
Content Creation for a 3D Game with Maya and Unity 3D

Matthias Labschütz∗, Katharina Krösl†

In alphabetical order: Mariebeth Aquino‡, Florian Grashäftl§, Stephanie Kohl¶
Supervised by: Reinhold Preiner

Institute of Computer Graphics and Algorithms
Vienna University of Technology

Vienna / Austria

Abstract

’Dynamite Pete’1 is a 3D game we developed with Au-
todesk Maya and Unity 3D in a team of 26 computer sci-
ence students with varying skills and expertise in content
creation. A game development pipeline explaining the
production of the game from concept to release is pre-
sented. In addition, this paper explores the challenges
faced by the project staff and outlines the experiences
gained during the project’s implementation.

Keywords: content creation, content creation pipeline,
game production pipeline, Autodesk Maya, Unity 3D

1 Introduction

Nowadays, the quality of graphics and realism of games
is constantly increasing, since consumers are always de-
manding a more realistic look and feel in their games. This
means that improvement of renderings, outstanding con-
tent, more believable animations and more authentic be-
havior of artificial intelligence are needed. Therefore the
work of artists and animators is crucial for the success of
a game and the prosperity of a game development studio.

In 2010 a group of 26 students attending ’Maya-Course
2’ at the Vienna University of Technology performed a
game production process in a game development studio.
The ultimate goal of this exercise was to produce a video
game. Unity 3.1 [10] was chosen as game engine, but
the focus was placed on 3D content creation for real time
application, using, besides other tools, Autodesk Maya
2011. The game development team brought in different
sets of skills which ranged from beginners with hardly any
knowledge about content creation to students with partic-
ular profession. Every member of the team was given at

∗Technical Director Workflow: e8971103@student.tuwien.ac.at
†Artist: e0325089@student.tuwien.ac.at
‡Producer: e0326746@student.tuwien.ac.at
§Art Director: e0300310@student.tuwien.ac.at
¶Technical Director Unity: e0626088@student.tuwien.ac.at
1http://www.cg.tuwien.ac.at/maya/

least one role and had to fulfill tasks corresponding to their
job title. The assigned positions covered Project Man-
agement, Technical Direction, Art Direction and different
Artists. The main areas of these artists were Modeling
and Sculpting, UV-Layout, Texturing, Lighting, Render-
ing, Rigging, Animation, Level-design and Sound. The
resulting game ’Dynamite Pete’ is a comic-style Western-
Adventure where the player plays the role of the antihero
named Pete and has to escape from a canyon. Figure 1
shows an example screenshot of the finished game.

Figure 1: In-game screenshot of the game ’Dynamite
Pete’.

This paper explains a basic strategy for the professional
development of a content-intensive video game in a large
team and shares experiences from our project. In the fol-
lowing, we will shortly introduce the tools that were used
(Section 2), schematize the workflow of our game devel-
opment process (Section 3) and finally explain some se-
lected challenges that had to be overcome during the cre-
ation of ’Dynamite Pete’ (Section 4).

2 Tools

The main tools used throughout the project were Maya for
modeling, animating and rendering and the Unity game

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)



engine for implementation. In addition, image, audio and
video editing tools as well as drawing, sculpting and com-
munication tools were used.

2.1 3D Animation and Modeling Software
(Autodesk Maya)

Autodesk Maya (freely available for educational pur-
poses2) was chosen as 3D modeling, animation and ren-
dering tool in this project. Maya provides artists with an
end-to-end creative workflow [4]. As a professional tool
it is very complex and offers a great number of features.
Despite a steep learning curve, using Maya in its whole
complexity requires a long-winded learning process. An-
other drawback is the lack of forward compatibility, which
means all the artists had to work with the same version of
Maya irrespective of their preferences.

2.2 Game Engine (Unity 3D)

In this project, the free version of the game engine Unity
3.1 was chosen for the production of ’Dynamite Pete’.
There are different export options in this game engine,
each one dedicated to another platform (e.g.: Web Player,
PC and Mac Standalone, iOs, Android, Xbox 360, PS3),
which eases the development for different consoles or de-
vices. Unity attracts especially small and middle-sized de-
velopment studios who hardly invest in expensive high-
end rendering engines. Furthermore prototyping and game
development is very quick due to the WYSIWYG (”what
you see is what you get”) editor which allows instant
changes and live editing. In addition, Unity provides mul-
tiple built-in shaders and effects as well as a physics engine
and collision detection.

For a students’ project the most important reason for
choosing Unity is the fact that it is very easy to use and to
learn. Developing with Unity is mainly based on drag and
drop with occasional adapting of scripts rather than writing
code. Apart from shaders and effects which can simply be
turned on in some game settings, Unity provides numer-
ous scripts which can be dragged onto 3D models. These
scripts act for example as character controllers, follow up
cameras or other important features. However, Unity lacks
of integrated modeling abilities, which is the reason for us-
ing Maya as external modeling tool.

Another major drawback of the free version of Unity is its
lack of SVN support. This makes it difficult for multiple
programmers to work concurrently on one single project,
which will be discussed in detail in section 4. Like Au-
todesk Maya, Unity is not forward compatible, but over-
all the advantages outweigh the disadvantages. However,

2http://usa.autodesk.com/maya/trial/

the use of Unity Pro is advisable, due the previously men-
tioned restrictions in the free version.

3 General Game Production Pipeline

A game production pipeline is basically a concept of work-
flow management for use in the game development pro-
cess. The phases of this pipeline are certain tasks that need
to be fulfilled until the release of a video game.

Figure 2 gives a detailed overview of the development pro-
cess of this project, as it will be explained in the following
chapters, showing the main five tasks in color.

Figure 2: Game production pipeline overview: Concept,
content creation pipeline, level design, lighting and imple-
mentation as organized in this particular project.

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)



Some of these tasks require to be carried out sequentially
as presented in the following. Nevertheless, to increase
productivity, it should be a goal to break up this sequential
approach, to allow people to work in parallel on different
tasks.

Since this very project was an attempt to implement the
workflow in a game development studio at a larger scale
with very limited production time, it was necessary to fol-
low a pipeline approach without iterations. The scope of
this project was 3D modeling, with focus on content cre-
ation. Other aspects, like game-design, were of minor in-
terest. The following paragraphs describe the production
stages of the project in detail.

3.1 Concept Phase

During the concept phase a small team drew an outline of
the plot, the setting and the game mechanics. The game’s
environment was chosen to be a wild-west desert. A comic
style was preferred over a photorealistic style and the goal
of the game was set to collecting dynamite for breaking
out of a hostile canyon.

Figure 3: Early painted concept art

After this stage, the look and feel of the game content had
to be worked out, requiring multiple revisions of concept
arts. An example is shown in Figure 3. Inspiration was
coming from all different sorts of media, starting from
similar computer games and movies to comics and mu-
sic. Color and proportions play an important part in the
game’s visual style. A dirty textured comic look was cho-
sen, inspired by ’Star Wars - the Clone Wars Series’ [9]
and Woody, the Cowboy in ’Disney Pixar’s Toy Story’ [7].

3.2 3D Content Creation Pipeline

The orange box in Figure 2 illustrates the 3D concept cre-
ation pipeline which contains the stages every 3D model
has to pass from concept art to the final model. The fol-
lowing paragraphs describe these stages in detail.

3.2.1 Concept Art

Figure 4: Character concept art of a sheriff and a barmaid
model.

Concept artists worked primarily on the main assets of the
game (characters and environment), gradually enhancing
their work guided by feedback of the art direction and
other artists. After the initial sketches on paper, some
artists moved on to graphics editing tools, using tablets
as input devices. As final step of the concept phase, they
created colored front and side views of the assets, which
modeling and texturing artists used as guides for their ge-
ometry and coloring. Figure 4 shows a small selection
of colored character concepts. Most of the concepts were
hand drawn and can be found on the development blog.3

3.2.2 Low Polygon Modeling

The first step from concept to 3D model is to create a
low polygon model. Since Unity can handle triangles and
quads, there was no restriction to use a certain modeling
technique only. Nevertheless, most modeling artists pre-
ferred quads over triangles. Low polygon modeling also
includes smoothing or hardening normals.

To avoid models with very differing level of detail, it is
highly recommended to define a maximum polygon count
in advance, depending on a model’s size and importance.
However, multiple revisions were necessary during this
phase to achieve a consistent style for all the low polygon
models.

For houses, a modular system was used to create numerous
different house types out of individual basic parts. This tile
based approach allowed more variations with less time for
modeling.

3.2.3 UV Layout

Before texturing or high polygon modeling could start, UV
layouts had to be done either by UV layout artists or by the
modeling artists themselves. A UV set in Maya consists of

3http://twoday.tuwien.ac.at/mayakurs22010/

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)



a single UV layout. An object with multiple texture types
can have multiple UV layouts. For this project a maximum
of three UV sets per object was defined:

• Color map UV set: For color textures. Faces can
reuse texture space, meaning that a certain space in
texture space can be used by multiple faces.

• Normal map UV set (optional): Only used if a sepa-
rate normal map was required.

• Light map UV set: Can not include overlapping faces
in texture space. Since each face can have different
lighting information, each face has to have its own
amount of space in the UV layout.

3.2.4 High Polygon Modeling

After the UV layouts were done, some of the low polygon
models were improved to high-resolution models either by
a smooth-operation provided by Maya (adding additional
subdivision polygons), or by artistic sculpting using Au-
todesk Mudbox [5]. The result of this high polygon mod-
eling step was a normal map.

3.2.5 Texturing

Texturing started right after the UV layout was done. A
color table (Figure 5) was used as reference for texture
artists. A screenshot of the UV layout in texture space was
exported to digital image processing tools. The texture
coordinates (UVs) served as orientation for texture artists,
who painted their textures on these coordinates, using only
colors from the given color table.

Figure 5: Color table for texture artists

For frequently used textures (such as wood), texture tem-
plates were created. For each contained material, these li-
braries provided bump maps, normal maps and differently
colored layers which artist could switch on or off, to create
new textures fast and easy.

3.2.6 Rigging and Animation

To enable artists to easily create naturally looking anima-
tions of characters, a technique called ’rigging’ is used,
which creates a virtual bone structure for each character.
This structure can then be used to control the movements
of the characters for animation in a natural way. After the
bone structure is finished, the character’s mesh is bound
to the skeleton and weighted between influencing bones.
Usually, inverse kinematics are used to specify the bones
position when moving handles of the skeleton.

In this project, each game character went through an in-
dividual rigging process in Maya, offering different con-
trols for the animators. Since this was an educational
project, most of the participants decided not to use pre-
manufactured rigs (such as the built-in Full Body IK [3]).
The animation artists then produced key-frame based an-
imations for some movements (e.g.: walkcycle, idle, at-
tack) for each game character, which were done in Maya.

3.3 Level Design

3.3.1 The Level Design Process

The previous section described how single pieces of static
and dynamic content have been created. The following
sections will explain how all these parts are combined to
form a virtual environment and finally a playable game.
The first step on this path is level design which can be seen
as an assembly process that incorporates or creates content
to shape the environment of a game. Depending on the
genre of a game, the scope of level design may lie on the
content creation, the technical assembly, or the game-play
tuning aspect.

Scheduling: In general, the crucial amount of work in
level design is carried out at a late stage in the creation
process. Not only because level design requires parts of
the engine to be finished but also assets to work with. In
order to allow the level design process start early, it is good
practice to prioritize the assets depending on their impor-
tance for the level designer.

Concurrent working: Concurrent working on game lev-
els is difficult to be done efficiently and can easily result
in a high organization and merging overhead [11]. For
small game environments, one person working on the level
design is advisable to reduce the overhead. For larger
projects, concurrent work of several designers on levels
of high complexity can be achieved by splitting the levels
along certain regions.

Asset placement: Open terrain game levels often require a
lot of environmental objects to be placed into them to pro-
duce a rich and exciting game feeling. Automatic place-
ment can help speeding up the process, while keeping a
human designer in charge of where objects are placed. For

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)



large projects, more advanced level-editing tools can be
used, which allow modifying the layout in a more abstract
and faster way (e.g. drawing a map of the area, while the
content is placed automatically).

Figure 6 shows the level design approach in relation to
other tasks during the creation of a game. The solid lines
describe the path of content as it is passed through the
team during the game development process. The dashed
lines denote requests and tools which will not be included
directly in the final release. As shown in Figure 6, level de-

Figure 6: Level design in context to other game develop-
ment tasks.

sign is a step between content creation and programming.
Therefore, changes in level design require interactivity or
fast compiling mechanisms to see the impacts on the game.

3.3.2 Level design in this project

The level design started right from the beginning of the
project with concept plans of the game area [8] followed
by modeling and texturing of the terrain. After this ini-
tial phase a level file was created and assembled in Maya,
using references, so that unfinished content (e.g. low poly-
gon models) could already be placed in the scene and be
updated on the fly. In the end the whole scene was im-
ported into Unity.

Figure 7 shows the stages of development of the level from
the concept art over the terrain model to the final level ren-
dering with buildings and other assets. The level design
process took the following considerations into account:

• During the creation of the terrain, conceptual areas
were planned for later object placement. (e.g. grave-
yard area, scenic overview, spots for buildings along
the road).

• The level design was based on static geometry. To
keep the player interested in exploring the level,
many different floors and long paths along the terrain
were created.

Figure 7: Three stages of level design: concept, terrain
model, final scene.

• To underline the escape scenario of the game, a cer-
tain degree of hostility was added to the terrain design
(e.g. in the shape of spiky rock formations).

• To keep the level simple for lighting, no caves were
created.

3.4 Lighting

3D Production packages include powerful renderers to
simulate light propagation through a scene. To this point,
physically correct simulations of light are impossible be-
cause of measuring uncertainty and the inability to solve
the rendering equation exactly. In addition, approaches
close to physical models are often very costly and cannot
be done in real-time yet.

Since computer games are real-time applications, prepro-
cessing for global illumination is often used (’Light Bak-
ing’) to achieve realistic lighting at runtime. During the
process of Light Baking, the whole scene is pre-lit and
the final color distribution is stored in textures. These tex-
tures can be either applied directly to a polygonal surface
or saved as vertex colors. The advantage of Light Baking
is that the artists can use high quality rendering algorithms
to pre-calculate the lighting of a scene. Disadvantages
are the added complexity in the production workflow and
the lack of dynamic lights. Combining pre-calculated and
real-time lighting effects can be a challenge, because nu-
merous customized shaders and materials need to achieve
acceptable color- blending effects.

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)



3.4.1 Lighting in this project

The scene was meant to be illuminated by the sunset
with dominating pink and purple colors. Dark areas were
avoided to keep the lighting simple. Color textures had to
be desaturated, so the scene could be lit with enough power
to produce a believable result. Autodesk Mental Ray [6]
was used to render the scene. Its fast final gathering algo-
rithm in combination with a light emitting sky-dome was
chosen to achieve the effect of global illumination for the
game’s content.

The sun consisted of two simple directional light sources
not affecting the sky-dome. One light-source was used for
controlling the light color and intensity. The other light
source was used for controlling the shapes, intensities and
colors of the shadows.

It was important to know the scene’s look under final light-
ing conditions at an early stage of the production process
to define appropriate texture color guidelines. Therefore,
this light setup was developed at an early stage to test dif-
ferent texture colors and shaders in the chosen environ-
ment setting.

The final step in lighting was light map texture baking.
Diffuse color bouncing required emitting and reflecting
colored objects in the scene during bake-time. These ob-
jects had to be prepared for baking. First, they were given
a second UV-set, which was not overlapping or tiled.

For light-mapping and export, objects were grouped into
export groups, sharing one common light-map, and were
then imported separately into Unity. A building and parts
of its corresponding light-map are shown in Figure 8.

Figure 8: Building to the right and its corresponding light-
map to the left.

3.4.2 Concept and Presentation Rendering

In addition to the scene’s lighting, rendering was also used
for many different tasks during the development process.
Concept renders were created in order to communicate the
aesthetics of the game environment. A game trailer was

produced showing some animation sequences and renders
were created by artists to share their concepts and mod-
els through the team’s development blog. Since rendering
is a time consuming process, some additional tricks were
used to improve quality in these renderings. Depth of field
effects were achieved through depth-map controlled blur
filters using compositing. Additionally, image post pro-
cessing was used to achieve the desired quality.

3.5 Implementation

During the implementation phase, intensive work with the
game engine started, as all the models had to be imported
into Unity. Unity generally uses *.fbx files, but allows
the import of *.ma files as well. These Maya files were
directly imported into Unity to avoid problems with an-
imated objects exported by Maya 2011 as *.fbx and to
skip an additional step in the workflow. The files were
then converted into *.fbx by Unity. This procedure makes
it easy to re-import changed Maya files but it takes more
time for Unity to convert all files.

Figure 9: Fire, smoke effects and sound sources.

3.5.1 Object Integration in Unity

In the first step of the object integration process the level,
which had been created in Maya 2011, was imported into
Unity. It was structured into different display layers, each
one dedicated to a different type of models (e.g. houses,
grasses, cacti). When the level was completed, the differ-
ent layers were saved in separate Maya files and put to-
gether in Unity. This made it easier and faster to re-import
changed layers into Unity. The different characters as well
as various pickup items (e.g. dynamite) used in the game
story, were directly placed into the level in Unity.

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)



3.5.2 Effects, Shader Programming

As soon as the main part of the game was finished, effects
like fire and smoke (Figure 9), fog, water, dust, lens flare
and explosions were implemented. All these effects, ex-
cept lens flare and fog, were created with an Ellipsoid Par-
ticle Emitter or a Mesh Particle Emitter provided by Unity.
Fog was simply activated in Unity’s render settings.

3.5.3 Sound

In the final phase background music and sound effects
were added to the game. To add a sound file to an object in
Unity, an ’Audio Source Component’ had to be added to
the specified object. In Unity’s audio source options, the
audio clip had to be defined and some other options like
the volume were individually adapted.

3.6 Release

The final result of the whole production process was a
game prototype with one level. Overall, it took a pro-
duction team of 26 students about 1550 person hours to
develop the game ’Dynamite Pete’. Table 1 gives a de-
tailed overview of the working time spent on the individual
phases of the project.

Task Time in person hours
Concept and references 130
Low polygon modeling 500
UV layout 150
High polygon modeling 50
Texturing 190
Rigging 20
Animation 50
Level design 50
Lighting 60
Implementation 200
Miscellaneous (presentation) 50
Organisation and feedback 100
Total 1550

Table 1: Development time overview

After the end of the project, the final game was presented
in a release event. The artists created a trailer video, char-
acter sheets, posters and character turntables for this event.

4 Further Challenges

4.1 Terrain Multi-Texturing

The usual approach for texturing 3D models is to apply a
single texture per object. Since the terrain is a very large

object, tile-able textures were used to define its surface
properties. These textures are repeated seamlessly across
a geometric surface representation. However, since terrain
usually consists of different material, more than one tile-
able texture had to be used.

Figure 10: Left side: textured terrain. Right side: alpha
map for the path layer.

Multiple layers of tile-able textures were used in combi-
nation with an alpha texture to define the global occur-
rence of a material. Figure 10 shows the textured terrain
on the left side and the alpha map for one layer on the right
side. In Maya, the material that supports this kind of tex-
turing method is called ’Layered Texture’. In Unity, this
method of texturing is only provided for terrains created
from height-maps. Therefore, a custom fragment shader
had to be written for the terrain in this project.

The following shows the essential part of this fragment
shader code. First, the albedos of the individual overlay
layers are consecutively accumulated. Finally, the calcu-
lated albedo is multiplied with the light intensity to obtain
the output color.

//’c’, ’c1’, ’c2’, ’c3’ ... color textures
//’a’ ... alpha values in rgb channels
//’lightmap’ ... light map texture

//overlay 1st layer
o.Albedo = (1.0f-a.r)*c.rgb + a.r*c1.rgb;
//overlay 2nd
o.Albedo = (1.0f-a.g)*o.Albedo + a.g*c2.rgb;
//overlay 3rd
o.Albedo = (1.0f-a.b)*o.Albedo + a.b*c3.rgb;

//1.5f to control light map brightness manually
o.Albedo = o.Albedo * lightmap * 1.5f;

4.2 Concurrent working with Unity

As mentioned earlier, there are some differences between
Unity Free and Unity Pro. Because the game was devel-
oped with Unity Free, a solution for the SVN problem had
to be found. Unity Pro saves all asset metadata and import
settings for each asset in a corresponding metafile. These
files need to be versioned along with the associated asset

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)



[2]. In Unity Free all these metadata are saved in the li-
brary directory [1]. To share a project without Unity Pro,
the library directory has to be compressed and uploaded
via SVN. After downloading the project from the SVN
server the library directory has to be uncompressed into
the Unity project folder. One negative effect of this solu-
tion is that it is not possible to work concurrently on the
Unity project file. Because the whole library folder is up-
loaded, it is not possible to merge the different metadata,
only the whole folder can be overwritten. Therefore, for
multiuser projects it is recommended to use Unity Pro.

5 Summary

Together with our colleagues, we deployed a professional
game development studio workflow in the context of a 3D
content creation project. The utilization of 3D content in a
3D game put theoretical knowledge into practical use. Par-
ticipating students improved not only their technical skills,
but also learned valuable lessons in team work. The ma-
jor challenges were different theoretical and practical un-
derstanding of the subject, unalike working methods and
variable personal availability. A blog was used by most
of the students to post their work and to get feedback in a
constructive way. The final stages in the process of game
development were rushed in about one or two weeks. At
the time of the release deadline, the result was a decreased
quality in game-play and lighting as well as the game me-
chanics, which had not been tested before. More concur-
rent work and earlier deadlines would have been needed to
speed up the production process. Nevertheless the project
was finished within the given time schedule, resulting in a
nice game containing rich and detailed content.

6 Acknowledgements

The authors would like to thank all team members who
participated in this valuable exercise and dedicated their
time to this project. Thanks to Rainer Angerer, Martin
Brunnhuber, Damir Dizdarevic, Brigit Faber, Markus Fell-
ner, Roman Gurbat, Andreas Himmetzberger, Rosemarie
Hochreiter, Roman Hochstöger, Bernhard Holzer, Peter
Houska, Albert Kavelar, Desiree Lavaulx-Vrecourt, An-
dreas Lenzhofer, Thomas Mayr, Johannes Sorger, Stefan
Stangl, Nicolas Swoboda, Markus Tragust and Ulrike Za-
uner. Our special thanks to our lecturer Markus Weilguny,
who guided us through the whole production process. Last
but not least we would also like to thank Associate Profes-
sor Michael Wimmer for making this lecture possible and
for giving us the great opportunity to present our efforts
and findings in this paper.

References

[1] Unity 3D. Unity: Behind the scenes.
http://unity3d.com/support/documentation/Manual/
Behind%20the%20Scenes.html, 2010.

[2] Unity 3D. Unity: Using external
version control systems with unity.
http://unity3d.com/support/documentation/Manual/
ExternalVersionControlSystemSupport.html, 2010.

[3] Autodesk. Autodesk maya on-
line help: Fbik (full-body ik).
http://download.autodesk.com/us/maya/2010help/
index.html?url=Glossary F FBIK fullbody IK.htm,
topicNumber=d0e188540, 2000-2009.

[4] Autodesk. Autodesk maya 2011: Features.
http://usa.autodesk.com/maya/features, 2011.

[5] Autodesk. Autodesk mudbox 2011: Features.
http://area.autodesk.com/mudbox2011/features,
2011.

[6] Autodesk. Mental ray.
http://usa.autodesk.com/adsk/servlet/pc/index?siteID=
123112&id=13566140, 2011.

[7] Disney/Pixar. Toy story.
http://www.pixar.com/featurefilms/ts/, 1995-2011.

[8] Michael Stuart Licht. Gamasutra: An archi-
tect’s perspective on level design pre-production.
http://www.gamasutra.com/view/feature/2848/
an architects perspective on , 2003.

[9] Lucasfilm Ltd. Star wars. the clone wars.
http://www.starwars.com/theclonewars/, 2011.

[10] Unity Technologies. Unity 3d. http://unity3d.com/,
2011.

[11] Mick West. Gamasutra: Collaborate game edit-
ing. http://www.gamasutra.com/view/feature/3991/
collaborative game editing, 2009.

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)


