individual path samples. If we consider the
fact that

I j =
∞

∑
i=1

Ii
j (13)

and that the sub-path length both from camera and from
light are random variables which in the implementation are
determined by using Russian Roulette then we can remove
the restriction of equal photon path length in the radiance
estimate and simplify the formula to

I j ≈ E

[
T

(
N

∑
p=1

κw(Xs(p),t) frαp

)]
. (14)

Using Russian Roulette for controlling sub-path lengths
gives non-zero probability of sampling the light path of
any finite length.

In the next section we give an overview of the algorithm
which is essentially the evaluation of the formula (14) and
we describe how to deal with evaluating the MIS weight
function w.

4 Overview

Our algorithm is very similar to the original photon map-
ping (PM). It consists of two passes. In the first pass we
collect photon histories in one photon map (i.e. unlike in
PM, there is no special “caustic” photon map and “global”
photon map) with additional information about probabil-
ities of sampling photon paths. In the second pass the
distribution ray-tracing and the final gather heuristic, as it

was described by Jensen [3], is replaced by standard path-
tracing. The special radiance estimate procedure involving
weighting each photon contribution is performed gradu-
ally at every vertex of the path traced from camera.

The described algorithm is based on the formula (14)
and in this section we especially focus on evaluating the
weight function w. In next two sub-sections we describe
how to compute probabilities needed for evaluating w.
Evaluation itself is then described in sub-section 4.3.

4.1 First Pass

We start shooting and tracing the photons as in original PM
including usage of Russian Roulette. The only difference
is that we need to store probabilities of generated photon
paths which are used during the second pass for computing
the MIS weights.

Let y0, . . . ,ys denote vertices of a photon path ρ and let
y0 be a point on a light source. Then we define probability
pL

k of sampling the path y0, . . . ,yk for 0 < k ≤ s as

pL
1 = pA(y0) · pD(y0→ y1)

pL
i = pL

i−1 · p(yi−1,yi−1→ yi); ∀i 2 < i≤ k

where pA(z) is the probability of sampling a point z on the
light source, pD(ω) describes the directional properties of
the light source and finally p(z,ω) is the probability of
sampling the direction ω from the point z.

We store the probability pL
k with each photon hit record

in the point yk. Another information that we need to retain
for the second pass is the track of photon bounces within
single photon path. For example for a given point yi we
need to be able to backtrack the probabilities pL

i−1 . . . pL
1 to

evaluate the path weight during the second pass.

4.2 Second Pass

The backbone of the second pass is the path-tracing algo-
rithm. We incrementally construct the path ρ∗ from cam-
era using Russian Roulette for controlling the path length.
In every vertex we perform a special radiance estimate as
described by formula (14) in the round brackets. To be
able to evaluate the weight function w we need to deter-
mine the probability of sampling the current camera path.

Let us suppose that we have already constructed the path
x0, . . . ,xk and updated the throughput T of that path. Then
we need to compute the probability pE

k of sampling the
path for 0 < k ≤ t as follows:

pE
1 = pA(x0) · pD(x0→ x1)

pE
i = pE

i−1 · p(xi−1,xi−1→ xi); ∀i 2 < i≤ k.

Similarly as in the case of light source pA and pD depends
on the type of camera. Usually when using pinhole camera
we set pE

1 = 1. The p(z,ω) is the probability of sampling
the direction ω from the point z.

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
28

proc secondPass(j) ≡
I j := 0;
while (ray := generateRay(j)) do Ray through the pixel j

T :=W j
e (ray); source importance of the ray

pE
1 := 1; 1 for case of pinhole camera

k := 0;
while ¬absorption(xk) do apply RR

k := k+1; prolong the path
xk := intersect(ray);
pE = array(pE

1 , . . . , pE
k);

comment: compute pixel contribution
comment: R is weighted radiance estimate procedure
I j := I j +T ·R(radius,k, pE);
comment: Generate new ray with probability ”pdf”
ray := sampleBRDF(xk,var pd f);
pd f := pd f ∗RRpd f ; includeRRprobability
comment: update throughput and compute path probability
T = T ∗BRDF(xk)∗ cosθ/pd f ;
pE

k+1 = pE
k ∗ pd f ;

od
od

end

Figure 2: Pseudo-code for the second pass of our bi-
directional photon mapping algorithm. Procedure com-
putes the value I j of pixel j.

After updating the throughput T and determining the
probability pE

k we can perform the special weighted radi-
ance estimate according to formula (14) and add the con-
tribution to overall pixel value I j.

If the camera path is not terminated due to application
of Russian Roulette we extend the path about new vertex
xk+1 by tracing the ray from the point xk and we apply
the same procedure as for the vertex point xk. We prolong
the path in the same manner until the absorbtion of path
occurs. The pseudo-code for the second pass is shown in
Figure 2.

4.3 MIS Weighted Radiance Estimate

The procedure for estimating the radiance from the photon
map is basically the same as in the classical photon map-
ping algorithm. The biggest difference is that each photon
contribution is multiplied by MIS weight dependent both
on the given photon sub-path and on the current camera
sub-path. In the rest of this section we describe how the
MIS weight is computed.

During the algorithm we take path samples from various
strategies. The probability of sampling some path x from
the strategy where we connected camera sub-path with t
segments to photon sub-path with s segments is

Ps,t(x) = pE
t pL

s , (15)

where pE
t is probability of sampling first t segments of path

x from camera and pL
s is probability of sampling the rest s

segments from a light source.
For sampling the paths of length n we use n− 1 strate-

gies in our implementation since for now we neglect two

Figure 3: This figure clarifies the extended notation of a
sampled path used for defining the sub-path probabilities.
The red circle depicts the kernel centered in the point xt .

corner cases where there is no segment on a camera sub-
path or no segment on a light sub-path (see section 6). Us-
ing balance heuristic for MIS [1] every strategy has its cor-
responding weight function

ws,t(x) =
Ps,t(x)

∑n
i=1 Pn−i,i(x)

. (16)

For the path Xs,t we simplify the notation to

w(Xs,t) = ws,t(Xs,t) (17)

so that we are consistent with section 3.
In previous section we described how to compute sub-

path probabilities pE
1 , . . . , pE

t and pL
1 , . . . , pL

s . To be able
to evaluate MIS function w obviously we need to evaluate
pE

t+1, . . . , pE
n−1 and pL

s+1, . . . , pL
n−1.

Let assume that we have sampled one path

Xs,t = x0, . . . ,xt ,ys, . . . ,y0

as it was denoted in the preceding text. The camera sub-
path starts at x0 and we currently perform the radiance es-
timate in its end point xt . Photon sub-path starts at y0 and
ends at ys where it was found within the support of the
kernel κ . We introduce the redundant notation

x0 = y
′
n, . . . ,xt−1 = y

′
s+1,xt = y

′
s,

ys = x
′
t ,ys−1 = x

′
t+1 . . . ,y0 = x

′
n

so it is possible to easily express how to compute the rest of
sub-path probabilities. This notation is clarified in Figure
3.

Then we take special care about probabilities

pL
s+1 = pL

s · p(xt ,ys−1→ ys,y
′
s→ y

′
s+1)

pE
t+1 = pE

t · p(xt ,xt−1→ xt ,x
′
t → x

′
t+1)

where we compute the probability in point xt in both cases.
The reason is that the radiance estimate is performed in
point xt and thus the BRDF fr is evaluated at xt for the
given photon. Note that in the limit case when there was
infinite number of photons the points xt and xs would
merge into one point.

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
29

Other sub-path probabilities

pL
s+i = pL

s+i−1 · p(y
′
s+i−1,y

′
s+i−2→ y

′
s+i−1→ y

′
s+i)

for i ∈ 〈2, t〉
pE

t+i = pE
t+i−1 · p(x

′
t+i−1,x

′
t+i−2→ x

′
t+i−1→ x

′
t+i)

for i ∈ 〈2,s〉

can be computed all in the same manner. They can be
even pre-computed and stored in a cache during tracing the
camera sub-path and tracing photons respectively because
the outgoing and incoming directions are known at that
time.

To evaluate MIS weight we need to compute all
∑n

i=1 Pn−i,i(Xs,t). It is easy to evaluate Ps,t(Xs,t) for the cur-
rent path because from given photon history and camera
path-tracing we immediately get pL

s and pE
t respectively.

The rest sub-path probabilities can be evaluated starting
from these ones.

In this stage we know everything to evaluate the weight
for a given single path according to formulas (16) and (15)
and thus to evaluate the weighted radiance estimate. With
this knowledge we can compute the contribution to the
pixel value I j according to formula (14) as it is described
in pseudo code in figure 2.

5 Results

We provide renderings of a challenging scene in terms of
the number of glossy surfaces and light settings. All test
images were rendered on a 1.6GHz Intel Core i7 Q720
using 4 physical cores but 8 logical cores. We ran one
thread per logical core.

Figure 5 shows a model of a kitchen where almost every
material is glossy. A number of spot lights are used as the
only source of the light in the scene. They are all placed on
the opposite site of the kitchen behind the camera and all
light reaching the shot went through at least one indirect
bounce, so there is no direct lighting in the particular shot.
To make the conditions even more difficult there are few
bottles made of frosted glass placed on the counter. In all
images we restricted the path length to a maximum of 7
segments.

These renderings demonstrate the robustness of the
BDPM which is its main advantage over the state-of-the-
art. PM with final gather will always sample paths only
from the one and only strategy and thus it can always be
given some scene (as in our case) on which it will perform
very poorly.

The image 5a) shows result of path-tracing using
131 072 samples per pixel. Even though it is still noisy
it can serve as the reference image to judge which reflec-
tions in the images 5b) and 5c) are correct and which are
artifacts.

The image 5b) was rendered by standard photon map-
ping with final gather heuristic. We used one level of dis-
tribution ray-tracing (final gather) casting 128 secondary

rays and 32 samples per pixel. This means performing
128×32 = 4096 radiance estimates per pixel.

To get comparable results we used 512 samples per
pixel for rendering the image 5c) which was rendered by
BDPM so we would perform 512×7 = 3584 radiance es-
timates and thus took approximately the same number of
measurements in both 5a) and 5b) and run the algorithms
for the same amount of time. In both cases we used 2
million photons, nearest-neighbour density estimate in the
photon map query with the conical kernel [3].

We can see that in the image 5c) the severe noise on the
cupboard vanished completely. Important improvement is
also observable on the tea pot. Unlike the image 5c) on
the image 5b) in the counter there is not visible the reflec-
tion of the main reflection visible on the tea pot. Given
the circumstances this will not get better in the classical
photon mapping algorithm even if we used more samples
in the distribution ray-tracing. The reason is almost spec-
ular surface of the tea pot. We would have to dramatically
increase the number of photons in the map to get better re-
sults in 5b). Another noticeable issue are some completely
missing reflections.

In figure 6 we present renderings of a Cornell box-like
scene. Diffuse materials are used for walls and highly
glossy materials for the blocks. The images were rendered
with paths of length exactly three (i.e. n = 3). Image 6a)
represents the strategy where t = 1 and s = 2 while the im-
age 6b) shows the result of using strategy where t = 2 and
s = 1. Images 6c) and 6d) were rendered by bidirectional
photon mapping where both of the latter strategies were
combined together. We used 20 million photons to render
the combined image and 512 samples per pixel. In image
6c) we used fixed radius for every photon map query while
in the image 6d) we used the nearest-neighbour estimation
method and conical kernel. This demonstrates that using
varying radius through the scene does not yield objection-
ably worse results.

6 Conclusions and Future Work

We have presented a robust bidirectional photon mapping
algorithm for computing global illumination. The algo-
rithm is capable of rendering scenes with many glossy
materials where the original photon mapping algorithm
produces objectionable artifacts. The algorithm takes ad-
vantage of combining various strategies for computing the
same light transport.

In our implementation we ignore strategies where the
path is generated entirely from the light source or from the
camera. Taking these paths into account will be addressed
in future work.

One reason for artifacts in glossy scenes is the high vari-
ance of radiance estimate on glossy surfaces. This can be
improved by shooting an enormous number of photons.
Nevertheless, original photon mapping is limited by phys-
ical memory boundaries so we cannot use sufficient num-

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
30

Algorithm Samples per Pixel Final Gather Samples Resolution Rendering Time
PT 131 072 - 320x320 1.4 day
PM 32 128 320x320 4 hours

BDPM 512 - 320x320 4.1 hours

Figure 4: Information about renderings in figure 5.

a) Path tracing (PT) b) Photon mapping (PM) c) Our method (BDPM)

Figure 5: There is a comparison of rendering the same scene by PT, PM and BDPM. We let PM and BDPM run for
the same time. Both PM, BDPM use 2 million photons, nearest-neighbour density estimate and conical kernel. Noisy
reference image was rendered by PT with 131 072 samples per pixel.

Figure 6: All images show rendering of the same scene and the same light transport of length 3. There are diffuse walls and
two highly glossy objects. The image a) was rendered without final gather while the image b) uses final gather everywhere.
Note how each strategy works well for different parts of the illumination. Images c) and d) demonstrate combination of
both latter strategies by bidirectional photon mapping method. In c) we used fixed radius in density estimate through the
whole scene while in d) we allowed varying radius and used conical kernel.

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
31

ber of photons. This boundaries are addressed by progres-
sive photon mapping approaches [4, 5]. In future work
we would like to examine the possibilities of bidirectional
photon mapping within these progressive frameworks.

Acknowledgements

Many thanks to Wenzel Jakob for providing his Mitsuba
Renderer. I am no less grateful to Jaroslav Křivánek for his
supervision, numerous advices, ideas and text corrections.

References

[1] Eric Veach, Robust Monte Carlo Methods For Light
Transport Simulation. Ph.D. Dissertation, Standford
University, 1997.

[2] Eric P. Lafortune, Yves D. Willems, Bi-Directional
Path Tracing. Proceedings of Compugraphics ’93,
Alvor, Portugal (December 1993), pp. 145-153.

[3] Henrik Wann Jensen, Realistic Image Synthesis Using
Photon Mapping. AK Peters, 2001.

[4] Toshiya Hachisuka, Shinji Ogaki, Henrik Wann
Jensen, Progressive Photon Mapping. ACM Trans.
Graph. 27,5, 2008.

[5] Toshyia Hachisuka, Henrik Wann Jensen, Stochastic
Progressive Photon Maping. ACM SIGGRAPH Asia,
2009.

[6] Shirley P., Wade B., Hubbard P. M., Zareski D., Walter
B., Greenberg D. P. Global illumination via density-
estimation. Eurographics Rendering Workshop 1995
Proceedings, pp. 219–230.

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
32

Rendering

Workflow Optimization for a Graphic Artist working on large
Texture Sets using Virtual Texturing

Michael Birsak∗

Supervised by: Michael Wimmer†

Institute of Computer Graphics and Algorithms
Vienna University of Technology

Vienna / Austria

Abstract

In this paper we present an approach to optimize the work-
flow for a graphic artist currently working on high resolu-
tion photographs of architectural and archaeological mon-
uments. These photographs are used as texture maps to
color the meshes, which are calculated from laser-scanned
point clouds corresponding to exactly those monuments.
Because a particular region belonging to a monument is
covered from several photographs with different coloriza-
tion, further manual processing of the photos is required.
Therefore we developed an application, which generates
masks to emphasize regions of the photographs that are
used in the final model, to ease the work of the graphic
artist. For fast rendering of the model, we took Virtual
Texturing into account, and developed an application for
fast generation of the Virtual Texture Atlas and the Tile
Store. A fast and efficient update of the Tile Store, if a
photograph is edited after the final generation of the Vir-
tual Texture Atlas and the Tile Store, the application also
provides. The used algorithms are stated as well as the
speed-up compared to an existing implementation.

Keywords: Mask Generation, Virtual Texturing, Texture
Atlas, Fast Tile Update

1 Introduction

At the Vienna University of Technology, the aim of the
Terapoints-Project1 is the preservation of important archi-
tectural and archaeological items. This preservation is
done by laser-scanning these items, that yields huge point
clouds. Further, photographs with registered cameras are
taken, to make a colorization of the digitized model possi-
ble. To allow rendering of the model inside a standard tool
like Meshlab [2], the point cloud is transformed into a tri-
angle mesh using the algorithm from Abdelhafiz [1]. This
has the advantage not to be constrained to applications im-
plementing algorithms like Instant Points from Wimmer

∗michael.birsak@gmx.at
†wimmer@cg.tuwien.ac.at
1http://www.cg.tuwien.ac.at/research/projects/TERAPOINTS/

and Scheiblauer [8]. Further, a mesh allows a continuous
mapping of the photographs onto the model. The differ-
ent lighting situations depending on the different scanning
positions lead to colorization differences between the pho-
tographs. For that reason, processing of these photographs
is necessary. At the moment, all processing steps are done
by a graphic artist, which means that every photograph
contained in the final model has to be edited in a graph-
ics editing application like Adobe Photoshop2. Without
further processing, there would be visible artifacts in the
model, where two regions, belonging to two different pho-
tographs, adjoin each other. In Figure 1 you can see such
artifacts.

Figure 1: Visible artifacts in the Domitilla model without
further processing of the photographs. The arrows show
the regions, where different photographs adjoin each other.

The rendering of the whole model is important for the
graphic artist to see all the photographs and the possible
artifacts in action. Currently, the rendering is happening
in MeshLab. The current workflow of the graphic artist is
shown in Figure 3.

Because of the high resolution and the large quantity of
photographs in a single 3D model, there is a need to accel-
erate the rendering of the whole model. Without this accel-
eration, there is an unnecessary amount of traffic between
the CPU and the GPU during the rendering process, be-
cause not all photographs fit into the memory of the graph-

2http://www.adobe.com/de/products/photoshop/compare/

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 2: Part of the Domitilla Catacombs visualized using the unprocessed photographs. Especially on the floor the
aforementioned artifacts are visible.

Figure 3: Current workflow of the graphic artist. The first
and third step in the cycle are the ones, we want to opti-
mize.

ics card. The results are low frame rates and therefore
smaller productivity of the graphic artist. Due to this we
decided to use Virtual Texturing, where only those parts of
all photographs reside in the memory of the graphics card,
which are currently visible.

As application to visualize the virtual textured model,
we chose Scanopy because it implements LibVT3 (devel-
oped by J. Mayer, the author of [5]), a library which pro-
vides Virtual Texturing functionality. Scanopy is devel-
oped at the Vienna University of Technology and at the

3http://sourceforge.net/projects/libvt/

Figure 4: Optimized workflow of the graphic artist. The
rendering is accelerated using Virtual Texturing, the edit-
ing is eased by the generated masks.

Imagination4 in Vienna. We implemented additional func-
tionality into Scanopy, to directly call our application via
keystroke to update the Virtual Texture Atlas (in the fol-
lowing just referred to as Atlas) and Tile Store when a
photograph has changed. So, in future the graphic artist
will use Scanopy for faster rendering of the model. The
optimized workflow of the graphic artist, introducing Vir-
tual Texturing for faster rendering and masks for the pho-
tographs for easier editing, is shown in Figure 4. In Figure
2 you can see a part of the Domitilla Catacombs, on which
the graphic artist is currently working on.

4http://www.imagination.at/

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
36

Contribution. In this paper, we present two applica-
tions to optimize the current workflow of the graphic artist,
who edits the photographs of the monuments. The first
program generates masks for the photographs belonging
to a model. These masks consist of black and white areas,
where white areas correspond to areas in the photographs,
which are visible in the model, whereas black areas corre-
spond to invisible areas in the photographs. The generated
masks can be used in every graphics editing program, to
avoid editing areas of the image which are invisible in the
model.

The second program is used for fast generation of the
Atlas and the Tile Store. Although there already exists
an implementation for this task, we found it too slow to
meet the requirements of the graphic artist concerning time
consumption. Our program is also used for updating the
Atlas and the Tile Store, when a photograph is changed
after the Atlas and the Tile Store are generated.

In Section 2 we give some background information
about Virtual Texturing and the existing implementations
for the generation of the Atlas and Tile Store. In Section 3
and 4 we will give detailed information about the develop-
ment of the applications we have implemented. Finally, in
Sections 5 and 6 we present the results concerning our ap-
plications as well as possible additions which can be done
in future.

2 Related Work

Virtual Texturing, as it is described detailed by J. Mayer
in [5], is a sophisticated technique to overcome the mem-
ory limitations of the graphics card, when rendering ob-
jects or scenes with a large quantity of textures. Rendering
such scenes might work without Virtual Texturing as well,
but the frame rate would probably suffer extremely under
the high traffic rate between the CPU and GPU, resulting
from continuous streaming of texture data. In contrast to
Virtual Texturing, every needed texture would be loaded as
a whole, regardless of the visible texture area. With Virtual
Texturing, only those parts of the texture are streamed to
the graphics card, which are actually visible. The smallest
part, that can be streamed to the GPU, is called a tile. A
tile is a small texture with a resolution of 642 up to 5122

pixels, so its final side length must be of the form 2n pixels
for n∈{ 6, 7, 8, 9 }. If just one pixel of a texture is needed
to render the scene, at least the whole tile containing this
pixel must be streamed.

The first step for Virtual Texturing is to produce one big
texture, consisting of all the single textures in the scene.
This texture is the Atlas. In Figure 5 an example of such
an Atlas is shown. The Atlas must fulfill some require-
ments regarding its size (refer to [5] for details). Because
the Atlas often has side lengths of 32k pixels and more, it
would be very unhandy to store it in a single file. There-
fore, it is stored in 4, 16 or more equally sized files.

Note, that it is important to adapt all texture coordinates

Figure 5: 32k2 Atlas consisting of 62 4064x2704 pho-
tographs of the Domitilla model.

of the models in the scene to refer to the layout of the At-
las. The Atlas is the base of the Tile Store. The Tile Store
can be viewed as a mipmapped Atlas. In contrast to clas-
sic Mip Mapping [7], where the side lengths of the original
textures are halved until only one pixel resides, the small-
est part, representing the highest level of the Tile Store,
is one single tile. If we have, for example, an Atlas with
a resolution of 32k2, and a tile resolution of 1282, there
would be 65536 tiles at Level 0 of the Tile Store. At Level
1, there would be 16384 tiles and so on. At the highest
Level with number 8, there would just be one tile repre-
senting the whole Atlas. In Figure 6 you can see exactly
this scenario applied to the Atlas of Figure 5.

Figure 6: Tile Store generated with the Atlas shown in
Figure 5 as its base. The tiles have a resolution of 1282.

J. Mayer, the author of [5], has already implemented
scripts to generate the Atlas and the Tile Store. Therefore
he chose Python as scripting language. His script to gen-
erate an Atlas is based on ImageMagick5, a command line

5http://www.imagemagick.org

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
37

based graphics editing program. The script to generate the
Tile Store uses the Python Imaging Library. We will show,
that our application, fully implemented in C++, acceler-
ates the task significantly.

3 Mask Generation

The first step to ease the work of the graphic artist, was
the development of an application to generate masks for
every photograph contained in the model to prevent the
editing of invisible image areas. The masks have exactly
the same resolution as the photographs, so that every white
pixel of a concrete mask corresponds to a visible pixel,
and every black pixel corresponds to an invisible pixel in
the underlying photograph. To generate a mask for a tex-
ture, the only information needed from the model are the
face indices into the texture coordinates list, the texture co-
ordinates themselves as well as the material information,
to know which primitives belong to which photograph.
The face indices are needed, to know which of the tex-
ture coordinates belong together to form a primitive, e.g.
a triangle. The texture coordinates are values ∈ [0, 1]2.
Therefore it is important to choose a virtual camera (via
the projection matrix), whose image plane corresponds to
the whole area of possible texture coordinates. The cam-
era, which fulfills exactly these requirements, is an ortho-
graphic camera placed in the world coordinate system at
position p = (0.5, 0.5, 0.0). The width and height of
the view frustum must both be 1. Since the simplest way
to render 2D content is to use the XY-plane, the values for
the near and far clipping plane can be set to an arbitrary
negative and positive value respectively. In Figure 7 the
view frustum of this virtual camera is shown.

Figure 7: View frustum of the orthographic camera used
to render the masks. All primitives are rendered into the
XY-plane.

The masks are generated on the GPU using OpenGL
as the graphics API. Therefore a buffer with the same di-
mensions as the current photograph is created. The back-
ground color is set to black, which corresponds to invis-
ible image areas. After that, all primitives of the model

are rendered in white color into the buffer. The texture co-
ordinates of the primitives are used, as if they were vertex
positions. Because texture coordinates are ∈ [0, 1]2, the z-
value is set to 0 to use the XY-plane as the plane to render
into.

Our application to generate masks is fully implemented
in C++, currently only available for Microsoft Windows.
To make it small and simple, we omitted a graphical user
interface. Per default, the mask generation application
copies a shortcut to itself into the Windows SendTo di-
rectory during the installation. Due to this, it can simply
be started by a right click onto the model file followed by
a ”Send To” to our application. After that, all masks will
be generated in a sub directory called masks. Of course,
all textures belonging to the model must be at the position
referenced in the model file.

4 Virtual Texturing

The second step to optimize the workflow of the graphic
artist was the introduction of Virtual Texturing for faster
rendering of the models. Due to this, we had to improve
the already existing scripts, developed by J. Mayer, the
Author of [5], to generate the Atlas and the Tile Store.
The existing scripts are implemented in Python. Because
these scripts need a very long time, to produce the Atlas
and the Tile Store (see Section 5 for concrete values), we
decided to implement a new application, which should do
the same task in much less time. In contrast to the existing
scripts, which first generate an own Tile Store for every
part of the Atlas, and then merge these to come to the final
Tile Store, we decided to implement it in that way, that the
final Tile Store is generated out of all the parts of the Atlas
in a single run. Our application is also used for the update
of the Atlas and the Tile Store, when the graphic artist has
changed one or more of the photographs. Because this is
the most time-critical function of our application, since it
is used after every editing step of a photograph, we will
explain it in detail in the following subsection.

4.1 Atlas- and Tile Store-Update

Because the generation of the Atlas and the Tile Store is,
also when done with our fast application, a relatively time
consuming task, we decided not to regenerate the Atlas
and the Tile Store for an update, but to reproduce just those
parts, which are concerned with the changed photographs.

To make an update of the Atlas and the Tile Store possi-
ble, it is important to know which photographs inside the
Atlas have changed and where every photograph is posi-
tioned in the Atlas. To accomplish this, a text file is pro-
duced during the generation of the Atlas. This text file con-
tains the time of last change, which can be queried from
the operating system, of all produced Atlas files. If a pho-
tograph is changed and the update routine is run, the time
stamp in the text file and the current time stamp would dif-

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
38

fer, indicating that all parts of the Atlas and the Tile Store
belonging to this concrete photograph must be updated.
The exact position of the photograph which has changed
is so important to know, because otherwise it would not be
possible (at least not without much effort) to find the areas
in the Atlas and Tile Store the photograph belongs to.

When the changed areas of the Atlas have been found,
it is easy to calculate the concrete coordinates of the parts
of the Atlas, that are concerned. During the update all
levels of the Tile Store have to be considered. Because
every level corresponds to a mipmap level of the Atlas,
the Atlas must be scaled down to the half after one par-
ticular level has been updated. As already mentioned in
Section 2, the Atlas is of course not stored in one single
file, but in 4, 16 or more parts. Therefore, there may be
parts of the Atlas, which are not concerned by the update
process. After the update of one particular level of the Tile
Store, the Atlas must be scaled down to deliver the neces-
sary information for the next level of the Tile Store. This
would be redundant work for every update, if unchanged
parts would be scaled every time. Due to this, our applica-
tion not only stores the Atlas itself, but also every mipmap
level needed. Certainly, this scaled parts of the Atlas must
also be updated, if they consist areas of a photograph that
was changed.

Tile Cache and VRAM. When updating the Atlas and
the Tile Store, it is also important to update the dedicated
memory region on the graphics card (VRAM), which is
used to store the currently used tiles. Further, it is nec-
essary to update the so called Tile Cache, which is the
dedicated region inside the main memory, to hold a finite
number of tiles to prevent another time consuming stream-
ing from hard disk. Another streaming of a particular tile
can be necessary when it has been overwritten inside the
VRAM by another tile because of a certain time period
without usage. A problem that arises, if such an update
is not executed, is the simultaneous usage of the old and
the new version of tiles corresponding to a particular pho-
tograph. This happens, because currently just those tiles
are streamed from hard disk, cached, and then streamed to
the graphics card, that are needed to render the next frame,
but are not already stored inside the Tile Cache. When a
particular tile is needed again, but is already stored in the
Tile Cache, this version is streamed to VRAM, no matter
if it has changed on hard disk.

In Figure 8 you can see a part of the Domitilla model
rendered with Virtual Texturing inside Scanopy, showing
visual artifacts when the Atlas and the Tile Store change,
but an update of the Tile Cache and VRAM is not exe-
cuted. To emphasize the artifacts, the old version of the
photograph was patterned before the creation of the Atlas.

LibVT originally was not designed for a modification
of the Atlas after it was generated. Therefore, the LibVT
has been modified by the implementation of two new func-
tions, one function to delete a particular tile from VRAM,
and one function to delete it from Tile Cache. Now,
the graphic artist can edit a particular photograph, while

Figure 8: Visible artifacts while rendering in Scanopy re-
sulting from simultaneous usage of the old (patterned) and
the new version of tiles corresponding to a particular pho-
tograph.

Scanopy is running, and can start the update procedure by
keystroke to see the changes inside the 3D model immedi-
ately.

We chose C++ as programming language to use a li-
brary J. Mayer proposed in his thesis [5]. This library,
called libjpeg-turbo6, produced the best results regarding
loading JPEG-images from hard drive. Because of the
large quantity of textures, the Atlas and the Tile Store pro-
vide, JPEG is because of its high compression rate the im-
age format of choice. Like the application for mask gen-
eration, our program for the generation of the Atlas and
the Tile Store can be called via ”SendTo”. The only file
the application expects is a small text file with all config-
uration parameters. The most important of these param-
eters are the maximum side length of the Atlas parts, the
paths where the Atlas and the Tile Store should be stored,
the side length of the tiles as well as the output format of
the Atlas and the Tile Store. The configuration file must
be placed in the directory of the images, which should be
contained in the Atlas. The application will consider all
available image files in the base path of this text file. If
all parameters are valid, the generation of the Atlas and
the Tile Store starts. The results are the Atlas, split into
as many parts, so that the desired maximum side length is
not exceeded and the Tile Store, consisting of tiles with
the desired side length.

5 Results

Our first application for the mask generation is already in
use by the graphic artist and provides considerable ease of
his work. In Figure 9 you can see the result of the mask
generation for a single photograph, in Figure 10 the usage
of the mask inside Adobe Photoshop is shown.

Our second application for the generation of the Atlas
and Tile Store is significantly faster regarding Atlas gener-

6http://libjpeg-turbo.virtualgl.org/

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
39

Figure 9: Photograph used as texture (left side) with its
corresponding mask (right side).

Figure 10: Usage of a generated mask inside Adobe Pho-
toshop.

ation than the existing Python implementation, as you can
see in Figures 11 and 12. Both diagrams show, that our ap-
plication is at least four times faster than the Python script
with ImageMagick. While our application produces nearly
consistent results, the Python script needs the longer the
more parts are produced. This increase can be explained
by the nature of the script, which calls ImageMagick for
every single image it produces. So when 64 Atlas parts
are desired, ImageMagick must be called 64 times. This
also means, that it has to read a particular photograph for
every part, the photograph belongs to, again. In contrast to
this behavior, our application holds as many photographs
in memory as possible, to read them only once.

Figure 11: Performance of the generation of an 8k2 Atlas
using our C++ implementation compared to the existing
one.

Figure 12: Performance of the generation of a 32k2 Atlas
using our C++ application compared to the existing one.

The generation of the Tile Store delivers even more dra-
matic results. As you can see in Figures 13 and 14, our ap-
plication is at least ten times faster than the Python script.
To be consistent, the python script has been altered to use
ImageMagick instead of the Python Imaging Library. Be-
cause of the huge time consumption of the Python script,
the generation of the Tile Store with a tile resolution of
1282 has been omitted for the 32k2 Atlas. With our appli-
cation, this takes only 158.1 seconds. We also tested the
generation of a 128k2 Atlas with its corresponding Tile
Store with a tile resolution of 1282. The Atlas was gener-
ated in 9min 11s, the Tile Store (11 levels with 1,398,101
tiles) in 2h 58min 21s.

Figure 13: Performance of the generation of a Tile Store
using our C++ implementation compared to the existing
one. The tiles have a resolution of 1282.

The update procedure again shows the speed-up when
our application is used instead of a Python script. The
Python script doing the update procedure was imple-
mented to show a comparison. In Figure 15 you can see
the times needed for an update.

The times for Atlas generation have been measured on a
Hewlett Packard Pavilion dv6599eg notebook with an Intel
Core2Duo T7300 processor with 2.0 GHz, 2 GB RAM and
an nVidia GeForce 8400M GS graphics card. The times

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
40

Figure 14: Performance of the generation of a Tile Store
using our C++ implementation compared to the existing
one. The tiles have a resolution of 2562.

Figure 15: Performance of the update process using our
C++ implementation compared to a Python script.

for Tile Store generation and update procedure have been
measured on an Intel i7 2600k processor with 3.4 GHz,
8 GB RAM and an nVidia GeForce GTX 570. Only the
128k Atlas was also generated on the i7.

6 Conclusions and Future Work

We have presented an optimization of the workflow for
a graphic artist, who is currently editing a large quantity
of photographs used as textures for laser-scanned models.
Our approach is based on the development of two applica-
tions and the introduction of Scanopy implementing Vir-
tual Texturing into his workflow to ease his work. The
first application is a mask generation program to visibly
emphasize image areas corresponding to visible areas in
the final model. Our second application is used for fast
Atlas and Tile Store generation and update.

In future, the workflow could be further improved by
transformation of the surrounding photographs into the
plane of the actually edited photo. One approach to do
this is the generation of a list with all photos and the cor-
responding neighbors, to know which of them have to be
opened inside the editing program as a reference. This

could decrease the number of checks inside the rendered
3D model.

Further, usage of the mask information for the Atlas
and Tile Store generation might be useful to reduce the
final size of the produced JPEG images, because of the
higher compression rate when using input material with
big homogeneous areas. An even smaller Atlas could be
achieved by tightly packing of the visible image mate-
rial. Therefore a transformation of the texture coordinates
would be necessary, to reference the right areas inside this
new Atlas.

A fully automated editing of the photographs corre-
sponding to a model is desirable. This could be done with
an approach based on Poisson Image Editing by Pérez,
Gangnet and Blake [6]. There are already approaches for
stitch-less image composition, that could be introduced to
further ease the work of the graphic artist: [4], [3].

References

[1] Ahmed Abdelhafiz. Integrating Digital Photogram-
metry and Terrestrial Laser Scanning. PhD thesis,
Technical University Braunschweig, 2009.

[2] Paolo Cignoni, Massimiliano Corsini, and Guido
Ranzuglia. MeshLab: an open-source 3D mesh pro-
cessing system, April 2008.

[3] Ran Gal, Yonatan Wexler, Eyal Ofek, Hugues Hoppe,
and Daniel Cohen-Or. Seamless montage for textur-
ing models. Comput. Graph. Forum, pages 479–486,
2010.

[4] Anat Levin, Assaf Zomet, Shmuel Peleg, and Yair
Weiss. Seamless image stitching in the gradient do-
main. In ECCV (4), pages 377–389, 2004.

[5] Albert Julian Mayer. Virtual texturing. Master’s the-
sis, Vienna University of Technology, 2010.

[6] Patrick Pérez, Michel Gangnet, and Andrew Blake.
Poisson image editing. In ACM SIGGRAPH 2003
Papers, SIGGRAPH ’03, pages 313–318, New York,
NY, USA, 2003. ACM.

[7] Lance Williams. Pyramidal parametrics. In Pro-
ceedings of the 10th annual conference on Computer
graphics and interactive techniques, SIGGRAPH ’83,
pages 1–11, New York, NY, USA, 1983. ACM.

[8] Michael Wimmer and Claus Scheiblauer. Instant
points. In Proceedings Symposium on Point-Based
Graphics 2006, pages 129–136. Eurographics, Euro-
graphics Association, July 2006.

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
41

42

Proceedings of CESCG 2011: The 15
th

 Central European Seminar on Computer Graphics (non-peer-reviewed)

Particle-based Visualization of Large Cosmological
Datasets

Niko Lukač
*

supervised by: Borut Žalik
†

University of Maribor

Faculty of Electrical Engineering and Computer Science

Laboratory for Geometric Modelling and Multimedia Algorithms

Smetanova ulica 17, SI-2000 Maribor, Slovenia.

*
 niko.lukac@uni-mb.si

†
 zalik@uni-mb.si

Abstract

Large quantities of simulated cosmological particle-

based data cause considerable problems when it comes to

real-time visualization. This paper considers an out-of-

core approach for solving visualization problems on a

single-desktop workstation. The approach proposed in

this paper consists of two phases: the data preprocessing

and its visualization. During the preprocessing, the

cosmological data is hierarchically organized and

efficiently ordered. Before rendering, the data is

streamed to the memory from the disk. The culling

techniques, such as view frustum culling and level-of-

detail (LOD) are applied for visualization. In most cases,

the real-time visualization of large cosmological particle

datasets is achieved.

Keywords: Cosmological data, Particle-based

visualization, Level-of-detail

1 Introduction

A computer based 3D visualization of observed or

simulated particle data provides an insight for

astrophysicists into a better understanding of the

universe’s properties. Cosmological visualization is

extremely important for enabling the interactive

exploration of not fully understood phenomena. Because

the quantity of cosmological particle-based data

increases every year, it has become a challenge to

visualize this data in real-time on a single desktop

workstation despite the recent advances in technology.

This paper presents an approach for the efficient

visualization of large cosmological datasets using various

paradigms, such as hierarchical data structure (octree),

data ordering using hierarchical clustering, particle

culling (frustum culling and LOD), data streaming, and

prefetching.

The paper is organized into 6 sections. Section 2

provides a short summary and comparison with related

work. Section 3 briefly describes cosmological particle-

based data origin and properties. Section 4 focuses on the

proposed visualization approach. Section 5 describes the

results of our experiments on a desktop workstation. The

conclusion summarizes the paper and suggests for

improvements.

2 Related work

Several out-of-core point-based rendering approaches

have already been developed over recent years [1], in

order to efficiently visualize particle-based data. There

are different kinds of hierarchical data structures, and

LOD methods. Most of these methods are targeted

towards rendering surface or mesh-based point-cloud

data [2, 3, 4, 5]. The proposed method is designed to

visualize cosmological particle-based data that can

exceed system memory and represent an entirely

different point distribution i. e. the "cosmic web".

Because of clear differences in point distribution, the

proposed method differs from point-cloud surface

rendering methods, even though there are some

similarities: use of clustering for LOD simplification [5]

and hierarchical culling [2, 3, 4].

Several different approaches exist for cosmological

particle-based visualization: advanced visualization

toolkits [6], particle raytracing [7], isosurfaces extraction

[8], parallel-based visualization using clusters of

computers [9], particle culling methods [10, 11], spatial

data division by hierarchical data structures [10 ,11, 12],

exploiting the advantages of GPU [9, 10, 11], particle

splatting techniques [11, 12], and particle attributes

quantization and/or compression [11].

3 Cosmological particle data

Cosmological data is obtained from either observations

or simulations. Most simulations are linked to the cosmic

expansion of the universe [13, 14, 15] within a spatial

cube, the size of which is defined in megaparsecs [Mpc]

(1 Mpc is ~3.262 × 10
6
 light years or ~3.08 × 10

19
 km).

A time-step snapshot from cosmological simulation is

defined using cosmological redshift z, to describe the

Proceedings of CESCG 2011: The 15
th

 Central European Seminar on Computer Graphics (non-peer-reviewed)

specific time of expansion. There are different N-body

algorithms (cosmological codes) [16] that are used to run

a particle-based simulation. They are based on a

theoretical model describing not fully understood

cosmological phenomena, such as dark matter. The data

from observations contains portions of the observable

universe [17] and is considerably smaller in size than

simulated data. It is evident that large simulated

cosmological particle datasets contain millions, even

billions of particles, which makes it difficult to visualize

them in real-time. One of the better known cosmological

simulations is Millennium simulation [13], based on a

Cold Dark Matter (ΛCDM) model, and contains over

2160
3

particles resulting in large ~320 GB datasets for

each single time-step snapshot. Individual particle of a

cosmological simulation can represent different

structures (e. g. dark matter fluid) and has a range of

various attached attributes, depending on the simulation

type. Most common attributes are particle floating point

values of mass, spatial position and velocity.

4 Visualization approach

Our approach includes several methods aimed at

reducing hardware load by rendering fewer particles,

without visible loss of quality. The hardware load has the

following constraints: GPU memory capacity, system

memory capacity, disk capacity, disk latency, and a data

transfer bandwidth between different components. Large-

scale cosmological structures (e. g. filaments, clusters

and halos) need to be preserved, in order to retain quality

during the visualization. The proposed visualization

solution is targeted towards static particle data, such as

specific time-step snapshot of cosmological simulations.

Figure 1: Workflow of the entire visualization approach.

The entire visualization process is shown in Figure 1.

Firstly, the data is preprocessed by a hierarchical spatial

subdivision using an octree, and efficient ordering. This

phase is executed only once. Before rendering, the data

has to be streamed from the disk to the system or,

preferably, to the GPU memory. During the visualization

phase, the rendering process is speeded-up by removing

particles using view frustum culling, and LOD. Data

prefetching is utilized to further increase the rendering

performance.

4.1 Preprocessing phase

Firstly, the cosmological particle data is inserted into an

octree structure. The octree is then constructed in a top-

down manner, taking into account the particles positions.

The inner nodes are only used for visibility testing, and

the particles are stored inside the leaf nodes. The leaf’s

particles are stored on disk and later streamed to the

GPU, because of the memory capacity constraint. A leaf

node is constructed when there are fewer particles inside

a given node than the threshold, which defines the

maximum amount of particles that should be inside a leaf

node at a specific tree depth. The threshold is defined as

1/(M–N+1) % of the number of particles from the node’s

parent node, where N is the node’s tree depth and M is

the maximum tree depth. When a node has more particles

than the threshold, it will become an inner node and will

be further divided. The particles inside a leaf node are

spatially closer to the given leaf node’s center than to any

other node’s center in the octree structure (see Figure 2).

Although an inner node does not contain any data, it has

information about the number of particles, which is the

sum of the number of particles from all its descendants.

Figure 2: An example visualization of all octree nodes

bounding boxes. The particles are visualized from all the

viewable leaf nodes.

The adjacent leaf nodes are defined using the method

described in [18] which is required for efficient data

streaming and prefetching (see Subsections 4.5 and 4.6).

At the end of preprocessing, the data inside each leaf

node is additionally arranged using clustering, in order to

minimize quality loss during LOD.

4.2 Data ordering

The order of the particle data inside a leaf node is the

fundamental basis of the entire visualization quality.

During the visualization phase, LOD calculates the

amount of particles to be rendered for each visible leaf

node. The data is read from the disk in linear order and

streamed to the GPU, in order to gain the desired

performance. Without careful data ordering, there would

be huge quality losses during the visualization process,

because of the removal of important particles.

The particle-based data inside a leaf is ordered

according to the spatial distribution of the particles. A

clustering algorithm is used that orders the particles

using Euclidian distance metric. The results are particles

that are bound in clusters according to their proximity.

The smaller clusters (e. g. isolated particles) are more

important than the larger clusters. The importance of a

particle obtained in this way defines the particle order

within the octree leaf node. Of course, the less important

particles are retained, because they gain more importance

44

Proceedings of CESCG 2011: The 15
th

 Central European Seminar on Computer Graphics (non-peer-reviewed)

linearly as the camera moves closer. Consequently, at the

end of the leaf node’s final order, only the least important

particles remain, belonging to the largest cluster.

As can be seen in Figure 3, the clusters of particles

are arranged according to their capacities, in descending

order. One particle from each arranged cluster is

accepted in a bottom-up manner, and it is inserted into

the final order, which is then stored on the disk for a

particular leaf node.

a) b)

c)

Figure 3: Data ordering - an illustrative example of

particles data: a) colored clusters of particles, b)

descending order of clusters according to capacities, c)

final ordering of the particles within a stream.

There are several different and useful algorithms for

spatial clustering [19]. The Chameleon hierarchical

clustering algorithm, as proposed by Karypis et al. [20]

was used in our implementation, because it offers a good

trade-off between accuracy and speed.

4.3 Visualization phase

The visualization phase consists of three steps: particle

culling, streaming, and rendering. Before rendering it is

necessary to determine which particles to stream to the

GPU. Frustum culling and LOD are employed for this

purpose. The synergy of the culling and streaming allows

the obtaining of suitable amount of data for rendering,

based on the camera’s viewpoint, and the view frustum’s

size. When the camera moves, any new data has to be

streamed for rendering and the redundant data has to be

removed from the memory. An illustration of the view

frustum is shown in Figure 4.

Figure 4: Illustration of the view frustum and the octree

structure.

The view frustum culling and LOD can exploit the

properties of the octree structure, because the data is

preprocessed. The octree node’s center points are used to

represent the proximity of multiple particles within a

specific spatial subvolume. Both culling methods

traverse the octree structure from the root node and check

the considered center points of the nodes for their

visibility. Clearly, if the parent node is entirely outside

the view frustum, its descendants are unchecked. The

same applies if the entire node lies inside the view

frustum. This allows for the skipping of many nodes

during the culling process. The view frustum culling

methods were used, as described in [21].

4.4 Level of Detail

After the view frustum culling is complete, the particles

are further culled inside the view frustum using LOD.

Better rendering performance is achieved, by adaptively

adjusting the visualization details. The loss of quality is

negligible, because the data was optimally ordered

during the preprocessing phase. Consequently, the

general particle distribution is preserved. The LOD

streams the given leaf nodes data for rendering in linear

order.

The LOD method uses the Euclidian distance metric

between the center points of the leaf nodes and the

position of the camera, in order to determine the amount

of particles, to be loaded into the memory and then

rendered for the given leaf node. The following equation

is used for this:

(1)

where Cdist is the current distance from the camera to

the leaf node, and Mdist is the maximum distance

between the camera and the leaf node. In practice, this

variable is limited by the distance from the front to the

far plane of the view frustum. Pn is the total amount of

particles in the leaf node. This equation provides similar

effects as the traditional LOD error metric [1], which

computes the projected screen space area of a leaf node.

The further the camera is from the considered leaf

node, the fewer particles are rendered for this node. The

direct consequence of this is that small details disappear

from the greater distances, since larger clusters of

particles are stuck within an area of few pixels or even a

single pixel. The opposite happens, if the camera moves

inside the given leaf node; in that case, all the particles

inside the node are rendered. LOD quality can be

observed in Figure 5, where the structure is retained

intact even from the greater distances.

Figure 5: LOD on sample cosmological particle data

(dark matter halo): a) 40%, b) 60%, c) 80% and d) 90%

of Mdist.

45

Proceedings of CESCG 2011: The 15
th

 Central European Seminar on Computer Graphics (non-peer-reviewed)

4.5 Data streaming

The sizes of the large cosmological particle datasets

exceed the memory capacity of any recent desktop

workstation. The memory has to be used in an efficient

manner, where only the recently viewed particles in a

particular visualization instance are stored within the

memory. Any preprocessed particle data from leaf nodes

that have the same parent node are packed together and

stored as a package into one file, in order to stream the

data efficiently for thousands of octree leaf nodes from

the disk to the memory. Threshold for a minimum

package size has to be defined, because it is possible that

a parent node does not contain 8 leaf nodes or that the

capacities of the leaf nodes are small. In case the sum of

the leaf nodes particles is below the threshold, the data of

adjacent leaf nodes from other parent nodes is stored in

the same file (see Figure 6). In our implementation the

threshold was experimentally set to 1% of all particles

for a given dataset. For a single snapshot dataset of the

Millennium simulation, the minimum package file size is

~1.17 GB, storing only positions of the particles.

The reason for packing particle data together is based

on the following premise: if one particular leaf node is

rendered, then there is a high probability that the

particles from the adjacent leaf nodes have be rendered,

too. Prefetching is thus employed, at this stage.

Figure 6: Example of non-balanced octree hierarchy,

where the same colored leaf nodes are stored together.

4.6 Data prefetching

The use of available memory is maximized by

prefetching proximal particle data outside the view

frustum. A bounding sphere around the camera’s center

is constructed, for this purpose (see Figure 7).

Figure 7: Illustration of the bounding sphere around the

camera and the octree structure.

The radius of the bounding sphere is defined as the

half distance between the front and the far plane of the

frustum. This method is performed in the background

and is efficient, when the camera is close to a specific

area of interest. Based on the practical premise that the

camera does not move over long distances when the area

of interest is small, the required adjacent leaf nodes can

be loaded into the memory. This applies to all the leaf

nodes inside the defined bounding sphere or intersecting

it, because the camera can move in any possible

direction.

5 Results

This approach was tested on a single desktop

workstation, using the following hardware: ATI Radeon

HD 5750 GPU (1GB GDDR5 memory), AMD Phenom

1090T hexa-core CPU, 4 GB system memory (DDR3

1333 MHz), and SATA-II hard disk (7200 RPM, 1 TB

capacity, 140MB/s average read speed). The OpenGL

graphical library was used, where the particles were

rendered as point primitive using color and alpha,

without texture sprites. The streamed data from the disk

to GPU was stored in VBO (Vertex Buffer Object) for

each leaf. The visualization viewport resolution, was set

at 1280x960, during the experiments.

In order to test the efficiency of the proposed

visualization approach, several different and available

cosmological particle simulation datasets were tested:

Millennium (500 Mpc; z=0) [13, 24], MPA Larger box

ΛCDM (479 Mpc; z=0) [23], GIF2 ΛCDM (110 Mpc;

z=0) [14, 23], Mini Millennium (62.5 Mpc; z=0) [13, 24]

and The Santa Barbara cluster (64 Mpc; z=0; gadget

output) [15, 22].

The preprocessing required double the capacity of the

input dataset. Around 80% of the preprocessing time was

dedicated to data ordering for each dataset. However, this

still took considerably less time than running a

cosmological simulation, which takes several days on

parallelized systems [13].

After preprocessing the quality loss and the

performances gained for different datasets, were tested.

To measure these properties, a predetermined camera

path was made, which does a fly-through in the

visualized data. The camera position was initially aligned

with the X coordinate axis and distanced by the Mdist

variable from the LOD. The cameras viewpoint was set

to face the center point of the octree root node. The

predetermined fly-through consisted of 10 steps. For

each step the camera made a full 360 degree rotation,

using 1 degree steps around the center point, and

afterwards moved towards the center point over 10% of

the initial distance Mdist. The testing was completed

when the camera’s position was equal to the center point.

The speed was measured by performing fly-through three

times for each dataset, in order to obtain more reliable

results. FPS (Frames per second) was measured for speed

comparison. A modified fly-through was made, in order

to measure the quality difference. Each frame was

visualized with the LOD both enabled and disabled. The

per-pixel difference from both frames (LOD on and off)

was calculated using the Euclidian distance metric, in

46

Proceedings of CESCG 2011: The 15
th

 Central European Seminar on Computer Graphics (non-peer-reviewed)

order to measure the quality. This comparison is suitable,

because the projected particles on the frustum’s near

plane are the end result of rendering. The experimental

results of the average culled particles for the whole fly-

through, average fps and average quality decrease when

LOD is on, are shown in Table 1.

Table 1: Results of the experiments on different

cosmological datasets.

Cosmological

particle-based

dataset

Number of

particles

Average

culled

particles

Average

FPS

Average

quality

decrease

Millennium 10 077 696 000 88.2% 11.3 7.4%

MPA ΛCDM 134 217 728 80.2% 67.4 6.7%

GIF2 ΛCDM 64 000 000 85.3% 88.5 4.9%

Mini Mill. 19 683 000 87.9% 142.0 6.1%

The Santa

Barbara

16 777 216 86.7 % 177.1 5.3%

Proposed out-of-core visualization approach was not

compared to brute-force rendering, because this is

practically impossible. A desktop workstation would run

out of memory, when trying to render huge amount of

particles (exceeding GPU and system memory several

times) using the brute-force rendering approach.

Figure 8: Average FPS increase (%).

FPS increased when employing LOD, providing a

significant boost (see Figure 8). The quality decreased

only slightly when the number of particles increased

significantly (see Figure 9). When LOD was disabled,

visualization remained in real-time, as long as there was

enough GPU memory.

Figure 9: Average quality decrease (%).

Due to efficient data ordering and the hierarchical

spatial subdivision, the average quality loss, which was

around 5%, was hardly noticeable with the naked eye, as

shown in the example in Figure 10. This is because the

data ordering was done during the preprocessing phase,

where the most clustered particles are of least importance

(see Figure 10c).

a) b) c)

Figure 10: Sample visualized cosmological particle data

using a) LOD enabled, b) LOD disabled and c) the

difference (~5%).

Table 2 presents the averaged results for each even

fly-through step for one of the largest tested particle

dataset; Millennium. The average FPS dropped and the

quality increased when the camera moved into the region

of the visualized data. Within the areas of interest, LOD

had less importance than frustum culling, which helped

to preserve real-time visualization, since more nodes

were being culled outside the view frustum, and data

prefetching was being utilized in the background.

Table 2: Results for camera fly-through even steps of the

Millennium dataset.

Step Camera distance from

octree root node

center point (% of

Mdist)

Average culled

particles

Average

FPS

Average

quality

decrease

2. 80% 96.9% 15.3 2.9%

4. 60% 84.2% 8.1 6.4%

6. 40% 88.5% 9.2 8.1%

8. 20% 94.8% 11.9 5.9%

10. 0% 95.3% 14.2 2.4%

Data prefetching was implemented on two

background threads, each on its own CPU core, in order

to have a smaller impact on the actual visualization. The

FPS difference was measured by applying prefetching,

using the same fly-through as before on the Millennium

particle dataset. The results of this test are shown in

Figure 11. The method paid off when the camera was

close or inside the region of the visualized data.

Figure 11: Average FPS for each camera fly-through

even step of the largest tested dataset, with and without

prefetching.

47

Proceedings of CESCG 2011: The 15
th

 Central European Seminar on Computer Graphics (non-peer-reviewed)

6 Conclusion

This paper shows that the large-structures of the

cosmological particles are visualized in high details, with

minimal impact from particle culling. We can efficiently

render any cosmological particle dataset and in most

cases achieve real-time visualization on a single desktop

workstation, with a small quality loss.

We found that the main hardware bottlenecks on the

desktop workstations are the disk read speed and on-

demand data transfer from the memory to GPU in large

quantities. In the near future such bottle-necks would

limit real-time visualization, if the cosmological particle

datasets snapshots are of the size of several terabytes. In

order to overcome this problem, the presented approach

could be extended using parallelization. There are also

other ways for possible extension, such as data

compression via GPU using technologies such as CUDA.

Acknowledgements

Some of the used datasets in this paper are from

simulations carried out by the Virgo Supercomputing

Consortium [23]. We would like to thank V. Springel et

al. [13] for giving us insights in to the Millennium

simulation, L. Gao et al. [14] into the GIF2 simulation

and K. Heitmann et al. [15] into the Santa Barbara cluster

simulation. The Millennium Simulation databases used in

this paper and the web application providing online

access to them were constructed as part of the activities

of the German Astrophysical Virtual Observatory

(GAVO) [24]. Thanks to Gerard Lemson from GAVO

for his support on the transmission of large Millennium

simulation raw particle data. Thanks to Mel Krokos from

the University of Portsmouth, U.K., who initiated this

work.

References

[1] M. Sainz, R. Pajarola, Point-based rendering

techniques, ACM Computers and Graphics, vol. 28,

no. 6, pp. 869-879, December 2004.

[2] C. Erikson, D. Manocha, W. V. Baxter III, HLODs

for Faster Display of Large Static and Dynamic

Environments, Proceedings of ACM Symposium on

Interactive 3D graphics, New York, USA, March

2001.

[3] C. Dachsbacher, C. Vogelgsang, M. Stamminger,

Sequential point trees, ACM Transactions on

Graphics - Proceedings of ACM SIGGRAPH 2003,

vol. 22, no. 3, pp. 657~662, New York, USA, July

2003.

[4] S. Rusinkiewicz, M. Levoy, QSplat: A

Multiresolution Point Rendering System for Large

Meshes, ACM SIGGRAPH Proceedings of the 27th

annual conference on Computer graphics and

interactive techniques, pp. 343-352, New York,

USA, July 2000.

[5] M. Pauly, M. Gross, L. P. Kobbelt, Efficient

Simplification of Point-Sampled Surfaces, IEEE

Visualization Proceedings, pp. 163-170, Boston,

USA, November 2002.

[6] M. Comparato, U. Becciani, A. Costa, B. Larsson,

B. Garilli, C. Gheller, J. Taylor, Visualization,

Exploration and Data Analysis of Complex

Astrophysical Data, The Publications of the

Astronomical Society of the Pacific, vol. 119, no.

858, pp. 898-913, August 2008.

[7] K. Dolag, M. Reinecke, C. Gheller, S. Imboden,

Splotch: Visualizing Cosmological Simulations,

New Journal of Physics, vol. 10, no. 12, 2008.

[8] P. A. Navrátil, J. L. Johnson, V. Bromm,

Visualization of Cosmological Particle-Based

Datasets, IEEE Transactions on Visualization and

Computer Graphics, vol. 13, no. 6, pp. 1712-1718,

2007.

[9] Z. Jin, M. Krokos, M. Rivi, C. Gheller, K. Dolag,

M. Reinecke, High-performance astrophysical

visualization using Splotch, Procedia Computer

Science, ICS 2010, vol. 1, no. 1, pp. 1769-1778,

May 2010.

[10] T. Szalay, V. Springel, G. Lemson, GPU-Based

Interactive Visualization of Billion Point

Cosmological Simulations, November 2008.

[11] R. Fraderich, J. Schneider, R. Westermann,

Exploring the Millennium Run-Scalable Rendering

of Large-Scale Cosmological Datasets, IEEE

Transactions Visualization and Computer Graphics,

pp. 1251-1258, June 2009.

[12] M. Hopf, T. Ertl, Hierarchical Splatting of Scattered

Data, IEEE Visualization Proceedings, pp. 433-440,

Washington, USA, October 2003.

[13] V. Springel, S. D. M. White, A. Jenkins, C. S.

Frenk, N. Yoshida, L. Gao, J. Navarro, R. Thacker,

D. Croton, J. Helly, J. A. Peacock, S. Cole, P.

Thomas, H. Couchman, A. Evrard, J. Colberg, F.

Pearce, Simulating the joint evolution of quasars,

galaxies and their large-scale distribution, Nature,

vol. 435, pp. 629–636, 2005.

[14] L. Gao, S. D. M. White, A. Jenkins, F. Stoehr, V.

Springel, The subhalo population of LCDM dark

haloes, Monthly Notices of the Royal Astronomical

Society, vol. 355, no. 3, pp. 819-823, 2004.

[15] K. Heitmann, P. M. Ricker, M. S. Warren, S. Habib,

Robustness of Cosmological Simulations I: Large

Scale Structure, The Astrophysical Journal

Supplement Series, vol. 160, no. 1, pp. 28-58, 2005.

[16] K. Heitmann, Z. Lukic, P. Fasel, S. Habib, M.

Warren, M. White, J. Ahrens, L. Ankeny, R.

Armstrong, B. O'Shea, P. M. Ricker, V. Springel, J.

Stadel, H. Trac, The Cosmic Code Comparison

Project, Computational Science and Discovery, vol.

1, no. 1, 2008.

48

Proceedings of CESCG 2011: The 15
th

 Central European Seminar on Computer Graphics (non-peer-reviewed)

[17] J. R. Gott III, M. Juric, D. Schlegel, F. Hoyle, M.

Vogeley, M. Tegmark, N. Bahcall, J. Brinkmann, A

Map of the Universe, The Astrophysical Journal,

vol. 624, no. 2, pp. 463-484, 2005.

[18] J. Vörös, A strategy for repetitive neighbor finding

in octree representations, Image and Vision

Computing, vol. 18, no. 14, pp. 1085-1091, 2000.

[19] J. Han, M. Kamber, A. K. H. Tung., Spatial

Clustering Methods in Data Mining: A Survey,

Geographic Data Mining and Knowledge

Discovery, vol. 21, pp. 1–29, 2001.

[20] G. Karypis, E. Han , V. Kumar, Chameleon:

Hierarchical clustering using dynamic modeling,

Computer, vol. 32, no. 8, pp. 68-75, 1999.

[21] U. Assarsson, T. Möller, Optimized view frustum

culling algorithms for bounding boxes, Journal of

Graphics Tools, vol. 5, no. 1, 2000.

[22] The Cosmic Data Bank, Online:

http://t8web.lanl.gov/people/heitmann/arxiv/data.ht

ml (14.03.2008)

[23] MPA Numerical Cosmology, Online:

http://www.mpa-garching.mpg.de/NumCos/

(30.10.2006)

[24] German Astrophysical Virtual Observatory

(GAVO) – Virgo Millennium Database, Online:

http://www.g-vo.org/Millennium/ (10.02.2011)

49

50

Order Independent Transparency with Per-Pixel Linked Lists

Pál Barta∗

Balázs Kovács†

Supervised by: László Szécsi‡ and László Szirmay-Kalos§

Budapest University of Technology and Economics
Budapest / Hungary

Abstract

This paper proposes a method for rendering scenes of both
opaque and transparent objects. Transparency depends on
the attenuation coefficient and the thickness of the trans-
parent object we wish to render. To get the visible ra-
diance, the volume rendering equation should be solved.
Instead of marching a ray, we build a list that contains
the intersection points of the ray and object surfaces. In
the second phase of rendering, the GPU sorts and pro-
cesses the lists and evaluates the attenuation integrals ana-
lytically, considering also the order of the segments. This
solution is mathematically correct even if objects intersect,
i.e. it does not involve drastic simplifications, and provides
high framerates even on moderately complex scenes, out-
performing previous methods. In addition to transparent
objects, the technique is also appropriate to visualize nat-
ural phenomena represented by particle systems.

Keywords: Transparency, Direct3D 11, Linked-lists,
GPU, Particle Systems.

1 Introduction

The technique of alpha blending has a long history in two-
and three-dimensional image synthesis. There are many
ways to blend colors [10], but the most important issue is
that we can only get realistic results if we sort transparent
objects by their distance from the camera. Unfortunately,
this requirement is not compatible with incremental ren-
dering and z-buffer based visibility determination, which
allow the processing of objects in an arbitrary order. Sort-
ing objects or even triangles in a way that occluders follow
objects occluded by them is difficult and is usually im-
possible without further subdivision of objects. The prob-
lem is that an object is associated with a depth interval
and not with a single distance value, so no direct order-
ing relation can be established. A possible solution for
non-intersecting triangles is the application of the painters
algorithm [1], but this has super-linear complexity and its

∗brazil.hu@gmail.com
†kockafely@gmail.com
‡szecsi@iit.bme.hu
§szirmay@iit.bme.hu

GPU implementation is prohibitively complicated.

Figure 1: Order matters when the scene contains transpar-
ent objects.

If objects may intersect each other, then the situation
gets even worse. A typical case of intersecting transparent
objects are particle systems, which are tools to discretize,
simulate and visualize natural phenomena like fog, smoke,
fire, cloud, etc. The simplest way of their visualization ap-
plies planar billboards, but this approach results in abrupt
changes where particles intersect opaque objects. The so-
lution for this problem is the consideration of the spherical
extent of the particle during rendering, as proposed in the
concept of spherical billboards [9], also called soft parti-
cles. Spherical billboards nicely eliminate billboard clip-
ping and popping artifacts at a negligible additional com-
putational cost, but they may still create artifacts where
particles intersect each other. Most importantly, when the
z-order of billboards changes due to the motion of the par-
ticle system or the camera, popping occurs. This effect is
more pronounced if particles have non-identical colors or
textures.

Instead of executing the sorting for the objects, we can
as well ensure the correct order on the level of fragments.
This approach does not require the sorting of the objects on
the CPU, which is emphasized by its name, order indepen-
dent transparency. The family of such methods is usually
referred to as depth peeling. The basic idea of depth peel-
ing is that the fragment shader may discard fragments that
are not farther than a previously selected threshold and the
depth buffer will identify the closest fragment from the
not discarded points. Thus, the scene is rendered multi-
ple times and each time we ignore the already identified
layers. Intuitively, we peel layer surfaces from the scene.
Depth peeling has been used in global radiosity [6] and
in transparency [3, 8] calculation as well. Unfortunately,
depth peeling needs to render the scene multiple times, de-

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)

pending on the depth complexity of the scene (the depth
complexity is defined as the maximum number of intersec-
tions a ray has in a given scene). Even its advanced ver-
sions, like Dual Depth Peeling [5], Reverse Depth Peeling
[8] etc. could not be used effectively in real-time scenes
without limiting the sorting to just the first few layers.

AMD presented a special solution at the Game Develop-
ers Conference 2010 [4]. The latest series of ATI Radeon
supports DirectX11, which opened the door for new ren-
dering algorithms. The latest Shader Model 5.0 GPUs
have new features like the read/write structured buffers or
the atomic operations to manipulate them. Recall that be-
fore Shader Model 5.0, shaders may either read memory
(e.g. input textures) or write it (e.g. render target), but not
both, and writes are always exclusive, so no synchroniza-
tion is necessary. This limitation has been lifted by Shader
Model 5.0, and now we do not have to wait for the end of
a pass before reading back the result in a shader processor.
With the use of these features, we are able to process the
incoming fragments in a complex way instead of writing
them to the frame buffer. The fragments can be stored in
linked lists, which creates new ways to implement order-
independent alpha-blending.

Figure 2: Model of a scene that contains opaque and trans-
parent objects. Each transparent object is homogeneous
and they can intersect each other.

This paper proposes a new algorithm to render trans-
parent, possibly intersecting objects and particles based
on DirectX11’s structured buffers and atomic operations.
In Section 2, we first survey the model of light transport
in homogeneous transparent objects. Then, in Section 3
the new, GPU-based algorithm is discussed. Finally, we
present results and conclusions.

2 Model of light transport in homo-
geneous objects

In case of scenes having only opaque objects the radiance
is constant along a ray and scattering may occur just on
object surfaces. Participating media, however, may scatter

light not only on their boundary, but anywhere inside their
volume. Participating media can be imagined as some ma-
terial that does not completely fill the space. Thus the pho-
tons have the chance to go into the media and to travel
a random distance before collision. To describe light–
volume interaction, the basic rendering equation should be
extended [7, 2]. The volumetric rendering equation is ob-
tained considering how the light goes through participat-
ing media (Figure 3).

Figure 3: Change of radiance in participating media.

The change of radiance L on a path of differential length
ds and of direction ω⃗ depends on different phenomena:

Absorption and out-scattering: Photons may collide
with the material and the material may or may not
reflect the photon after collision. The intensity
change is proportional to the number of photons
entering the path, i.e. the radiance and the probability
of collision. If the probability of collision in a unit
distance is τ , then the probability of collision along
infinitesimal distance ds is τds. After collision the
particle is reflected with the probability of albedo
a, and absorbed with probability 1− a. Collision
density τ and the albedo may also depend on the
wavelength of the light. Summarizing, the total
radiance change due to absorption and out-scattering
is −τLds.

In-scattering: Photons originally flying in a different di-
rection may be scattered into the considered direc-
tion. The expected number of scattered photons from
differential solid angle dω ′ equals to the product of
the number of incoming photons and the probability
that the photon is scattered from dω ′ to ω⃗ in distance
ds. The scattering probability is the product of the
collision probability (τds), the probability of not ab-
sorbing the photon (a), and the probability density of
the reflection direction ω⃗ , given that the photon ar-
rived from direction ω⃗ ′, which is called phase func-
tion P(ω ′,ω). Following an ambient lighting model,
we assume that the incident radiance is La in all di-
rections and at every point of the scene. Taking into
account all incoming directions Ω′, the radiance in-

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
52

crease due to in-scattering is:

τads

∫

Ω′

LaP(ω ′,ω)dω ′

= τaLads

since the phase function is a probability density, thus
its integral over the full directional domain equals to
1.

Adding the discussed changes, we obtain the following
volumetric rendering equation for the radiance L of a ray
at s−ds having taken step ds toward the eye:

L(s−ds, ω⃗) = (1− τds)L(s, ω⃗)+ τaLads. (1)

Subtracting L(s) from both sides and dividing the equa-
tion by ds, the volumetric rendering equation becomes a
differential equation.

−dL(s, ω⃗)

ds
=−τL(s, ω⃗)+ τaLa. (2)

In homogeneous media, volume properties τ and a are
constant. In our model, the scene contains homogeneous
objects having different materials. Thus, in our case, the
properties are piece-wise constant functions along a ray.

2.1 Solution of the simplified volumetric
equation

The radiance along a ray is described by an inhomoge-
neous first-order linear differential equation, which can be
solved analytically. Assuming that the background radi-
ance is zero, the radiance at the eye position (s = 0) is:

L(0, ω⃗) =

∞∫

0

τ(s)a(s)Lae−
∫ s

0 τ(x)dxds

where direction ω⃗ points from the pixel towards the eye.
Let us now exploit the fact that material properties a(s) and
τ(s) are piece-wise constant functions, they may change
where the ray intersects the surface of an object. Let us
denote the distance values of ray surface intersections by
s1,s2, . . . ,sn and extend this ordered list by s0 = 0 and
sn+1 = ∞. The ray, i.e. the domain of the integration is
partitioned according to the segments between the inter-
section points, where albedo a(s) and attenuation parame-
ter τ(s) are equal to ai and τi in segment [si−1,si), respec-
tively:

L(0, ω⃗) =
n+1

∑
i=1

si∫

si−1

τiaiLae−
∫ s

0 τ(x)dxds.

Then, we also partition the [0,s] interval according to the
intersection points in the attenuation formula, assuming
that s is in [si−1,si]:

s∫

0

τ(x)dx = τi(s− si−1)+
i−1

∑
j=1

τ j(s j− s j−1).

Thus, the exponential decay is:

e−
∫ s

0 τ(x)dx = e−τi(s−si−1)
i−1

∏
j=1

e−τ j(s j−s j−1).

Substituting this back into the eye radiance, we obtain:

L(0, ω⃗) =
n+1

∑
i=1

aiLa
si∫

si−1

τie−τi(s−si−1)ds
i−1

∏
j=1

e−τ j(s j−s j−1).

We can obtain better quality rendering with shading
without significantly slowing down the rendering. We are
using Rayleigh shading where the phase function is:

P(cosθ) =
3

16π
(1+ cosθ 2)

θ is the angle between the light and the view direction. For
simplicity we assume the light source is directional, thus
we can foil the Rayleigh term before the integral because θ
will be constant in a segment. Therefore we can substitute
La in our equations by

Ls = La +Lr 3
16π

(1+ cosθ 2).

We introduce a shorthand notation for the color contri-
bution Ci of a segment:

Ci = aiLs
si∫

si−1

τie−τi(s−si−1)ds = aiLs
(

1− e−τi(si−si−1)
)

.

(3)
Note that this formula remains valid also for the τi = 0
case, i.e. when the ray travels in free space.

Similarly to the contribution, segment transparency Ti
can also be applied to segment i

Ti = e−τ j(s j+1−s j). (4)

With these shorthand notations, the radiance associated
with a particular pixel is

L(0, ω⃗) =
n+1

∑
i=1

(
Ci

i−1

∏
j=1

Tj

)
. (5)

The evaluation of this formula requires the intersec-
tion points to be sorted and segments to be visited in the
sorted order. If the distances are sorted in ascending order,
at each segment two equations should be evaluated itera-
tively, starting with L = 0 and T = 1:

L ← L+CiT,

T ← T ·Ti.

When the last segment is processed, variable L contains
the radiance of the ray.

There are two critical issues concerning the iterative
evaluation of these formulae. First, segments should be

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
53

stored and sorted on the GPU, without knowing in ad-
vance how many segments a particular ray has. On the
other hand, the properties of the segments, including the
albedo and the attenuation parameter, should be deter-
mined from the object properties. As objects may intersect
each other, this question cannot be simply answered by
checking whose surface the ray has most recently crossed.
These problems are solved by the algorithm presented in
the next section.

3 The rendering algorithm

The algorithm consists of two main steps: At first we col-
lect every intersection point between all rays and object
surfaces in lists associated with rays. Then, in the second
phase, the lists are sorted and processed to get the pixel
colors.

3.1 Data structures

In order to get not only the first ray surface intersection,
but all intersections of an eye ray, the latest features of
the DirectX 11 compatible GPUs are exploited, including
structured buffers and atomic writes.

Figure 4: Data structures.

In particular, we use types of “Byte Address Buffer” and
“Read/Write Structured Buffer”. The first type is used as
the starting element of the linked lists, while the buffer of
the other type is filled with the fragment data structure. We
need also a texture containing the opaque scene with depth
information. The main data stores are the “Fragment and
Link Buffer”, the “Start Offset Buffer”, and the “Opaque
Scene Texture” (Figure 5).

Fragment and Link Buffer: The output data of the first-
phase pixel shader contains the radiance reflected at
the surface, the volumetric attenuation coefficient and
the albedo of the object, a flag whether or not the sur-
face is front facing, and the distance of the fragment

from the eye. We would like to store these values
in a structure and build a list of them for each pixel.
Instead of writing data to the frame buffer, we have
to store them in a special buffer called “Read/Write
Structured Buffer”. It is a generic buffer that contains
the declared type of structure. We have to append
a pointer to each structure, which addresses the next
fragment in the list. The value −1 as address denotes
the end of the list. The size of the buffer depends
on the estimated amount of transparent fragments in
the viewing frustum. If the allocated memory is not
enough for all the transparent fragments, then it will
overflow and we will lose important data. We set a
counter for the buffer, its initial value is 0. When the
shader appends a new structure of fragment data to
the buffer, the value of the counter will provide the
address of the new element. Afterwards we incre-
ment the counter, so it always addresses the next free
slot in the Fragment and Link Buffer. We should up-
date the counter with atomic operators, because it is
parallely used by a number of shader units.

Start Offset Buffer: The type of this buffer is the “Byte
Address Buffer”, which holds 4-byte addresses. The
function of this data structure is to refer to the first
element of the linked list for every pixel. The first el-
ement is always the last fragment that was processed
for that list. When a new structure is appended, the
pointer of the structure will get the value of the as-
sociated element in the “Start Offset Buffer”. Ac-
cordingly, we write the address of the newly stored
structure in the buffer. We have to allocate memory
to store one address for each pixel on the viewport.

Opaque Scene Texture: This shader resource holds the
RGB values of the opaque scene, and the distance of
the fragment from the eye, which is stored in the al-
pha channel. When processing the list, the color read
from this texture is also blended and the fragments
being farther than this opaque fragment are discarded.

3.2 Collecting the fragments

The method starts with rendering opaque objects. The
alpha channel is used to store the distance of the frag-
ment from the camera, so later the list of fragments can
be cropped based on this value.

The next step is to render the transparent objects. The
drawing function sets up the pipeline and passes the ver-
tex information to the GPU. It is important that the culling
of the back-facing fragments must be disabled, otherwise
the GPU discards them and lot of important data about
the transparent scene will be lost. The vertex shader per-
forms the standard transformations, the novel part of the
rendering comes with the pixel shader. When the pixel
shader gets a fragment as input, it allocates and fills a
structure, which contains the surface radiance, the volu-
metric attenuation and albedo, the distance from the cam-

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
54

era, and the orientation of the fragments. Then the shader
stores the structure in the “Fragment and Link Buffer” at
the next free slot and sets the “Start Offset Buffer” us-
ing the screen coordinates of the currently processed frag-
ment. The pointer in the “Start Offset Buffer” at the ad-
dress of the screen coordinate will reference this structure,
and the pointer of the newly inserted structure gets the for-
mer value of the address buffer. This way a new element
is inserted into the linked list.

3.3 Loading and sorting the lists

After the lists are created for each pixel and all the visible
fragment information is in the memory of the GPU, the
second phase of the rendering begins. The next step is to
parse each list in a local buffer, then sort the elements in
ascending order of the distance from the camera. Load-
ing the lists into the local buffer of the shaders at first is
important because working with local data is easier and
faster than reading each structure separately from a shared
resource. To avoid copying larger set of data, an index
buffer should also be created, so during the sort the GPU
moves only indices instead of structures.

3.4 The sorting

Every sorting algorithm has its own characteristic, which
offers advantages and disadvantages depending on the
environment parameters of the sorting. These algorithms
are based on different concepts like partitioning, merging,
selection or insertion, some of them providing bigger
overheads or different efficiency under different condi-
tions. The implementation of the methods can also have
a slight effect on their performance. At first we have to
give an estimated number of the elements of the array
we have to sort. In our case the fragments for each pixel
are stored in these arrays, the GPU will sort each array
independently and will run the same sorting algorithm
for each pixel. So we have one array of fragments in our
shader code, which belongs to the currently processed
pixel. Most of the cases the rendered scene contains some
transparent objects in an opaque environment, but even if
we are experimenting with more complex composition,
it is reasonable to say that the average depth complexity
of a transparent scene is lower than 100 layers. The
algorithms have average, worst and best case scenarios,
since the GPU will run the sorting many thousand times
for each frame, we have to analyze the average speed of
the method. Another important attribute to consider is
whether the elements are presorted in some way. We can
assume here, that the fragments are collected randomly.
However, since we have information about the order of
the objects drawn to the screen, some kind of presorting
could be possible, but right now this enhancement is left
for the future. The computational complexity is maybe
the most important parameter of an algorithm along with
memory usage, we try to find a sorting algorithm that

performs the best under the above mentioned conditions
and needs the lowest amount of memory space. Quicksort
is one of the most popular sorting algorithms and its
optimized versions are considered the fastest of them. As
a general rule this statement can be true, however, it is a bit
more complex than the simpler methods, which provides
remarkable overhead. Additionally the current GPUs do
not support recursive calls, and the basic quicksort is a
recursive algorithm. Its non-recursive version needs also
a stack to implement generating more overhead. In the
case of relatively small lists a much simpler algorithm
can perform better and the insertion sort is a popular
choice. Its disadvantages begin to come forward on
longer lists, while sorting an array of 100 items the
insertion sort outperforms the other sorting algorithms.
(http://warp.povusers.org/SortComparison/integers.html)
Additionally its easy to implement, does not change
the relative order of elements with equal keys, only
requires a constant amount of additional memory space
and performs even more faster on pre-sorted lists. These
attributes makes us insertion sort the best choice here.

3.5 Processing the lists

Figure 5: Distinction of front and back facing surfaces.

After the sorting, the shader blends the fragments ac-
cording to the physical model of light absorption, and
every segment yields its contribution in the final value.
When the GPU finishes sorting the list, the sorted array
of fragments divides the ray into segments. In our model,
both the intersecting and the stand-alone objects divide the
space into homogenous regions, which are represented by
the segments defined by the list of the fragments. Each
segment possesses properties of contributed color Ci and
transparency Ti (equations 3 and 4). These values are
based on the attributes of the objects and the length be-
tween consecutive intersections.

If objects intersect, the contributed color and the trans-
parency should be computed from the length the ray trav-
els in the intersection and the combined attenuation and
albedo. Suppose that the attenuation coefficients are τ1
and τ2 in object 1 and object 2, respectively, and similarly
their albedos are a1 and a2. In their intersection, the parti-
cles of both objects are present, so the probability density
of photon–particle collision is the sum of the elementary

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
55

probability densities:

τ = τ1 + τ2.

Considering the albedo, i.e. the conditional probability
that reflection happens given that the photon collides, we
can obtain the following combined value:

a =
τ1a1

τ1 + τ2
+

τ2a2

τ1 + τ2
.

The properties of the segments can be determined while
traversing the list. The list items represent surfaces, i.e.
object boundaries, where the optical properties of only the
respective object can be fetched. Thus, the optical prop-
erties of the segments, including the combination of the
albedos and the attenuation coefficients, need to be com-
puted on the fly while we are traversing the list.

Suppose, we maintain two running variables a and τ that
represent the albedo and the attenuation coefficient of the
current segment. When a list item is processed, i.e. when
we cross a surface, these running variables are updated.
If the list item represents a front facing surface, then we
enter object o whose parameters are stored in the list, in
variables ao and τo. Consequently, the running albedo and
attenuation are updated to reflect the properties of this new
object:

a ← (τa+ τoao)/(τ + τo),

τ ← τ + τo.

When the traversal encounters a back-facing fragment,
we leave an object, thus its attenuation and albedo should
be removed from the combined values. To execute this,
the inverse of the previous formulae should be evaluated:

τ ← τ− τo,

a ← (τa+ τoa− τoao)/τ.

In order to initialize these iterations when we start the
list traversal from the eye position, we should determine
which objects contain the eye position. This information
can be found by traversing the ordered list backward start-
ing at the farthest intersection point, where we assume that
we came from free space, thus τ = 0 and a = 1. During
this initial traversal, the same operations are performed,
just the roles of front-facing and back-facing segments are
exchanged.

4 Results

The presented algorithm has been implemented in a Di-
rectX 11/HLSL environment on an ATI Radeon 5700
graphics card. The modeled scene consists of 50000
opaque triangles and 150000 transparent triangles, the res-
olution for the tests is set to 800× 600. The frame rate
mainly depends on the depth complexity of the currently

rendered scene. If no transparent object is present, the per-
formance is about 110 FPS because of the overhead of the
two-step process. As the depth complexity and the trans-
parent area grow, the frame rate decreases. If there are
more than 20-30 layers of transparent surfaces, the perfor-
mance falls below 10 FPS.

The test scene for the table above consists of full screen
layers, so each frame’s linked list contains the same num-
ber of layers.

Table 1: Results with 800×600 resolution
Layer count FPS

2 90
4 49
6 32
8 23
10 18
12 14
14 12
16 10

Table 2: Results with 1024×768 resolution
Layer count FPS

2 51
4 27
6 18
8 13
10 10
12 8
14 6
16 5

5 Conclusions

The paper introduces a real-time method for rendering
transparent, and possibly intersecting objects considering
the order of the fragments. The implementation is capa-
ble of running relatively high framerates and provides a
mathematically correct and more realistic result. The pre-
vious approaches were able to render simple scenes with
low resolution and frame rates, thus, the method presented
here demonstrates a significant advancement. In the future
this technique can be used in particle systems, improving
the quality of particles and eliminating artifacts when in-
teracting with each other. Currently, we can handle about a
hundred particles in real-time. The plans for the future also
involve the shading of the transparent objects. The cur-
rent solution uses only ambient lights and Rayleigh shad-
ing, the introduction of various light sources and shadows
would significantly improve the rendering quality.

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
56

Figure 6: Rendering results (internal view of a space ship).

Acknowledgements

This work has been supported by OTKA K-719922, and
by the scientific program of the “Development of quality-
oriented and harmonized R+D+I strategy and functional
model at BME” (Project ID: TMOP-4.2.1/B-09/1/KMR-
2010-0002). The authors are grateful to NVIDIA for do-
nating the GeForce 480 GPU cards.

References

[1] M. de Berg. Efficient Algorithms for Ray Shooting and
Hidden Surface Removal. PhD thesis, Rijksuniversiteit te
Utrecht, The Nederlands, 1992.

[2] Oskar Elek and Petr Kmoch. Real-time spectral scatter-
ing in large-scale natural participating media. In Helwig
Hauser and Reinhard Klein, editors, Proceedings of Spring
Conference on Computer Graphics 2010, pages 83–90.
Comenius University, Bratislava, 2010.

[3] C. Everitt. Interactive order-independent transparency.
Technical report, NVIDIA Corporation, 2001.

[4] Nicolas Thibieroz Holger Gruen. Oit and indirect illumina-
tion using dx11 linked lists. In Game Developers Confer-
ence, 2010.

[5] Kevin Myers Louis Bavoil. Order Independent
Transparency with Dual Depth Peeling. 2008.
http://developer.download.nvidia.com/SDK/10/opengl/src/
dual depth peeling/doc/DualDepthPeeling.pdf.

[6] L. Szirmay-Kalos and W. Purgathofer. Global ray-bundle
tracing with hardware acceleration. In Rendering Tech-
niques ’98, pages 247–258, 1998.

[7] L. Szirmay-Kalos, L. Szécsi, and M. Sbert. GPU-Based
Techniques for Global Illumination Effects. Morgan and
Claypool Publishers, San Rafael, USA, 2008.

[8] N. Thibieroz. Robust order-independent transparency via
reverse depth peeling in Direct3D 10. In Wolfgang Engel,
editor, ShaderX 6: Advanced Rendering Techniques, pages
211–226. Charles River Media, 2008.

[9] T. Umenhoffer, L. Szirmay-Kalos, and G. Szijártó. Spheri-
cal billboards and their application to rendering explosions.
In Graphics Interface, pages 57–64, 2006.

[10] Phil Willis. Projective alpha colour. Computer Graphics
Forum, 25(3):557–566, 2006.

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
57

58

Attention & Entertainment

Saliency map augmentation with facial detection

Julia Kucerova∗

Supervised by: Elena Sikudova†

Faculty of Mathematics, Physics and Informatics
Comenius University
Bratislava / Slovakia

Abstract

Visual attention is very important in human visual percep-
tion. It is the ability of a vision system to detect salient
objects in an observed scene. This scientific discipline has
been studied for over a century. Nowadays it is involved in
the disciplines of psychophysics, cognitive neuroscience
and computer science.
This paper describes several visual attention models for
detecting salient objects in complex scene and focuses on a
model based on local context suppression of multiple cues.
Although this model is useful to capture visual attention in
images containing small objects, it fails in detecting faces
as salient objects.
For this reason we improved the model by adding more
attention cues. We propose a method for detecting salient
objects based on texture, where face detection is used as
an additional attention cue.

Keywords: Visual Attention, Texture attention cue,
Salient object, Face detection

1 Introduction

“Everyone knows what attention is...”

William James, 1890

Humans cannot attend to all things at once. Their visual
system has the ability to pay attention to some parts of the
observed scene - salient objects. Visual attention models
detect these salient objects in scene.

There are two general visual processes, called bottom−
up and top−down.
The bottom-up process is task-independent. This process
tries to predict which parts of the observed scene could at-
tract more attention and computes saliency map. It could
be used in machine vision, automatic detection of goals in
nature scenes, intelligent image compression, etc. Salient
objects in scene are for example a burning candle in a dark
room or the lips and eyes of a human face, because they
are the most significant elements of the face. If there are

∗kucerova.julia@gmail.com
†sikudova@sccg.sk

many salient objects in the scene, they become obscure be-
cause of the big amount.
The top-down process is volition-controlled and task-
dependent. It drives observer‘s attention on one or more
objects that are relevant to the observers goal when study-
ing the scene. For example the task could be to find red
car on a car park, or to count particular objects in a scene.
When the observer is concentrated to find some objects in
the scene, he will fob off some salient objects. For that
reason some objects that are salient in bottom-up process
could not be found with top-down process.
In 1967 psychologist Yarbus recorded eye movements of
participants watching an image. The subjects had task to
observe Repin‘s picture ”An Unexpected Visitor” and they
were asked to answer a number of different questions (Fig-
ure 1).

Figure 1: Repins picture was examined by subjects with
different instructions; 1. Free viewing, 2. Judge their ages,
3. Guess what they had been doing before the unexpected
visitors arrival, 4. Remember the clothes worn by the peo-
ple, 5. Remember the position of the people and objects in
the room, 6. Estimate how long the visitor had been away
[1].

The motivation of our work is that visual attention is
very important in human vision. We can use our knowl-
edge about visual attention for many applications. In
image compression we can compress background objects
while salient objects stay untouched. Or we can use it in
artefact removal algorithm to remove uninformative and
distracting color boundaries [11].

Faces are very significant in human perception of the
scene. This fact was studied in [5], where the authors
investigated, whether faces are capable of capturing atten-

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)

tion when compiting with other non-face objects. Their
results suggest, that faces in fact attract attention.

The approach proposed in this paper is using face detec-
tion as an additional attention cue. It combines color, in-
tensity and texture features with face detection map to get
saliency map. Our work presents a model based on local
context suppression of multiple cues presented by Hu [6].

This paper is organized in the following way: The work
of other authors in the area of the visual attention is dis-
cussed in section 2. In section 3 the model based on local
context suppression of multiple cues is described. In sec-
tion 4 we describe face detection system used here and in
section 5 the feature combination. In section 6 the paper
presents the comparison of different methods and section
7 concludes the paper.

2 Related work

Visual attention has been studied for over a century. Early
studies of visual attention were simple ocular observa-
tions. Since then the field has grown and nowadays it is
involved in many scientific disciplines.

Scientists have observed human visual system, visual
attention and many computational models have been pro-
posed to predict what will attract our visual attention [2].
Human visual system is sensitive to features like changes
in color, shapes, intensity etc. In some models low level
features like color, intensity and orientation are used as at-
tention cues.

Itti et al. [2] developed a visual attention model based
on the behavior and the neural architecture of the early
primate visual system. Authors used low level features
like color, intensity and orientation as attention cues. They
implemented linear center surround operation on multi-
scaled feature images. This images are created using
Gaussian pyramids. After normalization all feature im-
ages are combined into a single saliency map. 2D winner-
take-all algorithm is used for detection saliency regions in
an image. Ma and Zhang [9] proposed a new approach
for obtaining the saliency map. They used contrast analy-
sis and developed a fuzzy growing technique in the visual
attention model to extract salient regions. Bergum et al.
proposed mathematical framework of visual attention for
robotic system. In [3] they integrated object- and space-
based models of visual attention.

Visual attention models have a wide use. Nowadays we
find them in robotic systems, image compression, com-
mercial industry etc. There are many approaches and sys-
tems for detecting salient objects and they are still improv-
ing.

3 Model

In this section we describe model presented by Hu [6],
which is used as a base model for our approach.

Hu’s model is based on local context suppression. The
authors used texture as an additional attention cue for
salient region detection. They also developed feature com-
bination strategy that suppresses regions in contrast maps.
This strategy uses local context information to suppress
spurious attention regions and enhance the true attention
regions.

Texture is very useful to capture visual attention in im-
ages containing small objects. Texture Attention Cue used
in this model was obtained as follows. Image was divided
into blocks, called texture patches. By taking the Gabor
Wavelet Transform at different scales each texture patch
is represented by the mean and the standard deviation. In
this way mean maps and standard deviation maps were ob-
tained. Consequently Average Mean Difference (AMD)
and Average Standard Deviation Difference (ASDD) were
created. Texture contrast at a patch (i, j) at any scale s and
orientation k was calculated as

TCs,k(i, j) = AMDs,k(i, j)×ASDDs,k(i, j). (1)

Consequently the final Texture contrast at patch (i, j) was
calculated as

TC(i, j) = ∑
s

∑
k

TCs,k(i, j). (2)

Local context suppression strategy for adaptive combi-
nation of multiple attention cues like intensity, color and
texture is describe here. Consider an image divided into
blocks, called an Attention Patches, each containing p×q
pixels. The contrast of particular feature at a patch cen-
tered at (i, j) is calculated as

FV (i, j) =
1
N ∑

u,v
|MF(i, j)−MF(i+u, j+ v)|, (3)

where MF(i, j) is the mean of the feature in patch (i, j)
and N is the number of patches in its neighborhood.
The contrasts at patch (i, j) for n features/attention cues
are normalized to lie between [0,1]. Each patch is now
represented by the n dimensional feature contrast vector
which is compared with other feature contrast vectors in
its neighborhood and its contrast measure is suppressed
if the patch and its neighbors are ‘similar’. This similar-
ity is estimated by the variance of data along eigen vec-
tors of an n× n covariance matrix. This matrix is formed
from the feature contrast vectors at a patch (i, j) and its
neighborhood. The eigen values λ̄ of this matrix represent
the extent of similarity or dissimilarity among the attention
cues. For example a large eigen value indicates large vari-
ance along the direction of its corresponding eigen vector,
which implies higher discriminating power.

The suppression factor (SF) for patch (i, j) is obtained
as τ(i, j) = ∏p

u=1 λ̄u, where the λ̄ ’s are sorted in ascending
order and the parameter p controls the degree of suppres-
sion. For obtaining the saliency S(i, j) for patch (i, j) the

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
62

multiple attention cues are linearly combined and the re-
sult is modulated by the SF as

S(i, j) = τ(i, j)×
k

∑
u=1

FVu(i, j). (4)

The product of the combined map and the SF yields the
final saliency map which contains the true Attention Re-
gions. In the combined map there are spurious attention re-
gions. Using Suppression Factor, these regions have been
successfully removed [6].

4 Face detection

Detecting faces in the scene is a difficult problem. There
are wide variety of faces to match, variations in lighting
and shadows, presence of facial hair, possibility of scal-
ing, angular and dimensional variances. Face detection is
important in many human-computer interaction systems.
There are many different approaches for detecting faces in
the images: knowledge-based methods, feature invariant
approaches, template matching, appearance-based meth-
ods.

In this paper we use face detection as an additional at-
tention cue. We use two different systems for face detec-
tion and after comparison we decide for one of them. The
first system is based on Rowley-Baluja-Kanade neural net-
work. In order to better detect the faces this system was
combined with skin detection. The second one is based on
Viola/Jones‘ algorithm.

4.1 Rowley-Baluja-Kanade Face Detector

In this system we use combination of skin detection and
Rowley-Baluja-Kanade (RBK) face detector. Skin color
distribution used in this paper is modeled using a single 2D
Gaussian distribution [12]. For face detection we used a
software [10] that implements the Rowley-Baluja-Kanade
RBK neural net face detector with some enhancements
for training and recognition. Rowley‘s et al. face detec-
tion system is neural network-based system and authors
present a straightforward procedure for aligning positive
face examples for training.

As an input we have image in HSV color space. To
get a faster face detection we used skin probability maps.
Face detector is then applied only in the regions, where
skin was detected. As an output we get regions of possible
skin patches. We will label non-skin regions of the im-
age (usually background) with 0 and possible skin regions
with 1. Consequently we multiply this map with the input
image. This results in set of possible face candidates that
is used as input for face detection system. Consequently,
after face detection, we used threshold to get binary map
(Figure 2 c)).

Figure 2: a) Input Image b) face detection based on 4.2 c)
face detection based on 4.1

Face detector Overlap Left Out
Viola/Jones 80.24% 37.9%

Rowley 89.18% 79.2%

Table 1: Compare Face detectors

4.2 Viola/Jones‘ Face Detector

This system is used for real-time object detection. Train-
ing in this face detection system is slow, but detection is
very fast. Key ideas of this face detector are integral im-
ages for fast feature evaluation, boosting for feature se-
lection, attentional cascade for fast rejection of non-face
windows.

We used the implementation of Viola/Jones‘ system
(V J) found in [8]. This system uses mid cumulative prob-
ability distribution point as threshold for weak classifiers.

We compared these two face detectors. As you can see
in Table1-Overlap, Viola/Jones‘ system detected less faces
as RBK Face Detector because of frontal detection. How-
ever V J system has much less false positive detections than
RBK Face Detector (Table1-Left Out). In our system we
need good face detection with the least possible false pos-
itive detections. For that reason we decided to use V J sys-
tem.

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
63

Figure 3: Features combination

5 Features combination

The combination of features that yields the final saliency
map that includes only the true attention regions is a hard
problem. Some approaches suggesting linear combina-
tion [2], other suggest some post-process, weighted com-
bination etc.

In this paper we used and modified feature combination
proposed in [6]. As shown in Figure 3, we have four fea-
tures: color, intensity, texture and face detection maps.
Contrast maps for intensity, color and texture are obtained
the same way as in [6] and face detection map is obtained
by Viola/Jones‘ Face Detector.

As a first step of feature combination we sum together
and normalize three contrast maps (color, intensity, tex-
ture) to get the Combined map.
We derive the suppression factor by building up the sup-
pression map from color, intensity and texture as proposed
in [6]. We combine this map with the map for face detec-
tion to get the suppression factor, which highlights signif-
icant regions as well as faces.

Suppression factor is a map consisting of darker regions

representing high suppression factor and brighter regions
representing low suppression factor. That means, that
brighter regions are more significant than darker regions.
Consequently we multiply this map with Combined map.
With this process we get final Saliency map for input
image.

6 Results

This section summarizes the results of the proposed ap-
proach.

We used images from Visual Object Classes
database [4] for testing, which is a benchmark in vi-
sual object category recognition and detection. It contains
standard dataset of images and annotation, and standard
evaluation procedures and significant variability on terms
of object size, orientation, illumination etc. In this dataset
images are sorted in many different classes as persons,
animals, indoor images, vehicles etc.

We compare our system with the system based on Itti et

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
64

Figure 4: Experiment results a) Original Image; b) Saliency map using proposed method c) Hu‘s model [6] d) Itti‘s
model [7] e) Manual combination

al. [7] and model proposed by Hu et al. [6]. For compari-
son we used salient regions obtained by manual inspection
of the images. We asked several(11) observers to highlight
significant regions. These maps were than summed to-
gether, normalized and then thresholded. In the next phase
of our work, we will use data from eye tracking system to
obtain real saliency data and compare them with our re-
sults.

For comparison our results we used symetric Kullback-
Leibler divergence

KLD(P,Q) = ∑
i
(P(i)−Q(i))∗ log

P(i)
Q(i)

, (5)

where P is saliency map obtained by Itti‘s model [2], Hu‘s
model [6] or our model, and Q is the manual map. When
the two probability densities are identical, KLD is null.
The lower KLD, the better model.

As you can see in Table 2 our approach has the lowest
KLD. Salient regions detected using Itti‘s model contain
faces, but cover a significant portion of the input image.

Visual Attention Model KLD
Proposed method 1.1377

HU 2.2807
ITTI 1.6642

Table 2: Compare Visual Attention Models

Hu‘s model is very useful in images obtaining for example
texture foreground in non-texture background, but as you
can see, it is less successful in images containing faces
and bigger objects. Our approach detects salient regions
of various sizes as well as faces.

Noticeable, that regions, which contain faces are more
salient than other parts in the image.
Although the true attention regions are very subjective for
each observer, they could be detected to a large extent.
By using our model we can detect salient objects more
accurately.

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
65

7 Conclusions and Future work

As a conclusion the best results achieved using this model
are comparable with other visual attention models as Itti‘s
model [2], Hu‘s model [6]. Our approach is based on the
idea, that faces take more attention in the observed scene.
We adapt input model [6] by adding face detection as an
additional attention cue.

Data obtained with this approach are very useful. Detec-
tion of saliency regions in the observed scene is being used
in image compression. Compression using visual attention
rests in fact, that salient regions could be less compressed
than non-salient regions.

In the next phase of our work the face detection process
will be improved by exploring different feature combina-
tion and/or more color spaces. We will also improve the
suppression factor for better results.

As a future work we planed to use eye tracking of sub-
jects to obtain real saliency data and compare them with
the proposed method.

8 Acknowledgments

The author wish to thank Elena Sikudova, PhD. for her
support and the excellent leadership in this project.

References

[1] K. Cater, A. Chalmers, and G. Ward. Exploiting
visual tasks for selective rendering. In Eurograph-
ics Symposium on Rendering, pages 270–280. Euro-
graphics, 2003.

[2] L. Itti et al. A model of saliency-based visual atten-
tion for rapid scene analysis. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 20(11).

[3] M. Begum et al. Object- and space-based visual at-
tention: An integrated framework for autonomous
robots. pages 301–306. IEEE/RSJ International Con-
ference on Intelligent Robots and Systems, IROS,
2008.

[4] M. Everingham et al. Visual object classes
database. [Online] http://www.pascallin.
ecs.soton.ac.uk/challenges/VOC/,
2006-2009.

[5] S.R.H. Langton et al. Attention capture by faces.
Cognition, 107:330–342, 2008.

[6] Y. Hu et al. Adaptive local context suppression of
multiple cues for salient visual attention detection. In
IEEE International Conference on Multimedia and
Expo, pages 1–4, 2005.

[7] J. Harel. A saliency implementation in mat-
lab. [Online] http://www.klab.caltech.
edu/˜harel/share/gbvs.php, 2010.

[8] V. Kazemi. Face detector (boosting haar fea-
tures). [Online] http://www.mathworks.
com/matlabcentral/fileexchange/
27150-face-detector-boosting-
haar-features, 2010.

[9] Y. F. Ma and H. J. Zhang. Contrast-based image at-
tention analysis by using fuzzy growing. In ACM
International Conference on Multimedia, pages 374–
381, 2003.

[10] S. Sanner. Rowley-baluja-kanade face detector.
[Online] http://users.cecs.anu.edu.au/
˜ssanner/Software/Vision/Project.
html, 2005.

[11] F. Stentiford. A visual attention estimator applied to
image subject enhancement and colour and grey level
compression. In International conference on Pattern
Recognition (ICPR(3)), pages 638–641. IEEE, 2004.

[12] E. Šikudová. On some possibilities of automatic im-
age data classification. PhD thesis, Comenius Uni-
versity, Bratislava, Slovakia, March 2006.

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
66

Do-It-Yourself Eye Tracker: Impact of the Viewing Angle on the
Eye Tracking Accuracy

Michal Kowalik∗

Supervised by: Radoslaw Mantiuk†

Faculty of Computer Science
West Pomeranian University of Technology in Szczecin

Poland

Abstract

In the paper we research the relations between the eye
tracker accuracy and the human view angle. We measure
the accuracy of the gaze point estimation for a typical and
wide view angles and discuss limits of the field of view
covered by an eye tracker. The measurements are captured
during perceptual experiments with human observers. We
built eye tracking station consists of our own construction
eye tracking glasses and ITU Gaze Tracker software. It’s
based on the pupil-detection technique. We used this eye
tracker station, called Do-It-Yourself, in the experimen-
tal hardware setup. We conduct perceptual experiments to
measure eye tracker accuracy for increasing view angles.

Keywords: eye tracking,eye tracker hardware,view angle
estimation,subjective experiments

1 Introduction

Eye tracking devices determine the position of the eye in
space and compute position of a gaze point and a gaze
direction. This information is utilised in science and tech-
nology, e.g. to test peoples’ preferences concerning adver-
tisement, or to control computer via the eye tracker inter-
face, etc.

The progress in technology increases availability of
computer monitors with large diagonals. They cover wider
viewing angle and strengthen impression of the visualisa-
tion realism. Most probably, we can expect a display that
covers the whole 180◦ degrees of human visual angle in
the near future. The eye tracking technology must be ad-
justed to these parameters. However, other limitations of
Human Visual System (HVS), like foveal vision, also in-
fluence the eye tracker operation.

The main objective of the article is determine a rela-
tionship between eye tracking accuracy and visual angle.
We measure accuracy of eye tracker for small and large
view angles. In research we used Do-It-Yourself (DIY)
eye tracker: our own construction eye tracking glasses in

∗kkowalik@wi.zut.edu.pl
†rmantiuk@wi.zut.edu.pl

cooperation with ITU Gaze Tracker software. We built
this low cost eye tracker to gain full control over the eye
tracking pipeline. We conduct perceptual experiments to
measure eye tracker accuracy for increasing view angles.
We determine the limits of accuracy resulting from eye
tracker hardware design and possibilities of gaze estima-
tion algorithms.

Section 2 presents basic terminology and classification
of eye tracking techniques. Design of DIY eye tracker is
depicted in Section 3. Section 4 contain the eye tracker ac-
curacy concept. Section 5 described experimental proce-
dure together with the discussion of results. We conclude
the paper in Section 6.

2 Background and previous works

The tracking of viewing direction have been known in sci-
ence for many years. With eye tracking techniques we
are able to identify the place which a user is looking at.
This discipline deals with the measurement, recording and
analysing data about the location and movements of the
eyeballs. The results of the eye tracker work is the point
of regard. A subset of the points of regard is known as an
region of interest (ROI). Science knows eye tracking ana-
log methods for example contact lenses [13] or electro-
oculogram [1]. These methods are invasive and come into
a strong interaction with the user. Modern eye tracking
systems use the image of eye obtained by video equipment
to calculate the point of regard. They are more comfort-
able for users than the intrusive methods. We distinguish
two types of video based eye-tracking systems [6, 5]: mo-
bile - the camera is mounted on the head and remote - the
camera is located near the monitor. The mobile system
consists of glasses or a helmet with mounted cameras that
record the movements of an eye or eyes.Remote system
consists of a camera located close to the monitor in the
front of observer.

Eye tracking systems work in visible light [10] or in in-
frared light, based on the image of one eye [15] or stereo-
scopic vision [4].The infra-red eye apparition allows to
locate the dark pupil, the bright pupil and the corneal re-
flection (See Fig. 1). [6]

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics

Figure 1: Appearance of human eye in infrared light:
A) dark pupil and corneal reflection - a flash located on
the surface of the eye, B) bright pupil.

The changes analysis of the vector connecting the centre
of the pupil and corneal reflection is a classic example of
the remote eye tracking method. Assuming that the eye is
a sphere and rotates around its own centre and camera with
infrared source is stationary then a corneal reflection posi-
tion is unchanged to different gaze direction. The Corneal
reflection can be used as a reference point. The centre of
the pupil (or iris) with a corneal reflection create a vector
which is mapped to the coordinates of the screen during
the calibration process. This solution is non-invasive and
allows user for small head movements. [12]. The remote
methods divide into: based on changes of the pupil - eye
corner vector [19], mapping of four corneal reflections
[17, 18, 7] and based on the three-dimensional model of
the eye [15].

Tracking pupil centre is a method which is used in mo-
bile eye trackers (mounted on the head). It uses dark pupil,
thresholding and model fitting method. The position of
pupil centre is compensated with parameters derived in
the calibration process. The result is an estimated point of
gaze [11, 16]. The algorithms which works in the visible
light use the centre of the iris to calculate point of regard.

The mobile eye tracking systems are less comfortable
for user than the remote systems because some device
must be wear. However, they range is not limited to dis-
play screen space and they can operate e.g. in the real
environment.

3 Do-it-yourself Eye Tracker

In our project was created Do-it-yourself Eye Tracker sta-
tion (DIY ET). The main goal of the project was to create
inexpensive and simply in construction eye tracking tool.
DIY ET base on self constructed eye gaze tracking glasses
supported by open source eye tracking application.

3.1 Eye tracking glasses

DIY ET belongs to the group of head mounted eye track-
ers. It works in infra-red spectrum using dark pupil ef-
fects. The point of gaze is calculated by the position of
pupil centre.

DIY ET consists of two main parts: eye tracking glasses
and computer with ITU Gaze Tracker software. The con-

Figure 2: DIY Eye Tracking setup.

struction of the eye gaze tracking glasses was based on
articles [14, 3, 9].The glasses are made of off-the-shelf
component. The main part of glasses is the capture mod-
ule (Fig. 3D). It is responsible for providing an image
of the eye to the computer. This module was created by
using the Microsoft LifeCam VX-1000. We mounted a
suitable filter in camera lens that allows capturing images
in infrared light (Fig. 3A-B). The glasses are connected
to a computer via USB port. Based on the USB techni-
cal specification a infra-red illumination system was inte-
grated with the capture module. The infra-red LEDs are
located on the capture module and supplied by USB cable
(Fig. 3C). This solution is very practical. The capture
module was placed at the end of the aluminium wire and
then mounted to the modified safety glasses frame (Fig.
4).

The created glasses provide a picture of an eye to the
computer by USB. Then supported application computes
the point of gaze and returns in the form of coordinates
(X,Y). The coordinates are stored in LOG file or trans-
ferred directly to another application via client-server.

Figure 3: The creation of capture module: A) original lens
from Microsoft VX-1000 web cam with visible light filter,
B) preparation of IR filter, C) LEDs wiring diagram, D)
capture module of eye tracking glasses.

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics
68

Figure 4: DIY eye tracking glasses.

3.2 ITU Gaze Tracker

The DIY eye tracker is controlled by the ITU Gaze Tracker
software. ITU Gaze Tracker [2] is application designed in
IT University of Copenhagen with open source licence 1.
The application estimates the gaze point by mapping the
centre of the pupil to screen coordinates using the param-
eters obtained in the calibration process. Image of eye in
infrared light is captured in consecutive frames. The pupil
centre is determined and its movements are being tracked.

4 Evaluation of eye tracker accuracy

We discuss accuracy of eye tracking systems. The eye
tracker accuracy is measured in degrees of visual angle.

4.1 Human field of view

The whole human viewing angle is about 180◦ horizon-
tally and 130◦ vertically. However, the binocular field of
vision covers only about 120◦ horizontally. Additionally,
The details can be read only by fovea - a part of the eye
located in the middle of the macula on the retina. Fovea
extends from 1◦ to 5◦ the human view angle.

An eye tracker should operate in a view field that do
not force head movements. One assumes that it is not
more than 120◦ of binocular vision. For observer sitting
in 50 cm distance from a screen, a display should be up to
170 cm wide.

4.2 Gaze angle

During calibration an observer is asked to look at a set of
target points displayed in different position on the screen.
The image of the eye is recorded and the eye pupil centre
location is calculated. Correlation between calculated po-
sition of the pupil centre and known position of the target
points is used to approximate coefficient a0−5 and b0−5 of
the polynomial:

1http://www.gazegroup.org/

{
screenx = a0 +a1x+a2y+a3xy+a4x2 +a5y2

screeny = b0 +b1x+b2y+b3xy+b4x2 +b5y2,
(1)

where (screenx,screeny) are the gaze point coordinates
on the screen, (x,y) are the coordinates of the centre of
the pupil [2]. The accuracy of calibration process signif-
icantly affects error arising during eye tracker operation.
This accuracy of eye tracker is determined by indicating
the differences in position between the reference points
with known position and measure gaze points. The ac-
curacy is expressed in degrees of visual angle.

4.3 Error factors affecting accuracy of eye
tracker

A significant error affecting the accuracy of the gaze point
estimation is the head movement. We use a chin-rest to
stabilise the head and increase the DIY eye tracker accu-
racy. Other solutions utilise algorithms that compensate
head movements [8] or use additional the head trackers.

For the wide view angles the eye tracker cannot detect
pupil centre accurately. The extreme situation is presented
in Figure 5B where pupil was not detected by image pro-
cessing software.

Figure 5: Detection of the pupil for standard (A) and wide
view angle (B).

The DIY eye tracker is equipped in one camera and
takes image of only one eye. The measurement error can-
not be compensated by the data from the second eye. An-
other sources of errors encompass inaccuracies of the pupil
centre extraction, variation of lighting and of shadows cov-
ering the eye. Changing illumination cause confusion in
getting clear image of eye. For this reason the software
cannot measure position of pupil centre. It is really impor-
tant to provide stable lighting during research.

Results of DIY ET have a high standard deviation. It is
characteristic for the data from the eye tracker and arises
from the physiology vision of the human eye. Human eye
fix independent of human will around gaze point. It can
creates a outliers. Filtering the outliers may be the solution
to reducing standard deviation.

5 Perception study

The goal of the tests was to find relation between the ac-
curacy of eye tracker and an observer view angle. During
tests we used hardware setup based on the DIY eye tracker.

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics
69

5.1 Hardware setup

Our experimental setup is presented in Figure 6. It con-
sists of the DIY eye tracker controlled by the ITU Gaze
Tracker software (2.0 of this software). The application
was activated on PC equipped with Windows XP SP3 op-
erating system, AMD Athlon 64 X2 Dual Core Processor
3600+, NVIDIA GeForce 7600 GS 512MB graphics card
and 3GB DDR2 RAM. The target points were displayed
on Samsung SyncMaster 2233sn with the screen dimen-
sions 46.5 x 27 cm, and native resolution 1920x1080 pix-
els (60Hz).

We used the chin-rest adopted from the ophthalmic slit
lamp. The tests were conducted for three distances from
eyes to the screen: 70 cm, 50 cm and 30 cm. Reduction of
distance corresponds to increase an angle of view.

We used our own construction eye tracking glasses (Fig.
4). The glasses worked with 640x480 pixels resolution and
30 fps frequency.

Figure 6: Hardware setup used during experiments.

5.2 Participants

Ten users with an age from 21 to 56 participated in our
experiment (two woman’s and eight men). Seven partic-
ipants had normal vision, three of them had corrected vi-
sion with lens. We asked each participant to repeated the
experiment three times for each distance. In all we have
ninety measurements, thirty for each distance. The whole
experiment for one person lasted less than 8 minutes. Par-
ticipants were aware that accuracy of the eye tracker is
tested, however they do not know details of the experi-
ment.

5.3 Procedure

The participants were asked to wear the DIY eye tracker
and use the chin-rest to stabilise the head. They looked at
the target points that were displayed on the screen one by
one in random order as white circles. The procedure was
repeated for 70 cm, 50 cm and 30 cm distances by tuning
position of the monitor. The monitor and participant were
located on the same axis of symmetry.

5.4 Results

Figure 8 presents all data collected during the test proce-
dure. Location of the target points is marked by red circle,
the observers’ gaze points are depicted as a blue dots. Dis-
tribution of gaze points for shortest distance (highest view
angles) is more spread out and does not follow the target
point position very well. It results higher accuracy error.
Figure 7 presents box plots of average error for sixteen
target points. The central mark (red line) indicates median
value of the error, the edges of the box are the 25th and
75th percentiles, the whiskers extend to the most extreme
data points not considered outliers. Outliers are plotted
individually as red crosses. The blue horizontal line indi-
cates view angle error equal to one degree of visual angle.

For 70cm distance from screen, average error for all
target points amounts to 0.34deg (with standard devia-
tion equal to 0.49deg) for horizontal direction and 0.45deg
(with standard deviation equal to 0.58deg) for vertical di-
rection. For higher view angles (50cm distance), the er-
rors increase to 0.59deg (standard deviation 0.75deg) and
0.55deg (standard deviation 0.59deg) for horizontal and
vertical direction respectively. For highest view angles
(30cm distance), the errors increase to 1.77deg (standard
deviation 1.71deg) horizontally and 1.20deg (standard de-
viation 1.03deg) vertically.

The results of our experiment demonstrated high influ-
ence of observers’ viewing angle on eye tracker accuracy.
The best accuracy was measured for largest distance from
screen (70 cm). Precision dropped with reduce the dis-
tance and is worst for 30 cm (widest angle of view). How-
ever, we did not notice this relationship for the individual
target points.

There are no regular fluctuations of the error for central
and extreme target points. In Fig. 8-bottom we observed
dependence between four centre points and rest outside
points. The gaze points for the centre reference points have
got worse accuracy than the outside gaze points. They are
strong shifted toward outside. It is not expected depen-
dence because these four centre points are placed in sharp
field of view (for 30 cm distance) contrast to the outside
points. Large group of outside points (12 points) affect
to calculation of polynomial terms stronger than group of
centre points (4 points). In this case the outside points
have got better accuracy than the centre gaze points. This
error is consequent of calibration method implemented in
the ITU Gaze Tracker application.

6 Conclusions and future work

The main contribution of this paper is indication relation
between accuracy of eye tracking system and viewing an-
gle. Precision drops with wider angles of view. Accuracy
of the DIY eye tracker is close to 0.6 degree for standard
viewing angles (up to 30 degrees, 50 cm distance from
screen). It is satisfactory result considering low cost of the

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics
70

eye tracker. However, the accuracy decreases to 1.7 de-
grees for wide view angles what seems to be unacceptable
in most applications.

In future work we plan to implement validation of DIY
eye tracker which allows to achieve more accurate results
and shows better the relationship between the eye tracker
and the wide angle. Combination of eye tracking with
head tracking seems to be the solution of head movements
problem. We plan to build low cost head tracking device
and integrate it with the DIY eye tracker.

References

[1] Kaufman A., Bandopadhay A., and Shaviv B. An
eye tracking computer user interface. Proc. of the
Research Frontier in Virtual Reality Workshop, IEEE
Computer Society Press, pages 78–84, 1993.

[2] Javier San Agustin, Henrik Skovsgaarda, and Dan
Witzner Hansen John Paulin Hansen. Low-cost gaze
interaction: Ready to deliver the promises. CHI,
2009. Boston, Massachusetts, USA.

[3] J. Babcock, J. Pelz, and J. Peak. The wearable eye-
tracker: A tool for the study of high-level visual
tasks. Proceedings of the Military Sensing Symposia
Specialty Group on Camouflage, February 2003.

[4] Yongqin Cui and Jan M. Hondzinski. Gaze tracking
accuracy in humans: Two eyes are better than one.
Neuroscience Letters, 396:257–262, 2006.

[5] A.T. Duchowski. Eye Tracking Methodology: The-
ory and Practice (2nd edition. Springer, London,
2007.

[6] Riad I. Hammoud. Passive Eye Monitoring - Al-
gorithms, Applications and Experiments. Springer-
Verlag Berlin Heidelberg, 2008.

[7] You Jin Ko, Eui Chul Lee, and Kang Ryoung Park.
A robust gaze detection method by compensating
for facial movements based on corneal specularities.
Pattern Recognition Letters, (29):1474–1485, 2008.

[8] Susan M. Kolakowski and Jeff B. Pelz. Compensat-
ing for eye tracker camera movement. Proceedings
of the 2006 symposium on Eye tracking research and
applications, pages 79–85, 2006. California.

[9] D. Li, J. Babcock, and D.J. Parkhurst. openeyes: A
low-cost head-mounted eye-tracking solution. Pro-
ceedings of the ACM Eye Tracking Research and Ap-
plications Symposium, 2006.

[10] Dongheng Li and Derrick Parkhurst. Open-source
software for real-time visible-spectrum eye tracking.
Human Computer Interaction Program, Iowa State
University, USA, 2006.

[11] Dongheng Li, David Winfield, and Derrick J.
Parkhurst. Starburst: A hybrid algorithm for video-
based eye tracking combining feature-based and
model-based approaches. Proceedings of the IEEE
Vision for Human-Computer Interaction Workshop
at CVPR, 2005.

[12] C.H. Morimoto and M. Mimica. Eye gaze tracking
techniques for interactive applications. Computer Vi-
sion and Image Understanding, 98:4–24, 2005.

[13] D.A. Robinson. A method of measuring eye move-
ments using a scleral search coil in a magnetic field.
IEEE Trans. Biomed. Eng., 10, 1963.

[14] Jason S.Babcock and Jeff B. Pelz. Building a
lightweight eyetracking headgear. Eye Tracking Re-
search & Application, 2004.

[15] Jian-Gang Wanga, Eric Sungb, and Ronda
Venkateswarlua. Estimating the eye gaze from
one eye. Computer Vision and Image Understand-
ing, 98:83–103, 2005.

[16] David Winfield. Constructing a low-cost mobile eye
tracker. 2005.

[17] D. Yoo, J. Kim, B. Lee, and M. Chung. Non contact
eye gaze tracking system by mapping of corneal re-
flections. Proc. of the Internat. Conf. on Automatic
Face and Gesture Recognition, pages 94–99, 2002.

[18] Dong Hyun Yoo, Myung Jin Chung, Dan Byung Ju,
and In Ho Choi. Non-intrusive eye gaze estimation
using a projective invariant under head movement.
Proceedings of the 2006 IEEE International Confer-
ence on Robotics and Automation Orlando, Florid,
May 2006. Florida.

[19] J. Zhu and J. Yang. Subpixel eye gaze tracking. Proc.
of the 5th IEEE International Conference on Au-
tomatic Face and Gesture Recognition, pages 131–
136, 2002.

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics
71

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(20,20) (20,366) (20,713) (20,1060) (646,20) (646,366) (646,713) (646,1060) (1273,20) (1273,366) (1273,713) (1273,1060) (1900,20) (1900,366) (1900,713) (1900,1060)

target points − (horizontal,veritcal) coordinates in pixels

d
is

ta
n
c
e
 i
n
 d

e
g
re

e
s
 b

e
tw

e
e
n
 t
a
rg

e
t
a
n
d
 g

a
z
e
 p

o
in

ts

0

0.5

1

1.5

2

2.5

(20,20) (20,366) (20,713) (20,1060) (646,20) (646,366) (646,713) (646,1060) (1273,20) (1273,366) (1273,713) (1273,1060) (1900,20) (1900,366) (1900,713) (1900,1060)

target points − (horizontal,veritcal) coordinates in pixels

d
is

ta
n
c
e
 i
n
 d

e
g
re

e
s
 b

e
tw

e
e
n
 t
a
rg

e
t
a
n
d
 g

a
z
e
 p

o
in

ts

0

1

2

3

4

5

6

7

(20,20) (20,366) (20,713) (20,1060) (646,20) (646,366) (646,713) (646,1060) (1273,20) (1273,366) (1273,713) (1273,1060) (1900,20) (1900,366) (1900,713) (1900,1060)

target points − (horizontal,veritcal) coordinates in pixels

d
is

ta
n
c
e
 i
n
 d

e
g
re

e
s
 b

e
tw

e
e
n
 t
a
rg

e
t
a
n
d
 g

a
z
e
 p

o
in

ts

Figure 7: Average distance between target and gaze points in degrees of view angle for 16 target directions. Observers’
eyes located 70 cm (top), 50 cm (middle) and 30 cm (bottom) from the screen.

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics
72

20 646 1273 1900

20

366

713

1060

position of gaze−points and target−points

20 646 1273 1900

20

366

713

1060

position of gaze−points and target−points

20 646 1273 1900

20

366

713

1060

position of gaze−points and target−points

Figure 8: Position of the target-points (red circles) and measured gaze-points (blue dots). Observers’ eyes located 70 cm
(top), 50 cm (middle) and 30 cm (bottom) from the screen. Point positions in pixels.

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics
73

74

Content Creation for a 3D Game with Maya and Unity 3D

Matthias Labschütz∗, Katharina Krösl†

In alphabetical order: Mariebeth Aquino‡, Florian Grashäftl§, Stephanie Kohl¶
Supervised by: Reinhold Preiner

Institute of Computer Graphics and Algorithms
Vienna University of Technology

Vienna / Austria

Abstract

’Dynamite Pete’1 is a 3D game we developed with Au-
todesk Maya and Unity 3D in a team of 26 computer sci-
ence students with varying skills and expertise in content
creation. A game development pipeline explaining the
production of the game from concept to release is pre-
sented. In addition, this paper explores the challenges
faced by the project staff and outlines the experiences
gained during the project’s implementation.

Keywords: content creation, content creation pipeline,
game production pipeline, Autodesk Maya, Unity 3D

1 Introduction

Nowadays, the quality of graphics and realism of games
is constantly increasing, since consumers are always de-
manding a more realistic look and feel in their games. This
means that improvement of renderings, outstanding con-
tent, more believable animations and more authentic be-
havior of artificial intelligence are needed. Therefore the
work of artists and animators is crucial for the success of
a game and the prosperity of a game development studio.

In 2010 a group of 26 students attending ’Maya-Course
2’ at the Vienna University of Technology performed a
game production process in a game development studio.
The ultimate goal of this exercise was to produce a video
game. Unity 3.1 [10] was chosen as game engine, but
the focus was placed on 3D content creation for real time
application, using, besides other tools, Autodesk Maya
2011. The game development team brought in different
sets of skills which ranged from beginners with hardly any
knowledge about content creation to students with partic-
ular profession. Every member of the team was given at

∗Technical Director Workflow: e8971103@student.tuwien.ac.at
†Artist: e0325089@student.tuwien.ac.at
‡Producer: e0326746@student.tuwien.ac.at
§Art Director: e0300310@student.tuwien.ac.at
¶Technical Director Unity: e0626088@student.tuwien.ac.at
1http://www.cg.tuwien.ac.at/maya/

least one role and had to fulfill tasks corresponding to their
job title. The assigned positions covered Project Man-
agement, Technical Direction, Art Direction and different
Artists. The main areas of these artists were Modeling
and Sculpting, UV-Layout, Texturing, Lighting, Render-
ing, Rigging, Animation, Level-design and Sound. The
resulting game ’Dynamite Pete’ is a comic-style Western-
Adventure where the player plays the role of the antihero
named Pete and has to escape from a canyon. Figure 1
shows an example screenshot of the finished game.

Figure 1: In-game screenshot of the game ’Dynamite
Pete’.

This paper explains a basic strategy for the professional
development of a content-intensive video game in a large
team and shares experiences from our project. In the fol-
lowing, we will shortly introduce the tools that were used
(Section 2), schematize the workflow of our game devel-
opment process (Section 3) and finally explain some se-
lected challenges that had to be overcome during the cre-
ation of ’Dynamite Pete’ (Section 4).

2 Tools

The main tools used throughout the project were Maya for
modeling, animating and rendering and the Unity game

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)

engine for implementation. In addition, image, audio and
video editing tools as well as drawing, sculpting and com-
munication tools were used.

2.1 3D Animation and Modeling Software
(Autodesk Maya)

Autodesk Maya (freely available for educational pur-
poses2) was chosen as 3D modeling, animation and ren-
dering tool in this project. Maya provides artists with an
end-to-end creative workflow [4]. As a professional tool
it is very complex and offers a great number of features.
Despite a steep learning curve, using Maya in its whole
complexity requires a long-winded learning process. An-
other drawback is the lack of forward compatibility, which
means all the artists had to work with the same version of
Maya irrespective of their preferences.

2.2 Game Engine (Unity 3D)

In this project, the free version of the game engine Unity
3.1 was chosen for the production of ’Dynamite Pete’.
There are different export options in this game engine,
each one dedicated to another platform (e.g.: Web Player,
PC and Mac Standalone, iOs, Android, Xbox 360, PS3),
which eases the development for different consoles or de-
vices. Unity attracts especially small and middle-sized de-
velopment studios who hardly invest in expensive high-
end rendering engines. Furthermore prototyping and game
development is very quick due to the WYSIWYG (”what
you see is what you get”) editor which allows instant
changes and live editing. In addition, Unity provides mul-
tiple built-in shaders and effects as well as a physics engine
and collision detection.

For a students’ project the most important reason for
choosing Unity is the fact that it is very easy to use and to
learn. Developing with Unity is mainly based on drag and
drop with occasional adapting of scripts rather than writing
code. Apart from shaders and effects which can simply be
turned on in some game settings, Unity provides numer-
ous scripts which can be dragged onto 3D models. These
scripts act for example as character controllers, follow up
cameras or other important features. However, Unity lacks
of integrated modeling abilities, which is the reason for us-
ing Maya as external modeling tool.

Another major drawback of the free version of Unity is its
lack of SVN support. This makes it difficult for multiple
programmers to work concurrently on one single project,
which will be discussed in detail in section 4. Like Au-
todesk Maya, Unity is not forward compatible, but over-
all the advantages outweigh the disadvantages. However,

2http://usa.autodesk.com/maya/trial/

the use of Unity Pro is advisable, due the previously men-
tioned restrictions in the free version.

3 General Game Production Pipeline

A game production pipeline is basically a concept of work-
flow management for use in the game development pro-
cess. The phases of this pipeline are certain tasks that need
to be fulfilled until the release of a video game.

Figure 2 gives a detailed overview of the development pro-
cess of this project, as it will be explained in the following
chapters, showing the main five tasks in color.

Figure 2: Game production pipeline overview: Concept,
content creation pipeline, level design, lighting and imple-
mentation as organized in this particular project.

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
76

Some of these tasks require to be carried out sequentially
as presented in the following. Nevertheless, to increase
productivity, it should be a goal to break up this sequential
approach, to allow people to work in parallel on different
tasks.

Since this very project was an attempt to implement the
workflow in a game development studio at a larger scale
with very limited production time, it was necessary to fol-
low a pipeline approach without iterations. The scope of
this project was 3D modeling, with focus on content cre-
ation. Other aspects, like game-design, were of minor in-
terest. The following paragraphs describe the production
stages of the project in detail.

3.1 Concept Phase

During the concept phase a small team drew an outline of
the plot, the setting and the game mechanics. The game’s
environment was chosen to be a wild-west desert. A comic
style was preferred over a photorealistic style and the goal
of the game was set to collecting dynamite for breaking
out of a hostile canyon.

Figure 3: Early painted concept art

After this stage, the look and feel of the game content had
to be worked out, requiring multiple revisions of concept
arts. An example is shown in Figure 3. Inspiration was
coming from all different sorts of media, starting from
similar computer games and movies to comics and mu-
sic. Color and proportions play an important part in the
game’s visual style. A dirty textured comic look was cho-
sen, inspired by ’Star Wars - the Clone Wars Series’ [9]
and Woody, the Cowboy in ’Disney Pixar’s Toy Story’ [7].

3.2 3D Content Creation Pipeline

The orange box in Figure 2 illustrates the 3D concept cre-
ation pipeline which contains the stages every 3D model
has to pass from concept art to the final model. The fol-
lowing paragraphs describe these stages in detail.

3.2.1 Concept Art

Figure 4: Character concept art of a sheriff and a barmaid
model.

Concept artists worked primarily on the main assets of the
game (characters and environment), gradually enhancing
their work guided by feedback of the art direction and
other artists. After the initial sketches on paper, some
artists moved on to graphics editing tools, using tablets
as input devices. As final step of the concept phase, they
created colored front and side views of the assets, which
modeling and texturing artists used as guides for their ge-
ometry and coloring. Figure 4 shows a small selection
of colored character concepts. Most of the concepts were
hand drawn and can be found on the development blog.3

3.2.2 Low Polygon Modeling

The first step from concept to 3D model is to create a
low polygon model. Since Unity can handle triangles and
quads, there was no restriction to use a certain modeling
technique only. Nevertheless, most modeling artists pre-
ferred quads over triangles. Low polygon modeling also
includes smoothing or hardening normals.

To avoid models with very differing level of detail, it is
highly recommended to define a maximum polygon count
in advance, depending on a model’s size and importance.
However, multiple revisions were necessary during this
phase to achieve a consistent style for all the low polygon
models.

For houses, a modular system was used to create numerous
different house types out of individual basic parts. This tile
based approach allowed more variations with less time for
modeling.

3.2.3 UV Layout

Before texturing or high polygon modeling could start, UV
layouts had to be done either by UV layout artists or by the
modeling artists themselves. A UV set in Maya consists of

3http://twoday.tuwien.ac.at/mayakurs22010/

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
77

a single UV layout. An object with multiple texture types
can have multiple UV layouts. For this project a maximum
of three UV sets per object was defined:

• Color map UV set: For color textures. Faces can
reuse texture space, meaning that a certain space in
texture space can be used by multiple faces.

• Normal map UV set (optional): Only used if a sepa-
rate normal map was required.

• Light map UV set: Can not include overlapping faces
in texture space. Since each face can have different
lighting information, each face has to have its own
amount of space in the UV layout.

3.2.4 High Polygon Modeling

After the UV layouts were done, some of the low polygon
models were improved to high-resolution models either by
a smooth-operation provided by Maya (adding additional
subdivision polygons), or by artistic sculpting using Au-
todesk Mudbox [5]. The result of this high polygon mod-
eling step was a normal map.

3.2.5 Texturing

Texturing started right after the UV layout was done. A
color table (Figure 5) was used as reference for texture
artists. A screenshot of the UV layout in texture space was
exported to digital image processing tools. The texture
coordinates (UVs) served as orientation for texture artists,
who painted their textures on these coordinates, using only
colors from the given color table.

Figure 5: Color table for texture artists

For frequently used textures (such as wood), texture tem-
plates were created. For each contained material, these li-
braries provided bump maps, normal maps and differently
colored layers which artist could switch on or off, to create
new textures fast and easy.

3.2.6 Rigging and Animation

To enable artists to easily create naturally looking anima-
tions of characters, a technique called ’rigging’ is used,
which creates a virtual bone structure for each character.
This structure can then be used to control the movements
of the characters for animation in a natural way. After the
bone structure is finished, the character’s mesh is bound
to the skeleton and weighted between influencing bones.
Usually, inverse kinematics are used to specify the bones
position when moving handles of the skeleton.

In this project, each game character went through an in-
dividual rigging process in Maya, offering different con-
trols for the animators. Since this was an educational
project, most of the participants decided not to use pre-
manufactured rigs (such as the built-in Full Body IK [3]).
The animation artists then produced key-frame based an-
imations for some movements (e.g.: walkcycle, idle, at-
tack) for each game character, which were done in Maya.

3.3 Level Design

3.3.1 The Level Design Process

The previous section described how single pieces of static
and dynamic content have been created. The following
sections will explain how all these parts are combined to
form a virtual environment and finally a playable game.
The first step on this path is level design which can be seen
as an assembly process that incorporates or creates content
to shape the environment of a game. Depending on the
genre of a game, the scope of level design may lie on the
content creation, the technical assembly, or the game-play
tuning aspect.

Scheduling: In general, the crucial amount of work in
level design is carried out at a late stage in the creation
process. Not only because level design requires parts of
the engine to be finished but also assets to work with. In
order to allow the level design process start early, it is good
practice to prioritize the assets depending on their impor-
tance for the level designer.

Concurrent working: Concurrent working on game lev-
els is difficult to be done efficiently and can easily result
in a high organization and merging overhead [11]. For
small game environments, one person working on the level
design is advisable to reduce the overhead. For larger
projects, concurrent work of several designers on levels
of high complexity can be achieved by splitting the levels
along certain regions.

Asset placement: Open terrain game levels often require a
lot of environmental objects to be placed into them to pro-
duce a rich and exciting game feeling. Automatic place-
ment can help speeding up the process, while keeping a
human designer in charge of where objects are placed. For

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
78

large projects, more advanced level-editing tools can be
used, which allow modifying the layout in a more abstract
and faster way (e.g. drawing a map of the area, while the
content is placed automatically).

Figure 6 shows the level design approach in relation to
other tasks during the creation of a game. The solid lines
describe the path of content as it is passed through the
team during the game development process. The dashed
lines denote requests and tools which will not be included
directly in the final release. As shown in Figure 6, level de-

Figure 6: Level design in context to other game develop-
ment tasks.

sign is a step between content creation and programming.
Therefore, changes in level design require interactivity or
fast compiling mechanisms to see the impacts on the game.

3.3.2 Level design in this project

The level design started right from the beginning of the
project with concept plans of the game area [8] followed
by modeling and texturing of the terrain. After this ini-
tial phase a level file was created and assembled in Maya,
using references, so that unfinished content (e.g. low poly-
gon models) could already be placed in the scene and be
updated on the fly. In the end the whole scene was im-
ported into Unity.

Figure 7 shows the stages of development of the level from
the concept art over the terrain model to the final level ren-
dering with buildings and other assets. The level design
process took the following considerations into account:

• During the creation of the terrain, conceptual areas
were planned for later object placement. (e.g. grave-
yard area, scenic overview, spots for buildings along
the road).

• The level design was based on static geometry. To
keep the player interested in exploring the level,
many different floors and long paths along the terrain
were created.

Figure 7: Three stages of level design: concept, terrain
model, final scene.

• To underline the escape scenario of the game, a cer-
tain degree of hostility was added to the terrain design
(e.g. in the shape of spiky rock formations).

• To keep the level simple for lighting, no caves were
created.

3.4 Lighting

3D Production packages include powerful renderers to
simulate light propagation through a scene. To this point,
physically correct simulations of light are impossible be-
cause of measuring uncertainty and the inability to solve
the rendering equation exactly. In addition, approaches
close to physical models are often very costly and cannot
be done in real-time yet.

Since computer games are real-time applications, prepro-
cessing for global illumination is often used (’Light Bak-
ing’) to achieve realistic lighting at runtime. During the
process of Light Baking, the whole scene is pre-lit and
the final color distribution is stored in textures. These tex-
tures can be either applied directly to a polygonal surface
or saved as vertex colors. The advantage of Light Baking
is that the artists can use high quality rendering algorithms
to pre-calculate the lighting of a scene. Disadvantages
are the added complexity in the production workflow and
the lack of dynamic lights. Combining pre-calculated and
real-time lighting effects can be a challenge, because nu-
merous customized shaders and materials need to achieve
acceptable color- blending effects.

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
79

3.4.1 Lighting in this project

The scene was meant to be illuminated by the sunset
with dominating pink and purple colors. Dark areas were
avoided to keep the lighting simple. Color textures had to
be desaturated, so the scene could be lit with enough power
to produce a believable result. Autodesk Mental Ray [6]
was used to render the scene. Its fast final gathering algo-
rithm in combination with a light emitting sky-dome was
chosen to achieve the effect of global illumination for the
game’s content.

The sun consisted of two simple directional light sources
not affecting the sky-dome. One light-source was used for
controlling the light color and intensity. The other light
source was used for controlling the shapes, intensities and
colors of the shadows.

It was important to know the scene’s look under final light-
ing conditions at an early stage of the production process
to define appropriate texture color guidelines. Therefore,
this light setup was developed at an early stage to test dif-
ferent texture colors and shaders in the chosen environ-
ment setting.

The final step in lighting was light map texture baking.
Diffuse color bouncing required emitting and reflecting
colored objects in the scene during bake-time. These ob-
jects had to be prepared for baking. First, they were given
a second UV-set, which was not overlapping or tiled.

For light-mapping and export, objects were grouped into
export groups, sharing one common light-map, and were
then imported separately into Unity. A building and parts
of its corresponding light-map are shown in Figure 8.

Figure 8: Building to the right and its corresponding light-
map to the left.

3.4.2 Concept and Presentation Rendering

In addition to the scene’s lighting, rendering was also used
for many different tasks during the development process.
Concept renders were created in order to communicate the
aesthetics of the game environment. A game trailer was

produced showing some animation sequences and renders
were created by artists to share their concepts and mod-
els through the team’s development blog. Since rendering
is a time consuming process, some additional tricks were
used to improve quality in these renderings. Depth of field
effects were achieved through depth-map controlled blur
filters using compositing. Additionally, image post pro-
cessing was used to achieve the desired quality.

3.5 Implementation

During the implementation phase, intensive work with the
game engine started, as all the models had to be imported
into Unity. Unity generally uses *.fbx files, but allows
the import of *.ma files as well. These Maya files were
directly imported into Unity to avoid problems with an-
imated objects exported by Maya 2011 as *.fbx and to
skip an additional step in the workflow. The files were
then converted into *.fbx by Unity. This procedure makes
it easy to re-import changed Maya files but it takes more
time for Unity to convert all files.

Figure 9: Fire, smoke effects and sound sources.

3.5.1 Object Integration in Unity

In the first step of the object integration process the level,
which had been created in Maya 2011, was imported into
Unity. It was structured into different display layers, each
one dedicated to a different type of models (e.g. houses,
grasses, cacti). When the level was completed, the differ-
ent layers were saved in separate Maya files and put to-
gether in Unity. This made it easier and faster to re-import
changed layers into Unity. The different characters as well
as various pickup items (e.g. dynamite) used in the game
story, were directly placed into the level in Unity.

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
80

3.5.2 Effects, Shader Programming

As soon as the main part of the game was finished, effects
like fire and smoke (Figure 9), fog, water, dust, lens flare
and explosions were implemented. All these effects, ex-
cept lens flare and fog, were created with an Ellipsoid Par-
ticle Emitter or a Mesh Particle Emitter provided by Unity.
Fog was simply activated in Unity’s render settings.

3.5.3 Sound

In the final phase background music and sound effects
were added to the game. To add a sound file to an object in
Unity, an ’Audio Source Component’ had to be added to
the specified object. In Unity’s audio source options, the
audio clip had to be defined and some other options like
the volume were individually adapted.

3.6 Release

The final result of the whole production process was a
game prototype with one level. Overall, it took a pro-
duction team of 26 students about 1550 person hours to
develop the game ’Dynamite Pete’. Table 1 gives a de-
tailed overview of the working time spent on the individual
phases of the project.

Task Time in person hours
Concept and references 130
Low polygon modeling 500
UV layout 150
High polygon modeling 50
Texturing 190
Rigging 20
Animation 50
Level design 50
Lighting 60
Implementation 200
Miscellaneous (presentation) 50
Organisation and feedback 100
Total 1550

Table 1: Development time overview

After the end of the project, the final game was presented
in a release event. The artists created a trailer video, char-
acter sheets, posters and character turntables for this event.

4 Further Challenges

4.1 Terrain Multi-Texturing

The usual approach for texturing 3D models is to apply a
single texture per object. Since the terrain is a very large

object, tile-able textures were used to define its surface
properties. These textures are repeated seamlessly across
a geometric surface representation. However, since terrain
usually consists of different material, more than one tile-
able texture had to be used.

Figure 10: Left side: textured terrain. Right side: alpha
map for the path layer.

Multiple layers of tile-able textures were used in combi-
nation with an alpha texture to define the global occur-
rence of a material. Figure 10 shows the textured terrain
on the left side and the alpha map for one layer on the right
side. In Maya, the material that supports this kind of tex-
turing method is called ’Layered Texture’. In Unity, this
method of texturing is only provided for terrains created
from height-maps. Therefore, a custom fragment shader
had to be written for the terrain in this project.

The following shows the essential part of this fragment
shader code. First, the albedos of the individual overlay
layers are consecutively accumulated. Finally, the calcu-
lated albedo is multiplied with the light intensity to obtain
the output color.

//’c’, ’c1’, ’c2’, ’c3’ ... color textures
//’a’ ... alpha values in rgb channels
//’lightmap’ ... light map texture

//overlay 1st layer
o.Albedo = (1.0f-a.r)*c.rgb + a.r*c1.rgb;
//overlay 2nd
o.Albedo = (1.0f-a.g)*o.Albedo + a.g*c2.rgb;
//overlay 3rd
o.Albedo = (1.0f-a.b)*o.Albedo + a.b*c3.rgb;

//1.5f to control light map brightness manually
o.Albedo = o.Albedo * lightmap * 1.5f;

4.2 Concurrent working with Unity

As mentioned earlier, there are some differences between
Unity Free and Unity Pro. Because the game was devel-
oped with Unity Free, a solution for the SVN problem had
to be found. Unity Pro saves all asset metadata and import
settings for each asset in a corresponding metafile. These
files need to be versioned along with the associated asset

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
81

[2]. In Unity Free all these metadata are saved in the li-
brary directory [1]. To share a project without Unity Pro,
the library directory has to be compressed and uploaded
via SVN. After downloading the project from the SVN
server the library directory has to be uncompressed into
the Unity project folder. One negative effect of this solu-
tion is that it is not possible to work concurrently on the
Unity project file. Because the whole library folder is up-
loaded, it is not possible to merge the different metadata,
only the whole folder can be overwritten. Therefore, for
multiuser projects it is recommended to use Unity Pro.

5 Summary

Together with our colleagues, we deployed a professional
game development studio workflow in the context of a 3D
content creation project. The utilization of 3D content in a
3D game put theoretical knowledge into practical use. Par-
ticipating students improved not only their technical skills,
but also learned valuable lessons in team work. The ma-
jor challenges were different theoretical and practical un-
derstanding of the subject, unalike working methods and
variable personal availability. A blog was used by most
of the students to post their work and to get feedback in a
constructive way. The final stages in the process of game
development were rushed in about one or two weeks. At
the time of the release deadline, the result was a decreased
quality in game-play and lighting as well as the game me-
chanics, which had not been tested before. More concur-
rent work and earlier deadlines would have been needed to
speed up the production process. Nevertheless the project
was finished within the given time schedule, resulting in a
nice game containing rich and detailed content.

6 Acknowledgements

The authors would like to thank all team members who
participated in this valuable exercise and dedicated their
time to this project. Thanks to Rainer Angerer, Martin
Brunnhuber, Damir Dizdarevic, Brigit Faber, Markus Fell-
ner, Roman Gurbat, Andreas Himmetzberger, Rosemarie
Hochreiter, Roman Hochstöger, Bernhard Holzer, Peter
Houska, Albert Kavelar, Desiree Lavaulx-Vrecourt, An-
dreas Lenzhofer, Thomas Mayr, Johannes Sorger, Stefan
Stangl, Nicolas Swoboda, Markus Tragust and Ulrike Za-
uner. Our special thanks to our lecturer Markus Weilguny,
who guided us through the whole production process. Last
but not least we would also like to thank Associate Profes-
sor Michael Wimmer for making this lecture possible and
for giving us the great opportunity to present our efforts
and findings in this paper.

References

[1] Unity 3D. Unity: Behind the scenes.
http://unity3d.com/support/documentation/Manual/
Behind%20the%20Scenes.html, 2010.

[2] Unity 3D. Unity: Using external
version control systems with unity.
http://unity3d.com/support/documentation/Manual/
ExternalVersionControlSystemSupport.html, 2010.

[3] Autodesk. Autodesk maya on-
line help: Fbik (full-body ik).
http://download.autodesk.com/us/maya/2010help/
index.html?url=Glossary F FBIK fullbody IK.htm,
topicNumber=d0e188540, 2000-2009.

[4] Autodesk. Autodesk maya 2011: Features.
http://usa.autodesk.com/maya/features, 2011.

[5] Autodesk. Autodesk mudbox 2011: Features.
http://area.autodesk.com/mudbox2011/features,
2011.

[6] Autodesk. Mental ray.
http://usa.autodesk.com/adsk/servlet/pc/index?siteID=
123112&id=13566140, 2011.

[7] Disney/Pixar. Toy story.
http://www.pixar.com/featurefilms/ts/, 1995-2011.

[8] Michael Stuart Licht. Gamasutra: An archi-
tect’s perspective on level design pre-production.
http://www.gamasutra.com/view/feature/2848/
an architects perspective on , 2003.

[9] Lucasfilm Ltd. Star wars. the clone wars.
http://www.starwars.com/theclonewars/, 2011.

[10] Unity Technologies. Unity 3d. http://unity3d.com/,
2011.

[11] Mick West. Gamasutra: Collaborate game edit-
ing. http://www.gamasutra.com/view/feature/3991/
collaborative game editing, 2009.

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
82

Human Computer Interfaces

Multiplatform framework for managing windows

Michal Kevický∗

Supervised by: Silvester Czanner†

Department of Applied Informatics
Faculty of Mathematics, Physics and Informatics

Comenius University
Bratislava / Slovakia

Abstract

We introduce a multiplatform C++ framework for man-
aging application windows respectively displayed content.
The framework provides an API for handling display de-
vices, representation and presentation of displayed con-
tent, managing input events and other actions. Further-
more, objects are extended with semantic context which
defines their functional properties. Semantics allows more
accurate classification of entities, choosing more accurate
reactions for incomming signals. The framework pro-
vides platform, which does not strictly rely on classical
WIMP (windows, icons, menu, pointer) paradigm and
gives ability to develop solutions non-conventional way
(e.g. zoomable UI, tangible UI).

Keywords: Graphical user interfaces, Windowing sys-
tems, Frameworks, Scalability

1 Introduction

Lately we experience vast expansion of electronic gadgets
with many different graphical user interfaces. Each new
interface introduces new philosophy of control, thus con-
fusing users and leading to deformation of user’s learning
curves of such systems in a negative way. It increases the
costs of the development of multiplatform applications
and brings new possibilities for various errors.

Graphical user interface usually depends on 4 parts.
The first part, an operating system (OS), is not the one
which should be important for real layout. OS is here to
provide communication with input/output (I/O) devices,
management of resources, communication between
processes, and handling permissions, and entire user
model. OS defines a ”platform”. The second part is a
window managing application (i.e. window manager,
WM). It manages the content and defines how should this
be displayed on attached displays. Windows management
is the main contribution of our work. The third part is
represented by the content of windows. It usually consists

∗kevicky@gmail.com
†s.czanner@warwick.ac.uk

of a canvas containing set of well positioned widgets.
Since there are many multiplatform widget sets (e.g.
wxWidgets, Qt, GTK, Swing, AWT, . . .), there should
be no problem of designing and implementing portable
layout of window. The fourth part is represented by input
devices, i.e. physical interaction, is the part which can not
be modified software way and hence also is not field of
our interest.

WMs are either part of OS (like in Windows series from
Microsoft) or can be separate application like in many of
*NIXes. As a bonus, in *NIX X Window system, each
application can act like a WM, what caused there are really
a plenty of WMs now.

WMs of present days usually do not provide inter-
face for customization/extension in non-layout properties
(i.e. in behaviour, input devices, representation of win-
dows) using predefined APIs, leading to workaround solu-
tions. Our solution implements modular framework model
which is easy to extend and modify. An end user for
our framework is primarily WM or presentation logic pro-
grammer.

The framework is here to define and implement abstract
interfaces for the end user to ease writing of portable
respectively multiplatform code. The implementation of
the framework for a specific platform consists of core
code of the framework and set of the platform specific
modules or wrappers providing functionality defined by
the abstract interfaces mentioned above.

The structure of this paper is organized as follows:
Section 2 introduces few existing projects implementing

similar functionality or providing relevant informations to
our work.

In Section 3, we describe used technologies, reasons for
their selection and their pros and cons.

Section 4 describes architecture of framework, object
structure and application flow.

Section 5 presents advantages of framework and pos-
sibilities it brings for window manager / application pro-
grammer and end user of final window manager.

Section 6 sumarizes our results, section 7 presents our
plans for future work and section 8 provides conclusion of

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)

entire article.

2 Related work

In the world of WMs, there is a large scale of a different
applications or application packages, from lightweight
programs to complex desktop environment packages.
Especially in world of *NIXes, there are hundreds of
options to choose WM. Here is an overview of few works
interesting to us:

The Compiz-fusion [3] project is alpha for recent
Linux world in field of desktops and visual effects. The
Compiz-fusion project implements using AIGLX/XGL
extensions to the X Windows system an compositing
windows manager introducing different visual effects
(wobbly windows, transparency, desktops mapped on
rotatable cube, . . .) to the world of Linux.

The Metisse [8] is French project extending FVWM
project which has brought their own implemention of
composite extension and has come up with their modifi-
cation of X server. The goals of the project are similar
to ours - easing the design, implementing and testing
of new human computer interaction (HCI) approaches
and techniques. What is worse, the Metisse is primary
X Window System oriented. On the other hand, one of
goals of our framework is the development of unified
multiplatform base for managing windows.

The SphereXP [5] is Slovak project by Dušan Hamar,
and it has been one of the pioneers of Microsoft Windows
XP window managing customization. SphereXP provides
extension of standard flat rectangle desktop to space
inside sphere. Together with KDE project and Black-
box, SphereXP is the one that proves, that customization
of the presentation layer of Windows XP is really possible.

Last but not least there are Blackbox [1] and
Fluxbox [4], the fork of Blackbox. Both are very
lightweight WMs implementing stackable WM concept,
providing spartan visual interface. For minimum func-
tions they provide, and MIT license, they are released
under, they has became inspiration and basic code of our
framework.

The Quartz-compositor as part of MacOS X by Apple
or the Aero from Windows 7 by Microsoft are well known
technologies so they will not be discussed.

3 Used technology

Response times of the visual interfaces are one of their
critical features, so it is expected to use speed efficient lan-
guage. WM can also be considered as feature from ”sys-

tem programming” category. On the other hand, frame-
work is here for other users to simplify them implemen-
tation. The C sometimes appears to be one of the syn-
onyms for system programming, but also it is not so sim-
ple as Java or C#. Compromise between the power and
the userfriendliness seems to be combination of the C and
the C++ with possible inter process communication (IPC)
with modules written in different languages.

However Portable Operating System Interface [for
Unix] (POSIX IEEE 1003 standard [6]) is primarily ori-
ented to the *NIXes, and it should be considered as a
guideline for the multiplatform computing.

We have used Boost[2], because it is set of peer-
reviewed C++ libraries which are almost the part of the
upcoming C++ standard. It also comes here to provide
rapid application development features.

Ontologies and description logics are concepts known
from semantic web. Main reason for using them is a pos-
sibility of describing objects by their properties, where
classification of objects using taxonomies faces problems.
These entities should act like good candidates for multiple
branches of a tree. Except for the problem with multi-
ple occurances in the taxonomy tree1, description logics
solve also the problem with resolving context and scala-
bility. For example, there is no need for launching a par-
ticular multimedia player2, there is only need for a player
capable of playing 7.1 sound, respecting DRM3 as well as
the possibility of controlling with a mobile phone using a
bluetooth technology.

4 Architecture

WMs can be divided into 3 categories: the tailing WM, the
stacking WM, the compositing WM.

The tailing WM splits planar screen into the disjoint
zones (with no visual overlaping between applications).
This concept has been used in earlier versions of Microsoft
Windows (e.g. version 1.0).

The Stacking WM introduces the layers of windows,
allowing overlaping of windows. This concept can be
found in classical WMs running on X Windows System,
including Blackbox and Fluxbox, KDE to version 4, also
Microsoft Windows prior to Microsoft Aero technology,
and Mac OS prior to OS X. Main difference between the
stacking and the compositing WMs is, that stacking ones
draw content of windows directly meanwhile compositing
ones let application to render their output to buffers
and the WM work with content from WM’s buffers.
Representatives of the compositing WMs are the Apple’s
Quartz-compositor, the Compiz-fusion project or the
Microsoft’s Aero. The primary goal of the framework
was to develop the compositing window manager, but it

1one object could belong to multiple tree branches, which should be
disjoint

2such a player might not even exists on target system
3digital rights management

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
86

is not problem to customize it for the old school methods
mentioned above.

Most of the recent WMs which are implementing stan-
dard WIMP paradigm user interface suffers with several
limitations. The first to mention is, that the object’s
structure has fixed amount of properties (e.g. window:
dimensions, position, title, scalability, min/max/normal
state and that is almost complete listing). There is no
native way to communicate any different properties
between the applications.

As WMs assume 2D windows, recent controls has also
been designed for 2D interfaces. 3 (and more) dimen-
sional interfaces are just part of sci-fi or experiments,
but there is not native way for integration into the WM’s
system. Similar situation occures while considering
displays - 2D is standard, 3D is sound of future.

The framework solves this problem with dynamic
amount of properties of the ”window” object. Window
object itself is quite confusing notation in the context of
the framework. The framework itself contains ”content”
entity which the most important property is the binary
blob. The binary blob contains only ”some kind of data”.
Other relevant property is dataType which determines,
which interpreter to use (does binary blob represent
pixmap, plain text, h264 video stream, set of 3D instruc-
tions?).

Our framework consists of core, which defines basic
structure split into the four layers (figure 1): Input layer
(IL), Application logic layer (ALL), Presentation layer
(PL) and Client application layer (CAL). Other impor-
tant parts of core are abstract interfaces and functions for
management of modules and communication between
them and the platform specific wrappers.

Figure 1: Framework’s core

The input layer (figure 2) handles input events received
from the OS, the client applications, or events generated
inside the system. Events are being classified, passed to
the priority queue, subsequently routed with respect to
the security policies to different queues - high priority
for realtime applications and slower one with ontology
mapping for future pass into application logic layer.

The application logic layer (figure 4) is the brain of en-
tire framework. Here is the place for modification of appli-

Figure 2: Input layer

cation logic, write own rules, generate events and change
configuration of state machine. ALL configures actions
for PL, passes commited events to client applications (i.e.
”windows”). Aplication logic is designed to be fully mod-
ifiable and portable, as far as it operates with the abstract
entities. At the time, only conservative processing engine
is fully implemented. It processes events by executing
code in written form (i.e. C++). Another available con-
cept for processing unit is using visual modelling - in our
case there is the modified timed petri network (mTPN).

TPN consists of places and transitions connected with
directed arcs (each arc connects one place with one tran-
sition). Places acts as accumulators of tokens - requests.
Transitions represents actions or parts of code. They can
be enabled or disabled. Directed arcs represents set of
conditions that have to be satisfied (accumulated sufficient
amount of tokens) to enable transition. If conditions are
not satisfied, transition is disabled. Enabled transition have
to fire (execute code) in defined time conditions (i.e. it
have to fire from t f rom to tto time units since transition has
been enabled). There are various modifications of Petri
Networks, introducing different enhancements like men-
tioned time, different types of tokens, spetial additional
conditions. Petri Networks are also designed for verifica-
tion of algorithms, detecting deadlocks, infinite loops etc.,
which are not considered in this stage.

Modeling with TPN is illustrative enough for people
not experienced in programming but with mathematical
aparate. Visual modeling utility for mTPN is part of future
work.

ALL can be also extended with any other visual mod-

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
87

Figure 3: Petri network sample: places (rings), transitions
(rectangles), tokens (dots) [7]

eling system4, but we are not planning to implement any
others.

Figure 4: Application logic layer

The client application layer provides interface between
the applications outside the framework (clients) and
framework functionality. This should be done in two
ways. The first is done by the wrapper, which does not
need cooperation from client, wrapper just parasites on
its interfaces and translate framework’s communication
to platform native codes and vice versa. The second is to
handle communication native way, i.e. write ”window”
application using framework’s API, what makes the client
application framework dependant. Using framework’s
API may be useful for example if a user needs quickly
gain existing feature. As example should be simple image
viewer, which only initializes framework’s communi-
cation object, sets dataType to ”image/jpeg”, and loads
image into the attached binary blob property. The rest is
work of PL and framework’s interpreters/renderers.

The presentation layer is processing configuration pre-
pared by the ALL. PL is the one responsible for visual in-
terpretation binary blobs (by renderers), preparing scene,

4like timed automata etc.

Figure 5: Client application layer

caching scenes, work with hardware acceleration, buffers,
decorating output with special effects, finalization of ren-
dered scene. PL is also place for user’s own modules for
special effects and visual data interpretation.

Figure 6: Presentation Layer

5 Possible applications

In fact framework separates output from application, what
gives us flexibility for further manipulations. Several ex-
amples are mentioned here, but they are just examples,
they should look simple but are there mentioned just for il-
lustration. Not every of modules is implemented at present
time, few are part of future work.

5.1 Image processing

As mentioned above, a visual output from application is
just a binary blob, which could but does not have to be

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
88

passed for further graphical/data processing. For exam-
ple, there is need to display histogram of a 24bpp5 bitmap.
Once a module implementing that functionality is imple-
mented, programmer just need to load it and add to pro-
cesschain for specific window and application developer
does not need to implement it again (i.e. reuse of code).

5.2 Distributing output

Can be useful for viewing and recording video at same
time - one machine can act as a high quality display, an-
other as a recorder/encoder and last one as a streaming
server for the internet (i.e. load balancing).

Another example is sharing applications by extending
paradigm of a remote desktop. Machine A is running ap-
plication and renders output, machines B and C are dis-
playing same output window for two different users and
are receiving inputs from them, both B and C are passing
input signals back to A (i.e. collaboration).

5.3 Space

Most of recent WMs are still 2D and single machine ori-
ented. Framework does not rely on any number of dimen-
sions or machines. If there is need of 3D interpretation of
a content, there is possibility to add property6 of depth and
Z coordinate of position to each window and write logic,
which operates in 3D space. If there is need of union of
vritual space of multiple machines, there is possibility join
them into virtual domain.

5.4 Application classification

Each person has it’s own organizational structure for ob-
jects by their characteristics. Dishes, food and things as-
sociated with eating are usually stored in kitchen. Also
applications can be grouped to categories - work, social
interaction, relax, etc. . This can also lead to organizing
them in space, giving several groups of applications dif-
ferent priorities in interaction and machine time. Switch-
ing between applications (usually by pressing Alt+Tab)
can also be extended with groups, like keys on different
keyrings and user can quickly switch between ”windows”
in specific group and does not have to traverse unimportant
ones.

Frequently popuping applications can also receive less
priority by classifiers in ALL to surpress disturbing effect.
Multiple behaviours of entire interaction systems can be
introduced based on user’s settings or for example user’s
mood (switched on requests or by receptors).

5.5 Kiosk mode

Or restricted (interaction) environment is often used for
single purpose applications installed in a public or open

5color depth 24 bits per pixel
6dynamic properties vs. limitation of existing WMs

space, where a machine should serve only one specific ap-
plication and should be resistant again attempts to gain un-
privileged control of a machine. Building restricted envi-
ronment is not a simple task, which usually requires san-
itizing of input systems. Customization via framework is
simple task, because can be switched to mode when no
other application can be displayed or receive input from
user.

6 Results

We have developed the core and basic parts (i.e. systems
wrappers) of framework. Actual port is working on 32 /
64bit Linux versions, port to Windows XP is in progress
at the moment. In actual state of development, porting the
framework to a specific platform is mainly work of porting
wrappers to OS + platorm specific utilities to handle com-
munication with drivers (including renderers, wrapper for
CAL as shown on figure 7). At the moment, framework is
not oriented to high performance.

Figure 7: Portability

7 Future work

Future development can be divided to

• a visual modeling tool for mTPN as well as pre-fail
verification for modelled mTPN structures

• visual configuration utilities

• porting to mobile devices

• network functionality, visual domain - a space of a
rendered output shared between multiple worksta-
tions in domain

• improving performance

• improving security

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
89

8 Conclusion

Basic structures of concept were successfuly imple-
mented, but there is still place for improvements. Our
interest for future work focuses to mobile platforms, im-
proving configuration interface and implementing mTPN
visual interface to ease interaction for common people.

References

[1] Blackbox, February 2011.
http://blackboxwm.sourceforge.net/.

[2] Boost c++ libraries, feb 2011.
http://www.boost.org.

[3] The compiz-fusion project, February 2011.
http://www.compiz.org/.

[4] Fluxbox, February 1. 2011.
http://fluxbox.org/.

[5] Dušan Hamar. Spherexp, feb 2011.
http://www.spheresite.com/.

[6] IEEE. IEEE Standard Interpretations for IEEE Std
1003.1-1990 and IEEE Std 2003.1-1992. IEEE, 1994.

[7] Jan Krumsiek. Petri nets for network analysis, 2007.
http://www2.bio.ifi.lmu.de/
lehre/SS2007/SEM_Advanced/Folien/
petrinets_slides.pdf.

[8] Nicolas Roussel Olivier Chapuis. Metisse is not a 3D
desktop. UIST ’05 Proceedings of the 18th annual
ACM symposium on User interface software and tech-
nology, ACM New York, NY, USA , 2005.
http://insitu.lri.fr/metisse/.

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
90

Proceedings of CESCG 2011: The15
th

 Central European Seminar on Computer Graphics (non-peer-reviewed)

Multi-touch Table with Image Capturing

Jakub Hušek
1

Supervised by: Miroslav Macík
2

Department of Computer Graphics and Interaction

Faculty of Electrical Engineering, Czech Technical University in Prague

Abstract

This text reviews the state-of-the-art of technologies for

multi-touch control and taking photographs or video

recordings through the screen. Furthermore, the work

describes development of a prototype device combining

a multi-touch screen in a table setup with the ability to

take pictures through the viewing area.

Keywords: Human-Computer Interaction, Multi-touch,

Switchable Diffuser, Scanning

1 Introduction

In recent years, the development of computer technology

experienced rapid expansion into all various areas of

industry and everyday life. Hence the importance of

natural ways of interaction between humans and comput-

ers in all forms is growing strongly. There is a demand

for interfaces that are intuitive (and thus the learning

curve is steep for their use) and which allows users to

employ theirs potential and do not needlessly slow down

their activity. Assessment, which user interface is appro-

priate in different use-cases is usually matter of research.

The goal of this work is to implement a prototype of an

interactive device for such research. Specifically, it is an

interactive table that combines a touch screen with the

ability to take pictures (scans) of objects through the

imaging area.

Following scenarios illustrate possible motivation for

developing this method of interaction. For instance,

imagine a designer, who draws a draft for a new logo on

a piece of paper. He comes home to his interactive

device, puts the paper on the screen and the drawing is

scanned. He can instantly interact with his draft in a

digitalized form using the computer. Of course, he could

use scanner, but the case mentioned is more straightfor-

ward and intuitive approach.

Another example: interactive kiosks are located around a

large hospital. A patient comes to see a doctor. She has

no idea about the actual position of the doctor’s office.

But she has an invitation card with a barcode. She comes

to the interactive kiosk, which instructs her to place the

card on the surface of the kiosk. After that, the barcode is

recognized and she is navigated to the right place.

Finally, tangible object, such as cell phones, cards, chess-

men, etc. lying on an interactive surface, can be recog-

nized easily and they can be used as controls.

However these examples are only suggestions. Proper

research must be done to determine, if these and other

similar use-cases are really usable and worthwhile. The

purpose of our prototype is to allow such research.

2 Related Work

This section discusses several technologies, which can be

used for our device. The first part focuses on a multi-

touch control. The second part summarizes technologies

for capturing image from the screen direction.

2.1 Multi-touch Input

Touch input surely is a promising way to bring more

naturalness and real behavior into the human–computer

interaction. That is why there has been a great attention

recently [1]. Interest in touch technologies among the

public increased in the 2006, when Jefferson Han intro-

duced his multi-touch display based on FTIR technology

[2] (see 2.1.4). After that, many people built their own

tables with multi-touch screens. In the beginning of the

2007, Apple introduced theirs multi-touch cell phone

named iPhone. It used capacitive technology. The iPhone

affects whole segment of the mobile phone industry. In

the same year, Microsoft introduced the Microsoft

Surface – a coffee table with a multi-touch screen. This is

based on the optical method Diffuse Illumination, which

is described later in 2.1.4.

In general, touch input provides not only information

about positions of contacts with the surface, but also

about the relative pressure or angle of the touching object

(especially a finger) [1]. Technologies vary in abilities of

different objects detection. Some can detect only fingers,

and do not allow usage of a stylus or other objects. Some

technologies allow tracking of close objects, which are

not really touching the display [1]. Finally, there can be a

demand to identify the objects lying on the display. It can

be achieved by reading special patterns (tags) glued to

the bottom of these objects. A summary of particular

technologies that can be used for touch input follows.

2.1.1 Resistance Based Technologies

Resistive touch surfaces consist of two conductive layers

with a tiny gap between them. When pressing the upper
1
 husekjak@fel.cvut.cz

2
 macikmir@fel.cvut.cz

Proceedings of CESCG 2011: The15
th

 Central European Seminar on Computer Graphics (non-peer-reviewed)

flexible layer, it contacts with the bottom one. There are

two basic methods to determine the contact position [3].

The four-wire technology drives a voltage gradient into

the first layer and a voltage is measured on the other.

This is used for calculating the first coordinate. The

second coordinate is acquired analogically by changing

the function of the respective layers.

The second method (the five-wire technology) attaches

the voltage always to the upper layer and measures the

current from the corners of the bottom layer.

There follows a list of general advantages and disadvan-

tages of resistance based methods:

Advantages

• any type of object (materials) can be detected

• resistant to dirt, dust, water or light pollution

• low power consumption

Disadvantages

• only about 75% to 85% transparency

• degradation of the upper layer over the time (five-

wire technology is more durable)

2.1.2 Capacitance Based Technologies

Capacitance based technologies are available in two

basic variants too [4].

Surface capacitive touch panels consist of thin conduc-

tive coating on a transparent glass. From each side of the

panel electrodes maintain a uniform electric field across

the conductive layer. As human fingers (or other conduc-

tive objects) are capable of exhibiting electric fields,

touching the panel results in a small transport of charge

from the electric field of the panel to the field of the

touching object. The value of electric current drown from

the corners is measured with corresponding sensors.

After that, microprocessor calculates an exact position of

the touch based on the values measured.

Projected capacitive touch surfaces contains very thin

grid of wires or electrodes between two glass layers. The

grid behaves as a matrix of capacitors. When touched,

capacitance forms between the finger and the sensor grid.

The touch location can be computed using the measured

electrical characteristics of the grid layer. Depending on

the implementation, this technology can detect more

touches at once than surface capacitive technology.

Advantages

• higher transparency than methods based on resis-

tance (especially the projected capacitive method)

• high resolution and accuracy

• high mechanical robustness (especially the pro-

jected capacitive method – it can be covered with

up two centimeter protective layer)

• resistance to dirt, dust, grease

• higher reliability than methods based on resis-

tance

Disadvantages

• higher price (especially the projected capacitive

method)

• detects only conductive materials (but it can be an

advantage – unintended touches by clothes are ig-

nored)

2.1.3 Acoustic Technology (Surface Acoustic

Wave)

In this technology, ultra-sonic waves are induced and

directed from piezoelectric transducers in orthogonal

directions over the surface [3, 4]. When touched, the

measured signals are changed, which is used to calculate

a position of the contact.

Advantages

• no transparency limitation

• robustness of construction

• high resolution

• resistance to intense light

Disadvantages

• limited to fingers and soft objects

• affected by dirt and dust negatively

• limited count of touches detected simultaneously

2.1.4 Optical (Infrared Light) Based

Most optical methods are quite easy to implement and

much cheaper than capacitance based methods. This

determines theirs usage in many, often home-made or

academic, prototypes [5]. Additionally, some optical

technologies allow more detection modalities as men-

tioned in the introduction of this section (see 2.1).

Optical methods are usually based on capturing the

surface in infrared light (IR). There are several tech-

niques, which differ in the arrangement and in the cor-

responding features. In general, optical based methods

have the following advantages and disadvantages:

Advantages

• very good transparency

• multiple touches detection (depends on a method)

• detection of tags and close objects (some me-

thods)

• resistance to water, degradation

• relatively low price and simple manufacturing

process

• recognition of arbitrary objects, shapes (most me-

thods)

Disadvantages

• requires complex computation for touch detection

• sensitive to intense ambient light

In the following, individual optical methods are de-

scribed briefly.

Light Grid (LED Light Plane)

This technique is very similar to the mentioned acoustic

method. Instead of acoustic waves, there is a grid of

92

Proceedings of CESCG 2011: The15
th

 Central European Seminar on Computer Graphics (non-peer-reviewed)

infrared light over the surface, emitted by LEDs located

around [3]. When touched, the infrared ray is interrupted,

which is detected by sensors on the edge and evaluated

as a touch.

Advantages

• simplicity

• resistance to dirt and dust

• can be mounted on a conventional display

Disadvantages

• cannot recognize arbitrary shapes, tags and close

(but not touching) objects

• cannot recognize pressure

• lower resolution

• bad scalability (many sensors)

• limited count of touches (may occur occlusion)

Laser Light Plane (LLP)

The infrared light from a laser is driven through disper-

sive lens just above the surface, so it generates a light

plane [6]. When touched, the light reflected from the tip

of the finger is captured by a camera located below the

active surface (see Figure 1) and the position of touch

can be determined.

Figure 1: Laser Light Plane:

(1) glass or plexiglass, (2) IR laser, (3) IR camera

Advantages

• simplicity

• relatively cheap

Disadvantages

• cannot recognize arbitrary shapes, tags and close

(but not touching) objects

• cannot recognize pressure

• sometimes limited count of touches (may occur

occlusion)

Frustrated Total Internal Reflection (FTIR)

This technology – used by Jefferson Han [2] – is based

on a principle of total internal reflection: Touch panel

made from acrylic glass (plexiglass) is illuminated in

infrared from edges of the surface. If the refractive index

of the surface panel material is higher than the refractive

index of the surroundings and the light incidence angle at

the boundary is higher than the critical angle, total

reflection occurs, and all light spreads through the ma-

terial. When an object with a higher refractive index

touches the surface, some light leaks, which is captured

by an infrared camera behind the panel. The acquired

video stream is used to determine position of touches.

Figure 2: Frustrated Total Internal Reflection: (1) acrylic

glass, (2) IR LED, (3) total internal reflection, (4) IR camera,

(5) projection layer, (6) compliant layer

There must be a good coupling between the touching

object (finger) and the acrylic glass to trigger a FTIR

effect. It can be achieved by pressing hard to the surface,

but this decreases ease of use. Dragging makes the FTIR

effect even weaker [4]. Therefore, there is usually anoth-

er layer applied – a compliant layer. It is a thin layer of

soft translucent material, which is put (or coated) be-

tween acrylic and a top layer. The upper surface (see

Figure 2) is a diffusing layer, used as a projection plane.

While touching, the upper layer couples with the acrylic

and triggers stronger FTIR effect. Moreover, it allows

interaction with objects of arbitrary material – there are

no constraints for the refractive index of the touching

object, when using compliant layer. Finding an appropri-

ate material of a compliant layer and the way of its

application (in the right combination with a projection

layer) is a crucial step of the implementation [7, 8, 4].

Advantages

• recognition of multiple touches and any shapes

• good scalability

• high accuracy and robustness

• can detect pressure indirectly (by size of the

touched area)

• with a good compliant surface, it can be used with

something as small as a pen tip

• an enclosed box is not required

• usable on non-planar surfaces

• cheap

Disadvantages

• size – depends on viewing angle of the camera(s)

• requires a LED frame

• requires acrylic (regular glass cannot be used)

• cannot detect close objects (not touching)

• complex implementation of the compliant layer

5

6

2 2 1

4

3

2 2 1

3

93

Proceedings of CESCG 2011: The15
th

 Central European Seminar on Computer Graphics (non-peer-reviewed)

Diffuse Illumination (DI)

This method is based on uniform diffuse illumination of

the surface from the bottom [4] (see Figure 3). An

infrared camera captures light reflected from objects on

the surface. The diffusing layer (which can be used as a

projection surface) is important for object recognition.

Blurriness of reflected objects corresponds to their

distance from the diffuse surface. The reflection is most

sharp and bright when an object is in direct contact with

the surface.

Figure 3: Diffuse Illumination: (1) glass or plexiglass,

(2) diffusing layer, (3) IR illuminator, (4) IR camera

Advantages

• can recognize multiple touches as well as various

shapes

• objects near to the surface can be recognized

without direct contact with the surface

• can be used to recognize objects using special tags

glued to their bottom

• good scalability

• unlike FTIR, DI does not require special acrylic

glass and allows for adding another protection

surface

• simple design

Disadvantages

• size (dimensions depends on the viewing angle of

the camera)

• uniform infrared illumination of the surface is

complex

• lesser contrast than FTIR

• can be affected by ambient infrared light

This method can be combined with the already men-

tioned FTIR method. In the way the accuracy of detec-

tion can be improved.

Diffused Surface Illumination (DSI)

Diffuse Surface Illumination method resolves the main

issue of previously mentioned DI method – the uniformi-

ty of infrared illumination [4]. DSI requires special

material of the projection surface. As shown in Figure 4,

this material contains small particles that behave as

microscopic mirrors that reflect infrared illumination

from the sides uniformly out of the surface. Objects

above the surface reflect this light back to the camera

similarly as in the DI method.

Advantages

• similar as the already mentioned DI method

• uniform illumination is easier to achieve

• switch over to the FTIR method is simple

(replacement of the surface glass)

Disadvantages

• size (dimensions depends on the viewing angle of

the camera)

• requires a frame of the LEDs

• requires special glass (Enlighten)

• less contrast than DI (micro-mirrors reflects the

light partially down to the camera)

• can be affected by ambient infrared light

Figure 4: Diffused Surface Illumination: (1) Endlighten

plexiglass, (2) diffusing layer, (3) IR LED, (4) IR camera

Matrix of Infrared Transceivers

Optical methods mentioned above require space behind

the touch surface to accommodate the infrared camera.

Size of the device depends on optical properties of this

camera, in front of all on the viewing angle. This issue

can be to some point resolved by using mirrors. If there

is a demand for a flat device, matrix of infrared tran-

sceivers can be used. [4]

Principle of this method is following: Infrared emitters

and sensors are uniformly placed out under the surface of

touch panel (eventually LCD panel). Sensors detect light

that is reflected from objects on or near the surface. This

method has been used in system ThinSight [9] and in the

new version of Microsoft Surface 2.0 [10].

Advantages

• thin form factor

• supports recognition of objects that are near to the

surface (similarly to DI and DSI)

Disadvantages

• complex manufacturing process

• problematic scalability

• limited resolution

2

3 3 1

4

2

1

3

n

3
4

94

Proceedings of CESCG 2011: The15
th

 Central European Seminar on Computer Graphics (non-peer-reviewed)

Computer Stereo Vision

Unlike already mentioned approaches, this method

requires two cameras that capture the surface from two

different places. Difference of these two images is used

for computation of position of the objects (on or near the

surface) [11]. The principle is similar as human stereos-

copic vision.

Advantage of this method is that is supports recognition

of objects (and gestures) that are more distant from the

projection surface. However, this method requires

complex calibration and processing and the surface has

to be transparent.

2.2 Scanning Through the Screen

This section describes possibilities how to gain a visual

input. Current technologies provide a simple way how to

capture images of the user, even from different angles.

To capture an image directly from the position of projec-

tion surface is more complex. The motivation is for

example to enable users to keep the eye contact during a

video-call or to capture images of objects that are near to

the projection surface and therefore cannot be captured

from its sides.

Currently there are more possibilities how to resolve this

issue [12]. One of them is to use a semi-transparent

mirror, but it has significant drawbacks. It requires

additional space in front of the display for the mirror and

it prevents access to the display surface. Moreover,

prevention of unwanted reflections requires shielding.

Transparent display would be a better option. An LCD

panel is not appropriate, because its transparency is only

about 8% [13]. An OLED display is more promising, but

it is currently too expensive, especially in sufficient

dimensions [14]. Another option is to adapt rear projec-

tion to support this feature.

There is a market-available material – called HoloScreen

or HOPS (Holographic-Optical Projection Screen) –

which allows rear projection, while maintaining transpa-

rency [11]. It consists of holographic film, which redi-

rects light depending on an angle of incidence [15, 16].

Problem is that the projected image is partly reflected

back to the camera, so it interferes with the captured

picture. Theoretically, it can be subtracted by the soft-

ware, while the projected image is known. The reflection

can be also decreased by using an antireflective film. The

image mixing effect can be avoided by capturing in

infrared light, if the application allows that. Last option is

to use a shutter in front of the projector and closing it

synchronously with camera shooting.

Another option is to use a projection surface that can be

switched to a transparent mode [17]. This can be

achieved for example by using a Polymer Dispersed

Liquid Crystal (PD-LC) panel, which is used as a privacy

glass. This material is diffusive translucent but not

transparent in the initial state; therefore it can be used for

the rear projection. It can be electrically switched to a

transparent state. In this mode, pictures can be taken

directly through the surface. The switching time is

around 100 milliseconds. If there is a need for faster

switching (e. g. for video capturing), an advanced tech-

nology called Polymer Stabilized Cholesteric Textured

Liquid Crystal (PSCT-LC) can be used. This technology

allows the state change in less than 0.5 milliseconds [18].

HoloScreen is used in TouchLight system [11] in combi-

nation with stereo-vision multi-touch technology. The

switchable diffuser has been already used in several

research works, usually with the PD-LC [17, 19]. The

faster material has been introduced in SecondLight

project [18]. The transparent state is not used for image

capturing there (although the authors suggest that for the

following work). In SecondLight, a second image is

projecting through the screen onto another surface.

3 Our Solution: Interactive Table

This section describes our implementation of an interac-

tive table. It summarizes our goals and main design steps

in both hardware and software perspective.

3.1 Implementation Goals

In order to explore the mentioned methods of interaction,

we decided to implement them in our own prototype. Our

objective is to combine a multi-touch screen and the

ability to take high-resolution photos through the projec-

tion plane in one device. Multi-touch displays become

very popular these days. However the scanning feature is

not so common in current implementations and looks

promising from the interaction point of view (as have

been discussed in chapter 1).

3.2 Hardware Design

The optical based technologies provide an easy way to

construct a multi-touch screen in constraint (not industri-

al) conditions. These technologies are relatively cheap

and moreover facilitate wider range of capabilities. We

have chosen the technology of rear diffused illumination

(DI), which can be easily combined with the intended

scanning feature. Picture is projected by the projector

from the rear on the diffusing plane.

The uniformity of IR illumination is achieved by using

two Infra Red LED Light Bars provided by Environmen-

tal Light [20] and proper installation along both sides.

These LEDs operates in 850 nm with high flux and wide

beam angle. The capturing camera is equipped with IR-

pass filter on same wavelength. Indirect ambient light

does not strongly disturb the function thanks to the LED

brightness, uniform illumination and a narrow band.

As mentioned, the ability of taking photos through the

screen can be achieved in more ways. Technology with

switchable diffuser (PD-LC) is simple, easy to construct,

and does not require large form factor.

Placement of the main components is depicted on the

Figure 5. The surface is illuminated by the two infra-red

LED illuminators. The modified (IR-cut filter replaced by

95

Proceedings of CESCG 2011: The15
th

 Central European Seminar on Computer Graphics (non-peer-reviewed)

IR-pass filter) PS3 Eye camera is capturing image in

infra-red and the video-stream is transferred to the

computer using USB. There is another high-resolution

camera Cannon EOS 400D for taking photos (with IR-

cut filter installed), the camera is also controlled via

USB. This camera is located eccentrically (near the

projector) to avoid reflections from the projector. For

taking a photo, the diffuser is switched to the transparent

state for a short time and the projector lightens the

scanned area. The switching is achieved by using a

remotely switchable socket, which is controlled from the

computer over RS-232 [21].

Figure 5: Prototype design: (1) projector, (2) switchable

diffuser, (3) transparent plexiglass, (4) infrared

illuminators (850 nm), (5) camera with IR pass filter

(850 nm), (6) high-resolution photo camera

3.3 Software Design

After the multi-touch control became popular, several

open-source implementations have been developed [22].

These solutions process video stream and calculate

positions of touches. There are also frameworks and

Software Development Kids (SDK) to simplify devel-

opment of multi-touch applications. Some promising

implementations are discussed in the following section.

3.3.1 Computer Vision

The first group of software solutions takes video-stream

as an input, analyzes it and recognizes touches. The

touch events are posted to the next application layer.

Community Core Vision (CCV) [23] is implementation

by community NUI Group, under continuing develop-

ment. It is intended for any camera-based optical tech-

nology. It can recognize fingers, and since version 1.4

also objects and tags. CCV is implemented in C++ for

Windows, Linux and MacOS. Recognized touch events

are sent to application layer through TUIO protocol [24]

over UDP or as a native XML for Adobe Flash applica-

tions.

reacTIVison is simpler than CCV. It is developed in

C++ by Music Technology Group at the Universitat

Pompeu Fabra in Barcelona [25]. The TUIO protocol

has been primarily designed for this software. Unlike

CCV reacTIVision was focused for tags recognizing, but

there is a support for fingers detection since version 1.4.

Bespoke Multi-Touch Framework is complex multi-

touch framework implemented in C# by Paul Varcholik

for Windows platform [26]. However, it is not further

developed.

3.3.2 Application Frameworks

The next software layer processes the data about touches

and provides support for developing multi-touch applica-

tions.

Project MultiTouchVista [27] developed by Daniel

Danilin takes messages from TUIO protocol [24] (or

inputs from multiple mice) and translated them to stan-

dard Microsoft Windows multi-touch event messages. It

provides multi-touch driver for Windows 7, allowing

utilize the embedded multi-touch support of this system

(Windows Touch). This allows using Microsoft Surface

Toolkit and ensures the compatibility with other multi-

touch devices including Microsoft Surface 2.0.

Microsoft Surface Toolkit [28] is a SDK for developing

multi-touch applications for Windows Touch (native

multi-touch interface in Windows 7). The toolkit contains

controls, templates and application examples using

application programming interface (API) of the Windows

Touch.

PyMT is a Python module for developing OpenGL

applications with multi-touch support [29]. It can be used

on Windows, Linux or MacOSX, implements TUIO client

and provides a large set of controls and tools usable in

multi-touch applications. Several interesting examples

are included.

3.3.3 Additional Software

Operating system Microsoft Windows 7 was chosen

because of its native support for multi-touch and compa-

tibility with other layers and large set of similar devices.

Windows Presentation Foundation framework version

4.0 contains tools for developing applications for Win-

dows Touch.

Sony, the manufacturer of the PS3 Eye camera does not

provide driver for personal computers. Fortunately,

CodeLabratories developed one and provides it for free

[30]. CodeLabratories also implements SDK allowing

full control of the camera.

The high resolution photo camera used can be controlled

via SDK, which is provided by Canon on explicit de-

mand [31]. The current version of Canon EOS Digital

SDK (EDSDK 2.7) has been used in our prototype.

The PD-LC controlling through the switching socket

must be implemented. We have to ensure the right

synchronization with image capturing. The .NET

platform has been chosen as an implementation environ-

ment and C# as a programming language. Final imple-

mentation should be a dynamic library with a simple

application interface (API).

1
6

5

4

3

2

4

96

Proceedings of CESCG 2011: The15
th

 Central European Seminar on Computer Graphics (non-peer-reviewed)

3.3.4 Software Choice

Based on the previous analysis following software

components has been chosen:

• operating system: Microsoft Windows 7

• camera driver: CL Eye Platform Driver [30]

• touch recognition: CCV 1.4 [23]

• event handling: CCV 1.4, MultiTouchVista [27]

• switching controling: our C# implementation

• photo camera driver: Canon SDK [31]

• synchronization between taking photos and

diffuser switching: our C# implementation

• additional application frameworks: Microsoft

Surface Toolkit [28], PyMT [29]

Figures 6 and 7 describe links among these components.

Figure 6: Scheme of the multi-touch software components

Figure 7: Scheme of the capturing software components

4 Results

This work has two main achievements. The first one is

a summary of technologies for touch input and scanning

from the screen direction. The second achievement is

a functional prototype of a device which implements

both multi-touch screen and image capturing through the

display. The multi-touch input is achieved by using CCV

as shown in Figure 8.

Figure 8: Touch recognizing by the Community Core

Vision – version 1.4

Figure 9 shows the proposal and the final prototype.

Figure 9: Our device: (left) sketch, (right) final prototype

5 Conclusions and Future Work

During the work it became clear that the issue of the

touch input technologies is large. There are many ap-

proaches, the main are summarized in this paper. The

aim of implementation has been fulfilled, and relatively

cheap device was built.

The implemented device provides additional possibilities

comparing to other multi-touch tables. Applications

utilizing the scanning feature are subject of the imme-

diate future work.

Future work should be focused on the software optimiza-

tion and interaction design. Usability of implemented

features should be evaluated. Additionally, barcode

recognition can be added.

An automatic trimming of captured image would be very

useful. In the current version, the whole display is ligh-

tened, while an image is captured. This is because the

captured object should be well illuminated for a good

picture. But the light can be shined directly to user’s

eyes, if no object occludes. If a good detection of object

were implemented, the illumination could be focused

only to the object.

There are also many possible improvements in the

hardware implementation. The height of the device can

be reduced by using front-surface mirrors and/or short-

throw projector. Larger screen can be made (possibly

with multiple cameras). Other form-factors of interactive

systems (beside table) could be investigated.

CL Eye Driver, SDK

CCV 1.4 Adobe

MS Surface Toolkit

PyMT application

application

application

Microsoft
Windows 7

video-stream

USB input from
the IR camera

MultiTouchVista

TUIO

XML

Windows
messages

application

Microsoft
Windows 7

Canon SDK

USB communication
with the photo camera

Synchronization
of image captur-
ing and diffuser

switching

application

RS-232 connection with
the switching socket

97

Proceedings of CESCG 2011: The15
th

 Central European Seminar on Computer Graphics (non-peer-reviewed)

Acknowledgments

This research has been done within project Automatically

Generated User Interfaces in Nomadic Applications

founded by grand no. SGS10/290/OHK3/3T/13 (FIS 10-

802900) (Studentská grantová soutěž).

References

[1] Buxton, B: Multi-Touch Systems that I Have Known and

Loved [Online]. 23. 12. 2010. [Cited: 2010/28/12].
http://www.billbuxton.com/multitouchOverview.html

[2] Han, J. Y.: Low-cost Multi-touch Sensing Through

Frustrated Total Internal Reflection. UIST '05 Proceed-

ings of the 18th annual ACM symposium on User inter-

face software and technology. Pages 115 – 118. ACM,

New York, 2005. ISBN: 1-59593-271-2, DOI: 10.1145/

1095034.1095054.

[3] Vekobs: Technologie dotykových panelů [Online].

Vekobs Webpage. [Cited: 2010/02/05].
http://www.vekobs.cz/cz_technologie.htm

[4] Schöning, J.; Brandl, P.; Daiber, F.; Echtler, F.; Hilliges,

O.; Hook, J.; Löchtefeld, M.; Motamedi, N.; Muller, L.;

Olivier, P.; Roth, T.; Zadow, U.: Multi-Touch Surfaces:

A Technical Guide. Technical Report TUM-I0833.

Technical University of Munich. Munich, 2008.

[5] NUI Group: Natural User Interface Group [Online].

[Cited: 2010/12/01]. http://nuigroup.com

[6] NUI Group: Laser Light Plane Illumination (LLP)

[Online]. NUI Group Community Wiki. 2009/05/11.

[Cited: 2010/12/28].
http://wiki.nuigroup.com/Laser_Light_Plane_Illumination_(LLP)

[7] Han, J. Y.: Multi-touch sensing through frustrated total

internal reflection. US Patent Application 20080179507.

Submitted: 2007/08/93. Published: 2008/07/31. New

York, USA.

[8] NUI Group: What is a compliant surface? [Online]. NUI

Group Community Wiki. 2009/10/29. [Cited: 2010/12/28].
http://wiki.nuigroup.com/What_is_a_compliant_surface%3F

[9] Hodges, S.; Izadi, S.; Butler, A.; Rrustemi, A.; Buxton, B.:

ThinSight: versatile multi-touch sensing for thin form-

factor displays. Proceedings of the 20th annual ACM

symposium on User interface software and technology.

Pages 259 – 268. ACM, New York, 2007. ISBN: 978-1-

59593-679-0; DOI: 10.1145/1294211. 1294258.

[10] Oiaga, M.: Microsoft Surface 2.0 Features Windows 7

and New PixelSense Technology [Online]. Softpedia.

[Cited: 2011/01/31]. http://news.softpedia.com/news/

Microsoft-Surface-2-0-Features-Windows-7-and-New-
PixelSense-Technology-176602.shtml

[11] Wilson, A. D.: TouchLight: An Imaging Touch Screen

and Display for Gesture-based Interaction. ICMI '04 Pro-

ceedings of the 6th international conference on Multi-

modal interfaces. Pages 69 – 76. ACM, New York, 2004.

ISBN: 1-58113-995-0, DOI: 10.1145/1027933.1027946.

[12] Kollarits, R.; Woodworth, C.; Ribera, J.; Gitlin, R. D.:

An Eye-Contact System for Videophone Applications Us-

ing a Conventional Direct-View LCD. Digest of technical

papers of Society for Information Display International

Symposium: SID1995. Str. 765 – 768. SID, 1995.

[13] Seetzen, H.; Heidrich, W.; Stuerzlinger, W.; Ward, G.;

Whitehead, L.: High dynamic range display systems.

ACM Transactions on Graphics (TOG) – Proceedings of

ACM SIGGRAPH 2004. Volume 23, Issue 3. Str. 760 –

768. ACM, New York, srpen 2004. ISSN: 0730-0301,

EISSN: 1557-7368, DOI: 10.1145/1015706.1015797.

[14] Goble, G.: Is OLED Already Dead? [Online]. Digital-

Trends. 2010/04/07. [Cited: 2010/12/28].
http://www.digitaltrends.com/features/is-oled-already-dead/

[15] sax3d.com Chemnitz: sax3D Holographic Systems

[Online]. [Cited: 2011/01/01]. http://www.sax3d.com/en

[16] Kuechler, M.; Kunz, A.: HoloPort – A Device for Simul-

taneous Video and Data Conferencing Featuring Gaze

Awareness. Virtual Reality Conference. Pages 81 – 88.

IEEE Computer Society, Alexandria, March 2006. ISBN:

1-4244-0224-7, DOI: 10.1109/VR. 2006.71.

[17] Shiwa, S.; Ishibashi, M.: A Large-Screen Visual Tele-

communication Device Enabling Eye Contact. Digest of

technical papers of Society for Information Display Inter-

national Symposium: SID1991. Str. 327 – 328. SID. 1991.

[18] Izadi, S.; Hodges, S.; Taylor, S.; Rosenfeld, D.; Villar,

N.; Butler, A.; Westhues, J.: Going Beyond the Display:

A Surface Technology with an Electronically Switchable

Diffuser. UIST '08 Proceedings of the 21st annual ACM

symposium on User interface software and technology.

Str. 269 – 278. ACM. New York, 2008. ISBN: 978-1-

59593-975-3, DOI: 10.1145/1449715.1449760.

[19] Gross, M.; Würmlin, S.; Naef, M.; Lamboray, E.; Spag-

no, C.; Kunz, A.; Koller-Meier, E.; Svoboda, T.; Van

Gool, L.; Lang, S.; Strehlke, K.; Moere, A. V.; Staadt, O.:

blue-c: a spatially immersive display and 3D video portal

for telepresence. ACM Transactions on Graphics (TOG)

– Proceedings of ACM SIGGRAPH 2003. Volume 22,

Issue 3. Str. 819 – 827. ACM. New York, June 2003.

ISSN: 0730-0301, DOI: 10.1145/ 882262.882350.

[20] Environmental Lights: Multi Touch Screen Pair Kit

[Online]. [Cited: 2010/10/10].
http://www.environmentallights.com/products/13093/LED_
Bar_12_inch_850nm_infrared_pair_kit_Euro

[21] Mikrovlny: RS232 Watchdog [Online]. Mikrovlny, s.r.o.

[Cited: 2010/10/16]. http://www.mikrovlny.cz/cz/produkt/16

[22] NUI Group: Applications and libraries [Online]. NUI

Group Community Wiki. 2010/06/16. [Cited: 2010/11/15].
http://wiki.nuigroup.com/Applications_and_libraries

[23] NUI Group: Community Core Vision [Online].

[Cited: 2010/12/29]. http://ccv.nuigroup.com/

[24] TUIO.org: TUIO [Online]. [Cited: 2010/12/29].
http://www.tuio.org/

[25] Music Technology Group: reacTIVision [Online].

[Cited: 2010/12/29]. http://reactivision.sourceforge.net/

[26] Varcholik, P.: Bespoke Multi-Touch Framework [Online].

[Cited: 2010/12/29].
http://www.bespokesoftware.org/wordpress/?page_id=41

[27] Danilin, D.: Multi-Touch Vista [Online]. CodePlex.

2010/11/07. [Cited: 2010/12/29].
http://multitouchvista.codeplex.com/

[28] Microsoft: Surface Toolkit for Windows Touch Beta

[Online]. MSDN Library. [Cited: 2011/01/02].
http://msdn.microsoft.com/en-us/library/ee957351.aspx

[29] PyMT: PyMT: Open source library for multitouch

development [Online]. [Cited: 2010/12/29]. http://pymt.eu/

[30] Code Laboratories: CL Eye Platform Driver [Online].

Code Laboratories. [Cited: 2010/11/03].
http://codelaboratories.com/products/eye/driver/

[31] Canon: Digital Imaging Developer Programme [Online].

Canon Europa. [Cited: 2010/12/29]
http://www.didp.canon-europa.com/

98

Overview of current developments in haptic APIs

Petr Kadleček
Supervised by: Petr Kmoch

Charles University in Prague
Faculty of Mathematics and Physics

Prague / Czech Republic

Abstract

Haptic technology as a key part of human-computer inter-
action allows us to use sense of touch in virtual reality by
kinesthetic feel using force feedback. Increased produc-
tion of haptic devices in recent years supported the devel-
opment of many tools and libraries for programming appli-
cations with support of haptics. This paper introduces hap-
tic technology and focuses on comparison of haptic appli-
cation programming interfaces, especially on open-source
and cross-platform solutions. We present different types
of abstraction layers used in haptic APIs, basic haptic ren-
dering methods and effects as well as a general overview
of design concepts used in selected APIs. CHAI 3D haptic
library is analyzed in more detail.

Keywords: haptic technology, human-computer interac-
tion, haptic rendering, CHAI 3D, H3D API

1 Introduction

Kinesthetic sense provides us with information about
movement and position of our body parts in the environ-
ment. We are able to feel various forces in different di-
rections and use this information to determine the size,
shape and other characteristics of objects we touch and
forces they exert. Haptic modality of human-computer in-
teraction utilizes sense of touch which is generally incor-
porating hands, upper torso, head and other parts of the
body. The purpose of a haptic device is to generate force
feedback of a given direction and magnitude in a speci-
fied workspace and send the position of a control part of
the apparatus to the computer. One of the most valuable
applications of haptic devices is in medicine (simulations
of surgical operations, teleoperation, virtual palpation [5]).
Haptic devices are also valued as assistive technology for
visually impaired or blind people [7]. Other applications
can be found in military, painting, CAD systems and gam-
ing.

Haptic devices can be generally divided by the di-
mension of an orientation ability called degrees of free-
dom (DOF). That is basically translation (3-DOF) and
translation combined with rotation (6-DOF). A typical ex-
ample is a movable grip for 3-DOF devices (e.g. Novint

Figure 1: PHANToM Desktop (on the left) and Novint
Falcon (on the right)

Falcon shown in Figure 1) and a pen on a pivot with the
ability to rotate and translate in all three dimensions for 6-
DOF devices. There are also 6/3-DOF devices that com-
bine 6-DOF positioning and 3-DOF force feedback (e.g.
PHANToM Desktop shown in Figure 1). 7-DOF devices
have a scissors snap-on, a thumb-pad or any other extra
grip.

Common comparable properties which can be found
in technical specifications of haptic devices include:
workspace specifying a maximal reach of a touch tool (of-
ten measured in inches) and maximal rotation abilities if
appropriate, position resolution of a touch tool measured
in dots per inch (DPI), maximal force specified in new-
ton unit or as a force capability in kilograms or pounds
and stiffness of a haptic device along a degree of freedom
measured in newtons per metre.

While force feedback gives a sense of force or gener-
ally a kinesthetic feel, tactile and touch sensing is used
when one wants to feel pressure, heat or fine textures (and
any other sensation felt by the skin). Haptic devices do
not usually provide cutaneous sensation and it should not
be confused with kinesthetic feel. Technology prototypes
using both kinesthetic and tactile feedback have been pro-
posed [6].

Although the sense of touch is not as acute as hearing,
its accuracy is somewhere in between sight and hearing.
Humans need approximately 1000 Hz frequency of haptic
feedback to achieve smooth force perception. If the fre-
quency is smaller than 1 kHz, a haptic stimulus felt by or-
gans of human kinesthesia is unrealistic and may even lead

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)

to system instability, potentially causing injury or damag-
ing the device as stated in [11]. This means that a haptic
loop has to be at least 30 times faster compared to min-
imal real-time computer graphics rendering rates, which
demands great optimizations in haptic applications.

The remainder of this paper is organized as follows: In
Section 2, we discuss different abstraction layers of haptic
APIs. Basics of haptic rendering algorithms, haptic effects
and other extensions are presented in Section 3. Sections
4, 5 and 6 are devoted to overview of CHAI 3D, HAPI,
H3DAPI and other haptic APIs. The paper concludes with
a table of haptic APIs specification and benchmark.

2 Abstraction layers of Haptic APIs

There are various methods of implementing haptic device
control into an application ranging from the lowest driver
layer to the highest scene graph layer. The most important
decision a software architect has to make is a choice of the
particular abstraction layer (shown in Figure 2) at which
the rest of the application communicates with haptics.

Figure 2: Abstraction layers of haptic APIs

2.1 Driver layer and kinematic algorithm

The lowest layer at which the programmer can communi-
cate with the device is a driver of the operating system. At
this layer the driver receives raw data through a serial bus
(e.g. USB, IEEE 1394) from encoders that has to be pro-
cessed with kinematics algorithms to get the data that cor-
responds to a three-dimensional vector of the haptic tool
position in Cartesian coordinates. Kinematic algorithms
are often a part of the driver because of specific techni-
cal specifications of every device. Manual initialization,
opening and closing communication with the device or an
inverse kinematics algorithm which computes force data
in the application and sends it to the device to compute an-
gles at haptic device joints is also essential. To preserve a
smooth haptic response thread handling has to be done.
For this reason, an extra haptic thread which calculates
physics in the application is necessary.

The driver layer provides the fastest and the most pre-
cise response but demands a great effort to get the device
working. Support of any other haptic device that has no
compatible communication protocol means rewriting a lot
of source code.

Manufacturers of haptic devices often provide opti-
mized and well documented drivers in the C or C++ pro-
gramming language. There are also open source and cross
platform drivers that can provide support in officially un-
supported operating systems such as Linux or Mac OS.

2.2 Low-level API

While the driver layer communicates in raw data, a low-
level API hides the kinematics algorithm implementation
from the programmer and allows developers to work di-
rectly with position, rotation and force vectors in the appli-
cation. Many low-level APIs works as a common interface
for different drivers which is very helpful when supporting
a lot of haptic devices. A device handler is then used for
getting information on haptic devices available on the cur-
rent machine. Reading information from haptic devices
may be blocking or non-blocking. Blocking servo loop
callback stops the application thread where the function
was called and reads the data at the frequency of haptic
interface servo loop. A typical haptic application using
low-level API is presented in algorithm 1.

Algorithm 1 Application using low-level haptic API
Initialize haptic device handler
number of haptic devices← haptic device handler
if number of haptic devices = 0 then

Exit
end if
specification of haptic devices← haptic device handler
Initialize specified haptic device(s)
while Simulation running do

position← haptic device {blocking or non-blocking}
compute force {haptic rendering}
force→ haptic device

end while

2.3 High-level layer

A graphical and haptical data representation of a model
may be very similar or sometimes even identical. Integra-
tion of graphics and haptics into one API is therefore rea-
sonable. There are several different approaches to create
high-level API. One of the most intuitive way of incorpo-
rating haptics into application is based on calling similar
functions that are provided in OpenGL graphics library.

A layer which handles computation of forces for a given
model is called a haptic rendering layer. We describe it in
more detail in the next section.

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
100

2.4 Scene graph API

A scene graph haptic API often uses a tree structure of ob-
jects in the virtual world with a specific root node such as
a world node. It is possible to apply graphical and hap-
tical properties to an object and set the specific property
recursively to its child objects.

A scene graph API often includes low-level APIs for
haptics, graphics, physics and audio processing. It pro-
vides all the features of low-level APIs and even more by
combining them together. Haptic and graphic rendering is
essential in the scene graph API oriented on haptics.

The concept of combining low-level APIs into one often
creates many drawbacks which the high-level scene graph
API implementation may or may not hide from the pro-
grammer. Difficulties connected with such a combination
of different APIs may result in a thorough problem anal-
ysis that may not even be solvable with a feasible effort
because the API itself may be proprietary and authors may
not support the API any more.

A scene graph haptic API is the best choice for proto-
typing an application when the speed of development is
crucial and performance is not a priority. Support of a
scripting language or standard file format representation
of a scene helps even more with rapid development.

3 Haptic rendering

One of the most important algorithmic problems associ-
ated with haptics is computation of interactions between
the haptic tool and virtual objects. Creating a convinc-
ing force reaction on a complex object is a nontrivial task
that is dependent on data representation. The technique of
haptic interaction processing in the virtual scene is called
haptic rendering (or haptic display). As in graphic render-
ing, where the image is composed from a model based on a
virtual camera position, the process of haptic rendering re-
turns a force on the basis of a model with which the haptic
tool interacts. Creating a good haptic rendering algorithm
is a struggle to maintain realistic force feedback without
using cumbersome computations which raise memory and
CPU requirements.

There are basically two accepted standard methods that
are implemented in high-level haptic APIs for 3-DOF hap-
tic rendering: God-object method by Zilles et al. [15] and
Virtual proxy method by Ruspini et al. [11]. It should be
noted that even though there are many articles concerning
6-DOF haptic rendering, there is no standard widely-used
implementation.

The maximal stiffness capability along any degree of
freedom is limited on every haptic device. Therefore, a
user may move a haptic tool with a force which lets them
penetrate into a rigid body or any kind of object. Hap-
tic rendering algorithms are trying to solve this problem
by exerting an adequate force that is pushing a haptic tool
away from the object.

3.1 Penalty based methods

The simplest type of haptic rendering technique specifies
a force vector for every point in a scene by calculating the
nearest resting position of a haptic tool also represented as
a point. If the haptic interface point is outside the object,
the resulting force is zero, otherwise the force vector has
a magnitude proportional to the penetration distance. This
kind of method is also called vector field method [15] or
penalty based method [11]. This technique, however, has
many drawbacks which make it useless for at least plausi-
ble simulations. As this method does not save a history of
haptic interface point movement, discrete space of haptic
servo updates may result in unnoticed penetration through
an object in one haptic loop step as shown in Figure 3
on the left. Another pop-through problem may come up
when penetration is too deep and the desired nearest rest-
ing point is on the other side of the object as shown in
Figure 3 on the right.

Figure 3: Pop-through problems with penalty based meth-
ods

3.2 God-object method

To solve pop-through problems mentioned in penalty
based methods a God-object method was proposed [15].
The God-object represents a virtual point in the scene that
is not able to penetrate into rigid bodies and thus behaves
correctly. A position of the God-object is updated in every
haptic loop step.

Figure 4: God-object

If the haptic interface point (HIP) penetrates into an
object, the movement of god-object towards HIP is con-
strained by a surface of this object and the resulting force is
calculated by simulating an ideal mass-less spring (shown

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
101

in Figure 4) which is, according to Hooke’s law, defined
as follows:

Fs =−k∆x =−k(xHIP− xGodObject) (1)

where ∆x is a displacement of spring and k is a spring
constant defining the stiffness of the surface.

The God-object method can be easily extended [14] to
support static and dynamic friction on rigid bodies which
is essential to achieve realistic haptic stimulus. Haptic
shading, an analogous algorithm to Phong shading can be
applied on force feedback on surface normals to create an
effect of smooth surface. Another association to computer
graphics is in the use of textures. A haptic texture mapped
on the object can be used to simulate different kinds of
materials such as wood, stone or metal. Realistic haptic
texture rendering has been investigated in [3].

3.3 Virtual proxy method

Polygonal meshes often contain small surface gaps be-
cause of low-quality digitization or non-precise modeling.
When the god-object enters a mesh through a small gap,
the user gets stuck inside the mesh until he finds the gap
again. To resolve the problem we either fill in small gaps
in the process of loading the mesh or we set a radius of the
god-object in collision detection with constraint planes.
The Virtual proxy method [11] proposes to treat a pre-
sentation of the haptic tool in the virtual environment as
a sphere (as shown in Figure 5). Extensions discussed
in God-object method are applied simply by moving the
proxy and thus changing the resulting force.

Figure 5: Virtual Proxy

In the remainder of this paper, we will examine several
common haptic APIs in more detail.

4 CHAI 3D

CHAI 3D [4] is a scene graph API written in the C++ pro-
gramming language with aim to create a modular, open
source and cross platform haptic API with a wide support
of different haptic devices (and a virtual device working on
Microsoft Windows platform). CHAI 3D is licensed under
GNU General Public License (GPL) version 2 but also of-
fers a Professional Edition License. The main reason to
create CHAI 3D was that all available APIs developed by

manufacturers of haptic devices were proprietary and sup-
ported only the one specific device or a group of devices
from the manufacturer.

The scene graph capabilities of CHAI 3D mainly fo-
cus on haptics combined with graphics. It does not in-
clude any extra visual or sound effects but it does propose
lightweight and compact functionality. CHAI 3D is defi-
nitely not the API with tons of functions ready for the im-
plementation of sophisticated applications. It is rather the
API for academic and research use where the extra func-
tionality can be easily added.

Though the API manual or tutorials do not yet exist, the
source code is very well documented and is very easy to
read and scan through. The reference guide generated by
a Doxygen documentation system could serve as a quick
guide over the source code but it is not a comprehensive
source of learning CHAI 3D. Authors of CHAI 3D rec-
ommend to learn by the examples in packages for dif-
ferent platforms. This method gives the learner a decent
overview of the API but does not allow to fully understand
some fundamental characteristics of the API which makes
the learner read part of the API source code eventually.

4.1 Low-level use of API

Though the CHAI 3D library is a scene graph API, use
of CHAI 3D as a low-level communication layer is conve-
nient. CHAI 3D provides support of many devices and an
easy to use device handler cHapticDeviceHandler. Every
device is then treated as a generic haptic device cGener-
icHapticDevice with basic ability to get a position, set a
force, device communication opening, initialization and
closing.

4.2 CHAI 3D scene graph

A scene graph of CHAI 3D contains standard shapes,
meshes, virtual cameras and lights. The main unit of
all objects in the scene graph is a cGenericObject class
which inherits from a general abstract type cGenericType.
The generic object creates a tree structure of objects using
a standard template vector class of children objects in a
m children member. All methods for object modification
or property setting allow propagation to children by setting
an optional function parameter a affectChildren, which is
by default set to false. CHAI 3D scene graph has one root
node class for every object in the scene called cWorld. This
class is essential for further communication with graphics
and haptics.

The API contains only three standard object shapes (two
implicit surface objects): sphere (cShapeSphere) defined
by a radius, torus (cShapeTorus) defined by an inside and
an outside radius and line (cShapeLine). Beside standard
shapes implemented in CHAI 3D API, it is possible to load
complex meshes in OBJ and 3DS formats.

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
102

4.3 Haptic tool

The scene graph representation of a haptic device is
called a tool. An abstract class defining all tools in the
scene graph is cGenericTool. The only specific tool that
CHAI 3D provides at this time is a 3-DOF tool identified
as a cGeneric3dofPointer. 6-DOF force rendering algo-
rithms are not supported.

The generic tool is also a generic object which means
that the tool has its position, rotation and all other object
properties. The tool itself needs only a pointer to the hap-
tic device from a device handler. It manages all the ini-
tialization automatically by calling a start method. A stop
method does the opposite.

The default device mesh of the generic 3-DOF pointer
displays the tool as a sphere. God-object algorithm with
variable radius is used for the haptic force rendering for
which there are two meshes representing the tool:

• a device mesh (m deviceMesh) which represents the
real current position of the haptic device touch tool

• a proxy mesh (m proxyMesh) which represents a
model of the haptic interface in the virtual environ-
ment

The force model is also defined as the abstract
model (with a generic class cGenericPointForceAlgo) split
into cProxyPointForceAlgo and cPotentialFieldForceAlgo
classes. The cProxyPointForceAlgo class implements the
God-object method and cPotentialFieldForceAlgo class
process local interaction relating to haptic effects.

An overall force contains assigned local haptic effects
and interaction forces computed on the base of haptic de-
vice properties (e.g. stiffness), a position relative to an in-
teraction projected point on the interacting object surface
and a best new position of the proxy model in the proxy
point force algorithm. Interaction detection is not always
precise especially in complex meshes and the proxy model
gets sometimes stuck and generates excessive force.

The tool works in a workspace set by a radius. It is pos-
sible to change the radius and position of the workspace
and its rotation relative to the scene. The tool is often at-
tached to the camera so that the workspace corresponds to
the view of the camera. A schema of haptic tool interac-
tion process is shown in Figure 6.

4.4 Haptic effects

The CHAI 3D scene graph provides a set of haptic ef-
fects that can be assigned to implicit surface objects [12].
These effects are computed using a local interaction com-
puteLocalInteraction method of each object. The mesh or
any other complex object without overridden computeLo-
calInteraction method is not able to apply haptic effects
because there is no way how to compute an interaction
projected point from a generic object algorithm. Only the

proxy point algorithm is used for these objects to calculate
forces.

Haptic effects with the base abstract class cGenericEf-
fect in the API are as follows:

• Magnetic model effect cEffectMagnet provides a
magnetic field effect near the object

• Stick-slip effect cEffectStickSlip provides an effect of
sliding one object on another with sticking caused by
friction (e.g. rubber on a desk)

• Surface effect cEffectSurface provides a basic surface
effect of a tool pushing against the object

• Vibrations effect cEffectVibration provides an effect
of a vibration with a specific frequency and amplitude

• Viscosity effect cEffectViscosity provides an effect of
a tool moving through a fluid

Figure 6: Schema of a haptic tool interaction process in
CHAI 3D - effects can be applied only on implicit surface
objects, God-object method is used for mesh objects in
cWorld, as denoted by asterisk and circle

All effects are very sensitive to a good setting of proper-
ties such as a maximal stiffness of the haptic device. A rel-
atively small change of effect properties can make a great
difference in the effect perception and sometimes even a
different driver may result in a different effect behavior.

4.5 ODE module

The CHAI 3D library does not implement its own rigid
body dynamics simulation. There is, however, a module
that connects the CHAI 3D scene graph with the Open Dy-
namics Engine (ODE) library.

Communication of CHAI 3D and ODE is handled by
cODE, cODEWorld and cODEGenericBody classes. The
API contains precompiled ODE libraries for both dynamic
and static linking with double precision. Preprocessors
definitions need to be set correctly in order to run an ap-
plication properly without runtime errors.

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
103

Every object in the ODE simulation has to be added to a
specific ODE world. Such an object is defined as an ODE
generic body with properties of physical simulation and
a CHAI 3D body image model of the scene graph. The
ODE world is a generic object which behaves as a child
object in the standard parent world object but has a list of
bodies instead of a list of children. However, all recursive
algorithms in CHAI 3D look up children list in the scene
graph. For instance, it is therefore not possible to assign a
haptic effect to an object in the ODE simulation because
the rendering algorithm is using the mentioned recursion
through children list. A fix of this behavior can be found
in [10].

The ODE module enables creation of a dynamic box,
sphere, capsule and a mesh from an assigned CHAI 3D
body image model. Static planes are also available. A
global gravity can be set as a three-dimensional vector de-
scribing a force. Calling an ODE world updateDynamics
method with a step time function parameter updates the
simulation. Though the implementation of dynamics into
the scene graph is simple, a programmer still has to work
with the ODE world as a separate world and encounters
a lot of disadvantages when using recursive scene graph
algorithms.

4.6 GEL module

The haptic technology utilizes an implementation of a de-
formable body simulation more than any other technology.
CHAI 3D provides a module to create such deformable
objects in the scene graph which uses the GEL dynamics
engine developed at Stanford University.

As in the ODE module, the GEL module is imple-
mented as a separate world (cGELWorld) of deformable
objects. The main idea behind the deformation is a skele-
ton model made of nodes (cGELSkeletonNode) and links
(cGELSkeletonLink) between them. Nodes are represented
as spheres with a given radius and mass connected with
elastic links with spring physics defined by elongation,
flexion and torsion properties (as shown in Figure 7). Ev-
ery node has its physical properties (linear damping, angu-
lar damping, gravity field definition) and provides methods
to control force and torque.

The GEL module provides a simple way to add de-
formable objects to the scene graph, but integration of the
GEL dynamics engine in the lower layer of the scene graph
with automated skeleton modeling would considerably en-
hance the high level use of CHAI 3D.

5 H3D API and HAPI

H3D API [1] is a high level scene graph API developed
by SenseGraphics. H3D API uses HAPI as a low-level
layer for haptics, OpenGL for graphics and the X3D XML-
based file format to represent the scene. The library is
written in the C++ programming language and is licensed

Figure 7: CHAI 3D GEL module example

under GNU GPL v2. Closed source license for commer-
cial use is also available.

5.1 X3D

The most interesting feature H3D API provides is scene
definition in X3D file format. The whole scene with a
camera set, lights, primitive objects, complex meshes, tex-
tures, etc. is defined as XML nodes. As X3D is originally
web-based technology, a texture or any other object loaded
from a file can have a URL path.

The haptic device is defined through a DeviceInfo node
with the haptic renderer specification, position calibration
and the proxy model appearance. H3D API implements
all HAPI haptic rendering functionality to the X3D speci-
fication. For instance, to add a frictional surface effect to
the shape in the scene, a XML node FrictionalSurface is
added to the appearance node of the shape with appropri-
ate properties.

H3D API also supports X3D routes which makes it pos-
sible to read data from one source and route it to a specified
destination. That is for instance routing the position of the
mouse from the MouseSensor node to the shape node posi-
tion. A PythonScript node allows to route data from X3D
to Python programming language functions.

5.2 Python interface

H3D API propose a very unique way of haptic program-
ming using Python scripts on top of the X3D scene defini-
tion. A Python interface to the H3D API implements X3D
creation and write functions, special bindable node access
(haptic device info, viewpoint, etc.) and X3D field types
so that it is possible to create a comprehensive application
just using the X3D and Python when there is no reason to
develop efficient real-time application.

5.3 Scene graph and C++

H3D API is not only the Python and X3D. The entire ap-
plication can be written in the C++ programming language

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
104

for better performance. The C++ code allows to parse
X3D strings which makes it easier to create objects or set
materials in C++. This method should be used only in ini-
tialization of the scene because real-time X3D parsing in
a graphics loop of the application would lower the perfor-
mance.

H3D API is a perfect tool to create fast prototypes of ap-
plications using haptics. Python and X3D is available for
a very rapid development and C++ for higher performance
applications.

5.4 HAPI

HAPI [1] is a new complex open source high-level hap-
tic API also developed by SenseGraphics licensed under
GNU GPL v2. As with the H3D API, a closed source
license is also available. HAPI is written in the C++ pro-
gramming language and works on all major operating sys-
tems: Microsoft Windows, Linux and Mac OS.

HAPI is one of the most active haptic APIs support-
ing devices from Sensable, Force Dimension, Novint and
Moog FCS Robotics. There are four haptic rendering al-
gorithms available: God-object algorithm (described in
Section 3), Ruspini algorithm - Virtual proxy method,
CHAI 3D rendering, OpenHaptics rendering.

HAPI provides not only the basic device handling, but
there is also a number of haptic force effects, surface
effects, collision detection, primitive shape creation and
thread handling. A very specific functionality is graphics
rendering based shape creation. It allows a programmer
to create haptic shapes using standard OpenGL drawing
functions. A FeedbackBufferCollector class collects all
triangles that are rendered via the OpenGL library.

HAPI is very well documented with an accompanying
manual, reference manual generated by Doxygen docu-
mentation system and a lot of examples of all features. The
source code of a basic device handling application written
in HAPI using the AnyHapticsDevice class has just about
20 lines. HAPI can be downloaded as a Windows Installer
or as the source code.

The manual and examples make HAPI very easy to use.
HAPI is one of the best choice of commercial and non-
commercial high-level APIs with a very good support from
authors and can be also used as a low-level API.

6 Other haptic APIs

OpenHaptics[13] is a commercial software development
toolkit designed for SensAble devices. The toolkit con-
tains scene graph API for rapid development, high-level
and low-level APIs and support for integration of haptics
into existing applications. OpenHaptics is also available
in Academic Edition.

There are many low-level APIs designed for specific
devices: HDAL [8] (Novint Haptic Device Abstrac-
tion Layer) which is a commercial closed source SDK

Figure 8: Haptic API abstraction layers for Novint Falcon.
HDAL SDK wrapping classes are denoted by asterisk, lib-
NiFalcon wrapping classes are denoted by circle

for Novint Falcon device working only on Microsoft
Windows, libNiFalcon [9] - an open-source driver for
Novint Falcon working on all major platforms or JTouch-
Toolkit [2] (HDAL SDK and OpenHaptics HDAPI/HLAPI
wrapper for Java platform). Example of haptic API ab-
stract layers for Novint Falcon device is shown in Fig-
ure 8 (experimental implementation of libNiFalcon into
CHAI 3D is a part of [10]).

Conclusion

We have introduced haptic technology and discussed as-
pects of programming with haptics. We have shown that
there are many ways how to add support of haptic technol-
ogy into an application using different abstraction layer of
haptic APIs varying from haptic device driver, low-level
APIs to high-level scene graph APIs. We have presented
basic methods of 3-DOF haptic rendering - specifically
the God-object method and Virtual proxy method which
are used in high-level APIs such as CHAI 3D, HAPI or
OpenHaptics. Relevant parts of CHAI 3D haptic library
have been analyzed in detail including haptic tool, hap-
tic effects or ODE and GEL module support. Very active
haptic APIs HAPI and H3D API have also been analyzed.
H3D API brings a possibility to create haptic applications
in declarative programming language X3D with an inter-
face to Python programming language. Another commer-
cial device specific haptic APIs were mentioned such as
HDAL SDK or OpenHaptics.

Final comparison of haptic APIs is given in Table 1.
Computational load benchmark has been implemented in
selected low-level haptic APIs as a simple force field hap-
tic rendering algorithm. Benchmark ran on Intel Atom
330 1.6 GHz dual core CPU and results are shown in fig-
ure 9. Some APIs do not support blocking servo calls
which make fast haptic rendering algorithms (under 1ms)
to create pointless CPU load by polling data in loop. This

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
105

API CHAI3D HDAL SDK JTouchTool. libNiFalcon HAPI H3D API OpenHaptics
Open source • ◦ • • • • ◦
Cross platform • ◦ ∗ • • • •
License GPL/C C/N GPL BSD GPL/C GPL/C C/A
Development state ••◦ ••• •◦◦ ••◦ ••• ••• •••
API manual ◦ • ◦ ◦ • • •
API reference • • • • • • •
Device range ••• •◦◦ ••◦ •◦◦ ••• ••• ••◦
Abstraction layer High/Low Low Low Low/Driver High/Low High High/Low

Table 1: Haptic APIs comparison, C = commercial, N = non-commercial, A = academic, * = partial

behavior is taken into account and some APIs were extra
benchmarked with simple polling prevention.

Figure 9: Benchmark based on simple haptic rendering
algorithm simulating force field with ideal spring defined
by Hooke’s law

Acknowledgements

I would like to thank Petr Kmoch for his support and ad-
vice throughout the creation of this work.

References

[1] SenseGraphics AB. H3D API - haptics soft-
ware development platform, 2011. http://www.
h3dapi.org/.

[2] John Archer. JTouchToolkit, 2008. https://
jtouchtoolkit.dev.java.net/.

[3] S. Choi and H.Z. Tan. Toward realistic haptic ren-
dering of surface textures. In ACM SIGGRAPH 2005
Courses. ACM, 2005.

[4] Conti Francois et al. CHAI 3D set of libraries, 2009.
http://www.chai3d.org/.

[5] Williams II et al. The virtual haptic back for pal-
patory training. In Proceedings of the 6th interna-
tional conference on Multimodal interfaces, pages
191–197. ACM, 2004.

[6] M. Fritschi, M.O. Ernst, and M. Buss. Integration of
Kinesthetic and Tactile Display–A Modular Design
Concept. In Proceedings of the EuroHaptics, 2006.

[7] J.P. Fritz, T.P. Way, and K.E. Barner. Haptic repre-
sentation of scientific data for visually impaired or
blind persons. In Proceedings of the Eleventh An-
nual Technology and Persons with Disabilities Con-
ference. CSUN, 1996.

[8] Novint Technologies Inc. HDAL - Novint Fal-
con SDK, 2008. http://home.novint.com/
products/sdk.php.

[9] Kyle Machulis. libNiFalcon - open source driver
for the Novint Falcon, 2009. http://qdot.
github.com/libnifalcon/index.html.

[10] Kadleček Petr. A Practical Survey of Haptic APIs,
Bachelor’s thesis, Charles University in Prague,
Czech Republic, 2010.

[11] Diego C. Ruspini, Krasimir Kolarov, and Oussama
Khatib. The haptic display of complex graphical en-
vironments. SIGGRAPH ’97, pages 345–352, 1997.

[12] Kenneth Salisbury and Christopher Tarr. Haptic ren-
dering of surfaces defined by implicit functions. In
Proceedings of the ASME 6th Annual Symposium,
pages 61–68, 1997.

[13] Sensable. OpenHaptics software development
toolkit , 2011. http://www.sensable.com/
products-openhaptics-toolkit.htm.

[14] C. B. Zilles. Haptic Rendering with the Toolhandle
Haptic Interface. Master’s thesis, Massachusetts In-
stitute of Technology, 1995.

[15] C. B. Zilles and J. K. Salisbury. A constraint-based
god-object method for haptic display. IEEE Com-
puter Society, 1995.

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
106

Real-time Hand Tracking using Flocks of Features

Bc. Andrej Fogelton∗

Supervised by: Ing. Matej Makula, PhD.†

Faculty of Informatics and Information Technologies
Slovak University of Technology

Bratislava / Slovakia

Abstract

There is a growing demand to interact with computers in
a more natural way. For example using hand gestures to
interact with certain type of applications would be more
efficient than old-fashioned keyboard and mouse. Hand
tracking is one of the key problems in computer vision. We
have analyzed many different approaches used for hand
tracking. Flocks of features introduced by Mathias Kölsch
and Matthew Turk can track human hand continuously
during various movements and pose variations. It uses the
Kanade Lucas Tomasi (KLT) tracker for features located
on a human hand to track them in a frame sequence. It
can handle fast tracking of non-rigid highly articulated
objects such as hands. We propose an improvement to
this algorithm by processing the frame using histogram
back projection of the skin color prior to applying flocks
of features (FoF). This modification provides better results
with lower false positive error.

Keywords: Hand Tracking, Flocks of Features, Back
Projection, Histogram

1 Introduction

In the last few years, there is a growing demand to control
computers in a more interactive way then using just mouse
and keyboard. One of the pioneers of the new way of
interaction was Nintendo WII,1 which uses infrared LEDs
and infrared camera with a proximity sensor. This device
is used in a game console offering a totally new way of
game experiencing. For example, you can play tennis by
holding WII remote controller in your hand instead of your
tennis racket and play a match against your friend or the
computer.

The other promising product was introduced by Mi-
crosoft. The new version of their game console XBOX
360 uses Kinect,2 which has the ambition to become even
more popular than WII. Kinect is a webcam extended with
infrared light camera and infrared light projector. This

∗fogelton@gmail.com
†makula@fiit.stuba.sk
1http://www.nintendo.com/wii
2http://www.xbox.com/en-US/kinect

projector illuminates the scene with infrared light and a
special infrared light camera is able to compute the depth
information from the image. This information can be used
to interact with computer like never before. You drive
a car or play almost everything what you want and with
this camera the computer is capable of creating a model of
human figure in real-time. This opens new possibilities of
interaction with the computer.

We believe that in several cases using hands to interact
with the computer will be much more efficient than old-
fashioned mouse or keyboard. We want to make this
solution accessible for larger population by using a web-
cam. In order to deal with highly articulated objects, such
as hands, effectively in the most common situations with
arbitrary background, several requirements were given:

• background invariant,

• without gloves or any other markers,

• light invariant,

• ability to track both hands of the user real-time,

• hand shape (pose) invariant,

• hand size invariant.

In Section 2, we describe the present state of art in the
hand tracking area. The algorithm Flocks of features is
described more precisely in Section 3. In Section 4, we
present our modifications to this algorithm to overcome
some of its difficulties. We discuss the results of different
methods in Section 5. Finally, in the last section, we
propose the conclusion and the future work.

2 Related Work

There are several methods to track human hands. A
tracker can be based on a few cues or their combinations;
shape (contour), color, and behavioral knowledge about
the hand. A lot of algorithms work fine, however there are
lots of restrictions to the user’s behavior or background.
The aim of good interface is not to restrict users but to
allow them maximum freedom and comfort. There are
summarizing papers [12, 10] which bring brief informa-
tions on several techniques used for hand detection and
hand tracking.

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)

2.1 Color Based Tracking

One of the first ideas to detect human hand is to use the
color based filter. Every human hand has a specific color.
The basic principle is to use a set of threshold ranges for
every image channel separately. This solution is limited
to several conditions. There should be no other objects
having the same skin color characteristics in the captured
image, lighting conditions have to be constant and the
person has to be of the specific skin color. For example
black people do not have the same range of thresholds
like white people. These restrictions make this solution
not very useful, but there is a number of possibilities to
improve it.

Color Models

The most widely used is the RGB color model, in which
every color is described by the intensity of three basic col-
ors: Red, Green and Blue. High correlation between these
components and luminance mixing with the chromaticity
makes this color model very sensitive to the light condition
changes [3]. There are several other models, which have
the intensity of colors in a separate channel. Most common
are HSV, HSL, YCbCr or normalized RGB.

Simple Color Classification using Randomized Lists

An interesting solution was presented in the paper Ro-
bust hand tracking using a simple color classification
technique, which uses even different color model called
L*a*b* [19]. It is also quite invariant to luminance con-
ditions with separately defined luminance value L* and
chromatic values a* and b*. Threshold ranges are setup
with sample pixels from a hand, but this is not the only
classification method used. This solution is based on
clustering similar color pixels and defining a region of in-
terest during the initialization process (in our case a human
hand). This solution presents very good tracking results
(Figure 1) of hand under various luminance conditions and
with almost no false positive cases. However, we believe
that this solution will stop working when the hand comes
in contact with face and the classifying method would fail.

Figure 1: Hand clusterization [19].

Mean-Shift and CamShift

Mean-Shift is a robust color segmentation method [1]
based on selected region matching. It is converging from
an initial guess for location and scaling to the best match
based on the color histogram probability. CamShift de-
tects the mode in the probability distribution by applying
Mean-Shift and dynamically adjusting the parameters of
the target distribution. Mostly it is working fine but with
very bad size precision and objects with similar color can
easily distract the tracker. It is the standard, the results can
be compared to.

Modified CamShift [18] takes into consideration a kind
of gray model, which also represent the forecast of change
in the image sequence. Better results are achieved because
of this modification and there is no distraction due to the
contact with face (Figure 2).

Figure 2: No distraction with face using Gray CamShift
tracking [18].

2.2 Background Subtraction

This technique is used mostly in [11] with fingertip detec-
tion. It can be used when the background is given or stable
without any other motion (hand only). This restriction
makes it applicable only to a few situations.

2.3 Contour Based

Another cue on which we can base tracking is the con-
tour. There are several solutions that use specific shape
of a hand posture for detection and tracking. The basic
technique to enhance image is the Canny edge detector.
A more sophisticated one is the Oriented edge energy
(Figure 3), which is the result of several filters [15]. It is
hard to define all possible contours of a human hand and
that is why contours are mostly used for posture estimation
on selected region.

Figure 3: Original image, Canny detector, Oriented edge
energy [15].

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
108

Condensation

The condensation approach [5] models the probability dis-
tribution with a set of random particles and performs all
involved calculations on this particle set. Condensation
presents very good results with proposed hand posture in
Figure 4, but it is not designed to track human hand while
posture changes a lot.

Figure 4: Sample of condensation tracking [5].

2.4 Model Based Detection

This principle is always used with some other cues, where
we can use knowledge about the hand. For example in [2]
it is used with skin color probability map to detect the hand
and its posture, which depends on how many fingers are
straight. This kind of model can be useful when the hand
is pointed to the camera and the number of straight fingers
can be clearly seen.

Figure 5: One of the skeleton hand models [12].

There are several types of hand models [12]. The skele-
ton model (Figure 5) is very common. They usually differ
in number of points and vectors. The motion model [15] is
another option, which can be used as another cue to extend
the color based tracking.

3 Flocks of Features

Mathias Kölsch and Matthew Turk presented a Fast 2D
hand tracking with flocks of features and multi-cue inte-
gration [7]. This algorithm can track the human hand
without any artificial objects such as gloves. It is robust to
various light conditions and furthermore a non stationary
camera can be used. The tracker’s core idea is motivated
by the seemingly chaotic flight behavior of a flock of

Listing 1: Flocks of features algorithm [8].
input:
bnd_box - rectangular area containing hand
mindist - minimum pixel distance between

features
n - number of features to track
winsize - size of feature search windows

initialization:
learn color histogram
find n*k good-features-to-track with mindist
rank them based on color and fixed hand mask
pick the n highest-ranked features
//k=3 was used

tracking:
update KLT feature locations with image pyramids

compute median feature
for each feature
if less than mindist from any other feature

or outside bnd_box, centered at median
or low match correlation

then relocate feature onto good color spot
that meets the flocking

conditions

output:
median - the average feature location

birds [13] such as pigeons. The minimum and maximum
safe distance during the flight are defined. Features of the
hand are also very close together like birds in a cloud [13].
The minimum distance between any two features and the
maximum distance from the center (median) is defined.
The median position of features is computed and the
search using optical flow can be provide only up to the
maximum distance from this position.

Robust hand detection [8] is used to initialize this
method. Very good results are achieved during rapid
movements and with continuous pose changing of the
human hand. An overview of the entire algorithm is listed
in Listing 1.

3.1 KLT Features

The KLT tracking algorithm calculates a brightness gra-
dient (sobel operator) along at least two directions for a
promising feature candidate to be tracked over time [14,
16]. In combination with image pyramids (a series of pro-
gressively smaller-resolution interpolations of the original
image), a feature’s image area can be matched efficiently
to the most similar area within a search window in the
following video frame. If the feature match correlation
between two consecutive frames is below a threshold, the
feature is considered “lost”. A hand detection method
supplies both a rectangular bounding box and a probability
distribution to initialize tracking.

The probability mask states for every pixel in the bound-
ing box the likelihood that it belongs to the hand. Features
are selected within the bounding box according to their

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
109

ranking and observing a pair wise minimum distance.
These features are being ranked according to the combined
probability of their locations and color. Highly ranked
features are tracked individually per frames. Their new
locations become the area with the highest match correla-
tion between the two frame’s areas.

Figure 6: Snapshots of sequences with hand motions; the
cloud of little dots are features and the big dot is their
median [7].

Individual features can latch onto arbitrary artifacts of
the object being tracked, such as fingers of a hand. Their
movement is independent along with the artifact, without
disturbing other features. Too dense concentrations of the
features that would ignore other object’s parts are avoided
due to the minimum distance constraint. But stray features
that are too far from the object of interest are brought back
into the flock with the maximum distance constraint. To
get more stable results, about 15% of the furthest features
from median computation have to be removed. The speed
of pyramid-based KLT (Kanade, Lucas, Tomasi) [14, 16]
feature tracking allows to overcome the computational
limitations of tracking the model-based approaches and
achieving real-time performance.

3.2 Color Classification

During calibration process, a hand color is observed and
the normalized-RGB histogram is created. Using this
technique exclusively is not a very good solution because
it can detect objects with similar color histogram such as
wooden objects or other parts of the human body. The
color information is used as a probability map. At tracker
initialization time, the KLT features are placed preferably
onto locations with high skin color probability. New
location of a relocated feature is chosen with high color
probability (more than 50%). Changing light condition
can cause bad tracking performance, but only in case of
relocated features because most of the features will con-
tinue to follow gray-level artifacts. This method combines
cues from feature movement based on gray-level image
texture with cues from texture-less skin color probability.
It depends on the algorithm parameters how often features
are relocated and on the importance of the color modality.

This algorithm was used to interact (Figure 7) with a
wearable computer [9]. A webcam was placed at the

head mounted display, so the hand size was approximately
constant. It can be used to track both hands [4] or even
other objects, where the skin color is replaced by a given
sample. The problem is that it is not size invariant due to
the threshold for the maximum distance from the center of
the flock.

Figure 7: Screen shots from glasses of given applica-
tion [9].

3.3 Flocks of Features with Appearance

New version of FoF was introduced, where another cue
was added [6]. Haar features detector [17] was trained
on a set of images of hands with different pose variations.
This is used side by side with FoF. Positive detection of
hand is evaluated after passing several stages (Figure 8).
This adapted algorithm uses probability given not only by
skin color, but also by the detector (the last passed stage of
AdaBoost). The presented solution reaches better results
than the original flocks of features in all tested cases [6].

Figure 8: The appearance-based prior for selected hand
images [6].

4 Modifications of Flocks of Fea-
tures

The original FoF uses gray-level image for KLT features
tracking. Due to this procedure we found the FoF algo-
rithm to be vulnerable to edges occurring in the back-
ground. During movements over strong edges, a lot of
KLT features can be relocated into incorrect positions.
This leads to an incorrect median relocation and tracking
failure (Figure 9).

We tried to avoid this kind of failure by ranking features
based on skin color probability also during tracking and
not only at the initialization procedure, but this did not lead
to the expected results. We used histogram (calculated
from a given region – hand palm) from the initializa-
tion procedure to create a probability map by applying

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
110

Figure 9: FoF algorithm is vulnerable to edges occurring
in the background due to bad KLT features relocation.

back projection during tracking on every frame. One
slight difference is use of the HSV color model instead
of normalized-RGB, because it is more common in these
kind of application while using histogram. The HSV color
model and normalized-RGB have similar characteristics in
terms of luminance invariance.

4.1 Image Processing

We realize that if we use the probability map instead of
the original image, we will get rid of the edges in the
background because they are not skin colored and they
did not appear in the back projected image. The idea
to run FoF on this probability map (Figure 10) has been
proved to be a step forward. Look at the resulted image on
Figure 10, there is a lot of noise. To reduce this noise
we use basic image processing operations: erosion and
dilation (Figure 11). From testing we can say that the
best ratio reducing noise/reducing skin regions is achieved
when applying erosion and then dilation, each one only
once. This is also called the operation open.

Figure 10: Result of histogram back projection with noise.

Figure 11: Removing noise with erosion and dilation.

Because of this modification we do not need to rank fea-
tures in the initialization procedure and we can be almost

Listing 2: Modification of Flocks of features algorithm.
input:
bnd_box - rectangular area containing hand
mindist - minimum pixel distance between

features
n - number of features to track
winsize - size of feature search windows

initialization:
learn color histogram
create back projected image
find n good-features-to-track with mindist

tracking:
create back projected image
update KLT feature locations with image pyramids

compute median feature
for each feature
if less than mindist from any other feature

or outside bnd_box, centered at median
or low match correlation

then relocate feature onto good color spot
that meets the flocking

conditions

output:
median - the average feature location

sure that every feature will be located somewhere in the
skin region. The modified algorithm is listed in Listing 2.

5 Results

We present a sequence of images with tracking results
(Figure 12). We considered tracking to be lost when the
median came out of the hand palm for more than one
second. Our modification can also fail like the original
one (Figure 13), mostly because of rapid movements of the
hand over face or other skin colored objects. An ordinary
webcam is able to achieve 30 frames per second, but this is
not enough for rapid movements. The reason for the KLT
tracking failure in this case is the optimization to look for
a new location of a given feature in range of 10 pixels (the
bigger the range, the more time it takes to compute). That
is the reason why it considers other skin colored parts as
hand and the median is disrupted.

Another case of tracking failure is when the median
slides off the hand palm (Figure 14), because the given
person is not wearing a shirt with long sleeves. This
tracking is based mostly on color cue and this disruption
is very common using this principle. The solution is to
add another cue which would represent the hand contour;
it should be some general contour with help of which
we could determine the border between hand palm and
forearm. This could be our task in the future.

The HSV color model provides luminance invariation,
but there are situations when the histogram back projection
is not working well. For example, when a human hand is
moving too far from the camera, the luminance from the

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
111

Figure 12: Example of hand tracking(200× 200 image
parts are cutted out from 640×480 images).

Figure 13: Tracking failure due to rapid movements.

hand changes rapidly and we can see only small parts of
the hand (Figure 15) on the back projected image. This
can also lead to tracking failure. This unpleasant effect
can be also seen when the main source of light is not over
head and luminance can change a lot by rotating the hand.

5.1 Comparison

In general it is hard to compare methods, as they have
different advantages and disadvantages. We did some
comparisons between CamShift, our implementation of
FoF and our modification of FoF. We did not add new
features when others where considered lost. Our aim is
to objectively verify the ability of tracking various hand
postures in a frame sequence while trying to disrupt the
tracker by movements across face and the other hand.

We made 6 pairs of videos with different length from
400 to 1000 frames. Each pair consists of similar videos.
One is with a man wearing long sleeves shirt (’a’ labeled
videos), the other wearing t-shirt (’b’ labeled videos).
Videos and tracking results can be downloaded from my
website.3 One pair was made outside, the others inside.
They are aimed at different conditions like changing the
size of the hand, rapid movements or moving background.
Complete list of all tested videos can be found at Table 1.
The results are processed in the graph (Figure 16), where
the height of columns means the number of frames till
tracking failure.

3http://henryi.yweb.sk

Figure 14: Median slided off the hand palm.

Figure 15: Example of bad back projection due to the
luminance variation of the skin.

Conclusions and Future Work

We analyzed different hand tracking solutions with the
aim to find a solution which could be used as an input to
interact with computer. The main goal is not to restrict
the user with behavior rules. It should be possible to
track human hand without wearing any gloves or forcing
the users to hold their hand in one posture all the time
to get tired easily. Flocks of features showed up to be a
very robust algorithm, but it can be easily disrupted with
strong edges in the background. Our idea to process an
image with histogram back projection led to a significant
improvement in tracking efficiency and decreasing false
positive KLT features tracking. But there are still several
issues to handle.

We proofed, that running FoF on back projected image
is better in almost all cases (Figure 16) than the orig-
inal FoF and it can handle more reliable tracking than
CamShift in all cases. In one case original FoF showed to
be better due to bad luminance conditions (Back projection
is not working well, when the luminance condition change
a lot from initialization procedure.) and the gray-level
image used for tracking is more suitable for these kind of

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
112

0

50

100

150

200

250

300

1a 1b 2a 2b 3a 3b 4a 4b 5a 5b 6a 6b

CamShift

FoF

MFoF

Figure 16: Testing results (Modified FoF was able to track the whole video sequence in cases: 2a, 3a, 3b).

number conditions
1 rapid movements of the hand
2 size of the hand is changing a lot
3 arbitrary movements
4 arbitrary movements
5 moving background
6 outside lightining conditions

Table 1: Explanation of listed videos

situations.

Size Invariant Flocks of Features

Due to the maximum distance threshold constant, flocks
of features has a problem with moving the hand closer and
further from the camera. This can be avoided by finding
proper algorithm which would calculate this threshold de-
pending on the density of features.

Contour Cue

We want to add a third cue to the flocks of features which
would represent the contour of the hand palm. This will
help us to avoid the unpleasant situation when features are
detected outside the palm and the median is distracted and
moved outside the palm of the hand (our aim is to keep the
median inside the hand palm).

Tracking Lost Detection

After adding the contour cue we can setup tracking failure
detection, which will be based on the median coordinates.
Tracking could be considered lost when the median is
moved outside the hand palm contour.

Acknowledgements

This work was supported by grant KEGA 244-022STU-
4/2010.

References

[1] Dr. Gary Rost Bradski and Adrian Kaehler. Learning
opencv, 1st edition. O’Reilly Media, Inc., 2008.

[2] Lars Bretzner, Ivan Laptev, and Tony Lindeberg.
Hand gesture recognition using multi-scale colour
features, hierarchical models and particle filtering.
In Proceedings of the Fifth IEEE International Con-
ference on Automatic Face and Gesture Recognition,
FGR ’02, Washington, DC, USA, 2002. IEEE Com-
puter Society.

[3] Reza Hassanpour, Asadollah Shahbahrami, and
Stephan Wong. Adaptive gaussian mixture model for
skin color segmentation. World Academy of Science,
Engineering and Technology, 41, 2008.

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
113

[4] Jesse Hoey. Tracking using flocks of features, with
application to assisted handwashing. In British Ma-
chine Vision Conference (BMVC), 2006.

[5] Michael Isard and Andrew Blake. Condensation -
conditional density propagation for visual tracking.
International Journal of Computer Vision, 29:5–28,
1998.

[6] Mathias Kölsch. An appearance-based prior for hand
tracking. In Jacques Blanc-Talon, Don Bone, Wil-
fried Philips, Dan Popescu, and Paul Scheunders,
editors, Advanced Concepts for Intelligent Vision
Systems, volume 6475 of Lecture Notes in Computer
Science, pages 292–303. Springer Berlin / Heidel-
berg, 2010.

[7] Mathias Kölsch and Matthew Turk. Fast 2d hand
tracking with flocks of features and multi-cue inte-
gration. In Computer Vision and Pattern Recognition
Workshop, 2004. CVPRW ’04. Conference on, pages
158 – 158, 27-02 2004.

[8] Mathias Kölsch and Matthew Turk. Robust hand
detection. In Automatic Face and Gesture Recog-
nition, 2004. Proceedings. Sixth IEEE International
Conference on, pages 614 – 619, 2004.

[9] Mathias Kölsch, Matthew Turk, and T. Hollerer.
Vision-based interfaces for mobility. In Mobile and
Ubiquitous Systems: Networking and Services, 2004.
MOBIQUITOUS 2004. The First Annual Interna-
tional Conference on, pages 86 – 94, august 2004.

[10] Fariborz Mahmoudi and Mehdi Parviz. Visual hand
tracking algorithms. In Proceedings of the confer-
ence on Geometric Modeling and Imaging: New
Trends, pages 228–232, Washington, DC, USA,
2006. IEEE Computer Society.

[11] Shahzad Malik and Joe Laszlo. Visual touchpad: a
two-handed gestural input device. In Proceedings
of the 6th international conference on Multimodal
interfaces, ICMI ’04, pages 289–296, New York,
NY, USA, 2004. ACM.

[12] V.I. Pavlovic, R. Sharma, and T.S. Huang. Visual
interpretation of hand gestures for human-computer
interaction: a review. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 19(7):677 –695,
jul 1997.

[13] Craig W. Reynolds. Flocks, herds, and schools: A
distributed behavioral model. Computer Graphics,
21(4):25–34, July 1987.

[14] Jianbo Shi and C. Tomasi. Good features to track.
In Computer Vision and Pattern Recognition, 1994.
Proceedings CVPR ’94., 1994 IEEE Computer Soci-
ety Conference on, pages 593 –600, 21-23 1994.

[15] Björn Stenger. Template-based hand pose recogni-
tion using multiple cues. In P. Narayanan, Shree
Nayar, and Heung-Yeung Shum, editors, Computer
Vision ACCV 2006, volume 3852 of Lecture Notes in
Computer Science, pages 551–560. Springer Berlin /
Heidelberg, 2006.

[16] Carlo Tomasi and T Kanade. Detection and tracking
of point features. Image Rochester NY, pages Tech-
nical Report CMU–CS–91–132, April 1991.

[17] P. Viola and M. Jones. Rapid object detection using
a boosted cascade of simple features. In Computer
Vision and Pattern Recognition, 2001. CVPR 2001.
Proceedings of the 2001 IEEE Computer Society
Conference on, volume 1, pages I–511 – I–518 vol.1,
2001.

[18] Jiajun Wen and Yinwei Zhan. Vision-based two hand
detection and tracking. In Proceedings of the 2nd
International Conference on Interaction Sciences:
Information Technology, Culture and Human, ICIS
’09, pages 1253–1258, New York, NY, USA, 2009.
ACM.

[19] Miaolong Yuan, Farzam Farbiz, Corey Mason Man-
ders, and Ka Yin Tang. Robust hand tracking using a
simple color classification technique. In Proceedings
of The 7th ACM SIGGRAPH International Confer-
ence on Virtual-Reality Continuum and Its Applica-
tions in Industry, VRCAI ’08, pages 6:1–6:5, New
York, NY, USA, 2008. ACM.

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
114

Natural Phenomena & GPU

Towards Supporting Volumetric Data in FurryBall GPU Renderer

Michal Benátský∗

Supervised by: Jiřı́ Bittner†

Department of Computer Graphics and Interaction
Faculty of Electrical Engineering

Czech Technical University in Prague

Abstract

This paper describes an implementation of volumetric ren-
dering for FurryBall gpu renderer. Since FurryBall is di-
rectly integrated into Autodesk Maya, our volumetric ren-
derer supports all types of fluids, which can be simulated
in Maya. We discuss the issues of integrating volumetric
rendering into the FurryBall renderer. We show that our
implementation of volumetric rendering is up to 3 orders
of magnitude faster than Mental Ray on the tested scenes.

Keywords: volumetric rendering, fluids, modeling tools

1 Introduction

Fast rendering preview integrated directly into 3D mod-
eling tools, would significantly enhance the artists com-
fort and productivity. Most 3D modellers however do not
provide high quality realtime feedback and rendering of
scenes can take hours even days.

GPU based multi pass rasterization can be used to gen-
erate fast realistic previews and with some limitations it
can also be used to generate final high quality results. One
of such renderers is FurryBall [10], which is a GPU based
rasterization renderer, directly integrated into Autodesk
Maya.

In this paper we show how to extend the renderer for
dealing with fluids. In particular we discuss how to in-
tegrate our volumetric renderer with the rasterization of
transparent objects, shadows, hair systems, and how to
deal with volumetric grid containers intersections. We
present results obtained on several test scenes representing
simulated fluids and show that these results are consistent
with Mental Ray while obtaining a significant speedups.

2 Related Work

Rendering volumetric data is well studied area of com-
puter graphics. For a comprehensive overview of realtime
volumetric rendering techniques please refer to Hadwiger
et al. [3].

∗benatmic@fel.cvut.cz
†bittner@fel.cvut.cz

Figure 1: Church model render in FurryBall, model cour-
tesy of Art and Animation studio

Pixar’s RenderMan based on Reyes architecture [1] is
known as industry’s standard and is very widely used.
Render Ants [13] shows that it is possible to move all
stages of Reyes to the gpu. V-Ray is one of the leading
renderers in the field of GPGPU raytracing and it is fully
integrated into Autodesk Maya and 3ds Max. Another
well known render is iray from Mental Images, creators
of Mental Ray raytracer.

Apart from FurryBall we are aware of only a few com-
mercially available renderers based on multi pass rasteri-
zation. The most similar is pixar’s lpics [8] for realtime
preview of lighting on 3D scene. Another related renderer
is Mach Studio, which is a realtime GPU rasterization ren-
derer. However these renderers aren’t fully integrated into
3D modeling software such as Maya or 3Ds Max.

The rest of the paper is organised as follows: The basics
of volumetric rendering and our implementation of render-
ing volumetric data will be described in the next section.
In section 4 we will describe the integration of volume ren-
dering into existing renderer based on multi pass rasteriza-
tion on the gpu and the integration with Autodesk Maya
fluid rendering as well. In section 5 we will present results
of our work.

3 Volumetric Rendering

In this section we first describe the theoretical background
of volume rendering and then outline our implementation.

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 2: Fur rendering with FurryBall, model courtesy of
Art and Animation studio

3.1 Theoretical background

The physical basis for volume rendering relies on geomet-
ric optics, in which is light assumed to travel along straight
line unless interaction with participating media takes place
[3]. The following types of interaction are typically taken
into account.

Figure 3: Ray in volume with emission, absorption and
scattering.

Emission Volume emits light and increasing the ra-
diative energy. Practical example could be fire, which
emits light by converting heat into light.

Absorption Volume absorbs light by converting ra-
diative energy into heat.

Scattering Light can be scattered by volume, chang-
ing the direction of light propagation.

For solving complex light transport problem are com-
monly used simplified models. In ”Absorption only”
model volume absorb incident light. No light is emitted or
scattered. ”Emission only” model presents volume which

is completely transparent, but can emit light. ”Emission-
Absorption” model is most common in volume rendering.
Volume emits light and absorb incident light. ”Single Scat-
tering” model counts with single scattering from light that
comes from external light source (not from the volume).
”Multiple Scattering” model has goal to evaluate the com-
plete illumination model for volumes.

Autodesk Maya uses ”Emission-Absorption” model.
Light scattering is approximated by shadow diffusion. Our
renderer is implemented into Maya, so we use Emission-
Absorption as well.

Emission-Absorption model can be described by
Volume-Rendering Integral, which integrates radiance
along the direction of light flow from the starting point
s = s0 to the endpoint s = D.

I(D) = I0e
−

D∫
s0

κ(t)dt
+

s∫

s0

q(s)e
−

D∫
s0

κ(t)dt
ds (1)

The term I0 represents the light from the background.
I(D) is the radiance leaving the volume at s = D. κ is
the absorption coefficient and q is emission. First term
of the equation 1 describes the light from the background
attenuated by volume. Second term represents the integral
contribution of the source terms attenuated by the volume
along the remaining distance to the camera.

τ(s1,s2) =

s1∫

s2

κ(s)ds (2)

τ defines optical depth between positions s1 and s2,
which defines how long can light travel before it is ab-
sorbed. Smaller values defines material which is near to be
transparent and higher values defines nearly opaque mate-
rial. Transparency for a material between s1 and s2 is:

T (s1,s2) = e−τ(s1,s2) = e
−

s2∫
s1

κ(t)dt
(3)

Once we define transparency, we can rewrite volume
rendering integral into:

I(D) = I0T (s0,D)+

s∫

s0

q(s)T (s0,D)ds (4)

Volume rendering integral cannot be solved analytically,
that’s why we use discretisation. Common approach is to
split integration domain into n intervals: s0 < s1 < ... <
sn−1 < sn. Transparency and color contribution of the ith
interval is:

Ti = T (si−1,si),ci =

si∫

si−1

q(s)T (s,si)ds (5)

The radiance at the exit point is:

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
118

I(D) = I(sn) = I(sn−1)Tn + cn =

(I(sn−2)Tn−1 + cn−1)Tn + cn = ...

which can be rewritten as

I(D) =
n

∑
i=0

ci

n

∏
j=i+1

Tj (6)

with c0 = I(s0). Which leads to recursive front to back
equations

Ci =Ci+1 +Ti+1Ci

Ti = Ti+1(1−αi)

and back to front equation:

Ci =Ci−1(1−αi)+Ci

Ti = Ti−1(1−αi)

α is opacity and α = (1−T).

Volume raycasting Volume raycasting [5] traces ray
from the camera into the volume and solves volume ren-
dering integral along these rays. The biggest advantage of
volume raycasting is that rays are completely independent
on each other and can be processed in parallel.

3.2 Implementation

We implemented two techniques for rendering the vol-
umes. The first method is very simple and visualises the
volume data as sprites (see Figure 4) and the second uses
volume raycasting.

Particle rendering - splatting We represent every voxel
of the volume as a vertex that is processed by a geometry
shader to create a billboard. When the billboard is raster-
ized, the pixel shader samples the color and value ramps
(transfer functions) to get appropriate color and opacity for
every pixel. This part was not expected to produce high
quality results, it was implemented only for the verifica-
tion of received data from Maya and especially for the fast
previews.

Volume raycasting Our second method uses volume
raycasting written in HLSL on the pixel shader. It was first
design decision to use direct compute, which is GPGPU
part of the DirectX 11 API, but the nature of volume ray-
casting is allowing to implement it on the pixel shader,
because of no need of synchronisations.

The rays are created based on the camera parameters.
We support variable focal points and off-axis stereo cam-
era. Ray origin and direction are converted into texture

Figure 4: Fluid rendered using splatting in FurryBall

space using inverted world matrix. Converting to texture
space allows faster raymarching and also it allows to per-
form a fast AABB test, because fluid container is a unit
cube in texture space. This tells us minimum and maxi-
mum distance where to sample on the ray.

The sampling has a fixed step, but depth jitter can be
used. Sampling is performed in parallel in the world space
and in the texture space. The world space position is im-
portant for connecting to existing and optimized Furry-
Ball shaders, especially for getting attenuation, light color
(which can be defined as a texture) and shadow.

Note that our current implementation of volumetric ray
casting fully replaced the splatting based approach as it
can render a more accurate preview even faster (when us-
ing under sampling).

4 Integration with FurryBall and Au-
todesk Maya

FurryBall is a GPU based rasterization plug-in for Au-
todesk Maya [10]. FurryBall’s initial purpose was a fast
preview for artists, before raytracing a CG movie. As its
development continued, the rasterization possibilities were
able to suit most of the artist’s needs and therefore it was
extended from a simple previewer into a complete produc-
tion renderer. FurryBall is written in C++, using DirectX
11 API and Open Maya API. It uses also Python and Maya
Embedded Language (MEL). See Figure 1 and 2 for exam-
ples of images rendered with FurryBall.

4.1 Integration with FurryBall

Camera settings FurryBall supports all Autodesk
Maya’s camera settings, which means that implemented
volume raycaster must support all this settings too and
build rays correctly. We solved this problem by recon-
structing near and far plane in world space using viewport,
view and projection matrix and passing them to the shader.
Then we interpolate between corner values and find cor-
rect ray origin and direction.

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
119

Opaque objects FurryBall allows to render all polygo-
nal meshes and apply various textures such as color tex-
tures, bump textures and displacements textures. It also
supports Maya layered textures and realtime adaptive Di-
rectX 11 HW tessellation with displacement textures.

Volume raycasting can be combined with opaque geom-
etry easily by stopping sampling at z-buffer value. Prob-
lematic part if this approach is when the size of the final
render is not equal with the size of fluid render pass. This
is supported because gaseous phenomena basically doesn’t
have hard edges and can be rendered in lower resolution.
It is possible to have fluid render pass at 1/2 resolution
of final render without visible quality loss. However this
produces artifacts if geometry is inside volume, if no lower
resolutions are possible to use even for final rendering.

Transparent objects Transparent objects in FurryBall
are rendered with depth peeling [2] , with the possibility
to set up the number of layers.

Integration of volumetric objects with transparent ge-
ometry is problematic, especially when geometry inter-
sects fluid container, there is need to blend objects into
the fluid in correct sample.

Two approaches were considered. First use customised
depth peeling which take into account fluid rendering.
That would solve the problem of sorting and also would
solve problem of transparent object and fluid intersection
by splitting fluid sampling into more parts.

Another considered approach was using order indepen-
dent transparency presented by AMD at GDC 2010 [7],
which uses unordered access writes into the output mem-
ory and outputs linked list for every rendered fragments
containing informations about depth and color. This linked
list is then sorted per fragment on the compute shader,
blended with each other in correct order and then with the
final render. This should be combined with fluid rendering
by passing ordered lists to the fluid rendering pass.

Shadows for meshes FurryBall integrates various
shadow mapping techniques. Basic shadow mapping tech-
niques, including basic shadow mapping for spot and point
lights and cascade shadow maps for directional lights [6].
[11]. For computing simplified soft shadows it uses PCF
or more advanced PCSS [6], which can either use regular,
Perlin or Poisson disk sampling.

It is not hard to combine our volumetric rendering with
shadow mapping. Ray sampling in raycaster knows world
position of the sample, so it can ask shadow map for shad-
ows.

Reflections and planar mirrors General reflections and
refractions and computed using environment mapping.
Planar mirror reflections use rendering into a texture from
the reflected camera position.

Both of these methods are not problematic to combine
with described volume raycasting as rays can be created

from the viewport and camera matrices.

Hair systems FurryBall has its own hair rendering sys-
tem. It is based on constructing billboards or regular ge-
ometry along curves on geometry shader. This might be
slower than a solution with lines, but it offers much more
control and possibilities. Such as vegetation rendering us-
ing textured fur. Curves can be fully independent of Maya
or can be connected to Maya hair system and benefit from
Maya hair simulation.

Fluid integration with the hair rendering is the same as
with regular geometry and rays stops at z-buffer value.

Shadow for hair and fur Shadows for hair can be com-
puted by common shadow mapping techniques, which,
however, do not provide sufficient quality. Tiny objects
like hair appear much better when being shadowed with a
transition function. Therefore FurryBall implements Deep
Opacity Maps [12] and Fourier Opacity maps [4] for these
cases.

Self shadowing and casting shadows for fluids is using
Fourier Opacity maps, which allows us to save multiple
hair systems and fluid containers into one map and cast
shadows one to another and on the geometry.

Fluid containers intersections Fluid container inter-
sections is common case in Autodesk Maya rendering. It
is used for create sky, where one container simulates blue
atmosphere and second contains clouds. Problem of fluid
intersections is that samples has to be blended together
correctly.

More approaches was considered. First one was very
similar to depth peeling, where volume sampling is done
in layers and layers are blended together. This wasn’t ac-
cepted as too slow. We decided that FurryBall will sam-
ple two fluids together in one pass, if they intersects each
other. This solution is faster and more accurate than mak-
ing slices.

4.2 Integration with autodesk Maya

Maya offers very complex fluid solver, which is based on
Navier-Strokes equations. The solver can handle both 2D
and 3D grids and simulates density, temperature, speed,
fuel and pressure. It also supports user defined gradients
and constants in the simulation.

For fluid shading the most important are the ramps for
colors and other values. Ramps define transfer functions
by piece-wise linear functions. The user can connect one
of the functions (like density or temperature) with one of
the shading ramps (color, incandescence and opacity). It is
also possible to connect gradients. Every ramp also has a
specified bias. Color ramp defines the RGB transfer func-
tion which is affected by each light. Incandescence is also
color transfer function which defines emitted light from

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
120

the volume. And at last is there opacity ramp which de-
fines opacity transfer function.

Figure 5: Fluid shading setup in Autodesk Maya

The final appearance depends on several additional set-
tings. The user can define RGB transparency, which af-
fects final opacity and color and also can choose some of
the dropoff functions. User also define the number of sam-
ples per voxel and choose whether the fluid in container
will receive/cast shadows. Maya light linking is also avail-
able (linking lights with scene objects to determine which
one is lighted with which light). User chooses volume res-
olution and size, which affects final density, regular scale
doesn’t.

Fluid can be affected by procedural noises. Perlin [9],
Billow, Volume wave and Wispy noises are employed.
Lots of setting is possible. Coordinates can be fixed with
volume grid or can flow fluid simulation by using velocity
vectors. In FurryBall fluid renderer is currently Perlin and
Billow noise implemented.

Fluids can receive and cast shadows. Self shadowing of
fluid can be turned off for better performance of rendering.
For better performance is also possible set fluid to do not
interact with all lights in scene (or linked lights) but only
one defined via fluid node gui.

Fluid node also enables to choose number of sample per
voxel and interpolation method (linear or Smooth - cubic).

Our fluid renderer reads all ramps through the Maya
API, samples them into a 2D texture. The attached func-
tions such as density or temperature are loaded into 3D
textures. The gradients are not loaded as they are com-
puted directly in a shader.

FurryBall Mental Ray speed up
no shadows 11ms 12000ms 1009 ×
shadows 36ms 18000ms 534 ×
shadows and noise 96ms 26000ms 279 ×
fire 96ms 6000ms 62 ×

Table 1: Rendering performance of FurryBall compared
to Mental Ray. For rendered images see Figure 6. Im-
age resolution was 800x600px. Scene with percolator con-
tained 12000 triangles and fluid container with resolution
10×10×10. And scene with fire contained 300 triangles
and fluid container with 35×35×35 resolution.

5 Results

FurryBall is able to render all of the maya fluids and pro-
vide same or very similar results as built-in renderers. In
this section we will present several images rendered with
FurryBall with their render times. Table 1 shows the ren-
dering performance of FurryBall compared to Mental Ray,
which we used as reference, on 4 different scenes. Figure
6 shows scenes referred in table 1. Figure 7 shows clouds
created using perlin noise and Figure 8 shows scene with
homogenous volume and two spot lights.

Figure 6: Images with render times. Left column: ren-
dered with FurryBall. Right column: rendered with Men-
tal Ray

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
121

Figure 7: Procedural clouds rendered in FurryBall

Figure 8: Volume with constant density, two lights are in
scene

6 Conclusion

FurryBall became an interesting alternative to traditional
renderers. It can be used for previsualization and realtime
feedback before raytracing, but also as a final renderer,
which can still provide results 50 - 300 times faster than
traditional renderers. It is current being used for produc-
tion of a new feature movie. Currently the fluid rendering
plugin for FurryBall supports ray marching with emission
and absorption and without restricting the user it produces
the same or very similar results as reference built-in ren-
derers.

References

[1] Robert L. Cook, Loren Carpenter, and Edwin Cat-
mull. The reyes image rendering architecture. SIG-
GRAPH Comput. Graph., 21:95–102, August 1987.

[2] Cass Everitt. Interactive order-independent trans-
parency, 2001.

[3] Markus Hadwiger, Joe M. Kniss, Christof Rezk-
salama, Daniel Weiskopf, and Klaus Engel. Real-
time Volume Graphics. A. K. Peters, Ltd., Natick,
MA, USA, 2006.

[4] Jon Jansen and Louis Bavoil. Fourier opacity map-
ping. In Daniel G. Aliaga, Manuel M. Oliveira,
Amitabh Varshney, and Chris Wyman, editors, SI3D,
pages 165–172. ACM, 2010.

[5] Marc Levoy. Display of surfaces from volume data.
IEEE Comput. Graph. Appl., 8:29–37, May 1988.

[6] Mahdi Mohammadbagher, Jan Kautz, Nicolas
Holzschuch, and Cyril Soler. Screen-space
percentage-closer soft shadows. 2010.

[7] Holger Grn Nick Thibieroz. Oit and gi using dx11
linked lists. AMD, 2010.

[8] Fabio Pellacini, Kiril Vidimce, Aaron E. Lefohn,
Alex Mohr, Mark Leone, and John Warren. Lpics:
a hybrid hardware-accelerated relighting engine for
computer cinematography. ACM Trans. Graph,
24(3):464–470, 2005.

[9] Ken Perlin. Improving noise. ACM Trans. Graph.,
21:681–682, July 2002.

[10] FurryBall renderer. http://furryball.aaa-studio.eu.
Art and Animation studio, 2010.

[11] Erik Sintorn, Elmar Eisemann, and Ulf Assarsson.
Sample-based visibility for soft shadows using alias-
free shadow maps. December 10 2008.

[12] Cem Yuksel and John Keyser. Deep opacity maps.
Comput. Graph. Forum, 27(2):675–680, 2008.

[13] Kun Zhou, Qiming Hou, Zhong Ren, Minmin Gong,
Xin Sun, and Baining Guo. Renderants: interactive
reyes rendering on gpus. Number 5, pages 155:1–11,
New York, NY, USA, 2009. ACM. SIGGRAPH Asia
2009.

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
122

Sparse-Matrix-CG-Solver in CUDA

Dominik Michels∗

Supervised by: Stefan Hartmann†

Institute of Computer Science II
Rheinische Friedrich-Wilhelms-Universität Bonn

Bonn / Germany

Abstract

This paper describes the implementation of a parallelized
conjugate gradient solver for linear equation systems us-
ing CUDA-C. Given a real, symmetric and positive def-
inite coefficient matrix and a right-hand side, the paral-
lized cg-solver is able to find a solution for that system by
exploiting the massive compute power of todays GPUs.
Comparing sequential CPU implementations and that al-
gorithm we achieve a speed up from 4 to 7 depending on
the dimension of the coefficient matrix. Additionally the
concept of preconditioners to decrease the time to find a
solution is evaluated using the SSOR method. In the end
additional suggestions are provided to further increase the
speed of the presented CUDA cg-solver.

Keywords: parallized GPU solver, sparse matrix solver,
conjugate gradient, ELLPACK-R, NVIDIA CUDA, SSOR
precondition, 2D heat equation

1 Introduction

In several applications one has to solve linear equation sys-
tems with real, symmetric and positive definite coefficient
matrices. Examples for such systems are broadly available
e.g. physical deformation (cf. [6]), implicit mesh smooth-
ing, mesh parameterization (cf. [9]), diffusion equation
for terrain generation (cf. [8]). Usually linear equation
systems are derived from dicretizing a continous problem
resulting in very sparse coefficient matrices because only
a small number of neighboring elements take influence on
a specfic element. Therefore coffecient matrices can be
stored very efficiently using sparse matrix formats e.g. the
ELLPACK-R format which is used here. Such linear sys-
tems can become very large regarding to the given problem
and one would like to find a time efficient solution for such
systems. In literature the conjugate gradient algorithm is
suggested to solve such linear, symmetric and positive def-
inite systems. Specific operations of that algorithm can
be parallelized e.g. scaled vector addition, dot product
and matrix-vector multiplication. In this work a parallel
implementation of the conjugate gradient algorithm using

∗michels@uni-bonn.de
†hartmans@cs.uni-bonn.de

the NVIDIA CUDA architecture is presented to exploit the
massive compute power of todays GPUs. Additionally the
performance of the algorithm is compared to sequential
and parallel implementations. Finally the 2D heat equa-
tion is solved using the parallized cg-solver.

2 Related Work

The conjugate gradient algorithm was introduced in [7] as
an efficient method to solve linear equation systems with
real, symmetric and positive definite coefficient matrices.
Additional details regarding the conjugate gradient algo-
rithm can be found in [1], [11] and [12]. With the appear-
ance of programmable graphics hardware a cheap way for
getting massive parallel processors to the masses became
possible. Therefore, general people can also take advan-
tages from parallel algorithms. When analysing the con-
jugate gradient algorithm one will recognize that serveral
operations within one iteration of the algorithm can be
computed in parallel. In [5] a parallel implementation was
introduced using GLSL shader programs. The necessary
data for the computation was stored in textures and the al-
gorithm was implemented in a pixel shader. Due to the
general purpose GPU paradigm encoding of data in tex-
tures got superfluous because new technologies, like the
NVIDIA CUDA architecture allow programming the par-
allel processors using an extended version of the C pro-
gramming language (see [10]). An exemplary implemen-
tation of the conjugate gradient algorithm using CUDA is
shown in [2]. If one wants to reach a time efficient im-
plementation of the conjugate gradient algorithm it is es-
sential to have an efficient way to compute sparse matrix
vector products. In [4] an efficient storage for sparse ma-
trices the ELLPACK format was suggested, which was ex-
tended to the ELLPACK-R format in [13] (explained later)
especially for the use on GPUs. For time efficient solution
of linear systems it is not enough to have efficient data
structures and a lot of compute power: There exist exten-
sions to the conjugate gradient algorithm which use a pre-
conditioning matrix which is applied to the system matrix
to decrease its condition number. In this paper a sequen-
tial version of such preconditioner is evaluated using the
SSOR method described in [3].

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)

3 Conjugate Gradient Algorithm

The primary introduction of the conjugate gradient algo-
rithm from 1952 can be found in [7]. This method is used
to solve linear systems Ax = b with A ∈ Rn×n (symmetric,
positive definite) and b ∈ Rn.
In this case the solution of the linear system is equivalent
to the minimum of the function

E : Rn→ R,x 7→ 1
2
〈Ax,x〉−〈b,x〉 ,

meaning x solves Ax = b if and only if E has a global min-
imum at x.
To proof the equivalence calculate ∇E(x) = Ax− b and

∇2E(x) = A. Therefore, ∇E(x0)
!
= 0 ⇔ Ax0 = b and

∇2E(x0) is positive definite, wherefore x0 is a local min-
imum. This is the only extremum, so x0 is also a global
minimum. This equivalence is the basic idea of the conju-
gate gradient algorithm. Instead of solving a linear system
in a typical way, we search the minimum of the function
E. Let x = x(0) ∈Rn be an arbitrary start vector. We search
the miminum of E on the line

g : R→ Rn,α 7→ x+α p.

The search direction p is arbitrary for now. Let r := b−Ax
be the residual. With A = At we get

dE (g(α))

dα
=−〈r, p〉+α 〈Ap, p〉

and with dE (g(α))/dα !
= 0

α =
〈r, p〉
〈Ap, p〉 . (1)

That is a minimum, because A is positive definite and we
get

d2E (g(α))

dα2 = ptAp > 0.

To obtain the minimum approximately we use an iterative
search with different search directions. For that purpose
set an arbitrary start vector x and calculate a more precise
approximation of the minimum in every iteration

x(m)← x(m−1)+α(m)p(m−1).

To calculate α we need r and p. The residuals r(m) = b−
Ax(m) can be computed iteratively using

r(m)← r(m−1)−α(m)Ap(m−1),

because

r(m−1)−α(m)Ap(m−1)

= b−A
(

x(m−1)+α(m)p(m−1)
)

= b−Ax(m)

= r(m).

We get the gradient descent algorithm (see Algorithm
1), if we choose the direction of the steepest descent
p = −∇E(x) as our search direction (cf. [1]). We set
x(0) = 0 and get r(0) = b−Ax(0) = b.

x(0)← 0
r(0)← b
p(0)← r(0)

for m← 1 to mmax do
α(m)←

〈
r(m−1), p(m−1)

〉
/
〈

Ap(m−1), p(m−1)
〉

x(m)← x(m−1)+α(m)p(m−1)

r(m)← r(m−1)−α(m)Ap(m−1)

p(m)←−∇E(x)
return x(mmax)

Algorithm 1: Gradient descent.

The convergence of this algorithm is a problem, because
this method uses search directions, which are similar to
each other. Resulting we get an increased number of iter-
ations to reach sufficient accuracy. So we use a set of lin-
early independent search directions (A-conjugated direc-
tions). This seems to be a good approach, because the al-
gorithm is able to minimize in every direction of the space
Rn in n steps.
Two vectors xi,x j ∈ Rn are called A-conjugated (xi⊥Ax j)
to a symmetric, positive definite matrix A ∈ Rn×n,
if
〈
xi,Ax j

〉
= 0 (cf. [1]). A set {r1,r2, ...,rk} with

r1,r2, ...,rk ∈ Rn and xi⊥Ax j for all i 6= j is linearly in-
dependent.
The proof is easy. For all l ∈ {1,2, ...,n} with ∀i 6= l :
rt

lAri = 0 is

0 !
=

k

∑
i=1

αiri

⇒ 0 !
= rt

lA
k

∑
i=1

αiri = rt
lAαlrl = αl(rt

lArl) = 0

⇒ αl = 0,

because A is positive definite and therefore rt
lArl 6= 0.

The search directions can be created iteratively. With the
approach

p(m+1) = r(m+1)+β (m+1)p(m) and p(0) = r(0)

and the request p(m+1)⊥A p(m) we get
〈

r(m+1),Ap(m)
〉
+β (m+1)

〈
p(m),Ap(m)

〉
!
= 0

and therefore

β (m+1) =−

〈
r(m+1),Ap(m)

〉

〈
p(m),Ap(m)

〉 . (2)

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
124

With this selection of β (m+1) we get a new search direction
p(m+1), which is A-conjugated to the old direction p(m).
Terms (1) and (2) can be written in the advantageous form

α(m+1) =

〈
r(m),r(m)

〉

〈
p(m),Ap(m)

〉 and β (m+1) =

〈
r(m+1),r(m+1)

〉

〈
r(m),r(m)

〉

(cf. [11]). So we save the computation of a dot product.
Using A-conjugated search directions we get the conjugate
gradient method (see Algorithm 2 cf. [12]). The output of
the algorithm is shown for n = 2 in Figure 1.

x(0)← 0
r(0)← b
p(0)← r(0)

for m← 1 to n do
α(m)←

〈
r(m−1),r(m−1)

〉
/
〈

p(m−1),Ap(m−1)
〉

x(m)← x(m−1)+α(m)p(m−1)

r(m)← r(m−1)−α(m)Ap(m−1)

β (m)←
〈

r(m),r(m)
〉
/
〈

r(m−1),r(m−1)
〉

p(m)← r(m)+β (m)p(m−1)

return x(n)

Algorithm 2: Conjugate gradient (cg).

Figure 1: Cg-demo with n = 2.

A =

(
2 −1
−1 2

)
,b =

(
8
−1

)
,x(0) =

(
0
0

)
,x(1) =

(
3.5616
−0.4452

)
,x(2) =

(
5
2

)

Using induction shows, that these n search directions are
pairwise A-conjugated and therefore pairwise linearly in-
dependent.
By using this result it is possible to show that with exact
arithmetic the method finds the solution x of the linear sys-
tem Ax = b after at most n steps (cf. [1] and [12]).
The worst case runtime is O

(
n3
)

FLOPS, because we
need the matrix-vector multiplication Ap(m−1) with run-
time O

(
n2
)

in every iteration. The other operations can be

realized in linear time. It is recommended to calculate only
one matrix-vector multiplication per iteration and store the
result.

For sparse matrices exist adapted data structures to
accelerate the matrix-vector multiplication. With
parallelization it is possible to decrease the runtime.

In some cases we need less than n iterations to get a precise
approximation of the solution. We use the 2-norm of the
residual after every iteration to decide if more iterations
are necessary. The 2-norm can be derived from 〈r,r〉which
is already calculated to determine β .
There again it makes sense to run more than n iterations to
minimize the numerical error in some cases.

4 Compute Unified Device Architec-
ture (CUDA)

The parallelization of the algorithm is done using the
NVIDIA CUDA technology. This technology makes it
possible to exploit the massive compute power of todays
GPUs for general purpose computing by creating kernel
programs which execute in parallel.

4.1 CUDA-Programing Paradigm

Next the CUDA programming paradigm is reviewed, for
additional details the reader is referred to [4] and [10]. In
this paper the CUDA Toolkit 3.1 is used. As mentioned
above using the CUDA technology we gain the possibil-
ity to exploit the massive compute power of modern GPUs
by writing kernel programs e.g. in an extended version of
C and execute these programs N times in parallel on the
available hardware. The program is executed by N dif-
ferent threads while no assumption can be made in which
order the threads are executed. Started from the CPU a
kernel is attached to a compute grid, which is separated
into a number of blocks. In each block a specific amount
of threads is running (see Figure 2). The threads of a

Grid

Block 0

Thread 0 (i=0)

Thread 1 (i=1)

Block 1

Thread 0 (i=2)

Thread 1 (i=3)

Figure 2: CUDA-programming model.

block are executed as packages of 16 threads which is also
called halfwarp. The threads inside a halfwarp are gener-
ally running in parallel. The blocks of a compute grid are
executed sequentially but in case of available hardware re-
sources blocks are dispatched and executed in parallel to

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
125

other blocks. Every thread has two information: first in
which block it is running and secound by which block in-
ternal number it is identified. Hence the numbering of the
threads can be done by

int i = blockIdx.x * blockDim.x + threadId.x.

This is also illustrated in Figure 2. The next example
demonstrates the addition of two vectors implemented in
C for CUDA (see Algorithm 3).

01 global void VecAdd(float* A, float* B, float* C, int n){
02 int i = blockIdx.x * blockDim.x + threadId.x;
03 if (i < n) C[i] = A[i] + B[i];
04}

Algorithm 3: CUDA-vector addition
C = A+B mit A,B,C ∈ float256.

The data transfer between the CPU and GPU is done by
cudaMemcpy which allows the transfer of data either from
the CPU to the GPU or vice versa (cudaMemcpyHost-
ToDevice, cudaMemcpyDeviceToHost). Within a kernel
program one can only operate on data available in the
GPUs memory. Normally the data is first stored in the
global persistent GPU memory. This memory can be allo-
cated by cudaMalloc and deallocated by cudaFree similar
to the C programming language. The global thread iden-
tifier is stored in the local thread memory which is only
available during the life time of a thread. Additionally the
hardware provides shared memory which can be accessed
very fast compared to the data access in the global mem-
ory. A specific compute kernel is initiated by the CPU
with the information how many blocks inside the compute
grid should be allocated and how many threads per block
shall be spawned (see an example for the provided vector
addition kernel below).

VecAdd <<< blocksPerGrid, threadsPerBlock >>>
(A, B, C, 256);

A synchronization of the GPU with the CPU is possible by
using cudaThreadSynchronize.

5 Parallelized Conjugate Gradients

In every iteration of the cg-algorithm we have to compute
several scaled vector additions, dot products and a matrix-
vector multiplication (see Algorithm 2).

5.1 Parallel scaled Vector Addition

The λ -scaled vector addition

sum = x+λy

of two vectors each with n components can be realized
with n threads, which execute in parallel. Every thread cal-
culates one component of the result. This method equates
to Algorithm 3 with additional λ -scaling. If t threads run
in parallel the runtime can be decreased from O (n) to
O (n/t).

5.2 Parallel Dot Product

The calculation of the dot product

dot = 〈x,y〉
of two vectors each with n components is realized in two
steps. First we have to calculate a vector

hel p = x.∗ y,

which contains the pointwise product of the vectors. This
procedure is similar to Algorithm 3, but we have to replace
the addition by a multiplication. The acceleration is ana-
log a decrement from O (n) to O (n/t).
In the second step we have to sum up all components of the
vector hel p. The complexity of the sequential method is
in O (n). To parallelize the calculation we have to sum up
all neighboring components first (≈ n/2 FLOPS) and re-
peat this kind of summation with the resulting sums. This
procedure can be realized iteratively (≈ log2 n+ 1 itera-
tions) and is pictured in Figure 3. Let t be the number of

→ *
*
*
*

→

→
→

*

*

*→

→

Figure 3: Parallel summation.

threads which run in parallel. Every thread calculates one
sum of neighboring components. So the complexity for
the second step and the whole dot product calculation is in
O (n logn/t).
If the number of threads is significantly lower it is more
efficient to sum up not only two neighboring components.
One option is that every thread has to add n/t elements
first. So we get a new vector with t components, which
has to be summed up. This can be done in O (log t) and we
get a complexity in O (n/t + log t) for the second step and
the dot product calculation. In this paper the first method
is used.

5.3 Parallel Matrix-Vector Multiplication

The product of a n×m-matrix and a vector with m com-
ponents can be realized with n threads, where every thread
calculates a component of the result.
This strategy is not efficient, if we want to calculate the
product with a sparse matrix, because we execute many
unessential operations with zeros. An approach to acceler-
ate the calculation is using a special data structure to store
the matrix.

5.3.1 ELLPACK-R-Data Structure

The classical formats to store a sparse matrix (coordi-
nate storage, compressed column storage, compressed row

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
126

storage) are not applicable to parallelize the matrix vector
product (e.g. [13]). In [4] an efficient storage for sparse
matrices the ELLPACK format was suggested, which was
extended to the ELLPACK-R format in [13] especially for
the use on GPUs. A matrix A ∈ Rn×m is represented by
Nz ∈ N the maximal number of elements unequal to zero
per row, a representation matrix A ∈ Rn×Nz for the ele-
ments unequal to zero, a representation matrix j ∈ N0

n×Nz

for the indices of the elements and an information vector
rl ∈ N0

n containing the number of the elements per row.
For

A =

1 3 0
0 1 1
4 0 0
0 0 2

 ∈ R4×3

with Nz = 2 we have the following ELLPACK-R repre-
sentation:

A =

1 3
1 1
4 ∗
2 ∗

 ∈R

4×2, j =

0 1
1 2
0 ∗
2 ∗

 ∈N0

4×2, rl =

2
2
1
1

 ∈N0

4,

which has to be saved in column-major order. The (∗)-
elements are replaced with zeros. This representation is
dense in many applications (e.g. discretized surfaces).

5.3.2 Matrix-Vector Multiplication

Let A be a matrix in ELLPACK-R representation. We
realize the matrix-vector multiplication with n threads as
seen in Algorithm 4.

Input: A ∈ Rn×m, v ∈ Rm

Output: u = Av ∈ Rn

for threadIndex← x← 0 to n−1 do in parallel
svalue← 0
max← rl[x]
for i← 0 to max−1 do

value← A[x+ in]
col← j[x+ in]
svalue← svalue+ value ·v[col]

u[x]← svalue

Algorithm 4: Matrix-vector multiplication in
ELLPACK-R format.

Let t be the number of threads which run in parallel. By us-
ing the ELLPACK-R format the runtime can be decreased
from O (nm) to O (nNz/t).

6 Running Time

In this paper the cg-algorithm was parallelized with the de-
scribed methods. It terminates after mmax iterations, if the
2-norm of the residual is less than a given upper bound of

the error. By using the upper estimates for the parallelized
operations we get a runtime in

O
(mmax

t
n(Nz+ logn)

)
,

in which n is the dimension of the coefficient matrix with
at most Nz elements unequal to zero per row and t denotes
the threads running in parallel. This promises a significant
acceleration compared to the runtime of the sequential im-
plementation, which is in O

(
mmaxn2

)
.

6.1 Runtimes of the Algorithm

This section provides a comparison of the runtimes of the
sequential and the parallel implementation of the conju-
gate gradient algorithm. As an application the heat equa-
tion is solved and different sizes of the n× n-coefficient
matrix are chose. When solving a linear system the con-
vergence speed of the conjugate gradient algorithm to
compute an acceptably accurate solution strongly depends
on the condition number of the system matrix. Therefore,
the time per iteration is used for detailed comparison. The
table below presents this times (in ms) of different CPU
implementations (Armadillo, MATLAB, MKL), the run-
times of the presented GPU version in CUDA 3.1 (high-
lighted in orange) and a CUDA 3.2 implementation from
NVIDIA.

n CPU Matl. MKL Cu. 3.1 Cu. 3.2
5122 12.9 13.3 3.4 3.1 3.0

10242 56.6 40.6 19.4 7.3 4.6
20482 238.6 153.0 79.9 21.5 9.2

The second column (CPU) contains the runtimes of a se-
quential CPU implementation. This implementation uses
the Armadillo C++ Library 1.0.0 (based on LAPACK) for
scaled vector additions and dot product calculations. The
matrix is stored in the ELLPACK-R format to realize an
efficient matrix-vector multiplication.
Intel®MKL 10.3 (Math Kernel Library) is a library of
threaded math routines, which contains an implementation
of the conjugate gradient algorithm using the compressed
row storage (CRS) format to store the matrix. The con-
vergence tolerance from the correct solution is set to 1.0
regarding the 2-norm of the residual. The implementa-
tions were tested on a PC with Intel® Core™ i7 860 (2.80
Ghz) and NVIDIA® GeForce® GTX 480 graphics card.
In the CUDA 3.1 implementation the number of threads
per block was set to 512, because on the used hardware
the configuration was always optimal. This is shown in
Figure 4 in case of the n = 5122 matrix.
For the implementation of the conjugate gradient solver,
which is described in this paper the CUDA Toolkit 3.1 was
used. NVIDIA has now published the version 3.2, which
includes a conjugate gradient solver using the CRS for-
mat. This solver is in case of large matrices about a factor
of two faster then the described implementation.
Additionally it should be mentioned that the data transfer

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
127

time to the GPU memory is compensated when using co-
efficient matrices with dimension n > 1000.
Collectively, we can say that in comparison to the sequen-
tial CPU implementation (MATLAB) a speed up between
4 to 7 is reached with the presented implementation for
the tested coefficient matrices depending on the size. For
larger coefficient matrices additional speed up is expected.

3

3.2

3.4

3.6

3.8

4

64 128 256 512

ru
nt

im
e

pe
r

ite
ra

tio
n

in
 m

s

threads per block

512²x512²-HEQ-Matrix

1024

Figure 4: Dependence of the runtime of the number of
threads per block.

7 Application: Heat Equation

In this paper the parallel cg-algorithm was tested on solv-
ing the heat equation. Let G be a n×m grid (see Figure 5)
and let u(x,y, t) be the temperature at a given time t at the
point (x,y) ∈ G. The temperature gradation on the grid is
in case of diffusion represented by the differential equation

∂u(x,y, t)
∂ t

=
∂ 2u(x,y, t)

∂x2 +
∂ 2u(x,y, t)

∂y2 .

7.1 Discrete Heat Equation

Using finite differences the discretization of the heat equa-
tion is given by

u(x,y, t) = (1−4τ) u(x,y, t +∆t)
+τ u(x+∆x,y, t +∆t)
+τ u(x−∆x,y, t +∆t)
+τ u(x,y+∆y, t +∆t)
+τ u(x,y−∆y, t +∆t)

in the case of ∆x = ∆y and τ := −∆t/∆x2. A problem
occurs if a discretized point (x,y) is located on the bound-
ary of the grid, because such a point is located in a neigh-
borhood consisting of only two or three points. In such
a case the term for the missing grid point has to be re-
moved. The equation above can then be written as a linear
equation system and is shown in Figure 5 for n = m = 4
with τ̄ := 1− 4τ . The coefficient matrix of the system
A = A(G) can be represented as

τ̄ τ τ
τ τ̄ τ τ

τ τ̄ τ τ
τ τ̄ τ τ

τ τ τ̄ τ τ
τ τ τ̄ τ τ

τ τ τ̄ τ τ
τ τ τ̄ τ τ

τ τ τ̄ τ τ
τ τ τ̄ τ τ

τ τ τ̄ τ τ
τ τ τ̄ τ τ

τ τ τ̄ τ
τ τ τ̄ τ

τ τ τ̄ τ
τ τ τ̄

In this case the red elements in the cofficient matrix cause
a wrap around from the and the left-hand side and will be
removed.

For larger grid sizes the coefficient matrices can be derived
analogously. From the previous statements a discretization
of the heat equation can be done using finite differences.
The computation of the heat dissipation is done by solv-
ing a linear system of size n ·m (cf. Figure 5) starting
from a given initial configuration u(0) ∈ Rn·m. The result-

u(0,0, t)
u(0,1, t)
u(0,2, t)
u(0,3, t)
u(1,0, t)
u(1,1, t)
u(1,2, t)
u(1,3, t)
u(2,0, t)
u(2,1, t)
u(2,2, t)
u(2,3, t)
u(3,0, t)
u(3,1, t)
u(3,2, t)
u(3,3, t)

= A

0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3

·

u(0,0, t +∆t)
u(0,1, t +∆t)
u(0,2, t +∆t)
u(0,3, t +∆t)
u(1,0, t +∆t)
u(1,1, t +∆t)
u(1,2, t +∆t)
u(1,3, t +∆t)
u(2,0, t +∆t)
u(2,1, t +∆t)
u(2,2, t +∆t)
u(2,3, t +∆t)
u(3,0, t +∆t)
u(3,1, t +∆t)
u(3,2, t +∆t)
u(3,3, t +∆t)

Figure 5: Discretization of a 4×4-grid.

ing coefficient matrix is symmetric and positive definite,
wherefore the solution can be computed using the conju-
gate gradient algorithm. From a current heat dissipation
the previous dissipation can be computed by multiplying
the coefficient matrix with the current result.

7.2 Implementation

The presented parallel conjugate gradient algorithm was
used to solve the 2D heat equation (see Figure 6). The
implementation was tested (hardware specification above)
with square images with different sizes 256, 512 and 1024

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
128

Figure 6: Heat distribution on the 256× 256-emblem of
the University of Bonn.

resulting in simulating the heat flow in 20, 10 and 7 time
steps per second (interactive frame rates).

8 Future Work

In this paper, an accelerated cg-algorithm was imple-
mented. To reduce the processing time the coefficient ma-
trix was stored in ELLPACK-R format and the matrix vec-
tor operations were parallelized.
Another approach to advance stability and acceleration is
the preconditioning of the matrix. A sequential implemen-
tation of the preconditioned conjugate gradient algorithm
(pcg) was implemented in MATLAB to evaluate this.
Furthermore, the use of Shared Memory and Texture
Cache could accelerate the runtime on older graphics
cards.

8.1 Precondition and SSOR

One approach to advance stability and acceleration is
the preconditioning of the coefficient matrix A. The cg-
algorithm converged much faster for coefficient matrices
with smaller condition number. For example this is shown
in [12].
We can use this by left multiplication of the matrix A ∈
Rn×n with a preconditioning matrix M−1, in which M ∈
Rn×n is symmetric and positive definite. We have to
choose M in a way, where κ(M−1A)<< κ(A). So we can
solve the equivalent linear system M−1Ax = M−1b instead
of Ax = b. But a problem occurs, if we want to use the cg-
algorithm to solve it, because the new coefficient matrix
M−1A is in general not symmetric and positive definite.
So we have to decompose the matrix with the Cholesky
method and get M = M1M2 called the left and the right
preconditioning matrix and execute the cg-algorithm on
the linear system

M−1
1 AM−1

2︸ ︷︷ ︸
=:Ã

M2x = M−1
1 b︸ ︷︷ ︸
b̃

.

That is possible, because Ã is symmetric and positive
definite. So we can solve the linear system Ax = b in two
steps. First we have to solve Ãy = b̃ with the cg-method.
After that we can get the solution x by solving M2x = y.

The second step is realizable with back substitution,
because M2 is an upper triangular matrix.
If we do it that way we have to calculate the matrix
product Ã = M−1

1 AM−1
2 first. This would be a kind of

a bottleneck. To avoid this we can use the substitution
x̂ = M2x, r̂ = M−1

1 r and p̂ = M2P in Algorithm 2. This
way we get the simplified preconditioned conjugate
gradient algorithm (see Algorithm 5, c.f. [11]).

x(0)← 0
r(0)← b
p(0)←M−1r(0)

for m← 1 to n do
α(m)←

〈
r(m−1),M−1r(m−1)

〉
/
〈

p(m−1),Ap(m−1)
〉

x(m)← x(m−1)+α(m)p(m−1)

r(m)← r(m−1)−α(m)Ap(m−1)

β (m)←
〈

r(m),M−1r(m)
〉
/
〈

r(m−1),M−1r(m−1)
〉

p(m)←M−1r(m)+β (m)p(m−1)

return x(n)

Algorithm 5: Preconditioned conjugate gradient (pcg).

In this paper the preconditioned algorithm was tested with
the SSOR method (Symmetric Successive Overrelaxation,
cf. [3]) in MATLAB. This method uses the strict lower
triangular matrix L and the diagonal matrix D of A.
The SSOR preconditioning matrix

M :=C−1 = (D+L)D−1(D+L)t

is an approximation of the coefficient matrix A.
In every iteration we have to solve the linear system

C−1z = rm−1

to get z =Crm−1 = M−1rm−1.
In the MATLAB implementation the decomposition
C−1 = KKt with K = (D+L)D−1/2 was used to solve the
system with forward and back substitution.
A disadvantage of SSOR is the use of D−1/2, which is only
available for matrices with a positive main diagonal. All
elements of D+L are included in A. So the required mem-
ory is less.
The implementation shows a convergence in mind of the
number of required iterations to get a precise approxima-
tion of the solution, which is significant faster compared to
the unpreconditioned method. But the algorithm solves an
linear system in every iteration, for which reason the total
runtime is only faster for large (n > 1000) and bad condi-
tioned matrices. Another aspect is the enhanced stability
because of the decreased condition number.
This concept could be another approach to accelerate the
parallelized algorithm. For this purpose it is essential to
realize the solution of the linear system Mz = rm−1 effi-
ciently, for example with parallelization. The paralleliza-
tion of the back substitution is still an unsolved topic in
science.

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
129

8.2 Shared Memory and Texture Cache

In the implementation, which is described in this paper
the input data were copied into the global memory of the
graphics card. During the execution, the threads get the
required data only from this memory, which is about 512
to 2048 MB on modern graphics hardware. There exists
also a comparatively small shared memory (it can also be
configured as a L1-cache) and texture cache, which is only
about a few KB. The access time to this kind of memory
is much shorter (sometimes about a factor in the dimen-
sions of 100) in comparison to the often uncached global
memory (cf. [13]). Because of the small size in the most
cases it is not possible to store the whole coefficient matrix
inside of it.
Another way to speed up the process is the skillful use of
this memory. Therefore, it is necessary to copy parts of
data for future calculations from global memory to shared
memory and texture cache. In order to achieve an acceler-
ation, this must be constructed so that most of these trans-
fers occur in parallel to the running threads.

9 Conclusion

This work presents a parallel implementation of the con-
jugate gradient algorithm using the NVIDIA CUDA ar-
chitecture. The operations which were parallelized are
the scaled vector addition, the dot product and the sparse
matrix-vector multiplication. As sparse matrix format
ELLPACK-R was used which provides an memory effi-
cient storage for large coefficient matrices on the GPU. To
compare the presented implementation, a comparison with
a sequential CPU implementation using the LAPACK-
based Armadillo C++ Library 1.0.0 and different CPU im-
plementations (MATLAB, MKL) was made. In compar-
ison to the sequential CPU implementations the parallel
version of the conjugate gradient algorithm is in average
4 to 7 times faster. The speed-up of the algorithm is fur-
ther increased if larger coefficient matrices are used. The
transfer time between the CPU and the GPU will be com-
pensated if the system matrices are acceptably large, in the
presented case n > 1000. An additional speed up can fur-
ther be gained if a preconditioner is used (e.g. SSOR). In
this case in each iteration an additional equation system
must be solved by back subsitution but currently there ex-
ists no efficient solution to that problem.

References

[1] G. Alefeld, I. Lenhardt, and H. Obermaier. Parallele
numerische Verfahren. Springer, New York, Berlin,
Heidelberg, 2002.

[2] M. Ament, G. Knittel, D. Weiskopf, and W. Strasser.
A parallel preconditioned conjugate gradient solver
for the poisson problem on a multi-gpu platform.

Parallel, Distributed, and Network-Based Process-
ing, Euromicro Conference on, 0:583–592, 2010.

[3] M. Ament, G. Knittel, D. Weiskopf, and W. Strasser.
A parallel preconditioned conjugate gradient solver
for the poisson problem on a multi-gpu platform.
In Proceedings of the 2010 18th Euromicro Con-
ference on Parallel, Distributed and Network-based
Processing, PDP ’10, pages 583–592, Washington,
DC, USA, 2010. IEEE Computer Society.

[4] N. Bell and M. Garland. Efficient sparse matrix-
vector multiplication on CUDA. NVIDIA Technical
Report NVR-2008-004, NVIDIA Corporation, Dec.
2008.

[5] J. Bolz, I. Farmer, E. Grinspun, and P. Schrı̈¿½der.
Sparse matrix solvers on the gpu: Conjugate gra-
dients and multigrid. ACM TRANSACTIONS ON
GRAPHICS, 22:917–924, 2003.

[6] J. Georgii and R. Westermann. A multigrid frame-
work for real-time simulation of deformable vol-
umes. In Proceedings of the 2nd Workshop On
Virtual Reality Interaction and Physical Simulation,
pages 50–57, 2005.

[7] M. R. Hestenes and E. Stiefel. Methods of conjugate
gradients for solving linear systems. Journal of Re-
search of the National Bureau of Standards, 49:409–
436, 1952.

[8] H. Hnaidi, E. Guérin, S. Akkouche, A. Peytavie,
and E. Galin. Feature based terrain generation us-
ing diffusion equation. Computer Graphics Forum,
29(7):2179–2186, 2010.

[9] L. Liu, L. Zhang, Y. Xu, C. Gotsman, and S. J.
Gortler. A local/global approach to mesh parameter-
ization. In Proceedings of the Symposium on Geome-
try Processing, SGP ’08, pages 1495–1504, Aire-la-
Ville, Switzerland, Switzerland, 2008. Eurographics
Association.

[10] NVIDIA-Corporation. Nvidia cuda c programming
guide, Version 3.1, 2010.

[11] Y. Saad. Iterative methods for sparse linear systems.
Second edition, 2003.

[12] L. N. Trefethen and D. Bau. Numerical Linear Alge-
bra. SIAM: Society for Industrial and Applied Math-
ematics, 1997.

[13] F. Vazquez, E. M. Garzon, J. Martinez, and J. J. Fer-
nandez. The sparse matrix vector product on gpus.
aceuales, pages 1–13, 2009.

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
130

Physical Animation of Wetting Terrain and Erosion

Matej Hudak∗

Supervised by: Doc. RNDr. Roman Durikovic, PhD†

Faculty of Mathematics, Physics and Informatics
Comenius University
Bratislava / Slovakia

Abstract

Visual simulation of natural erosion on terrains with gran-
ular matter, like sand, soil or gravel has been a fascinating
research topic in the field of computer graphics for a long
time. Ability of a fluid to drastically change internal struc-
ture or external shape of terrain is an important effect in
nature. While there are many particle based algorithms to
improve process of terrain erosion, only few of them also
take into account the water saturated in a terrain.

In this paper we present a particle-based method for
large scale long time progressive simulation of terrain
erosion containing wet granular particles. The wetting
process and the propagation through granular material is
based on defining the wetness value for each particle rep-
resenting the amount of water absorbed by granular parti-
cles and stored between them, as was originally proposed
by Rungjiratananon [12]. We extend this model by adding
a non homogeneous material to simulate differences be-
tween different types of soil-like granular material, based
on physical constants like stability, plasticity and wetness.
With this approach we can create a physical animation of
erosion process like mass movement or mass wasting.

Keywords: Physical Animation, Particle-based Simula-
tion, Erosion of Terrain, Mass Movement

1 Introduction

The terrain erosion is important process in the nature.
Granular materials like sand or soil and their behavior due
to influence of erosion is indispensable part of modeling
naturally looking terrain. We can represent granular mate-
rials as large ensembles of particles, where in case of soil
materials each element is non deformable [19]. One of the
most important factors acting on particles of granular ma-
terials is water. Influence of this element changes shape,
morphology and properties of material with result in ero-
sion.

In this paper we present particle-based simulation
method of water influence when applied to granular ma-
terials resultant in erosion. Although there are many al-

∗subseth.mato@gmail.com
†durikovic@fmph.uniba.sk

gorithms to simulate such behavior, majority of them is
acting on the terrain surface. Our algorithm take into ac-
count also water saturated in material. In natural erosion,
certain amounts of water are creating wetness and spread-
ing among little gaps between granular particles. Result
of wetness propagation and its gathering between different
layers of soil-like material is the erosion like mass move-
ment, earth flow or slump.

Figure 1: Example of mass movement erosion.

We define soil system in this paper as large structure
of granular rigid particles with values of stability, wetness
and friction. Shape of particles is spherical, as in huge
masses of particles, naturally behaving friction, between
them, is inefficient [15]. For purpose of simulating dif-
ferences between different types of soil in real world we
created layers of soil material, where each layer represents
one type of soil in the real world. Layers are bounded by
forces acting on them and between them.

Similarly to general erosion, mass movement can be
also described as three-step erosion process [23]. In the
first step the regolith or boundary between layers of soil is
damaged by influence of gathered wetness between layers
and other factors such as physical structure of soil layers.
During this process, water interacts with terrain by bring-
ing wetness to its structure. The time required to create
such failure ranges from few weeks to few years. In the
second step, corrupted mass of eroded material is trans-
ported by natural factors such as gravity, weight of wet
soil and shape of stable, not moving terrain. Last step of
erosion involves a deposition of eroded material. At this
stage of simulation, deposition of material is considered in
large scale.

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)

For a simulation of soil material we use
DiscreteElement Method (DEM), which comprises
different techniques suitable for simulating dynamic
systems behavior with multiple rigid and separated bodies
of various shapes. Continuous changes, computed in
contact forces and applied in contact status, turn influence
of the subsequent movement of particles [17]. Since
positions of particles are changed by physical forces
designed in the contact states of particles, topology of
particle interaction evolves freely. As a result, highly
dynamic simulations, such as avalanches and general
erosion can be conveniently generated by this meshless
approach without sacrificing physical accuracy [4].
Smoothed ParticleHydrodynamics(SPH) [18, 16] is used
to simulate water particles.

This paper is organized as follows. In the section 2,
we present algorithms, which are most closely related to
our work. This is followed by section 3.1, where we de-
scribe our algorithm for soil simulation system and ero-
sion. Thereafter, in section 5, we describe visualization
method and optimization of given algorithm. Finally, in
Section 4 and 3.4 we present mass movement simulation
and results of our algorithm. The paper concludes with
conclusions and future work.

2 Related Work

Erosion
The simulation of terrain erosion was interesting area

of research in a Computer Graphics for a long time. One
of first representations for terrains started with mathemati-
cian, Benoit Mandelbrot [3], father of fractal geometry,
who introduced using fractals in terrain modeling. One
of the first algorithms [11] applied thermal and hydraulic
erosion to erode fractal terrains. In the topic of generating
differently shaped fractal mountains [21] authors used
water as main factor in simulation. Layered structure
and its application in thermal weathering was introduced
by Benes et al. [23]. The authors used layers of terrain,
water and dissolved material. Transport of material in
terrain erosion was described in [5], where erosion model
uses also cohesive force between particles. Interactive
simulation of erosion using water as main factor for
creating changes on the surface of terrain was presented
in [13]. Quite recently terrain erosion simulated with SPH
was presented in [10]. Authors used Smoothed Particle
Hydrodynamics to dissolve some amount of material from
ground, transported due to water which created deposition
of material on a different place.

Granular Materials
One of the first attempts to simulate granular material

was introduced by Cundall [17], who described Discrete
Element Method for simulating rocks mechanics, based
on his earlier works [1, 2]. Granular material like sand
was well described by many articles. Some of them used

height field methods for better performance of simulation
[20, 14, 25] or handle the material as fluid [24]. Although
these methods are quite efficient, they are less accurate
and difficult to use for more complex simulation system.
Idea of using DEMs for simulation of granular material
was revisited by Bell et al. [4], who also described dif-
ferent types of friction and created non spherical particles
to demonstrate real friction force in simulation. Recently
wetness in sand material was introduced with DEM and
SPH method [12, 22]. For simulation of realistic static
friction [15] used counter-acting frictional force. They
also showed that piles generated by avalanches have fi-
nite angle of repose. In the study of [7, 8, 9, 6] authors
introduced approach to 3D simulation of cohesive and non
cohesive system. To simulate cohesion in soil system they
used DEM and bonding forces between particles.

3 DEM for Soil

3.1 Discrete Element Method

At first step of our algorithm, we define
DiscreteElement Method for simulating granular material
such as soil. Sand is one of soil types, with diameter
larger than 0.02mm. This is first type of material in our
simulation. It is well described and simply modeled in
particle-based simulations, thus it is starting material in
simulation of erosion.

Figure 2: Contact forces for DEM method.

Contact forces between two colliding particles pi and
p j, introduced by Cundall [17], are constructed acting in
contact point between particles. In the figure 2, we can see
basic setup scene for contact forces in DEM. At first we
define overlap value of colliding particles and normal:

ξ = max(0, ri + r j −||−→xi −−→x j ||), (1)

−→N =
−→xi −−→x j

||−→xi −−→x j ||
, (2)

where −→xi and −→x j are positions of particles pi, p j and
ri and r j are radiuses of these particles. Following equa-
tions describe normal force and its computation between
particles pi and p j.

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
132

−→Fn =
−→Fs +

−→Fd , (3)

−→Fs = ksξ
−→N

||−→N ||
, (4)

−→Fd = kd
−→N , (5)

where −→Fs ,
−→Fd is spring and damping force and ks, kd is

spring and damping coefficient. Coefficient ks is deter-
mined and kd is selected same or smaller. After positive
overlap, normal force is applied to accelerations of parti-
cles pi and p j. In summation through all accelerations of
particle pi, we compute its velocity using Newton’s sec-
ond motion law and determine its new position after one
step in time ∆t.

For simulating natural granular material we are using
friction applied in tangent direction. Friction or tangential
force causes negative contribution to summation in gener-
ating particle’s acceleration. We implemented basic types
of friction forces described by Bell et al. [4]. We also im-
plemented counter-acting friction force to simulate natural
friction [15]. Unfortunately, to update this force, we need
to hold list of old and new neighbors in system, which is
very inefficient. Moreover, this force has minimal effect to
more stable friction between particles. With this reasons,
we decided to use following friction force

−→Ft = −min(µ fn, kt ||−→Vt ||)
−→Vt

||−→Vt ||
, (6)

where −→Vt is tangential velocity, which is tangent to the
contact plane and perpendicular to the normal direction.
The tangential velocity is defined using the relative veloc-
ity of the particles pi and p j at the contact point. Coeffi-
cient of friction kt is limited by Coulomb law of friction,
where µ is friction coefficient and fn is value of applied
normal force −→Fn . In figure 3 we can see simulated sand
with DEM in our algorithm.

Figure 3: Sand simulated with our algorithm. Dry feature
of granular material.

3.2 Strength of Material

Of course, sand-like material is generally too simple for
erosion of soil causing mass movement. We need mate-
rial which will be acting like stable structure with range of
strength simulating natural soil. Forces applied in DEM

during sand simulation are limited. For simulating dry soil
we need to introduce another force to preserve strength of
dry material constructed from rigid particles.

For that purpose we implemented bonds to our algo-
rithm. Bond is relation between two colliding particles in
case when they are in relax state or overlapping [9]. This
force is applied to basic definition of DEM in the meaning
that normal bond is applied to normal f orce −→Fn etc. In fig-
ure 4 we can see setup example of two disks representing
two particles pi and p j.

a) b) c)

 p
i

 p
j

 p
i

 p
i

 p
j p

j

Figure 4: Bonded motion of pair of particles. Black
squares are representing bonds. Arrows are pushing parti-
cles away from each other in (a) normal, (b) tangential and
(c) angular direction. Bonds interlock particles and keep
them together.

In example, for normal force, if −→Fn in (3) is resolv-
ing collision of particles by pushing them away from each
other, than bonding force in normal direction (7) acts con-
versely. We can define normal bonding force as follows

−→Bn = (Rn/ξ)∗−→N , (7)

where Rn is normal bonding coefficient and ξ is over-
lap value between particles. Tangential and angular mo-
tion are locked in similar way using tangential and angu-
lar bonding coefficients Rt and Rω . After considering this
force, we need to update all equations in DEM contact
model by subtraction of these bonding forces. Bonds are
limited by spring and tangential forces acting in DEM. It
means that failure of system is not allowed. In our algo-
rithm, we are using diameter value of particles.

In summation from above equations we can see, that
bonds create forces, which hold particles together in nor-
mal, tangential and angular direction, if they are overlap-
ping. In the same time rigidness of granular particle in
simulation is preserved.

In case of sand, rotation of particles can be neglected,
because particles can be easily separated during time of
simulation. In case of such complex and complicated pro-
cess as terrain erosion we must also consider rotations of
bigger masses of soil constructed with certain amounts of
particles. Thus in our algorithm rotation can not be ig-
nored. To include angular motion of particle we compute
angular acceleration of colliding particles. Then in inte-
gration of step of time ∆t we determine particle’s angular
velocity. Rotation is applied to particle’s body using ro-
tation matrix, computed using quaternions. Then in next
time step relative velocity −→vpi of particle is simply updated
to consider also angular velocity

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
133

Figure 5: Dry feature of soil-like material with defined
normal, tangential and angular bonds.

−→vpi = −→vpi +ωpi × (−→x −−→pi), (8)

where ωpi is angular velocity of particle pi, −→x is posi-
tion of contact and −→pi is position of particle pi.

3.3 Wetness

Water is main factor to cause mass movement. It is wa-
ter absorbed in inner soil structure, which causes bigger
weight of wetted soil and then after some time, failure
state of system, when mass movement starts. With this
condition we implemented wetting system to our granular
soil-like material.

dry wet overwet
luiquid bridge

Figure 6: States of wetness in particles (left). Liquid
bridges (right).

This part of algorithm is based on wetness system pre-
sented by Rungjiratananon et al. [12]. In our algorithm
there are also three states of particles, dry, wet and over-
wet as we can see in figure 6. Wetness is then percentage
expression of each state, applied to particle. This percent-
age value represents water saporated in little gaps between
particles.

Amounts of water between two particles represented by
wetness, create attractive acting force, which can simulate
cohesion of material. This force is acting between parti-
cles in case they are moving away from each other

−−−−→
Fattract

i = max
{

0, w f − wi −w j

2

}
(v j − vi), (9)

where w f is fluidization coefficient. As we can see, wet-
ness system has impact on DEM contact model. Con-
tact forces are updated similar to approach in Rungji-
ratananon’s article [12]. With this feature, system becomes
more plastic during loading wetness to its structure. Wet-
ness between particles of material is propagated through

Figure 7: Example of wetness system with different mate-
rials using our algorithm.

material and controlled by coefficient of propagation kp.
In the layer with bigger strength, propagation coefficient
is smaller. Wetness is propagated to all contacts Ni of par-
ticle pi as follows

wt+∆t
i = wt

i + kp
∆wt

i
Ni

∆t, (10)

∆wt
i = wt

i +wt , (11)

where ∆wt
i is excessive wetness of particle pi. As prop-

agation speed of wetness is different in different layers of
soil, excessive wetness is most visible on boundaries be-
tween layers of different material. These regions in materi-
als are very hazardous because their behavior is water-like
and they are creating chance for bigger mass of material to
start a mass movement.

3.4 Summation of Algorithm

In figure 8 we can see diagram of accumulation forces.
SPH, DEM, Bonds and Wetness are here different meth-
ods used for computing forces between colliding particles.

4 Mass Movement

In the figure 9, we can see illustration of mass movement
erosion, where surface of rupture is region of soil particles
with most excessive wetness. This region is forced to be-
have like mud due to forces in overwetted particles. Wet-
ness between layers creates slide. Then slump block is vol-
ume of soil above surface of rupture. This volume is trans-
ported during mass movement erosion and it’s basic re-
sult from this kind of erosion. There are many other prod-
ucts of mass movement. Most closely related to change of
shape of terrain is production of scarps. Mass movement

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
134

Accumulation of forces

Water (SPH) Soil (DEM + Bonds + Wetness)

Interaction

Water Soil Soil Soil

Integration of time

Simulation

Simulation

Figure 8: Accumulation of forces between particles.

can be very fast, or very depending on gradient, shape of
terrain, amount of wetness, weight of wetted particles and
also construction of initial layers.

Slump block

Surface of rupture

Scarp

Figure 9: Mass movement illustration.

Simulation starts with setup input scene constructed
from particles of soil and water. Model of terrain is created
in Blender and saved in .ob j format. With our application
VolumetoParticles, we scan input model and create repre-
sentation of particles using 3D scanline with defined posi-
tions of particles of soil with density and contact radiuses.
Layers of terrain are presented with different objects in
model. With this approach we can easily create synthetic
input scene representing terrain as we can see in figure 10.

As initialization to our algorithm we setup starting
scene. Then wetting of terrain can start. Particles of water
simulate rain and bring required wetness to system of soil.
Wetness is propagating through particles of soil to lower
layers of material.

Each layer has different properties of strength, density
and speed of wetness propagation. With combination of
different layers in scene we can create non homogeneous
material. Even each particle can have different initial prop-
erties and also predefined wetness. With increasing wet-
ness within particles, weight is also increasing. After cer-
tain time of simulation wetness gathered on boundaries of
layers is creating a slide action. In this process forces be-
tween couple of particles are corrupted and they can slide
over each other. This action is essential in our simulation
of mass movement.

Figure 10: Input terrain. Layers are orderd from top to
bottom in the meaning of water propagation speed.

scene particles 1 core openMP time step
sand 130k 0.2 fps 6 fps 0.001

wetness 20k 7 fps 13 fps 0.0005
input 50k 4 fps 5 fps 0.0002

hill 30k 2 fps 3 fps 0.0001
layers 60k 1.2 fps 3.4 fps 0.0002

Table 1: Comparison of frames per second on different
terrains without and with openMP.

5 Visualization and Optimization

For visualization of results of our work we are using
OpenGL. Without lose of resolution in simulation it is not
possible to simulate this type of erosion in real time using
DEM method. As differential equations solver, we imple-
mented Runge−Kutta f ourth−order algorithm with total
accumulated error order h4 and basic Euler algorithm.

Because of optimization we joined particles of water
and soil to one programmable structure. They have differ-
ent properties and they are simulated with different meth-
ods. With this feature we can compute contacts between
particles more effectively. With assumption of using parti-
cles of water just to bring required wetness to soil system,
we do not need to create surface of water and visualization.
Physical correctness of particles of water is preserved.

For optimization of performance we used openMP for
simulation on more threads of CPU . As hardware for sim-
ulation we used Intel i7 950 CPU with 8 cores. In follow-
ing table, you can see performance of our algorithm and
comparison with openMP optimization.

6 Results

We simulated random input terrains to test our algorithm.
In figure 11 we can see wetting simulation performed on
terrain with layers. In this terrain, there are 6 layers with
different speed of wetness propagation. After close mea-
surement, layer with red color is most resistant to wetness.
As result, the layer, which is directly above most resistant
one is layer with hugest amount of wetness between parti-
cles.

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
135

Figure 11: Wetting system on set of layers.

Figure 12 shows the mass movement simulation. Sam-
ple hill was constructed from three soil-like layers. In-
spired by previous result, bottom layer is here the most
resistant to wetness. As result red layer is capturing all in-
coming wetness and creates surface of rupture with result
in movement.

Figure 12: Mass movement on sample hill with 3 layers.

7 Conclusions and Future Work

In conclusion, we created particle based system for sim-
ulating soil particles and mass movement erosion. Non
homogeneous material, layered data structure of soil, ad-
ditional wetness, wetting and over wetting of material in

our algorithm provide ideas for future work. With differ-
ent layers of soil and interaction with water we are able to
simulate formation of underlying structures such as caves
and underlying water. With definition of high stability and
strength of dry and also wet soil, it is possible to simulate
drying of particles of soil. Although, described methods
are not suitable for real time simulations, real time simu-
lation of this processes is also our future goal.

8 Acknowledgment

The author wish to thank to Doc. RNDr. Roman
Ďurikovič, PhD. for his support and the perfect leader-
ship in this work. We are also thankfull to Mgr. Michal
Chládek and Mgr. Juraj Onderik for help, support and de-
veloping simulation of water, which we are using to simu-
late water particles.

References

[1] Cundall P. A. A computer model for simulating pro-
gressive, large-scale movements in blocky rock sys-
tems. Proc. Symp. Int. Soc. Rock Mech., nancy 2,
number 8, 1971.

[2] Cundall P. A. Ball-a program to model granular
media using the distinct element method. Techni-
cal Note, Advanced Technology Group, Dames &
Moore, 1978.

[3] Mandelbrot B. B. & Wheeler J. A. The fractal geom-
etry of nature. 1983.

[4] Bell N. et al. Particle-based simulation of granular
materials. In SCA ’05: Proceedings of the 2005 ACM
SIGGRAPH, Eurographics symposium on Computer
animation, p. 77-86, 2005.

[5] Benes B. et al. Hydraulic erosion. Computer Anima-
tion and Virtual Worlds 17, p. 99-108, 2006.

[6] Delenne J-Y et al. Mechanical behaviour and failure
of cohesive granular materials. Int. J. Numer. Anal.
Meth. Geomech. 28, p. 1577-1594, 2004.

[7] Donze V. F. et al. Advances in discrete element
method applied to soil, rock and concrete mechan-
ics. 2008.

[8] Jian M. J. et al. Bond rolling resistance and its effect
on yielding of bonded granulates by dem analyses.
Int. J. Numer. Anal. Meth. Geomech. 30, p. 723-761,
2006.

[9] Jiang M. et al. A simple and efficient approach to
capturing bonding effect in naturally microstructured
sands by discrete element method. Int. J. Numer.
Meth. Engng. 69, p. 1158-1193, 2007.

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
136

[10] Kristof P. et al. Hydraulic erosion using smoothed
particle hydrodynamics. EUROGRAPHICS, volume
28, number 2, p. 219-228, 2009.

[11] Musgrave F. K. et al. The systhesis and rendering
of eroded fractal terrains. In SIGGRAPH ’89: Pro-
ceedings of the 16th annual conference on Computer
graphics anf interactive techniques, ACM Press, p.
41-50, 1989.

[12] Rungjiratananon W. et al. Real-time animation of
sand-water interaction. Pacific Graphics ’08, Volume
27 , Number 7, p. 1887-1893, 2008.

[13] Stava O. et al. Interactive terrain modeling using hy-
draulic erosion. Eurographics / ACM SIGGRAPH
Symposium on Computer Animation, 2008.

[14] Summer R. W. et al. Animating sand, mud, and snow.
Computer Graphics Forum 18, volume 1, p. 17-26,
1999.

[15] Lee J. & Herrmann H.J. Angle of repose and angle
of marginal stability: Molecular dynamics of granu-
lar particles. In SIGGRAPH ’05: ACM SIGGRAPH
2005 Papers, p. 965-972, 1992.

[16] Gingold R. & Monaghan J. Smoothed particle hy-
drodynamics - theory and application to nonspheri-
cal stars. Monthly Notices of the Royal Astronomical
Society 181, p. 375 - 389, 1977.

[17] Cundall P. A. & Strack O. D. L. A discrete numerical
model for granular assemblies. Geotechnique 29, p.
47-65, 1979.

[18] Chladek M. Flood simulations of city. FMFI UK,
Bratislava, 2010.

[19] Lal R. & Shukla K. M. Pricinples of soil physics.
Marcel Dekker, INC., The Ohio State University
Columbus, Ohio, New York, Basel, U.S.A., 2004.

[20] Li X. & Moshell J. M. Modeling soil: realtime
dynamic models for soil slippage and manipulation.
In SIGGRAPH ’93: Proceedings of the 20th an-
nual conference on Computer graphics and interac-
tive techniques, p. 361-368, 1993.

[21] Prusinkiewicz P. & Hammel M. A fractal model of
mountains with rivers. In Proceeding of Graphics
Interface ’93, p. 174-180, 1993.

[22] Lenaerts T. & Dutre P. Mixing fluids and granular
materials. EUROGRAPHICS ’09, Volume 28, Num-
ber 2, p. 213-218, 2009.

[23] Benes B. & Forsbach R. Layered data representation
for visual simulation of terrain erosion. In SCCG
’01: Proc. of the 17th Spring conference on Com-
puter graphics (2001), volume 25, p. 80-86, 2001.

[24] Zhu Y. & Bridson R. Animating sand as a fluid. In
SIGGRAPH ’05: ACM SIGGRAPH 2005 Papers, p.
965-972, 2005.

[25] Onoue K. & Nishita T. Virtual sandbox. In PG ’03:
Proceedings of the 11th Pacific Conference on Com-
puter Graphics and Applications, p. 252, 2003.

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
137

138

Fast Hydraulic and Thermal Erosion on the GPU

Balázs Jákó∗

Supervised by: Balázs Tóth†

Department of Control Engineering and Information Technology

Budapest University of Technology and Economics

Budapest/Hungary

Abstract

Computer games, TV series, movies, simulators, and

many other computer graphics applications use external

scenes where a realistic looking terrain is a vital part of

the viewing experience. Creating such terrains is a chal-

lenging task. In this paper we propose a method that gen-

erates realistic virtual terrains by simulation of hydraulic

and thermal erosion on a predefined height field terrain.

The model is designed to be executed interactively on par-

allel architectures like graphics processors.

Keywords: Erosion, simulation, GPU, GPGPU, hy-

draulic, thermal.

Figure 1: Landscape with mountains, valleys, ridges,

riverbeds and lakes, generated by our method.

1 Introduction

Natural eroded terrains have some typical features like val-

leys, riverbeds, ridges, etc. These are results of differ-

ent kinds of erosion caused by water, thermal shocks, and

wind. Hydraulic erosion is caused by running water on

terrain surface generated by from falling rain and springs.

∗balazs.jako@hun-digital.hu
†tbalazs@iit.bme.hu

The flowing water dissolves soil and transports it to lower

locations where the dissolved sediment is deposited. Ther-

mal erosion is caused by temperature changes caused by

the alternation of the hot Sun and cold night air. Hard sur-

faces are cracking up into smaller parts, the decomposed

material is moving down to lower areas due to gravity.

There are different approaches to generate virtual ter-

rains with features caused by these phenomena. Methods

based on fractal techniques build a terrain that is similar to

real-world mountain scenery, but these are isotropic, mak-

ing ridge and valley generation difficult. Topographical

methods use structural models to simulate water systems.

These emphasize water flow, but mountain slopes are less

natural in results. Physics based models simulate erosion

factors and their effects on terrain surface like water flow,

thermal shocks, and wind. In our method, we focus on hy-

draulic and thermal erosion, because these have the most

impact on the terrain surface.

The programmability of modern GPUs makes it pos-

sible to execute not only graphics algorithms but a wide

range of other, more generic tasks [11]. Using general pur-

pose graphics processing units (GPGPUs) for simulation

is obvious when the simulation algorithm can be excuted

in parallel. The architecture of the GPUs execute appro-

priate algorithms much faster than traditional CPUs which

makes such simulations able to run interactively, allowing

direct observation and manual intervention during execu-

tion.

Physics based erosion methods apply some kind of fluid

simulation. Chiba et al. [4] were the first to propose sim-

ulating valleys and ridges using particle systems. Beneš et

al. [3] presented a model that uses the Navier-Stokes equa-

tions on a 3D regular grid simulating the erosion process.

Neidhold et al. [5] used simplified Newtonian physics

model for velocity computation on a 2D grid. Up to this,

all of these models are computationally expensive, and due

to data dependencies they are hard to execute on a parallel

hardware. 2D Navier-Stokes equations were solved effi-

ciently by Harris [6] and Wu [14]. Kass et al. [7] solve

shallow water equations in their model, which was also

used by Beneš et al. [1], to simulate erosion in real-time.

Mei et al. [8] used this model in their simulation with em-

ploying virtual pipes introduced by O’brien et al. [10] that

is the key to parallel execution. Our approach is partly

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)

based on [8]. To improve the realism of the simulation, we

adapted the thermal erosion model of Beneš et al. [2] by

applying the idea of virtual pipes and merging it into the

improved hydraulic erosion algorithm.

2 Erosion Model

Our hydraulic erosion model is an improved version of the

method introduced by Mei, Decaudin and Hu [8]. This

model works with a 2D uniform grid and uses the follow-

ing quantities in each (x,y) cell (see Figure 2):

• terrain height b,

• water height d,

• suspended sediment amount s,

• water outflow flux f = (f L, f R, f T , f B),

• velocity vector
−→
v .

These values are updated in each iteration. The simulation

iteration consists of the following five steps:

1. Water incrementation due to rain or water sources.

2. Flow simulation using shallow-water model. Compu-

tation of the velocity field and water height changes.

3. Simulation of the erosion-deposition process.

4. Transportation of suspended sediment by the velocity

field.

5. Water evaporation.

These steps are executed in each iteration step, gradually

changing the state variables in each cell. Let bt ,dt ,st , ft ,
−→vt

denote the data elements at a given time t and ∆t the time

step. In the following, we summarize the calculations pro-

ducing the values at the next t + ∆t time. Since the model

calculates some variable values in two or more steps, we

will use subscripts 1,2, ... to distinguish the temporal val-

ues from the final output used in following iterations.

First, we simulate the effects of water arriving at the ter-

rain surface. Unlike the original model, we use constant

r(x,y) rain rate for each cell instead of large randomly dis-

tributed raindrops falling down to surface. The rain rate

specifies the water amount arriving at a given (x,y) cell

during ∆t time. This gives us more balanced and finer

grained results in the long run. The water height is up-

dated by the following formula:

d1(x,y) = dt(x,y)+∆t · rt(x,y) ·Kr (1)

where Kr is a global simulation parameter that scales the

overall rate of water increment, and d1 is the intermediate

value of the water height.

Then, we calculate the water flow between cells. Each

(x,y) cell has four virtual pipes to the four neighbors which

Figure 2: Water and thermal sediment flow model.

transport water outward from the given cell. Neighboring

cells also have four virtual pipes, transporting water to op-

posite directions. The water outflow flux is updated with

the pressure difference between interconnected cells. Let’s

denote f= (f L, f R, f T , f B) the outflow flux in a given (x,y)
cell, where f L is the outflow flux to the left neighbor at

(x− 1,y), and similarly f R, f T , f B are the outflow fluxes

to right, top, bottom directions, respectively. We calculate

the change of f L as:

f Lt+∆t = max(0, f Lt (x,y)+∆t ·Ag ·∆hL(x,y)

l
) (2)

where A is the cross section area of the virtual pipe, g is

the gravity, l is the length of the virtual pipe, ∆hL(x,y) is
the height difference between the left and the current cell:

∆hL(x,y) = bt(x,y)+d1(x,y)−bt(x−1,y)−d1(x−1,y)
(3)

The calculation of f R, f T , f B is performed in a similar

way. The total outflow should not exceed the total amount

of the water in the given cell. If the calculated value is

larger than the current amount in the given cell, then f will

be scaled down with an appropriate K factor:

K = max(1,
d1 · lx · ly

(f L + f R + f T + f B) ·∆t
) (4)

where lx, ly are the distances between the grid cells in the

x,y directions. The outflow flux is multiplied by K:

f it+∆t(x,y) = K · f it+∆t , i = L,R,T,B. (5)

We calculate ∆V water height change with adding fout out-

put and fin input flow values in each (x,y) cell:

∆V (x,y) = ∆t · (∑ fin −∑ fout) =

= ∆t · (f Rt+∆t(x−1,y)+ f Tt+∆t(x,y−1)+

f Lt+∆t(x+1,y)+ f Bt+∆t(x,y+1)−
∑

i=L,T,R,B

f it+∆t(x,y).

(6)

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)

140

Then, we update the water height in the current (x,y) cell:

d2 = d2(x,y)+
∆V (x,y)

lxly
. (7)

Using outflow flux values, we can calculate the
−→
v velocity

field that needed to calculate hydraulic erosion and depo-

sition. The calculation of the x component is:

∆Wx =
1

2
(f R(x−1,y)− f L(x,y)+

f R(x,y)− f L(x+1,y))
(8)

The y component is calculated in a similar way. Since we

know the velocity vector, we can calculate C water sed-

iment transport capacity that represents how much sedi-

ment can be transported in a cell. In the original model C

is calculated as:

C(x,y) = Kc · sin(α(x,y)|−→v (x,y)|) (9)

where Kc is a global simulation parameter controlling sed-

iment capacity, sin(α) is the local tilt angle, and
−→
v (x,y)

is the water flow vector in the cell. This empirical formula

erodes terrain proportional to the surface slope. To allow

some erosion at nearly flat areas, there is a lower limit for

sin(α(x,y)). Fluid erosion in real-world is highly depen-

dent on the water depth. Deep sea floors are practically

never eroded, even if there is a stream in the water, because

water flow is slower in deeper water levels, although sed-

iment capacity of deeper water is larger due to the larger

water volume. On the contrary, a relatively shallow river

always dissolves the terrain at the bottom, because water is

flowing faster and has direct effect on the bottom. To sim-

ulate this, we modified equation (9) by introducing lmax
limiting function:

C(x,y) = Kc · sin(α(x,y))|−→v (x,y)| · lmax(d1(x,y)) (10)

lmax(x) is a ramp function that is defined by the following:

lmax(x) =

0,x ≤ 0

1,x ≥ Kdmax

1− (Kdmax − x)/Kdmax,0 < x < Kdmax

where Kdmax is a global simulation parameter controlling

the maximum erosion depth. This function scales down

the fluid erosion effects by the water depth, so the erosion

will occur only in shallower areas, forcing the simulation

to dispose sediment at deeper water areas, just like in real

world. This produces much more natural looking deep wa-

ter sea and lake floors than the original model. Moreover,

we included true 3D collision between water and terrain

surface:

C(x,y) = Kc · (−−→
N (x,y) ·−→V) · |−→v (x,y)| · lmax(d1(x,y))

(11)

where N(x,y) is the terrain surface normal at point (x,y)

and
−→
V is the 3D water flow vector calculated from the sur-

face tangent and 2D velocity vector
−→
v . This modification

erodes more soil if the water collides with the surface in

angles closer to perpendicular. With our model, we ob-

served some ripples on sea floors similar to sand ripples

on real-world seashores.

At this point, there is a decision by using theC capacity.

If transported sediment st in cell (x,y) is smaller than C,

then we dissolve some soil in water:

bt+∆t = bt −∆t ·Rt(x,y) ·Ks(C− st), (12a)

s1 = st +∆t ·Rt(x,y) ·Ks(C− st), (12b)

d3 = d2 +∆t ·Rt(x,y) ·Ks(C− st), (12c)

where Ks is the global coefficient. Otherwise, if C < st ,

then we dispose some of the transported sediment in a sim-

ilar way:

bt+∆t = bt +∆t ·Kd(st −C), (13a)

s1 = st −∆t ·Kd(st −C), (13b)

d3 = d2 −∆t ·Kd(st −C), (13c)

where Kd is a global parameter controlling deposition

speed. Equations 12c and 13c were added to improve

long-term stability. Originally, the ∆t · Kd(st −C) sus-

pended sediment amount was subtracted from the terrain

heigth bt without adding it to dt water height. The overall

height of the water surface is defined as bt +dt at a given t

time. Thus, after the subtraction the overall water surface

height was decreased by the amount of the sediment sus-

pended by the water itself, caused water to disappear with

the sediment, ignoring the fact that suspended amount is

still in the water in fluid form. This caused some unwanted

feedback to the water flow simulation from the sedimenta-

tion process and causes regular ripples on the water surface

in the long run. With our modification, this behavior can

be eliminated.

To prevent negative water heights in equation 12c, we

clamped the dissolved amount to water height in cell (x,y).
There is one more improvement in the model. In nature,

moving sediment becomes softer by the time. To imitate

this, we slowly lower the R(x,y) local hardness coefficient
of the terrain when some soil is disposed:

Rt+∆t(x,y) =max(Rmin,Rt(x,y)−∆t ·KhKs(st −C)) (14)

where Rmin is the lower limit of hardness, Kh is a global

coefficient controlling the sediment softening. The next

step in the model is to move dissolved sediment along the

water using
−→
v = (u,v):

st+∆t(x,y) = s1(x−u ·∆t,y− v ·∆t) (15)

If point (x− u · ∆t,y− v · ∆t) is not on the grid, the model

uses linear interpolation between the four closest grid

points. In the last step, we simulate water evaporation:

dt+∆t(x,y) = d3(x,y) · (1−Ke∆t). (16)

In nature, the evaporation has a negligible effect, but in our

model it is important because the scene would fill up with

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)

141

Figure 3: Demonstration of talus angle: photograph of real

red sand dumped between flat plexi plates. The material

has near linear slope. [13].

water by the time if the water was not removed from the

system.

Our thermal erosion model is based on [9]. The orig-

inal method was designed neither to run on parallel ar-

chitecture nor in real-time, but with some improvements

these problems can be solved. Let’s denote the terrain

height of the current (x,y) cell by b and its eight neigh-

bors by bi, i = 1,2, ...,8. Let’s denote the height differ-

ence between the current cell and its lowest neighbor by

H =max{b−bi, i= 1, ...,8}. The area of each of the cells
is a and the volume to be moved is ∆S = a ·H/2. This is
the maximum, otherwise the algorithm will oscillate. To

handle local R(x,y) terrain hardness in cell (x,y), we have
extended this formula:

∆St+∆t = a ·∆t ·Kt ·Rt(x,y) ·H/2 (17)

where Kt is a global coefficient. Then we move this

amount to the lower neighbors proportionally if the so

called talus angle is larger than that the value determined

by material viscosity. The talus angle is an important

static parameter of solid granular materials without cohe-

sion between grain particles. To measure this parameter,

we should dump the material slowly to a flat surface be-

tween two transparent plates. The material will form a

slope with an angle, which is a maximum that the given

material can reach. Above this angle, the material starts

moving to lower levels, making the slope lower. When

slope angle reaches this critical angle, then the material

does not move anymore [13]. See figure 3.

Let’s denote the distance between two cells by d and

talus angle by α = tan((b− bi)/d). Let’s denote the set

of neighbors that are lying lower than the current element

under the talus angle by A = {bi,b− bi < 0∧ tan(α) >
(R(x,y)∗Ka +Ki), i = 1, ...8}, where Ka and Ki are global

simulation parameters controlling minimum talus angle

dependence on R(x,y) local hardness factor. Each element

Figure 4: Virtual pipes of thermal erosion. Brown ar-

rows: virtual pipes. Red arrows: soil movement from the

Cell(x,y) to the neighbors whose are lower than the talus

angle. Yellow arrows: soil movement is inhibited to cells

which height is above the talus angle.

in A will get part of the volume ∆Si proportional to its

height difference:

∆Si = ∆S
bi

∑∀bk∈A bk
. (18)

In contrary to the original model, we do not move ∆Si vol-

umes directly to cells in set A because this would intro-

duce data write dependency that we wanted to avoid for

easy parallel execution. Similarly to fluid flow simulation,

we put these quantities into eight virtual pipes carrying

material to the neighbors of this cell (see Figure 4), then a

separate simulation step updates the terrain height for each

cell by summarizing the incoming material flow from their

neighbors.

With this modification we can easily execute the algo-

rithm in parallel and integrate it to the fluid-based erosion

simulation:

1. Water incrementation due to rain or water sources.

2. Flow simulation using shallow-water model. Com-

putation of velocity field and water height changes.

3. Soil flow calculation with outflow in virtual pipes

of thermal erosion model.

4. Simulation of erosion-deposition process.

5. Transportation of suspended sediment by the velocity

field.

6. Thermal erosion material amount calculation.

7. Water evaporation.

With these improvements, we can execute the two ero-

sion models in conjunction with each other. Steep walls

of riverbeds carved by hydraulic erosion will start to fall

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)

142

down due to thermal erosion. And vice versa, the mate-

rial eroded by thermal erosion will be dissolved and trans-

ported by the running water.

3 GPU Implementation and Visual-

ization

In our implementation, the cell structure is represented by

2D 4-channel floating-point texture layers stacked upon

each other, attached to a single framebuffer object. Texels

of the same position in texture layers form one cell, con-

taining all the simulation variables associated with it. With

two such framebuffers we calculate one iteration using one

of these buffers as an input and the other as an output

(ping-pong) [12]. After the iteration we swap these buffers

and start over. The iteration process is implemented in a

single fragment shader that runs in three passes on a full-

size quad rendered over the entire framebuffer, writing the

output textures using the multiple render target feature.

The implementation exploits linear interpolation and edge

wrapping, which are basic features of the graphics hard-

ware.

The texture buffers can be used directly to visualize the

terrain height values to offset triangle vertices of the ren-

dered mesh in the y direction. For the sake of simplicity

we used a regular grid mesh to render the terrain surface,

but heightfield texture can also be used in advanced terrain

rendering methods.

Water is rendered in a similar way. The water surface

is a simple uniform grid mesh too, rendered with y offset

with the water height and a small −∆y constant. Due to

z-buffering this makes water surface invisible where water

height does not exceed ∆y. Water surface has a simple

fragment shader that calculates simple sky reflections and

alpha transparency.

4 Results

We have used regular and randomly generated terrains to

test our method. Regular terrains were utilized to test our

parallel erosion methods (see Figure 5 and Figure 6) and

see they are running without problems. As we can see,

thermal erosion makes the terrain material spread around

until the critical talus angle is reached, then the material

stops moving. Hydraulic erosion carves the surface creat-

ing deep valleys.

Random terrains were utilized to test the model in

natural-like scenarios. Random terrains were generated

with the the well-known Diamond-square algorithm (see

Figure 7a). We implemented it non-recursively to make it

possible to generate terrains with similar patterns at dif-

ferent resolutions. We used Gaussian distributed random

numbers to generate middle point heights in the algorithm

instead of regularly distributed ones, which makes the re-

sult more realistic.

Figure 5: Effects of our parallel thermal erosion method

on a regular height field after 1000 iterations.

Our erosion model uses R(x,y) local hardness coeffi-

cient in every (x,y) cell. This is a value in range 0..1,
that represents the resistance of the soil against in a given

cell. Smaller values are representing harder material and

vice versa. We generate this coefficient array by copying

and scaling the terrain heightfield, adding some random

noise to every cell, and applying a global Gaussian filter

to the array. The idea behind this was twofold. First, in

the nature, the terrain material at higher levels is usually

more resistant to erosion than the lower parts. Second,

real-world terrain material is never homogeneous, the con-

sistency varies from location to location. With this simple

method we can improve the realism of the generated ter-

rain. The surface will be more irregular, similarly to real-

world terrains where the material inhomogenity influences

the erosion at different locations (see 1).

Figure 7b shows the effects of the improved hydraulic

erosion model on the aforementioned random terrain. The

hydraulic erosion carves deep grooves into the surface that

rarely occurs in nature. This is why we included thermal

erosion in the model.

Figure 7c shows the effects of the parallel thermal ero-

sion process on the random terrain. The material at too

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)

143

Terrain Size Speed (ms/iteration) Ratio (GPU/CPU)

CPU1 CPU2 GPU1 GPU2 conf. 1 conf. 2

128x128 82.8 25.7 2.57 0.295 32.21 87.1

256x256 325 102.4 9.92 1.01 32.76 101.3

512x512 1289.1 412.6 39.22 3.835 32.86 107.5

1024x1014 5165.6 1647 160.15 15.47 32.54 106.5

Table 1: Performance results

Symbol and Description Range Value Symbol and Description Range Value

∆t Time increment [0;0.05] 0.02 Ks Soil suspension rate [0.1;2] 0.5

Kr Rain rate [0;0.05] 0.012 Kd Sediment deposition rate [0.1;3] 1

Ke Water evaporation rate [0;0.05] 0.015 Kh Sediment softening rate [0;10] 5

A Virtual pipe cross section area [0.1;60] 20 Kdmax Maximal erosion depth [0;40] 10

g Gravity [0.1;20] 9.81 Ka Talus angle tangent coeff. [0;1] 0.8

Kc Sediment capacity [0.1;3] 1 Ki Talus angle tangent bias [0;1] 0.1

Kt Thermal erosion rate [0;3] 0.15

Table 2: Allowed ranges and typical values of global simulation parameters used in our simulator.

(a) Initial terrain generated by a modified version of the widely-known

Diamond-square algorithm

(b) Effect of the improved hydraulic erosion model

(c) Effect of our thermal erosion model (d) Effect of the combined erosion method

Figure 7: Effects of different erosion methods on random terrain after 1000 iterations. The reddish color indicates sedi-

ment in the water.

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)

144

Figure 6: Effects of our hydraulic erosion method on a

regular height field after 1000 iterations.

steep slopes is moving towards the lower regions.

Figure 7d demonstrates the effects of our combined ero-

sion algorithm on a random terrain. We can observe that

the riverbeds and valleys are v-shaped which is more real-

istic than in the original erosion model.

In our framework the following ranges were defined for

global simulation parameters:

Figure 8 shows the effect of oscillations on the wa-

ter surface appearing at long simulations (upper image).

These ripples were successfully removed by some modifi-

cation applied to the model (lower image). See equations

12c and 13c.

Figure 9 illustrates the effect of erosion depth limiting

introduced in eqation 10. On the upper image the original

model carves riverbeds unrealistically deep. The improved

version produces more credible riverbeds (lower picture).

We tested the performance of our model on the two fol-

lowing hardware configurations.

1. CPU1: AMD Athlon XP 3.2 GHz

GPU1:ATI Radeon HD3650 AGP

2. CPU2: Intel Core2 Q9550 2.83GHz

GPU2: ATI Radeon HD4870

Figure 8: Elimination of the oscillation in the original ero-

sion model.

We implemented the erosion model both on CPU and on

GPU to measure the difference between the two architec-

ture. The results are summarized in Table 1. We can see

that the speedup gained by utilizing GPU is very high, we

reached 30 to 100 times faster execution. On the second

configuration, the ratio is higher, showing that the GPUs

are developing faster than the ”traditional” serial CPUs

due to their more scalable architecture. Using GPU im-

plementation, our algorithm can run at interactive speed

even on larger terrains.

5 Conclusions

We proposed an erosion model that can be executed on

massively parallel architectures like graphics processors.

The method combines and improves two algorithms to

simulate hydraulic and thermal erosion in conjunction

with each other. The original hydraulic erosion method

is extended to be more versatile and stable. The thermal

erosion model is a parallel redesign of an earlier work. It

makes it able to run on parallel architectures and be inte-

grated with the fluid erosion model. Our method gener-

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)

145

Figure 9: Effects of hydraulic erosion depth limit.

ates more realistic results while still running at interactive

speeds.

Acknowledgements

This work has been supported by OTKA K-719922 and by

TÁMOP-4.2.1/B-09/1/KMR-2010-0002.

References

[1] Bedřich Beneš. Real-time erosion using shallowwa-

ter simulation. The 4th Workshop on Virtual Reality

Interactions and Physical Simulation - Vriphys’07,

pages 43–50, 2007.

[2] Bedřich Beneš and Rafael Forsbach. Layered data

representation for visual simulation of terrain ero-

sion. In SCCG ’01: Proceedings of the 17th Spring

conference on Computer graphics, page 80, Wash-

ington, DC, USA, 2001. IEEE Computer Society.

[3] Bedřich Beneš, Václav Těšı́nský, Jan Hornyš, and

Sanjiv K. Bhatia. Hydraulic erosion: Research arti-

cles. Comput. Animat. Virtual Worlds, 17(2):99–108,

2006.

[4] Norishige Chiba, Kazunobu Muraoka, and Kunihiko

Fujita. An erosion model based on velocity fields for

the visual simulation of mountain scenery. Journal of

Visualization and Computer Animation, 9:185–194,

1998.

[5] E. Galin, P. Poulin (editors, B. Neidhold, M. Wacker,

and O. Deussen. Interactive physically based fluid

and erosion simulation.

[6] Mark Harris. Fast fluid dynamics simulation on

the gpu. In ACM SIGGRAPH 2005 Courses, SIG-

GRAPH ’05, New York, NY, USA, 2005. ACM.

[7] Michael Kass and Gavin Miller. Rapid, stable fluid

dynamics for computer graphics. In Proceedings

of the 17th annual conference on Computer graph-

ics and interactive techniques, volume 24 of SIG-

GRAPH ’90, pages 49–57, New York, NY, USA,

September 1990. ACM.

[8] Xing Mei, Philippe Decaudin, and Bao-Gang Hu.

Fast hydraulic erosion simulation and visualization

on GPU. In 15th Pacific Conference on Computer

Graphics and Applications, Pacific Graphics 2007,

November, 2007, pages 47–56, Maui, Hawaii, Etats-

Unis, November 2007. IEEE.

[9] Forest Kenton Musgrave, Craig E. Kolb, and

Robert S. Mace. The synthesis and rendering of

eroded fractal terrains, 1989.

[10] James F. O’Brien and Jessica Kate Hodgins. Dy-

namic simulation of splashing fluids. In Proceedings

of the Computer Animation, pages 198–, Washing-

ton, DC, USA, 1995. IEEE Computer Society.

[11] László Szirmay-Kalos and László Szécsi. General

Purpose Computing on Graphics Processing Units.

MondAT kiadó, 2011.

[12] László Szirmay-Kalos, László Szécsi, and Mateu

Sbert. GPU-Based Techniques for Global Illumina-

tion Effects. Synthesis Lectures on Computer Graph-

ics and Animation. Morgan & Claypool Publishers,

2008.

[13] Péter Vankó. Izgalmas mérések a mérnök-fizikus

hallgatói laboratóriumban. Fizikai szemle, BME

TTK, 9:307, 2006.

[14] Enhua Wu, Youquan Liu, and Xuehui Liu. An

improved study of real-time fluid simulation on

gpu. Department of Computer Science, University

of Manchester, UK. Since, 15:139–146, 2004.

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)

146

Visualization

Maximum Intensity Projection Weighted by Statistical Cues

Peter Mindek∗

Supervised by: Ing. Peter Kapec†

Faculty of Informatics and Information Technologies
Slovak University of Technology in Bratislava

Bratislava / Slovakia

Abstract

Volumetric visualization of medical data is a specific task,
as doctors and radiology technicians are not well trained
in the field of computer graphics; therefore, algorithms for
visualization of medical data must be as intuitive as pos-
sible, so that visualization tools employing them would
be helpful in medical environment. Visualization of vol-
umetric data acquired by medical imaging could not be
effectively used without defining a proper transfer func-
tion, which transforms measured intensities to colours and
opacity values. Many visualization methods use com-
plex means for designing transfer functions, which could
lead to decreased usability of said methods. We propose
a modification of MIP, a common volumetric visualization
method that uses a simple one-dimensional transfer func-
tion for classifying different materials. The goal of our
method is to visualize individual tissues from the medical
data, present them with minimal effort and enable users to
observe areas of interest.

Keywords: Medical Data, Volumetric Visualization,
Classification, Maximum Intensity Projection, Standard
Deviation

1 Introduction

Volumetric visualization plays important role in medical
imaging. Data acquired by CT (Computed Tomography)
or MRI (Magnetic Resonance Imaging) scanners can be
visualized using two-dimensional cross-sections and ex-
amined by moving these cross-sections through the data
set. Another way is to visualize the data set as a whole by
means of volumetric visualization. This approach has the
advantage of displaying the data in their original context
and it is better suited for some tasks.

Direct volume rendering (alpha blending accumulation
of sampled values in front-to-back or back-to-front order)
is a commonly used method for volumetric visualization.
It is usually implemented using the volumteric ray cast-
ing algorithm. One of the disadvantages of this method
is that it is rather slow (however, it can be accelerated by

∗mindek06@student.fiit.stuba.sk
†kapec@fiit.stuba.sk

precalculation of gradients used for lighting) and it needs
a proper transfer function, which is essential for the al-
gorithm. It has to be properly designed so that it will cor-
rectly classify individual organs, tissues or materials repre-
sented by the volumetric data set. Designing such function
is not a trivial task and it is often time consuming when
done manually; consequently, it is not uncommon to use
simpler methods of transforming intensities sampled from
volume data along the viewing ray into pixel colour.

One possible solution is to visualize an iso-surface ex-
tracted from the visualized data set. 1 Major drawback of
this rendering method is that only a small part of the data
can be examined at once. Users do not see through the
iso-surface, nor do they see anything above the rendered
surface; therefore, this method is not suitable for visualiz-
ing complicated biological structures or tissues of human
body, as they usually do not consist of voxels of the same
intensity. However, it can be used to visualize bones in CT
scans, or parts of objects scanned by industrial CT scan-
ners.

In medicine, it is often necessary to display struc-
tures composed of materials with different intensity val-
ues. Where the direct volume rendering or the iso-surface
extraction is not an option, simple visualization methods
based on processing every sampled value along the rays
can be used. A common way is to use some statistical
property of the one-dimensional data sampled along the
ray. This could be for instance standard deviation, mean
value, or maximum value. Using the maximum value is a
widespread method called Maximum intensity projection
(MIP) [12]. These methods are non-photorealistic, as their
goal is not to necessarily mimic real appearance of the vi-
sualized objects but rather provide adequate insight into
the volumetric data.

Since these methods generally do not use any shading
of sampled voxels, their advantage over direct volume ren-
dering is in their speed. The speed enables these methods
to be implemented in real time. This is important for us-
ability of the rendering method, as dynamically changing
view or other properties of the visualization is crucial for
the medical imaging applications.

1This could be done without ray casting as well; algorithms such as
Marching cubes could be employed to extract the iso-surface and gen-
erate a polygon mesh that would be rendered using standard rendering
capabilities.

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)

Another major advantage of the MIP algorithm and sim-
ilar methods is their simplicity. Very easy set-up of simple
transfer functions or similar classification methods usually
results in satisfactory images.

On the other hand, using only the statistical proper-
ties of the sampled data or an order independent-operators
(such as a maximum operator used in the MIP rendering)
has a drawback of discarding depth information of the vi-
sualized objects. Many different algorithms have been de-
veloped in order to maximize displayed information using
these simple rendering methods [4, 11, 10, 1].

Additionally, single statistical property may not provide
satisfactory representation of data of interest. For instance,
the projection of maximum intensity is useful only when
higher intensities are those of interest. This may be the
case in the CT scans when the bones are to be visual-
ized (bones have generally higher intensity than surround-
ing tissue), or in scans with application of contrast agents.
However, areas of interest are often occluded by structures
of higher intensity values in the MRI scans without con-
trast; therefore, MIP is not applicable in this case.

Sometimes the volumetric visualization algorithms use
classification to enhance the final image [9]. The classi-
fication assigns colours, opacity values, or both (depends
on the rendering method) to individual tissues or materi-
als to help the user to easily distinguish them. One of the
simplest and most intuitive methods of the classification
is a one-dimensional transfer function. It is able to filter
out some of the structures and reveal the areas of inter-
est within the volumetric data set. However, blurryness
and other factors cause this classification method to fail on
some of the data sets when using MIP or similar visualiza-
tion algorithms.

2 Related work

As one of the most commonly used volumetric visualiza-
tion methods, the MIP rendering algorihtm (introduced
in [12]) has been subject to many improvements. Its ad-
vantages make this method interesting, even though more
complex visualization methods exist. Several enhance-
ments that eliminate various disadvantages of MIP have
been proposed.

Use of depth weighting has been proposed in [4]. Inten-
sity values are weighted by a value dependant on a distance
from the origin (position of virtual camera). This is essen-
tially a fog effect applied to the MIP rendering. It results in
images with distinguishable depth of individual visualized
objects. However, in some cases it may partially occlude
the areas of interest.

Another modification of the MIP method was proposed
in [11]. Instead of using the global maximum of the values
along the viewing ray, a first local maximum higher than a
pre-selected threshold value is used. If no value is higher
than the threshold, the global maximum is projected. An
improvement of this method has been proposed in [10].

A method that combines advantages of MIP and direct
volume rendering has been introduced in [1]. This method
updates an opacity profile based on difference between the
sampled value and a current maximum value.

Numerous volumetric visualization methods that pro-
vide additional information about visualized data have
been introduced as well. The goal of these methods is
to show as much information as possible without diffi-
cult transfer function design. The use of weighted distance
transfrom has been proposed to enhance various features
in rendered images of anatomical structures and to pro-
vide contextual information about selected body parts [5].
The gradient based rendering technique of objects bound-
aries was introduced in [2]. Additionally, visualization en-
hancement by level lines has been proposed in the paper.
Probabilistic classification of different materials using sev-
eral one-dimensional transfer functions has been proposed
in [8].

Even though the classification methods using the one-
dimensional transfer functions are widely used, volumetric
rendering methods with multidimensional transfer func-
tions are being examined as well. The problem of de-
signing the multidimensional transfer functions has been
also addressed [7]. Semi-automatic generation of trans-
fer functions for direct volume rendering of boundaries
between different materials within data set has been pro-
posed in [6].

Statistical transfer function space has been introduced
in [3] and addresses the problem of overlapping of inten-
sity distributions of different materials that are to be clas-
sified. The method extracts statistical properties from the
data and uses them to classify different materials. De-
scribed method uses adaptive growing approach to esti-
mate statistical properties of each sample point. Estima-
tion is based on neighbouring values. Extracted properties
are also utilized to improve visual quality of volume shad-
ing by noise reduction.

3 Weighting by statistical cues

Our proposed approach is an enhancement of the standard
MIP rendering with the distance weighting using the volu-
metric ray casting algorithm. The goal was to enhance the
MIP rendering technique in such manner that it could be
employed in rendering of CT or MRI scans with different
areas of interest.

The algorithm uses a one-dimensional transfer function
for material classification, which is designed by the user
by placing and moving control points of a cubic spline.
The transfer function assigns opacity values to individual
voxels according to their intensity, which is used as an in-
put for the transfer function. It could be used to suppress
various ranges of intensities in the data set to reveal areas
of interest.

Figure 1 shows the inability of a one-dimensional trans-
fer function to classify a MRI scan in order to reveal the

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
150

brain in the MIP rendered image. The goal was to re-
move the skull (assign it a zero opacity), which the one-
dimensional transfer function failed to accomplish, as the
voxels forming the outlines of the skull have the same in-
tensity values as the brain tissue. Thin layers of voxels at
the surface of the head after classification have the same or
higher intensities than the brain tissue. MIP projects these
voxels instead of the area of interest, which is the brain in
this case.

(a) Cross-section without classifica-
tion

(b) Cross-section with classification

(c) MIP without classification (d) MIP with classification

Figure 1: Cross-section through an MRI scan of a human
head without classification (1a) and with classification by
a 1D transfer function (1b). Brain is occluded in the MIP
rendering (1c), as well as in the MIP rendering with clas-
sification by the 1D transfer function (1d). In both render-
ings, higher intensity voxels of the skull occlude the brain.

Our algorithm tries to override this problem by using
standard deviation of voxels along the projection ray to
calculate the weight of the sampled values. These values
are then treated as in the standard MIP rendering – the
maximum of the weighted values is projected into the final
image.

The standard deviation is calculated from n previously
sampled values. These values form a window, whose size
is constant during the rendering process. The size of the
window should be as big as possible; however, voxel in-
tensities should not be affected by voxels representing dif-
ferent materials. Bigger window size therefore requires
use of a smaller step size for the ray traversing.

The algorithm uses parameter τ , which is adjustable
along with the transfer function by the user. Weights of

the sampled values are calculated by formula 1.

wi = |2σ − τ| (1)

σ is the standard deviation of the window of i-th sample
point, wi is the weight. The sampled value is multiplied
by the weight and finally, the maximum of the resulting
weighted values along the ray is projected into the image.

The τ parameter can be adjusted by the user to further
specify the area of interest. It serves as a parameter of a
simple V-shaped transfer function for the standard devia-
tion used to weight the sampled intensities from the data
set. Appropriate value of the τ parameter can be found by
trial and error by continually changing it while observing
the final rendering.

Our algorithm also uses the distance weighting imme-
diately after sampling the value from the data set, as pro-
posed in [4]. The depth of rendered objects is more per-
ceptible this way. Figure 2 demonstrates the ability of our
method to efficiently employ a 1D transfer function for
material classification.

3.1 Implementation

The proposed method is based on the volumetric ray cast-
ing algorithm and processes one ray at the time. Colours
of individual pixels in rendered image could be calculated
independently; therefore, rendering could be parallelized.
Implementation on state-of-the-art graphic hardware may
take advantage of its massive parallelism and may result in
interactive real time rendering.

We have implemented the method as a GLSL ver-
tex/fragment shader pair using OpenGL library. The im-
age is rendered as a single quadrilateral covering the whole
screen while the vertex/fragment shader pair is in use. The
vertex shader does not transform positions of rendered ver-
tices with the model view matrix, but it uses this transfor-
mation to calculate the direction and position of the vir-
tual camera. This design enables the use of the standard
OpenGL matrix transformation commands to control the
virtual camera of the shader.

The volume ray casting algorithm is implemented as
a fragment shader described bellow. The fragment shader
processes rays, as fragment colour is dependant only on
the evaluation of its respective ray. Number of steps is
taken in order to evaluate each ray. Every step consists
of sampling two values along the ray. First value is sam-
pled at the sampling position, which gradually move along
the ray in constant intervals away from the camera posi-
tion. Second value is sampled at the position n steps back.
The steps, or the sampled values between these two posi-
tions are referred to as a window. The two sampled values
(which are transformed by the transfer function, stored as a
1D texture) are used to calculate the standard deviation of
the window. Standard deviation is calculated by following
formula:

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
151

(a) Boundaries (b) Volumes

Figure 2: Comparison of a visualization of object boundaries and volumes by using our method with different transfer
functions (x-axis of the transfer function represents sampled intensity, y-axis represents output opacity)

; τ = 0 for both images.

σ =

√√√√√n(
n
∑

i=1
x2

i)− (
n
∑

i=1
xi)2

n(n−1)
(2)

x1...xn are sampled intensities of the current window. The
are calculated by trilinear interpolation of voxel values sur-
rounding the sampling point.

To calculate the standard deviation in O(1) time for the

window of every sampling point, values of
n
∑

i=1
xi and

n
∑

i=1
x2

i

are being accumulated as the shader marches along the ray.
In every step, value sampled at the end of the window (far-
ther from the camera) and its square are added to respec-
tive accumulators, while value at the begining of the win-
dow (closest to the camera) and its square are subtracted
from the accumulators. This way, the formula 2 could be
used to calculate the standard deviation for every window
in constant time, as the accumulators would always con-
tain the sum of the sampled values and the sum of their
squares. Consequently, the window would not be centred
at the current sampling point.

The volumetric data is enclosed in a bounding box in
order to speed up the rendering. At the beginning of the
evaluation of a ray, two intersections of the ray with the
bounding box are calculated (in case the ray hits a vertex
of the bounding box, these two intersections are equal).
The sampling occurs only between these two positions in
space. As the values are sampled from positions with uni-
form distances between each other, the number of steps for
each ray vary. This helps to reduce the rendering time.

The volumetric data are stored as a 3D texture in the
memory of the graphic card. This way, sub-voxel values

(values from intermediate space between voxels) can be
sampled from the data set. Using OpenGL commands,
graphic card could be instructed to use the trilinear filter-
ing for the sampling. The trilinear interpolation of val-
ues of neighbouring voxels significantly improves the ren-
dering quality, even though it could introduce some minor
artefacts to the visualized data. Listing 1 shows a fragment
of the shader program implementing out method.

Listing 1: Part of the MIPWSC fragment shader; p0 and p1
are positions on the ray, i0 and i1 are step numbers on the
begining and the end of the window, t is the τ parameter.

vox0 = da taRead (p0) ∗ (1 . 0 − f l o a t (i 0) /
fogLen) ;

vox1 = da taRead (p1) ∗ (1 . 0 − f l o a t (i 1) /
fogLen) ;

p r o j 1 += vox0 ;
p r o j S q r += vox0 ∗ vox0 ;
p r o j 1 −= vox1 ;
p r o j S q r −= vox1 ∗ vox1 ;
c o u n t e r = f l o a t (i 0 − i 1) ;

s = pow ((c o u n t e r ∗ p r o j S q r − p r o j 1 ∗ p r o j 1
) / (c o u n t e r ∗ (c o u n t e r − 1 . 0)) , 0 . 5) ;

vox0 = vox0 ∗ abs (s ∗ 2 . 0 − t) ;
i f (vox0 > p r o j) {

p r o j = vox0 ;
}

The listed fragment calculates the standard deviation of
the window and weights the actual sampled value. The

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
152

(a) MIP (b) Iso-surface

(c) AIP (d) SDP

(e) DVR (f) MIPWSC

Figure 3: An MRI scan of a female head rendered with
different volume visualization techniques using 1D trans-
fer function for classification.

conditional branching at the end of the listing serves as a
maximum operator for weighted values.

4 Results

As mentioned in Section 3, out method uses a one-
dimensional transfer function for transforming intensities
of voxels, window with adjustable length, and the τ pa-
rameter adjustable by users; consequently, great variety
of result images could be achieved from a single data set.
The transfer function and the τ parameter can be dynami-
cally modified and are applied on the final rendering in real
time. This enables users to find the ideal transfer function
and the value of τ by trial and error.

Figure 3 compares several volumetric visualization
methods with our proposed method. Drawbacks of indi-

(a) τ = 0.6 (b) τ = 0.3

(c) τ = 0.3 (d) τ = 0.2

(e) τ = 0.2 (f) τ = 0

Figure 4: An MRI scan of a female head rendered using
our method with different settings.

vidual rendering techniques are demonstrated: maximum
intensity projection (3a) and iso-surface rendering (3b) are
unable to efficiently use the transfer function classification
to reveal the brain tissue. Average intensity projection (3c)
and standard deviation projection (3d) can reveal brain oc-
cluded by skull, but the final images are blurry and do not
show too much detail. Direct volume rendering (3e) is able
to show the brain tissue in higher detail using a simple 1D
transfer function, but the rendering quality is decreased by
severe artefacts. Maximum intensity projection weighted
by statistical cues (3f) is able to reveal brain in high de-
tail; therefore, it is demonstrated that our method overrides
some of the drawbacks of other commonly used visualiza-
tion methods.

Figure 4 shows several images rendered using our visu-
alization method as a demonstration of variability, which
enables users to classify data in required fashion. One-
dimensional transfer function and τ parameter are used to

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
153

reveal different tissues.
Figures 5, 6 and 7 show MRI and CT scans of vari-

ous human body parts rendered using the standard MIP
method and our proposed method. One-dimensional trans-
fer functions were used for the classification. The MIP al-
gorithm failed to reveal areas of interest. Our algorithm
was able to visualize the structural characteristics of indi-
vidual objects in the scans.

The algorithm was tested on NVIDIA GeForce GTX
260. We have achieved interactive framerates (40 frames
per second at 800x600 screen resolution) on the data sets
containing 2563 and 5123 voxels. However, rendering
speed depends on screen resolution.

5 Conclusions

We proposed a non-photorealistic method for visualization
of volumetric data sets. Our approach is an improvement
of the MIP rendering method with the goal of being sim-
ple, intuitive and fast, yet able to visualize different tis-
sues or materials represented by the volumetric data. We
have implemented the method in an interactive prototype
application that uses real-time shader programs. We pre-
sented a comparison with commonly used methods of vol-
umetric visualization. Results show that our method uses
one-dimensional transfer function for classification more
effectively and with better results than the other methods.

The algorithm could be improved in several ways. The
length of the window used to calculate standard deviation
could be adaptively changed during every step according
to neighbouring voxels. This would make the algorithm
more intuitive, although control over resulting renderings
would be probably reduced in some cases.

Acknowledgements

This work was partially supported by the grant KEGA
244-022STU-4/2010: Support for Parallel and Distributed
Computing Education. Volumetric data sets were obtained
at http://www9.informatik.uni-erlangen.
de/External/vollib/.

References

[1] Stefan Bruckner and Meister Eduard Gröller. Instant
volume visualization using maximum intensity dif-
ference accumulation. Computer Graphics Forum,
28(3):775–782, June 2009.

[2] Balázs Csebfalvi, Lukas Mroz, Helwig Hauser, An-
dreas König, and Meister Eduard Gröller. Fast vi-
sualization of object contours by non-photorealistic
volume rendering. Technical Report TR-186-2-01-
09, Institute of Computer Graphics and Algorithms,

Vienna University of Technology, Favoritenstrasse 9-
11/186, A-1040 Vienna, Austria, April 2001. human
contact: technical-report@cg.tuwien.ac.at.

[3] Martin Haidacher, Daniel Patel, Stefan Bruckner,
Armin Kanitsar, and Meister Eduard Gröller. Volume
visualization based on statistical transfer-function
spaces. In Proceedings of the IEEE Pacific Visual-
ization 2010, pages 17–24, March 2010.

[4] Wolfgang Heidrich, Michael McCool, and John
Stevens. Interactive maximum projection volume
rendering. In Proceedings of the 6th conference on
Visualization ’95, VIS ’95, pages 11–18, Washing-
ton, DC, USA, 1995. IEEE Computer Society.

[5] Thomas Kerwin, Han-Wei Shen andf Brad Hittle,
Don Stredney, and Gregory Wiet. Anatomical vol-
ume visualization with weighted distance fields. In
Eurographics Workshop on Visual Computing for Bi-
ology and Medicine, 2010.

[6] Gordon Kindlmann and James W. Durkin. Semi-
automatic generation of transfer functions for direct
volume rendering. In Proceedings of the 1998 IEEE
symposium on Volume visualization, VVS ’98, pages
79–86, New York, NY, USA, 1998. ACM.

[7] Joe Kniss, Gordon Kindlmann, and Charles Hansen.
Multidimensional transfer functions for interactive
volume rendering. IEEE Transactions on Visualiza-
tion and Computer Graphics, 8:270–285, July 2002.

[8] Joe M. Kniss, Robert Van Uitert, Abraham Stephens,
Guo-Shi Li, Tolga Tasdizen, and Charles Hansen.
Statistically quantitative volume visualization. In
Proceedings of IEEE Visualization 2005, pages 287–
294, 2005.

[9] Marc Levoy. Display of surfaces from volume data.
IEEE Comput. Graph. Appl., 8:29–37, May 1988.

[10] Feng Ling and Ling Yang. Improved on maximum
intensity projection. Artificial Intelligence and Com-
putational Intelligence, International Conference on,
4:491–495, 2009.

[11] Yoshinobu Sato, Yoshinobu Sato Phd, Shin Naka-
jima, Nobuyuki Shiraga, Shinichi Tamura Phd, and
Ron Kikinis Md. Local maximum intensity projec-
tion (lmip): A new rendering method for vascular vi-
sualization. Journal of computer assisted tomogra-
phy, 22(6):912–917, 1998.

[12] Jerold W. Wallis, Tom R. Miller, Charles A. Lerner,
and Eric C. Kleerup. Three-dimensional display in
nuclear medicine. IEEE Transactions on Medical
Imaging, 8(4):297–303, 1989.

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
154

(a) MIP (b) MIPWSC, τ = 0.6

Figure 5: A comparison of MIP and MIP weighted by statistical cues rendering of an MRI scan of a male head.

(a) MIP (b) MIPWSC, τ = 0.25

Figure 6: A comparison of MIP and MIP weighted by statistical cues rendering of a CT scan of a knee.

(a) MIP (b) MIPWSC, τ = 0.34

Figure 7: A comparison of MIP and MIP weighted by statistical cues rendering of a CT scan of a chest.

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
155

156

Visualizing the Effects of Logically Combined Filters

Thomas Geymayer∗

Institute for Computer Graphics and Vision
Graz University of Technology

Graz / Austria

Abstract

Filtering data is an essential process in a drill-down analy-
sis of large data sets. Filtering can be necessary for several
reasons. The main objective for filters is to uncover the rel-
evant subsets of a dataset. Another, equally relevant goal
is to reduce a dataset to dimensions to which either visual-
ization or algorithmic analysis techniques scale. However,
with multiple filters applied and possibly even logically
combined, it becomes difficult for users to judge the ef-
fects of a filter chain. In this paper we present a simple,
yet effective way to interactively visualize a sequence of
filters and logical combinations of these. Such a visualized
filter-pipeline allows analysts to easily judge the effect of
every single filter and also their combination on the data
set under investigation and therefore, leads to a faster and
more efficient workflow.

We also present an implementation of the proposed
technique in an information visualization framework for
the life sciences. The technique, however, could be em-
ployed in many other information visualization contexts
as well.

Keywords: filter-pipeline, brushing, logical operations,
interactive, data analysis, compound filter

1 Introduction

Visualizing large amounts of data has been one of the
grand challenges of information visualization for over a
decade now. With ever more data being produced, the abil-
ity to efficiently extract knowledge out of data becomes
more important. There are several ways to analyze large
quantities of data. Examples are aggregation or drill-down
techniques, focus and context methods, and so on. In the
sense of visual analytics [12, 7], visualization is combined
with computational methods, such as machine learning or
statistics. However, in many cases, raw data has several
undesired attributes: parts of it can be redundant, noisy or
irrelevant for a given task. Also, most methods – either
computational or visual – do not scale arbitrarily. Fortu-
nately, there is a simple and yet effective method to reduce
the data to a manageable size: filtering. Filtering allows
parts of the data to be removed, based on a given criteria.

∗tomgey@gmail.com

A filter can be defined visually or textually as a processing
rule. Filters can be based on fairly simple concepts, such
as thresholds, or on more complex processes, such as a
statistical evaluation of significance. Related concepts are
dynamic querying [1] (selecting only a desired subset of a
data set instead of removing undesired parts) and to some
extent, also brushing (highlighting a subset of a data set).

It is common to use a combination of filters to continu-
ally refine the analysis result. In many cases, such combi-
nations are equivalent to logical operations [10, 5]. While
a logical AND is the most commonly used, other opera-
tions such as OR, XOR and NOT are feasible as well.

While the reduced data set itself becomes more manage-
able, the overall filtering process and the individual effects
of filters on the data set becomes increasingly obfuscated.
To alleviate this, methods to visualize the combination of
applied filters have been developed. Hong Chen [4] for
example visualizes filters and other parameters of the vi-
sualization pipeline in a graph. However, to our knowl-
edge, there has not been any technique that conveys not
only the sequence of filters or brushes, but also the ef-
fects on the data size. Inspired by Minard’s work, the fa-
mous Carte Figurative des pertes successives en hommes
de l’arme franaise dans la campagne de Russie 1812-1813
[13], which shows the continuous reduction of men in
Napoleon’s army during his Russian campaign, we have
developed a visualization technique showing the effects of
individual filters on a data set.

Our primary contribution is an interactive visualization
technique for the effects of multiple filters, including the
effects of logical operators applied to combinations of fil-
ters. This visualization technique enables users to under-
stand the effects of individual and combined filters. A sec-
ondary contribution is a general and detailed analysis of
requirements for visualizing multiple filters. Having these
requirements at hand, we demonstrate how the proposed
technique satisfies each of the specified requirements.

2 Related Work

Much of how we interact with large quantities of data in
visualization has its roots in the 1980s and early 1990s.
Becker proposed some basic principles for dynamic data
analysis [2], like linking & brushing – a technique that is
commonly used until today. In 1992 Ahlberg et al. [1]

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)

conducted an experiment with dynamic queries performed
on a database with different combinations of graphical and
textual input and output, respectively. As the different pa-
rameters used for the dynamic queries have the effect of
refining the data set, this work is an early example of dy-
namically adapted filters.

In 1995 Martin and Ward propose an improvement of
the XmdvTool which contains methods to combine multi-
ple brush operations with different logical operations [10].

A recent example of an approach of filtering high di-
mensional data can be found in [14] where cross-filtering
across multiple views is presented.

These works lay the foundation for modern visualiza-
tion systems which widely employ combined filters or
brushes to refine data sets or selections. However, only
very few systems visualize these combinations in an ex-
plicit way. One notable exception is the work by Hong
Chen [4] where node-link diagrams are used to visual-
ize operations like a brush or selections. He also employs
combined nodes which visualize logical or analytical op-
erations. However, while individual operations are visual-
ized, the effects of the operations on the data are not.

3 Problem Analysis

Users often find it hard to remember the steps conducted
to get a specific result [14]. To support analysts and re-
duce the required cognitive load, we believe that an ex-
plicit representation of the filter sequence helps to under-
stand the interdependencies between and consequences of
filters. We elicited the following main requirements for
such a filter-pipeline meta-visualization technique:

1. Show Sequence
As filters are typically applied sequentially, it is es-
sential to show the filters in the sequence they were
applied.

2. Show Consequences
To allow a user to judge how much data is removed
by a filter, a filter visualization needs to show how
much elements a filter reduces.

3. Show and Create Compositions
A simple sequence of filters is equal to logical AND
operations (i.e., show all elements which are not re-
moved by filter X and filter Y). Other logical opera-
tions such as OR and XOR cannot be visualized as
easily. It is essential, that such compositions are ade-
quately represented in a dedicated filter visualization
technique.
Additionally to the visualization of composed filters,
it should also be possible to create composed filters
based on pre-existing filters.

Aside from these main requirements for a filter visu-
alization technique, there are several other requirements
which provide added benefit to users:

4. Modify Filters
An interactive filter visualization technique should
enable a user to modify a filter (i.e., change its pa-
rameters), to remove a filter and to move a filter to
another position in the sequence of filters.

5. Hide Filters
In some cases it may be desirable to hide filters.
A common example is an initial filter that removes
noisy data. If such a filter removes a lot of data
items, the consequences of subsequently applied,
fine-grained filters become hard to perceive, due to
the small change relative to the initial filter. One
solution would be to use logarithmic scales for the
amount of data removed. However, as log scales are
not intuitive, we believe that the ability to hide filters
is superior.

6. Show Filter Efficiency
When a filter is visualized in relation to a previous
filter, it is impossible to judge its effect on the global
data set, since only the effects on the already filtered
data set is shown. To make a user understand the con-
sequences and the efficiency of a filter better, an ef-
fective filter visualization technique should also en-
able a user to see how much data a filter would re-
move from the complete data set.

In the following chapter, we will describe how we ad-
dress each of these requirements and challenges to create
a simple and yet effective filter visualization technique.

4 Method

Similar to the visualization of the reduction of men in
Napoleon’s army [13], we render each filter as a quadran-
gle where the left side represents the input and the right
side the output of the filter (see Figure 1). The size is
chosen in way that the largest visible filter always fills the
available height, and the length is equally distributed over
all visible filters. The height of the left edge of the fil-
ter encodes the elements going in, while the height of the
right edge encodes the elements going out of a filter. Con-
sequently, the difference in height (which is known to be
the most powerful visual variable [3]) as well as the slope
of the top edge allow to easily judge the effect of the filter.
To convey a sense of absolute numbers, we also chose to
show the number of current elements and the number of
elements each filter removes from its input.

4.1 Basic Sequence of Filters

We show a sequence of filters as an equivalent to the log-
ical AND operation, which simply concatenates one filter
after each other, such that the output of a filter is passed to
the next filter as input. This simple, yet effective method
satisfies Requirements 1 and 2.

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
158

Figure 1: Sequence of filters. The result is equivalent to a
logical AND operation of the filters.

4.2 Compound Filters

For more advanced filter-pipelines, combinations of multi-
ple filters into a single filter can be necessary. We provide
the possibility to create meta-filters where all involved
(sub)-filters are combined in one filter in the sequence of
top-level filters. This can be achieved by dragging an ex-
isting filter and dropping it onto another already created
filter. The whole meta-filter’s input data is passed to each
sub-filter. The output is then calculated based on the de-
sired logical operations – most commonly an OR.

In order to visualize this combination, we experimented
with two different approaches. One is to stack every in-
volved sub-filter on top of each other and embed this stack-
ing into the overall meta-filter. Alternatively, we embed all
sub-filters in the top-level meta filter without overlaps. In
the following, we will briefly discuss the advantages and
disadvantages of each method.

Stacked Sub-Filters

As each sub-filter of the combined filter receives the same
input, it is intuitive to render all sub-filters on top of each
other at the same location (see Figure 2). The filters are
sorted from top to bottom, where the topmost sub-filter (in
our example rendered in a light purple color) is the least ef-
fective one (the one that removes the least elements from
the input data), thus guaranteeing that no filter is com-
pletely occluded. The height on the left side of each filter
is the total input of the compound filter and the height on
the right side of each filter represents its individual output.
Additionally, in the background, the union of all filters is
rendered, visualizing the total influence of the combined
filters on the filter-pipeline. In our example, this is the
largest filter with the light yellow background.

It is also of interest, to know which part of the input that
passes all filters, which is the intersection of all individual
sub-filter outputs (the result of an AND operation). We
visualize this by adding another quadrangle on top. Ac-
cording to the characteristics of set intersection this will
always be the smallest quadrangle (in Figure 2 it is ren-
dered in green). This information can also be confusing
to the user and misinterpreted as an additional filter. Thus,
we only show it if the user moves the mouse over the filter.

This allows him to detect inefficient filters, i.e., filters that
only contribute few or even no elements, apart from the
elements also contributed by the other filters.

A problem with this approach is that it becomes clut-
tered easily. We found that for as little as three filters, espe-
cially if they are similar in terms of their efficiency, it is not
easy to distinguish individual filters. Furthermore, it dis-
continues the flow of the data through the filter-pipeline,
as all sub-filters have dead ends on their right sides with-
out an equivalent at the left side of the next filter. Conse-
quently, we devised an alternative method which addresses
both issues.

Figure 2: Two filters combined with logical OR, both sub-
filters stacked over each other. The largest filter with the
light yellow background is the resulting filter (A|B), the
two purple filters are the combined sub-filters (just A or
just B) and the green filter on top of all filters represents
the intersection of the elements filtered by both sub-filters
(A&B).

Separate Sub-Filters

As the sub-filters in a compound filter operate in parallel
(contrary to the sequence of filters on the top-level), we
considered to also express this property in the visualiza-
tion technique. Consequently, we render the sub-filters at
a smaller scale in parallel inside the resulting compound
filter. To provide a continuous flow of the data through the
filter-pipeline, we connect the input of the compound fil-
ter to each sub-filter using curved shapes (see Figure 3).
The surfaces use the same color as the respective sub-
filters, with transparency increased to allow a user to see
the overlapping regions. Inspired by Kosara et al.’s work
on categorical data visualization [8], we then calculate all
possible intersections between the contributed elements of
every sub-filter. Consequently, for a composition of two
filters, if the underlying operation is an OR, there are two
categories of elements. Those which are contributed by
only one sub-filter, and those that are contributed by both.
We render each set with a trapezoid using the same color as
we did for the incoming surfaces (see Figure 3). To make
the relative size of the set intersections more obvious, we
use the space right of the filter, to show the set sizes in de-

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
159

tail. Moving the mouse over an intersection, shows which
filters are intersected for this sub-set.

With the technique of using separate sub-filters embed-
ded in a meta-filter, we have successfully addressed Re-
quirement 3.

Figure 3: Two filters (labeled with A and B) combined
with logical OR, visualized in parallel. The large filter
in the background, rendered in light yellow, is the result-
ing filter. The left edge of the resulting filter is connected
with the sub-filters using curved surface. On the right side,
all intersections between the elements that are passed to
at least one of the sub-filters are visualized – elements
contributed only by filter A (A&!B), elements contributed
only by filter B (B&!A), and elements contributed by both,
filter A and B (A&B).

4.3 Modifying Filters

The described filter visualization lends itself to allow
interaction with the filters themselves. As discussed in
Requirement 4, the essential operations are: modify,
remove and move. We provide intuitive access to those
features, for example by drag and drop for moving filters,
or by double clicking on a filter for modifying it.

4.4 Hiding Filters

We have already discussed the issue of combinations of
strong filters that initially remove large portions of the
data, and more sensitive, refining filters that remove only
smaller parts (see Section 3, Requirement 5). Another is-
sue, aside from the inability to perceive the effects of fil-
ters removing only a view elements, is the fact, that com-
posed meta-filters containing several sub-filters are hard to
see because of the tiny amount of space available. These
problems are illustrated in Figure 4. As a solution to this
problem, we provide the possibility to hide a number of
filters at the front of the filter-pipeline. This way, the re-
maining filters can be scaled up to the whole height, which
makes their subtle effects on the filter-pipeline, as well as

the embedded filters visible again. The effect is shown in
Figure 4.

Below each filter, there is a button that enables the an-
alyst to hide all filters from the front up to the according
filter. If at least one filter is hidden, we show a button on
the left margin to again display the hidden filters.

Figure 4: Hiding filters: By pressing the arrow button be-
low the filter, the filter and all filters left of it are hidden.
The example shown reduces the visible pipeline to only
two filters which are scaled to the whole available height,
as depicted in the lower image. Notice that the relative
changes and the composition of the compound filter are
much better visible when compared to the upper figure.
By clicking on the button on the left border, the hidden
filter can be made visible again.

4.5 Show Filter Efficiency

As every filter in the pipeline gets the output of its pre-
ceding filter, the amount of elements filtered is smaller (in
most cases) than if it were applied on the whole input data
set. However, as discussed in Section 3, Requirement 6,
it can be useful to get an idea on how the filter would be-
have if it were applied to the whole data set. This, for
example, is desirable when the data is filtered to meet a
pre-condition for a feasible runtime of a given algorithm.
In such a case, a user can apply different filters at the same
time, and judge, whether he could meet the requirements
with for example only one of the filters.

We address this challenge by overlaying an transparent
version of the filter, showing its size as if it was the only
filter in the pipeline, on mouse over. This is shown in Fig-
ure 5.

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
160

Figure 5: When hovering over the filter, its full size is
shown in the background.

Having fulfilled all of the elicited requirements, we will
now discuss how the described visualization technique is
embedded in an information visualization framework, and
give some examples on how the filter-pipeline is used.

5 Visualization Environment

The filter-pipeline view is a part of the Caleydo visualiza-
tion framework1 [9], developed at our institute. It is in-
tended to be used for the analysis of large data sets from
the life science domain, more specifically genetic and clin-
ical data. Its multiple coordinated view system provides
different ways to explore the loaded data set. For exam-
ple, to explore gene expression data parallel coordinates, a
hierarchical heat map, scatterplots and many further views
are available. Figure 6 shows a screenshot of a typical
analysis session in Caleydo.

Figure 6: Example of a possible usage of Caleydo with
a heat map, parallel coordinates and a view showing the
hierarchical grouping of experiments.

As the initially loaded data sets in this domain are often
very large, different types of filters are usually applied to

1http://www.caleydo.org

reduce the size of the viewed data set, which is especially
relevant to enable algorithmic methods. The different
views support various ways of brushing and consequently
filtering data. In the parallel coordinates, it is possible to
filter data where the gene expression values never leave a
given interval and therefore, for example, filter genes that
are neither over- nor under-expressed. Another possibility
to create a filter is to use the angular brush [6] which re-
moves experiments with a deviation exceeding a visually
specified threshold from the gene expression value of the
selected gene of a specific experiment.

Caleydo also provides computational filters commonly
used in gene expression analysis. One example is the fold-
change filter that removes all elements which change less
than a specified n-fold change to a reference experiment.
Other examples are statistical variance tests, which ensure
that outliers within control groups, which may be the result
of errors in measurement, are removed.

The described filter-pipeline is used in Caleydo to con-
vey the effects of complex combinations of filters. A typi-
cal scenario is shown in Figure 7.

Figure 7: Example of using Caleydo with the described
filter-pipeline view opened in the bottom right part of the
window.

6 Use Case

In this section, we describe how Caleydo is used for the
analysis of gene expression data, acquired in an experi-
ment to find the genetic cause for liver cirrhosis. Liver
cirrhosis is known to have a significant genetic compo-
nent, since, for example only a portion of heavy alcohol
abusers actually suffer from it, and conversely, many oth-
ers, especially those with diabetes suffer from it as well.
Our partners at the Medical University of Graz have found,
that a specific genotype of mice (i.e., a genetic variant), do
not suffer from steatohepatitis, a precursory symptom to
liver cirrhosis, when fed with poison over a course of eight
weeks, while other genotypes do. They therefore con-
ducted a controlled experiment with the different mouse

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
161

genotypes, and analyzed their genetic expression after 0
days, 7 days and 8 weeks.

For the analysis they used the Caleydo software. The
first step in the analysis is to filter those genes with too
much deviation within the control group, thereby ensur-
ing statistical significance of the experiments. The second
step is to filter out all genes which are not at least twice as
low or twice as high in the 7 days and 8 weeks scenarios,
compared to the 0 day values (by using the fold-change
filter). The filter-pipeline in this case revealed that only
a small portion of genes was actually dropping more than
two-fold, the majority of the data was removed by the fil-
ter. A a significant part however had a two-fold increase.
The biologists then investigated the remaining subset in
greater detail by interactively adding, removing and refin-
ing filters.

7 Implementation Details

The Caleydo visualization framework [9] is written in Java
and is based on the Eclipse Rich Client Platform (RCP)2.
The framework is designed in a modular manner where a
minimal core contains integral parts, such as the data man-
agement, the event system, etc.. Everything else is out-
sourced into separate and completely independent plug-ins
which communicate with each other by using the core’s
message-based event mechanism.

Each view can either use the Standard Widget Toolkit
(SWT)3 to create a user-interface by using the default
widgets provided by the operating system, or for graphi-
cally more advanced or three dimensional user-interfaces
use the OpenGL API provided by the Java Bindings for
OpenGL (JOGL)4.

In order to synchronize all views, the data set contain-
ing the data to by analyzed is stored centrally, so that each
view can access it. View changes are handled first by the
view under interaction itself and then propagated to all
other views which in turn update their visualization based
on the new context.

The statistical filters use the R statistics toolkit [11] for
calculating the filter elements which are added to the cor-
responding list.

8 Conclusions and Future Work

As the amount of data to be analyzed is constantly grow-
ing, filtering it is a crucial part in the processing pipeline.
Therefore, it is important that an analyst is supported in
understanding complex sequences as well as compositions
of filters. Visualization of those filters in the proposed
filter-pipeline is an ideal tool for this task. It allows to un-
derstand even complex combinations of filters, and can be

2http://www.eclipse.org/home/categories/rcp.php
3http://www.eclipse.org/swt/
4http://jogamp.org/jogl/www/

modified interactively until the desired result is achieved.
Visualizing a sequence of AND combined filter is straight
forward, but complex combinations, like a logical OR op-
eration applied to several filters, require much care in vi-
sualization design.

We have presented two ways of visualizing composi-
tions of logical filters (see Figure 8 for a complex scenario
with four filters combined in an OR operation). The first
one, a simple, stacked rendering of filters has shown to be
very cluttered and hard to understand. Consequently we
developed an alternative that shows each filter in parallel
contained in a compound meta-filter, thereby providing an
intuitive representation of a compound filter.

Aside from these main objectives, we have elicited sev-
eral minor requirements improving the interaction with
such filter visualization techniques, and proposed solu-
tions for each of the discussed points.

Figure 8: Comparison of different visualizations of com-
pound filters as described in Section 4.2 using four sub-
filters.

The support of the complete set of logical operations as
well as nested filters, for example by using zoom levels,
are promising directions for future research.

9 Acknowledgments

We want to thank our partners from the Medical University
of Graz, especially Dr. Karl Kashofer and Prof. Kurt Zat-
loukal, for providing both data and continuous feedback.

This work was funded in part by the Austrian Research
Promotion Agency (FFG) through the InGenious project
(385567).

References

[1] Christopher Ahlberg, Christopher Williamson, and
Ben Shneiderman. Dynamic queries for information
exploration: an implementation and evaluation. Pro-
ceedings of the SIGCHI conference on Human fac-
tors in computing systems (CHI ’92), pages 619 –
626, 1992.

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
162

[2] Richard A. Becker. Dynamic graphics for data anal-
ysis. Statistical Science, 2(4):355–383, November
1987.

[3] Jacques Bertin. Semiology of graphics. University of
Wisconsin Press, 1983.

[4] Hong Chen. Compound brushing. In IEEE Sym-
posium on Information Visualization (InfoVis ’03),
pages 181–188. IEEE Computer Society, 2003.

[5] Helmut Doleisch, Martin Gasser, and Helwig
Hauser. Interactive feature specification for fo-
cus+context visualization of complex simulation
data. In Proceedings of the Symposium on Data vi-
sualisation 2003, pages 239–248. Eurographics As-
sociation, 2003.

[6] Helwig Hauser, Florian Ledermann, and Helmut
Doleisch. Angular brushing of extended parallel co-
ordinates. In Proceedings on Information Visualiza-
tion (InfoVis ’02), pages 127–130. IEEE Computer
Society, 2002.

[7] Daniel A. Keim, Joern Kohlhammer, Geoffrey Ellis,
and Florian Mansmann, editors. Mastering The In-
formation Age - Solving Problems with Visual Ana-
lytics. Eurographics, 2010.

[8] Robert Kosara, Fabian Bendix, and Helwig Hauser.
Parallel sets: Interactive exploration and visual anal-
ysis of categorical data. IEEE Transactions on Vi-
sualization and Computer Graphics, 12(4):558–568,
2006.

[9] Alexander Lex, Marc Streit, Ernst Kruijff, and Dieter
Schmalstieg. Caleydo: Design and evaluation of a vi-
sual analysis framework for gene expression data in
its biological context. In Proceeding of the IEEE Pa-
cific Visualization Symposium (PacificVis ’10), pages
57–64. IEEE Computer Society, 2010.

[10] Allen R. Martin and Matthew O. Ward. High dimen-
sional brushing for interactive exploration of multi-
variate data. In Proceedings of the Conference on Vi-
sualization (Vis ’95), page 271. IEEE Computer So-
ciety, 1995.

[11] R Development Core Team. R: A Language and En-
vironment for Statistical Computing. 2010.

[12] James J. Thomas and Kristin A. Cook. Illuminating
the Path: The Research and Development Agenda for
Visual Analytics. National Visualization and Analyt-
ics Ctr, 2005.

[13] Edward R. Tufte. The Visual Display of Quantitative
Information. Graphics Press, Cheshire, Coneeticut,
second edition, 1983.

[14] Chris Weaver. Cross-Filtered views for multidimen-
sional visual analysis. IEEE Transactions on Visu-
alization and Computer Graphics, 16(2):192–204,
2010.

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
163

164

A Problem of Automatic Segmentation of Digital Dental
Panoramic X-Ray Images for Forensic Human Identification

Robert Wanat∗

Supervised by: Dariusz Frejlichowski†

Faculty of Computer Science and Information Technology
West Pomeranian University of Technology, Szczecin

Szczecin / Poland

Abstract

Dental radiographic images are one of the most popular
biometrics used in the process of forensic human identi-
fication. This led to the creation of the Automatic Den-
tal Identification System with the goal of decreasing the
time it takes to perform a single search in a large database
of dental records. A fully automated system identifying
people based on dental X-ray images requires a prior seg-
mentation of the radiogram into sections containing a sin-
gle tooth. In this paper, a novel method for such segmen-
tation is presented, developed for the dental radiographic
images depicting the full dentition - pantomograms. The
described method utilizes the locations of areas between
necks of teeth to determine the separating lines and does
not depend on the articulation of gaps between adjacent
teeth, thus improving the results achieved in the situation
of severe occlusions.

Keywords: image segmentation, dental pantomography,
dental human identification, ADIS, forensic identification

1 Introduction

Automatic human identification has always been one of
the main applications of pattern recognition. Various bio-
metrics have been used as a basis for such identification,
e.g. handwriting, iris, face, fingerprints etc. In reality,
there exist situations where some of those biometrics can
not be applied. Post-mortem (PM) identification, per-
formed by experts in forensic medicine, consists in deter-
mining the identity of a deceased person. This undermines
the ability to use some biometrics, such as handwriting
or voice, but in some instances there might be other fac-
tors rendering other biometrics useless or impractical, for
example face recognition in case of fire victims or DNA
matching in case of mass natural disasters with multiple
casualties. Dental characteristics are popularly used in
forensics because of both their robustness to decomposi-
tion as well as the speed of a single identification([1]).

∗robwanat@gmail.com
†dfrejlichowski@wi.zut.edu.pl

This led to the creation of the study of proper use of dental
evidence in the judicial system - odontology.

The abundance of dental data in criminal cases inspired
the Federal Bureau of Investigation (FBI) to create a sep-
arate Dental Task Force (DTF) in 1997 ([2]). Its primary
task was to create a database to store dental images, known
as the Digital Image Repository (DIR), and an automated
system for human identification based on the existing Au-
tomated Fingerprint Identification System, named Auto-
mated Dental Identification System (ADIS). The goal of
the system is to provide the ability to narrow the search
for an individual in the DIR by automatically finding a
small number of the most similar X-ray images. This
speeds up the process of a single identification, as out of
a large database of images only a small number of com-
parisons needs to be performed by a forensic expert. The
model and functionality of ADIS were presented in [3].
Unlike an identification procedure performed by an odon-
tologist, where artificial dental restorations, such as fill-
ings and dentures, are used as a basis of comparison ([4]),
the approach taken in ADIS focuses on teeth morphology
and uses teeth contours extracted from dental radiograms
in the process of matching.

The simplified model of ADIS assumes three prelim-
inary steps before the comparison: image enhancement,
image segmentation and feature extraction ([5]). The first
step focuses on improving the contrast of the image, which
is usually of low quality. The second step, image segmen-
tation, separates the image into disjunctive segments, each
containing at most one tooth. The last step, feature extrac-
tion, detects the shape of the contour of a tooth, if present
on a given segment, and saves the result in a form that will
later be used in the comparison process. While there ex-
ist numerous approaches to each of the preliminary steps
for intraoral images (i.e. photographs taken with the x-ray
film situated inside the patient’s mouth, thus showing only
a fragment of his dentition), few approaches have been de-
veloped for panoramic extraoral images (i.e. photographs
taken with both X-ray tube and film moving on an arc on
the opposite sides of the patient’s head, thus showing the
the full dentition). Panoramic images, or pantomograms,
convey the largest amount of information of all types of

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 1: A sample pantomogram after image enhance-
ment and cropping.

Figure 2: The locations of the parts of a tooth used in this
paper.

dental radiographic images because they show the widest
range of dentition. The main drawback of this method is
that it causes severe occlusions in the resulting image, be-
cause it renders a semicircular geometry of the jaw onto
a 2-dimensional image. A sample pantomogram that will
be used to demonstrate every step of the described method
can be seen on fig. 1. All pantomograms in this paper are
presented courtesy of Pomeranian University of Medicine
in Szczecin.

In this paper, a novel method for image segmentation of
a panoramic dental radiogram is proposed. Unlike the pre-
viously existing methods for separating intraoral images,
the presented method uses two easily localizable points,
one between the necks of teeth and one between the roots
of teeth (the parts of a tooth mentioned in this paper are
shown on fig. 2), in order to determine a straight line de-
limiting the areas of successive teeth. The method was cre-
ated to be used with panoramic images only, so it employs
features that might be unavailable on intraoral images and
should not be utilized with them. Experimental results of
the proposed method are also presented on a small sam-
ple of radiograms to demonstrate its effectiveness in real
world application.

2 Previous work

As has been mentioned in the previous section of this arti-
cle, there are several existing methods of dental radiogram
segmentation. Most of these methods have been created
with intraoral images in mind and do not work well with
pantomograms.

The first method was presented by Jain and Chen in [6].
It focuses on using integral projections of pixels to detect
gaps between teeth. The algorithm is separated into two
parts: the first is the detection of the gap between lower
and upper jaw, the second is the detection of gaps separat-
ing individual teeth. The former step needs user input, so
it can be considered semi-automatic. After the initial point
of the gap has been selected by the user, moving in both di-
rections, the algorithm chooses short horizontal lines with
the highest probability of belonging to the gap. The prob-
ability is calculated using (1):

p(vi,Di) = pvi(Di)pvi(yi), (1)

where pvi(Di) is the normalized integral projection of a
given horizontal line subtracted from 1 and pvi(yi) is a
Gaussian with expected value equal to the position of the
last chosen line (or the user selection in the first iteration).
This probability function has its maximum for the hori-
zontal line that is vertically close to the last selected line
and that is composed of pixels with low values. After the
maxima have been found for the whole image, a spline
function is used to form a smooth line that becomes the
separating line between upper and lower jaw. Once the
spline has been calculated, for every point on the curve a
new integral projection is calculated in the direction per-
pendicular to its local curvature. These projections assume
low values in areas between teeth, thus the search for gaps
can be reduced to searching for valleys in the plot of the in-
tegrals. The areas between these three lines (gap between
upper/lower jaw, two successive gaps between teeth) and
the horizontal borders of the image become the segments
used later in the process of feature extraction.

The initial tests of this approach revealed that it is not
sufficient for separating teeth on pantomograms. The
proper operation of this method requires the presence of
strongly emphasized dark regions between teeth. This
requirement is frequently not upheld in the case of
panoramic radiograms. During the research it was deter-
mined that in multiple cases integral projections can have
lower values in the areas around the middle of a tooth than
in the areas on the edge of the tooth, although this situation
does not occur on the exemplary radiogram. It happens es-
pecially when there are dental fillings on any single side of
the tooth or two teeth occlude with each other, creating an
area with a heightened radiopacity that increases the inte-
gral projection value. Another problem that arises when
using the integral projections method is that using the di-
rection perpendicular to the local curvature of the line sep-
arating the upper and lower jaw as the slope of a line sep-
arating two teeth is only possible with perfectly aligned

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
166

teeth, but malaligned teeth can not be separated using this
method. While these two shortcomings are not as prob-
lematic in the case of intraoral images, their combination
resulted in a large amount of mis-segmented images in the
database of pantomograms used in this study.

A partial solution to the first problem described in the
previous paragraph was presented in [7]. In the case of the
lack of strongly emphasized dark regions between teeth
the image needs to be processed in order to accentuate the
slightly darker regions. 2-dimensional wavelets composed
of two 1-dimensional filters were used in [7] to draw out
these regions. Based on whether a low-pass filter or high-
pass filter was used in each direction, different results are
named LL, LH, HL and HH, with the first letter indicating
which filter was used horizontally and the second letter in-
dicating which was used vertically. An LH filter is used
before the upper and lower jaw separation, while an HL
filter is used before the detection of vertical lines separat-
ing individual teeth. The segmentation itself is performed
using the integral projections.

The last described method, presented in [8], consists
of the use of active contour models, also known as
snakes. Initially described in [9], snakes are a model of
parametrized splines driven towards edges and lines on the
image by external forces, i.e. forces derived from the im-
age on which they operate, as well as internal forces, i.e.
user imposed control over the elasticity and rigidity of the
contour. In [7], a snake used for the segmentation of the
image is defined as a parametrized curve vs = [x(s),y(s)],
s ∈ [0,1] with its energy calculated using (2):

E =
∫ 1

0
(

1
2

α|v′(s)|+ 1
2

β |v′′(s)|)+Eext(v(s))ds, (2)

where α and β are the weight parameters allowing control
of the snake’s tension as well as rigidity and Eext is the
external driving force along the contour of the snake, given
in [8] as (3):

Eext = Gσ (x,y)I(x,y), (3)

where Gσ is a 2-dimensional Gaussian and I(x,y) is the
original image. Thus defined external force amounts to
the Gaussian-filtered original image, in which case it takes
the lowest values in the dark areas of the picture, such
as the gap between upper and lower jaw or in spaces be-
tween teeth. With properly selected initial approximations
of these curves and weights α and β it achieves very good
segmentation of the image.

The main reason why this approach does not provide the
expected results for pantomograms is the same as one of
the reasons as to why the previous method was discarded,
i.e. severely occluding teeth render it inutile. Depen-
dence on the articulation of gaps between teeth hinders
the correctness of the outcome of this method, as a sim-
ple Gaussian-filtered image in many cases does not con-
tain distinct enough areas between teeth to ensure a proper
segmentation and currently no external force function has
been developed to allow for driving the snake in the proper

direction in that situation. It should also be noted that
snakes work slower than the integral projections, as the
initial curve is iteratively improved and both the first- and
second-order terms need to be recalculated after every it-
eration. This issue becomes more pronounced in larger
databases, where an additional second added to the calcu-
lation time for a single tooth in a small set of 100 images
results in almost an additional hour needed for calculation.
The last problem stems from the influence of the initial
approximation on the final result. No method for selecting
the initial curves was presented in [8] and the basis of such
selection is not trivial. A preliminary search for the gaps
between teeth needs to be conducted before the snakes can
be used to separate them and the end result relies on the
success of this step.

3 Presented method

3.1 Preliminary steps

To our best knowledge, there are no segmentation meth-
ods created explicitly for pantomograms, and the short-
comings of the existing methods encouraged the develop-
ment of a new approach. It is assumed that before a pic-
ture is segmented using the following method, it was en-
hanced using the method presented in [10]. That method
is based on the decomposition of the image into a Lapla-
cian pyramid (that is, a set of images containing down-
sampled differences between two consecutive layers of a
Gaussian pyramid), separating the radiogram into smaller
images containing progressively lower frequencies of the
signal present in the original image. Then, a range of sim-
ple filters is applied to selected layers of the pyramid, in-
cluding sharpening filter and contrast enhancement meth-
ods, before the image is recomposed again. The resulting
image has a higher contrast than its original with a slightly
increased noise. It is also necessary to locate the gap be-
tween the frontal teeth before the segmentation. In this
paper a nose position detection is used and then a vertical
line on the same position is considered the center, but any
other method that provides a valid enough approximation
can be used.

3.2 Separating the upper and lower jaw

The first step is the determination of the line separating the
upper and lower jaw. The same method as presented in [6]
and further described in the previous section is used. In
order to automatize the process of segmentation, instead
of requiring that the user inputs the initial separating point
used by the algorithm, it is selected by choosing the hori-
zontal integral projection with the lowest value, that is also
close to the center of the image, usually between 40% and
60% of its height. Because the teeth on the picture create
an arc, instead of using the full horizontal line that would
pass through teeth further from the incissors, only a small

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
167

Figure 3: The splines passing through the dental pulp and
indicating the height on which the necks of teeth can be
found (outer lines) and the spline separating upper and
lower jaw (middle line).

number of pixels (equal to 20% of the width of the image)
closest to the previously selected frontal teeth gap is used
to calculate the projections. Afterwards the algorithm pro-
ceeds as described in [6].

3.3 Localization of the areas between the
necks of teeth

The obtained curve is then used to estimate the position
of the neck of every tooth, which is the part of the tooth
where roots end and the formation of crown and enamel
begins. While the crowns of separate teeth tend to occlude
with each other and roots are difficult to separate from the
underlying bone, the area between the necks of two adja-
cent teeth is distinguishable enough to be easily found on
a pantomogram. Because the necks of teeth are usually on
the same height as dental pulp, which is darker than the
surrounding teeth, the simplest and fastest method to find
a line going through dental necks is to translate the line
separating upper and lower jaw vertically, sum the intensi-
ties of pixels the line passes through for every translation
and select the ones for which there is a distinctive drop of
values, indicating the line passes through darker areas of
the pulp. This is similar to the integral projections method,
but the sums are not calculated along a straight horizontal
or vertical line, but instead along a curve that is of identi-
cal shape as the spline separating upper and lower jaw and
translated vertically. Thus calculated curves for the sam-
ple image are shown on fig. 3. In order to make sure nei-
ther the original gap between jaws nor a gap between roots
of teeth and the edge of the image are selected in lieu of
the desired dental pulp line, the vertical translation scope
should be chosen to conduct the search for a limited range,
automatically discarding translations too close and too far
from the line separating jaws. The results of this step are
two values, one negative and one positive, that indicate the
amount of pixels that the vertical position of every point
belonging to the spline separating jaws should be moved
for in order to receive the spline that passes through dental
pulps of teeth in each jaw.

Figure 4: An inverted original image multiplied by range-
filtered original image. The size of the neighborhood taken
into account during range filtering is 51x51 pixels.

The next step is the selection of points on each spline
representing a gap between the necks of two adjacent
teeth. To refine the results of this stage of the algorithm,
a new image is created by multiplying the value-inverted
original image with local range filtered version of the orig-
inal image. That image has high values for darker pixels
that lie in areas with neighboring points of low and high
intensity. The larger the neighborhood used for calculat-
ing the range filter, the more distinct those areas become
on the obtained image. The resulting image for the sam-
ple pantomogram is shown on fig. 4. For both upper and
lower jaw, an array of values is saved containing the inten-
sities of points belonging to the splines passing through
their respective dental pulps. Sharp spikes on the plot of
these values indicate dark spots surrounded by light re-
gions, indicating a gap between necks of teeth. To remove
false spikes, the values are Gaussian filtered to smooth the
function. Then, starting from the previously selected line
separating frontal teeth, small subsets of the values in the
array are chosen for comparison. To determine the size
of these subsets, average widths of teeth on every position
were calculated based on twenty sample pantomograms.
Both jaws are fairly symmetrical considering the size of
teeth on a given position, thus only eight values need to
be calculated for each jaw, one for every tooth from first
incissor to last molar.

To ensure that the chosen subsets are wide enough to
contain both smaller and larger teeth on a given position,
the array values on distances from the previously selected
gap ranging from 75% to 175% of the average tooth size
are considered as possible positions for the gap. To se-
lect the proper spike among these values, for every value
in the subset, its closest values are subtracted from it and
the results are summed to form a distinction function. This
function is then normalized and multiplied by a Gaussian,
much like in equation (1). The Gaussian has an expected
value based on which direction the algorithm is moving in
in a given moment, considering the gap between frontal
teeth. The expected value is always chosen to lie in the
point indicating the average width of a tooth on the cur-
rently searched position, thus if the algorithm is moving

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
168

Figure 5: The upper jaw of the exemplary pantomogram
with gap locations marked as stars. The plot below shows
the intensity values of pixels through which the dental pulp
line passes on the image presented on fig. 4, which is
searched for spikes indicating gaps between teeth.

left and the chosen subset lies in the distance from -175%
to -75% of the average tooth width from the previous gap,
then the expected value needs to be chosen in a point that
is -100% of the average crown width from the previously
selected gap. The function received by multiplying the
distinction function and the Gaussian is considered to be
the probability function that a given point is the new gap.
The argument maximum of that function becomes the new
gap position and the beginning point for the next itera-
tion of the algorithm. It works separately for each part
of the jaw, i.e. upper left, upper right, lower left and lower
right. The algorithm searching for gaps in a given part
stops when it has reached the vertical edge of the picture
or if it has located eight subsequent gaps, indicating all
teeth on that side were found. The results of this step of
the algorithm are presented on fig. 5.

Thus calculated gap locations provide a good estimate
of the position of areas between teeth. However, in some
cases a simple vertical line is not enough to separate two
adjacent teeth. Molars and, in some cases, premolars re-
quire an additional step of the algorithm to determine the
angle of the segmenting line. In order to find a straight
line seperating these teeth, an additional point needs to be
found between them. A simple greedy algorithm was used,
iteratively moving 1 pixel towards the top or bottom of the
picture, choosing the pixel in horizontal vicinity with the
highest intensity on the inverted and range-filtered image
and using it as the basis for the next iteration. After the
number of iterations equal to half of the length of an aver-
age tooth on a pantomogram, the position of the last result
becomes the second separating point and the line passing
through gap between necks of teeth and the second sepa-
rating point becomes the segmentation line. The drawback
of this approach of finding the second separating point is
that the roots of the tooth need to be distinctive enough
from the background and neighboring teeth, so using that
algorithm with incissors and canines usually produces in-

Figure 6: Lines separating individual teeth on the panto-
mogram. Simple vertical lines are used for incissors and
premolars, while rotated lines achieved by determining
two points between the teeth are used for molars.

Figure 7: The splines that determine the end of roots (outer
lines) and the spline separating upper and lower jaws (mid-
dle line) on which they are based.

correct results. The separating lines acquired using this al-
gorithm on a sample pantomogram are presented on fig. 6.

3.4 Removing the areas below the roots of
teeth

The last step is to remove the areas below the roots of
teeth. The method used to detect where teeth end is simi-
lar to detection of dental pulp line, i.e. the curve separat-
ing both jaws is translated vertically in search of an align-
ment where the sum of pixels it passes through is lower
than the surrounding results, indicating the area between
the teeth line and the cheekbone line was achieved. The
only difference between this part of the algorithm and the
search for the line of necks of teeth is the range of trans-
lations considered in the search. The results achieved us-
ing this algorithm to determine the curve separating teeth
from areas below roots are presented on fig. 7. After find-
ing these separating lines, every segment of the picture ly-
ing between four curves (jaws gap line, two consecutive
lines separating adjacent teeth and the line below the den-
tal roots) is considered an area possibly containing a tooth
and can be later used in the process of feature extraction.

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
169

(a) (b)

Figure 8: A comparison of the result of the proposed method (8(a)) and an another popular method used in the segmenta-
tion of dental radiograms - integral projections (8(b)).

4 Results and discussion

The above described method was tested on a database of
218 pantomograms, each sized 1500x800 pixels, and some
exemplary results are presented in this section. Firstly, fig.
8 shows a comparison of results achieved for the proposed
method and the integral projections method. The proposed
method offers better results with more compact segments
and less segmentation lines passing through the areas of
teeth. It should also be noted that while the calculation of
the plot shown on fig. 5 takes less than 1 second, the calcu-
lation of the integral projections in every point of the jaws
separation curve takes 212 seconds on the same computer.

Some additional test results can be seen on fig. 9. If the
teeth can be separated using a single line, the algorithm
is usually able to find the optimal line of separation. The
described method is also able, in some cases, to separate
unerupted or not fully erupted teeth, as can be seen on fig.
9(c). The obvious bad results can be found in cases of oc-
clusions so severe that it is impossible to find a straight
line to separate both teeth, such as in the case of the in-
cissor and the first premolar (respectively third and fourth
tooth from the center of the image) of figures 9(a) and 9(e).
Malaligned teeth can also be separated to a degree, but in
the case of severe problems in alignment the separating
line can not capture the whole tooth within a segment, for
example the furthermost bottom left molar in figure 8(a).
Two neighboring dental fillings can also be problematic,
as they are the brightest areas of the image and blend eas-
ily, making it impossible to decide where one tooth ends
and the second begins (like the molars in the lower right
region of figure 8(a)). Detection of the ends of dental roots
helps in removing bright areas of the underlying bone that
would be otherwise attributed to the tooth, but in some
cases a fragment of the tooth is removed too, like on figure
9(e). The last problem stems from the fact that dental pulp
can easily be mistaken for the edge of the tooth, result-
ing in a mis-segmentation. This happens in the case of the
lower left incissor (third tooth) on figure 9(b), where the
separating line passes through the middle of the tooth, but
because average teeth widths are used, the next two teeth

segments are wider and the final eighth tooth is separated
correctly.

5 Conclusions and future work

In this paper a novel method for segmenting dental
panoramic radiograms into regions containing single teeth
was described. It uses a different approach than the exist-
ing algorithms developed for intraoral images, focusing on
detecting gaps between necks of teeth and roots of teeth,
that are both easy to find on a pantomogram and allow to
separate teeth even in the situation of occlusions. The pre-
sented method works fully automatically and with speed
comparable to methods developed for intraoral images.

A considerable improvement of its results could be
achieved if a more sophisticated method was used instead
of the greedy algorithm to determine the second point
through which the separating line between two teeth is
traced. The method could also be used as an initial step for
further segmentation with methods such as active contours
to provide improvement of the results. Finally, the pro-
cess of removing the areas below the roots of teeth could
be conducted separately for every tooth instead of for all
teeth in a jaw simultaneously, thus reducing the amount of
root fragments incorrectly segmented outside of the tooth
area.

Acknowledgements

I would like to thank my parents for their continuous and
discrete support during the writing of this article.

References

[1] S. Lee et al. The diversity of dental patterns in
orthopantomography and its significance in human
identification. J Forensic Science, 49(4), 2004.

[2] D.E.M. Nassar, H.H. Ammar. A prototype automated
dental identification system (ADIS). In Proceedings

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
170

(a) (b)

(c) (d)

(e)

Figure 9: More exemplary results of the proposed method.

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
171

of the 2003 annual national conference on Digital
government research, 2003.

[3] M. Abdel-Mottaleb et al. Challenges of develop-
ing an automated dental identication system. In
IEEE Mid-west Symposium for Circuits and Systems,
Cairo, Egypt, 2003.

[4] C. Michael Bowers. Forensic Dental Evidence. El-
sevier, 2004.

[5] A.K. Jain et al. Toward an automated dental identi-
fication system(ADIS). In Proc. Int. Conf. Biometric
Authentication, Hong Kong, China, 2004.

[6] A.K. Jain, H. Chen. Matching of dental x-ray images
for human identification. Pattern Recognition, 37(7),
2004.

[7] A. Said et al. Dental x-ray image segmentation. In
SPIE Technologies for Homeland Security and Law
Enforcement conference, 2001.

[8] J. Zhou, M. Abdel-Mottaleb. A content-based system
for human identification based on bitewing dental x-
ray images. Pattern Recognition, 38(11), 2005.

[9] M. Kass, A. Witkin, D. Terzopoulos. Snakes: Active
contour models. International Journal of Computer
Vision, 1(4), 1988.

[10] D. Frejlichowski, R. Wanat. Application of the
Laplacian pyramid decomposition to the enhance-
ment of digital dental radiographic images for the au-
tomatic person identification. In Image Analysis and
Recognition 7th International Conference, 2010.

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)
172

Color Plates

István Szentandrási
Modern Methods of Realistic Lighting in Real Time

pp. 17–24

Top left - SSDO computed using two steps. Top right - SSDO computed using modulation factor in one step.
Bottom left - SSAO. Bottom right - SSDO computed using modulation factor, subsampling and preprocessing.
Regions with the green border are shown in more detail on the left side of the images.

Jǐŕı Vorba
Bidirectional Photon Mapping

pp. 25–32

Top: (from left to right) Cornell box like scene rendered by PM without final gather, with final gather, MIS
combination of both strategies by our BDPM method.
Bottom: (from left to right) Images rendered by PT (30.4h), PM with final gather (4h), our BDPM method (4.1h).

Labschütz Matthias et al
Content Creation for a 3D Game with Maya and Unity 3D

pp. 75–82

In clockwise order: 1: in-game screenshot, 2: concept, 3: effects, 4-6: level stages, 7: color table, 8: lighting, 9:
multitexturing, 10: character concept.

Jakub Hušek
Multi-touch Table with Image Capturing

pp. 91–98

Left: a sketch, middle: a scheme, right: a photo of the final prototype. Down: a switchable diffuser in a diffusing
and clear state (a photo can be taken).

Peter Mindek
Maximum Intensity Projection Weighted by Statistical Cues

pp. 149–155

Visualizations of an abdominal CT scan using MIP weighted by statistical cues with different settings.

Thomas Geymayer
Visualizing the Effects of Logically Combined Filters

pp. 157–163

Top: Two filters combined with logical OR visualized once with stacked sub-filters (left) and once with parallel
sub-filters (right). Bottom: Advanced filterpipeline starting with three filters combined with a logical OR followed
by two more filters.

Sponsors of CESCG 2011

Introduction to graphics APIs, programming simple
interactive graphics applications.

Computer Graphics

Multimedia 1

Overview of selected multimedia and graphics
applications and their usage in practice.

Multimedia a Graphics Applications

Overview of Virtual Reality technology and in depth
study of Virtual Reality Modeling Language with a focus
on efficient design of interactive environments.

3D Modeling and Virtual Reality

Properties, advantages, and limitations of mobile
technologies. Embedding mobile devices into complete
information systems.

Mobile Applications Development

Modeling and rendering of graphics primitives in 2D and
3D, visibility determination, color models, image
representations, basic photo-realistic rendering
algorithms.

Algorithms of Computer Graphics

Formal description of user interfaces, user models,
fundamentals of perception, cognition.

User Interface Design

Efficient algorithms for determining properties and
relations of geometric entities (geometric search, point
location, convex hull construction, nearest neighbors).

Computational Geometry

Global illumination methods used for photo-realistic
rendering such as raytracing, Monte Carlo path tracing,
or photon maps.

Realistic Image Synthesis

Overview of contemporary problems in computer
animation. Focus on raster animation (video processing)
and vector animation (motion modeling and motion
control of rigid body models).

Multimedia and Computer Animation

Technological and artistic concepts in multimedia put
together. The course is organized together with art
universities.

Intermedia Design and Technologies

Principles of design and testing of user interfaces.
Specialized user interfaces (handicapped users, user
interfaces for mobile devices).

Testing of User Interfaces

Computer games design and programming.
Representation, animation and rendering of geometrical
models, collision detection, shader programming.

Computer Games and Animations

Design of web presentations, scripting on the client side,
creation of a dynamic web applications on the server
side (XHTML, CSS, JavaScript, PHP).

Web Applications Development

Practical course of Maya modeling toolkit.

Course of Multimedia Applications

Principals of graphics design and typography. Individual
design of electronic document. An important part of the
course is painting.

Graphics Design

Fundamentals of data structures commonly used in
computer graphics. The course focuses on
multidimensional data used to represent 3D scenes.

Data Structures for Computer Graphics

Theoretical background of visualization and the
application of visualization in real-world examples.
Revealing hidden dependencies in the data, human
perception.

Visualization

Description and practical usage of servers and
frameworks for development of web applications.
Integration of servers, databases, and frameworks.

Development of Web Applications 2

Programming of advanced graphics techniques using
OpenGL and its extensions. Using GLSL shading
language for GPU rendering.

Computer Graphics 2

Basic principles of GPGPU programming, parallel
programming concepts, CUDA, code optimizations.

General Purpose GPU Programming

Overview of psychological findings applicable in HCI.
Desing of interactive software components taking into
account psychological properties of the user.

Psychology in HCI

Methods and technologies for multimedia content
production and processing.

Computer Graphics and Human Computer Interaction Courses 2010/2011

http://dcgi.felk.cvut.cz
For further information about studying at our faculty please contact us by email: office@dcgi.felk.cvut.cz
Department of Computer Graphics and Interaction, Karlovo náměstí 13, 121 35 Praha 2, Czech Republic

Bachelor´s degree

Master´s degree

Department of Computer Graphics and Interaction
Faculty of Electrical Engineering

Czech Technical University in Prague

 Johannes Kepler Universität Linz, Altenberger Straße 69, 4040 Linz, Österreich, www.jku.at, DVR 0093696

Open positions for PhD students

Several positions for PhD students are currently available at the Institute of Applied
Geometry (www.ag.jku.at) at Johannes Kepler University of Linz, Austria (www.jku.at).

Starting date: September 2011 or later.

Required scientific background: Applied Geometry, in particular Computer Aided Geometric
Design.

Remuneration: The salary follows the guidelines of the Austrian Science Fund (currently
1.877,40 Euro per month, paid 14 times per year).

Contact and further information: Send an email to bert.juettler@jku.at.

In order to apply, please send a short Curriculum Vitae (1-2 pages) and an application letter
by email to Bert Juettler.

Univ.Prof. Dr. BERT JÜTTLER
Institut für Angewandte Geometrie

Tel.: +43 732 2468-9178
Fax: +43 732 2468-29162
bert.juettler@jku.at

Sekretärin:
MONIKA BAYER
DW 9162
monika.bayer@jku.at

Linz, 4. April 2011

	

Be the big thinker behind tomorrow’s technology
Qualcomm is taking its traditional strengths in digital wireless technologies in exciting
new fields such as Augmented Reality and Computer Vision.

Join Qualcomm's new Corporate R&D team in Vienna, Austria, to contribute to the
development of a new generation of wireless devices using Augmented Reality.

 Be part of a team developing mobile Augmented Reality enabling technology.
 Design, implement, and verify algorithms for Augmented Reality
 Develop and implement new computer vision approaches for mobile devices

Qualcomm Austria Research Center

Augmented Reality Software Engineer

Skills/Experience:
The ideal candidate has outstanding C++ and object-oriented programming skills, as
well as five or more years of experience in at least two of the following sub-topics:

Augmented Reality
 Experience with hands-on laboratory implementation, verification and

optimization of augmented reality systems
 In depth understanding of natural feature based AR systems
 Familiarity with coherent rendering techniques for AR
 Familiarity with AR user interfaces
 Experience with outdoor AR systems is a plus

Computer Vision
 Experience with hands-on laboratory implementation, verification and

optimization of real-time monocular computer vision systems.
 In depth understanding of state of the art natural feature detection and

description algorithms like SIFT, SURF, and FERNS
 In depth understanding of 2D and 3D tracking algorithms
 Experience with SLAM algorithms
 Experience with face detection or OCR is a plus

Education:
Master's or PhD (Computer Science)

Ready for a challenge?
Please apply directly on our website at www.qualcomm.com/careers/ searching by job
title or requisition number G1882475.

Be the big thinker behind tomorrow’s technology

Qualcomm is taking its traditional strengths in digital wireless technologies in exciting new
fields such as Augmented Reality and Computer Vision. Join our new Corporate R&D team
in Vienna, Austria and interact closely with system engineers and software developers in a
world-class AR team.

 Be part of a team developing mobile Augmented Reality enabling technology
 Design, implement, and verify algorithms for Augmented Reality
 Support development of new computer vision approaches for mobile devices

Qualcomm Austria Research Center

Augmented Reality Engineer Intern

Qualcomm offers flexible start dates during 2011 for Intern Engineers, a very competitive
salary, holiday and sick pay, and where applicable assistance with accommodation.
Assignment duration ~4 months. Students should be mid-study looking for work experience
or a mandatory internship to contribute towards completing their degree.

Skills/Experience:
The ideal candidate has outstanding C++ and/or Java programming skills, expertise in
object-oriented design, and a good foundation in one of the following areas

Augmented Reality & Computer Vision
 Familiarity with camera capturing, image processing, and rendering
 Basic understanding of natural feature detection and description algorithms
 Familiarity with 3D Interaction Techniques preferably related to AR

Integration & Verification
 Exposure to laboratory implementation, verification and optimization of computer

vision systems or augmented reality systems
 Ability to create test environments using software and hardware tools

Software Tools
 Familiarity with software development environments
 Interest in developing various stages of the tool pipeline

Education:

BS or MS student in Electrical or Computer Engineering (preferred) or Computer
Science. Please include graduation date and grades in your resume.

Working Location:
Vienna, Austria

Please apply directly on our website at www.qualcomm.com/careers/ under requisition
number E1879350.

	

Be the big thinker behind tomorrow’s technology
Qualcomm is taking its traditional strengths in digital wireless technologies in exciting
new fields such as Augmented Reality and Computer Vision. Join Qualcomm's new
Corporate R&D team in Vienna, Austria, to contribute to the development of a new
generation of wireless devices using Augmented Reality.

 Be part of a team developing mobile Augmented Reality enabling technology
 Drive software integration and tools to general high quality feature-complete

software for mobile platforms
 Verify functionality and interfaces of SW modules
 Develop and implement tools required for verification and automated testing

Qualcomm Austria Research Center

System Integration Engineer

Skills/Experience:
The ideal candidate has outstanding skills in the following areas:

 Analysis and troubleshooting of technical problems
 Integration and verification of real-time SW modules (based on at least 3 years of

relevant work experience)
 C/C++ programming skills
 Scripting skills (Python, Perl)
 Candidates should be flexible in their work assignments as priorities can change

quickly in this fast paced environment.
 Candidates must be able to evaluate technologies, systems, and devices through

testing, logging and analysis
 Excellent written and verbal communication skills
 Must be familiar working with and testing applications on AndroidOS, Linux,

Windows XP, and Windows 7

Responsibilities
 Drive SW integration of Augmented Reality SDKs
 Troubleshoot and debug using Windows, Linux and Android tools
 Reproduce and document issues
 Create testing environments using software and hardware tools
 Develop test procedures, execute tests, and isolate problems
 Identify areas for integration tools and specify requirements

Education:
Master's Computer Science

Please apply directly on our website at www.qualcomm.com/careers/ searching by job
title or requisition number E1883539.

The VRVis Research Center
The VRVis Research Center is a joint venture in research
and development for virtual reality and visualization. VRVis
was founded in 2000 as part of the Austrian Kplus pro-
gram to bridge the gap between academic research and
commercial development as well as to supply the necessary
transfer of knowledge between the academic community
and industry. VRVis is now a COMET K1 center.
This mission is mirrored in a variety of academic and indus-
trial partners. The research center is currently conducted
by five academic institutes and numerous industrial part-
ners. Leading-edge innovations and down-to-earth busi-
ness style characterizes VRVis as a valued partner for
high-level research.
The company's headquarter is located in Vienna, Austria.
Today, around 50 researchers together with about 20 stu-
dents do high-level applied and basic research in five differ-
ent areas.

The Team of VRVis
VRVis consists of internationally experienced researchers in
the areas of visualization, rendering and visual analysis.
Their outstanding experience and knowledge in these topics
qualify them for the innovative research they are performing.
The research areas are headed by key researchers who
manage these areas, define goals and projects for this area,
and conduct the defined research together with their staff.
All members of the research team are young researchers,
whose creativity and ingenuity is the key to the success.
VRVis is always looking for young, talented, and motivated
researches in the fields of research to extend its research
work or to support partner companies.

Research Program of the VRVis
The scientific research program consists of three research
areas in which thematically matching research projects are
conducted. Each research area realizes application projects
on the one hand and basic research for these application
projects on the other hand.

• Research Area Visualization
• Research Area Rendering
• Research Area Visual Analysis

Working at VRVis
VRVis is always looking for students, junior and
senior researchers who want to join the VRVis
team. VRVis is offering internships, diploma the-
ses, PhD theses and regular positions. For more
information please refer to the additional informa-
tion listed below.

Some Partners of VRVis

Scientific Partners of VRVis:
• Institute of Computer Graphics and Algo-

rithms, Vienna University of Technology
• Institute of Computer Graphics and

Vision, Graz University of Technology

Industrial Partners of VRVis:
• AVL List GmbH, Graz
• Agfa Healthcare, Wien
• Eybl Development GmbH, Krems
• Geodata Ziviltechniker GmbH, Leoben
• Imagination Computer Services, Wien
• ÖBB Infrastruktur Bau AG, Wien

Currently, VRVis is again extending its industrial
base with new partners from several new fields.

Additional Information and Contact
For detailed information about the research program,
current projects and job opportunities please visit our
web pages at http://www.VRVis.at/.
If you need additional information or search for
job opportunities in VR or visualization, please
feel free to contact Prof. Werner Purgathofer
(VRVis Scientific Director) at
Purgathofer@VRVis.at or +43(1)20501/30155;
Donau-City-Straße 1, A-1220 Wien.

	Invited Talks
	Realistic Rendering of Natural Phenomena
	Deformable Surfaces with Topology Changes for Physics-Based Animation

	Lighting
	Augmented Reality platform for enhancing integration of virtual objects
	Modern Methods of Realistic Lighting in Real Time
	Bidirectional Photon Mapping

	Rendering
	Workflow Optimization for a Graphic Artist working on large Texture Sets using Virtual Texturing
	Particle-based Visualization of Large Cosmological Datasets
	Order Independent Transparency with Per-Pixel Linked Lists

	Attention & Entertainment
	Saliency map augmentation with facial detection
	Do-It-Yourself Eye Tracker: Impact of the Viewing Angle on the Eye Tracking Accuracy
	Content Creation for a 3D Game with Maya and Unity 3D

	Human Computer Interfaces
	Multiplatform framework for managing windows
	Multi-touch Table with Image Capturing
	Overview of current developments in haptic APIs
	Real-time hand tracking using Flocks of Features

	Natural Phenomena & GPU
	Towards Supporting Volumetric Data in FurryBall GPU Renderer
	Sparse-Matrix-CG-Solver in CUDA
	Physical Animation of Wetting Terrain and Erosion
	Fast Hydraulic and Thermal Erosion on GPU

	Visualization
	Maximum Intensity Projection Weighted by Statistical Cues
	Visualizing the Effects of Logically Combined Filters
	A Problem of Automatic Segmentation of Digital Dental Panoramic X-Ray Images for Forensic Human Identification

	Color Plates
	Sponsors of CESCG 2011

