
Order Independent Transparency with Per-Pixel Linked Lists

Pál Barta∗

Balázs Kovács†

Supervised by: László Szécsi‡ and László Szirmay-Kalos§

Budapest University of Technology and Economics
Budapest / Hungary

Abstract

This paper proposes a method for rendering scenes of both
opaque and transparent objects. Transparency depends on
the attenuation coefficient and the thickness of the trans-
parent object we wish to render. To get the visible ra-
diance, the volume rendering equation should be solved.
Instead of marching a ray, we build a list that contains
the intersection points of the ray and object surfaces. In
the second phase of rendering, the GPU sorts and pro-
cesses the lists and evaluates the attenuation integrals ana-
lytically, considering also the order of the segments. This
solution is mathematically correct even if objects intersect,
i.e. it does not involve drastic simplifications, and provides
high framerates even on moderately complex scenes, out-
performing previous methods. In addition to transparent
objects, the technique is also appropriate to visualize nat-
ural phenomena represented by particle systems.

Keywords: Transparency, Direct3D 11, Linked-lists,
GPU, Particle Systems.

1 Introduction

The technique of alpha blending has a long history in two-
and three-dimensional image synthesis. There are many
ways to blend colors [10], but the most important issue is
that we can only get realistic results if we sort transparent
objects by their distance from the camera. Unfortunately,
this requirement is not compatible with incremental ren-
dering and z-buffer based visibility determination, which
allow the processing of objects in an arbitrary order. Sort-
ing objects or even triangles in a way that occluders follow
objects occluded by them is difficult and is usually im-
possible without further subdivision of objects. The prob-
lem is that an object is associated with a depth interval
and not with a single distance value, so no direct order-
ing relation can be established. A possible solution for
non-intersecting triangles is the application of the painters
algorithm [1], but this has super-linear complexity and its

∗brazil.hu@gmail.com
†kockafely@gmail.com
‡szecsi@iit.bme.hu
§szirmay@iit.bme.hu

GPU implementation is prohibitively complicated.

Figure 1: Order matters when the scene contains transpar-
ent objects.

If objects may intersect each other, then the situation
gets even worse. A typical case of intersecting transparent
objects are particle systems, which are tools to discretize,
simulate and visualize natural phenomena like fog, smoke,
fire, cloud, etc. The simplest way of their visualization ap-
plies planar billboards, but this approach results in abrupt
changes where particles intersect opaque objects. The so-
lution for this problem is the consideration of the spherical
extent of the particle during rendering, as proposed in the
concept of spherical billboards [9], also called soft parti-
cles. Spherical billboards nicely eliminate billboard clip-
ping and popping artifacts at a negligible additional com-
putational cost, but they may still create artifacts where
particles intersect each other. Most importantly, when the
z-order of billboards changes due to the motion of the par-
ticle system or the camera, popping occurs. This effect is
more pronounced if particles have non-identical colors or
textures.

Instead of executing the sorting for the objects, we can
as well ensure the correct order on the level of fragments.
This approach does not require the sorting of the objects on
the CPU, which is emphasized by its name, order indepen-
dent transparency. The family of such methods is usually
referred to as depth peeling. The basic idea of depth peel-
ing is that the fragment shader may discard fragments that
are not farther than a previously selected threshold and the
depth buffer will identify the closest fragment from the
not discarded points. Thus, the scene is rendered multi-
ple times and each time we ignore the already identified
layers. Intuitively, we peel layer surfaces from the scene.
Depth peeling has been used in global radiosity [6] and
in transparency [3, 8] calculation as well. Unfortunately,
depth peeling needs to render the scene multiple times, de-

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)



pending on the depth complexity of the scene (the depth
complexity is defined as the maximum number of intersec-
tions a ray has in a given scene). Even its advanced ver-
sions, like Dual Depth Peeling [5], Reverse Depth Peeling
[8] etc. could not be used effectively in real-time scenes
without limiting the sorting to just the first few layers.

AMD presented a special solution at the Game Develop-
ers Conference 2010 [4]. The latest series of ATI Radeon
supports DirectX11, which opened the door for new ren-
dering algorithms. The latest Shader Model 5.0 GPUs
have new features like the read/write structured buffers or
the atomic operations to manipulate them. Recall that be-
fore Shader Model 5.0, shaders may either read memory
(e.g. input textures) or write it (e.g. render target), but not
both, and writes are always exclusive, so no synchroniza-
tion is necessary. This limitation has been lifted by Shader
Model 5.0, and now we do not have to wait for the end of
a pass before reading back the result in a shader processor.
With the use of these features, we are able to process the
incoming fragments in a complex way instead of writing
them to the frame buffer. The fragments can be stored in
linked lists, which creates new ways to implement order-
independent alpha-blending.

Figure 2: Model of a scene that contains opaque and trans-
parent objects. Each transparent object is homogeneous
and they can intersect each other.

This paper proposes a new algorithm to render trans-
parent, possibly intersecting objects and particles based
on DirectX11’s structured buffers and atomic operations.
In Section 2, we first survey the model of light transport
in homogeneous transparent objects. Then, in Section 3
the new, GPU-based algorithm is discussed. Finally, we
present results and conclusions.

2 Model of light transport in homo-
geneous objects

In case of scenes having only opaque objects the radiance
is constant along a ray and scattering may occur just on
object surfaces. Participating media, however, may scatter

light not only on their boundary, but anywhere inside their
volume. Participating media can be imagined as some ma-
terial that does not completely fill the space. Thus the pho-
tons have the chance to go into the media and to travel
a random distance before collision. To describe light–
volume interaction, the basic rendering equation should be
extended [7, 2]. The volumetric rendering equation is ob-
tained considering how the light goes through participat-
ing media (Figure 3).

Figure 3: Change of radiance in participating media.

The change of radiance L on a path of differential length
ds and of direction ω⃗ depends on different phenomena:

Absorption and out-scattering: Photons may collide
with the material and the material may or may not
reflect the photon after collision. The intensity
change is proportional to the number of photons
entering the path, i.e. the radiance and the probability
of collision. If the probability of collision in a unit
distance is τ , then the probability of collision along
infinitesimal distance ds is τds. After collision the
particle is reflected with the probability of albedo
a, and absorbed with probability 1− a. Collision
density τ and the albedo may also depend on the
wavelength of the light. Summarizing, the total
radiance change due to absorption and out-scattering
is −τLds.

In-scattering: Photons originally flying in a different di-
rection may be scattered into the considered direc-
tion. The expected number of scattered photons from
differential solid angle dω ′ equals to the product of
the number of incoming photons and the probability
that the photon is scattered from dω ′ to ω⃗ in distance
ds. The scattering probability is the product of the
collision probability (τds), the probability of not ab-
sorbing the photon (a), and the probability density of
the reflection direction ω⃗ , given that the photon ar-
rived from direction ω⃗ ′, which is called phase func-
tion P(ω ′,ω). Following an ambient lighting model,
we assume that the incident radiance is La in all di-
rections and at every point of the scene. Taking into
account all incoming directions Ω′, the radiance in-

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)



crease due to in-scattering is:

τads

∫
Ω′

LaP(ω ′,ω)dω ′
= τaLads

since the phase function is a probability density, thus
its integral over the full directional domain equals to
1.

Adding the discussed changes, we obtain the following
volumetric rendering equation for the radiance L of a ray
at s−ds having taken step ds toward the eye:

L(s−ds, ω⃗) = (1− τds)L(s, ω⃗)+ τaLads. (1)

Subtracting L(s) from both sides and dividing the equa-
tion by ds, the volumetric rendering equation becomes a
differential equation.

−dL(s, ω⃗)

ds
=−τL(s, ω⃗)+ τaLa. (2)

In homogeneous media, volume properties τ and a are
constant. In our model, the scene contains homogeneous
objects having different materials. Thus, in our case, the
properties are piece-wise constant functions along a ray.

2.1 Solution of the simplified volumetric
equation

The radiance along a ray is described by an inhomoge-
neous first-order linear differential equation, which can be
solved analytically. Assuming that the background radi-
ance is zero, the radiance at the eye position (s = 0) is:

L(0, ω⃗) =

∞∫
0

τ(s)a(s)Lae−
∫ s

0 τ(x)dxds

where direction ω⃗ points from the pixel towards the eye.
Let us now exploit the fact that material properties a(s) and
τ(s) are piece-wise constant functions, they may change
where the ray intersects the surface of an object. Let us
denote the distance values of ray surface intersections by
s1,s2, . . . ,sn and extend this ordered list by s0 = 0 and
sn+1 = ∞. The ray, i.e. the domain of the integration is
partitioned according to the segments between the inter-
section points, where albedo a(s) and attenuation parame-
ter τ(s) are equal to ai and τi in segment [si−1,si), respec-
tively:

L(0, ω⃗) =
n+1

∑
i=1

si∫
si−1

τiaiLae−
∫ s

0 τ(x)dxds.

Then, we also partition the [0,s] interval according to the
intersection points in the attenuation formula, assuming
that s is in [si−1,si]:

s∫
0

τ(x)dx = τi(s− si−1)+
i−1

∑
j=1

τ j(s j− s j−1).

Thus, the exponential decay is:

e−
∫ s

0 τ(x)dx = e−τi(s−si−1)
i−1

∏
j=1

e−τ j(s j−s j−1).

Substituting this back into the eye radiance, we obtain:

L(0, ω⃗) =
n+1

∑
i=1

aiLa
si∫

si−1

τie−τi(s−si−1)ds
i−1

∏
j=1

e−τ j(s j−s j−1).

We can obtain better quality rendering with shading
without significantly slowing down the rendering. We are
using Rayleigh shading where the phase function is:

P(cosθ) =
3

16π
(1+ cosθ 2)

θ is the angle between the light and the view direction. For
simplicity we assume the light source is directional, thus
we can foil the Rayleigh term before the integral because θ
will be constant in a segment. Therefore we can substitute
La in our equations by

Ls = La +Lr 3
16π

(1+ cosθ 2).

We introduce a shorthand notation for the color contri-
bution Ci of a segment:

Ci = aiLs
si∫

si−1

τie−τi(s−si−1)ds = aiLs
(

1− e−τi(si−si−1)
)
.

(3)
Note that this formula remains valid also for the τi = 0
case, i.e. when the ray travels in free space.

Similarly to the contribution, segment transparency Ti
can also be applied to segment i

Ti = e−τ j(s j+1−s j). (4)

With these shorthand notations, the radiance associated
with a particular pixel is

L(0, ω⃗) =
n+1

∑
i=1

(
Ci

i−1

∏
j=1

Tj

)
. (5)

The evaluation of this formula requires the intersec-
tion points to be sorted and segments to be visited in the
sorted order. If the distances are sorted in ascending order,
at each segment two equations should be evaluated itera-
tively, starting with L = 0 and T = 1:

L ← L+CiT,

T ← T ·Ti.

When the last segment is processed, variable L contains
the radiance of the ray.

There are two critical issues concerning the iterative
evaluation of these formulae. First, segments should be

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)



stored and sorted on the GPU, without knowing in ad-
vance how many segments a particular ray has. On the
other hand, the properties of the segments, including the
albedo and the attenuation parameter, should be deter-
mined from the object properties. As objects may intersect
each other, this question cannot be simply answered by
checking whose surface the ray has most recently crossed.
These problems are solved by the algorithm presented in
the next section.

3 The rendering algorithm

The algorithm consists of two main steps: At first we col-
lect every intersection point between all rays and object
surfaces in lists associated with rays. Then, in the second
phase, the lists are sorted and processed to get the pixel
colors.

3.1 Data structures

In order to get not only the first ray surface intersection,
but all intersections of an eye ray, the latest features of
the DirectX 11 compatible GPUs are exploited, including
structured buffers and atomic writes.

Figure 4: Data structures.

In particular, we use types of “Byte Address Buffer” and
“Read/Write Structured Buffer”. The first type is used as
the starting element of the linked lists, while the buffer of
the other type is filled with the fragment data structure. We
need also a texture containing the opaque scene with depth
information. The main data stores are the “Fragment and
Link Buffer”, the “Start Offset Buffer”, and the “Opaque
Scene Texture” (Figure 5).

Fragment and Link Buffer: The output data of the first-
phase pixel shader contains the radiance reflected at
the surface, the volumetric attenuation coefficient and
the albedo of the object, a flag whether or not the sur-
face is front facing, and the distance of the fragment

from the eye. We would like to store these values
in a structure and build a list of them for each pixel.
Instead of writing data to the frame buffer, we have
to store them in a special buffer called “Read/Write
Structured Buffer”. It is a generic buffer that contains
the declared type of structure. We have to append
a pointer to each structure, which addresses the next
fragment in the list. The value −1 as address denotes
the end of the list. The size of the buffer depends
on the estimated amount of transparent fragments in
the viewing frustum. If the allocated memory is not
enough for all the transparent fragments, then it will
overflow and we will lose important data. We set a
counter for the buffer, its initial value is 0. When the
shader appends a new structure of fragment data to
the buffer, the value of the counter will provide the
address of the new element. Afterwards we incre-
ment the counter, so it always addresses the next free
slot in the Fragment and Link Buffer. We should up-
date the counter with atomic operators, because it is
parallely used by a number of shader units.

Start Offset Buffer: The type of this buffer is the “Byte
Address Buffer”, which holds 4-byte addresses. The
function of this data structure is to refer to the first
element of the linked list for every pixel. The first el-
ement is always the last fragment that was processed
for that list. When a new structure is appended, the
pointer of the structure will get the value of the as-
sociated element in the “Start Offset Buffer”. Ac-
cordingly, we write the address of the newly stored
structure in the buffer. We have to allocate memory
to store one address for each pixel on the viewport.

Opaque Scene Texture: This shader resource holds the
RGB values of the opaque scene, and the distance of
the fragment from the eye, which is stored in the al-
pha channel. When processing the list, the color read
from this texture is also blended and the fragments
being farther than this opaque fragment are discarded.

3.2 Collecting the fragments

The method starts with rendering opaque objects. The
alpha channel is used to store the distance of the frag-
ment from the camera, so later the list of fragments can
be cropped based on this value.

The next step is to render the transparent objects. The
drawing function sets up the pipeline and passes the ver-
tex information to the GPU. It is important that the culling
of the back-facing fragments must be disabled, otherwise
the GPU discards them and lot of important data about
the transparent scene will be lost. The vertex shader per-
forms the standard transformations, the novel part of the
rendering comes with the pixel shader. When the pixel
shader gets a fragment as input, it allocates and fills a
structure, which contains the surface radiance, the volu-
metric attenuation and albedo, the distance from the cam-

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)



era, and the orientation of the fragments. Then the shader
stores the structure in the “Fragment and Link Buffer” at
the next free slot and sets the “Start Offset Buffer” us-
ing the screen coordinates of the currently processed frag-
ment. The pointer in the “Start Offset Buffer” at the ad-
dress of the screen coordinate will reference this structure,
and the pointer of the newly inserted structure gets the for-
mer value of the address buffer. This way a new element
is inserted into the linked list.

3.3 Loading and sorting the lists

After the lists are created for each pixel and all the visible
fragment information is in the memory of the GPU, the
second phase of the rendering begins. The next step is to
parse each list in a local buffer, then sort the elements in
ascending order of the distance from the camera. Load-
ing the lists into the local buffer of the shaders at first is
important because working with local data is easier and
faster than reading each structure separately from a shared
resource. To avoid copying larger set of data, an index
buffer should also be created, so during the sort the GPU
moves only indices instead of structures.

3.4 The sorting

Every sorting algorithm has its own characteristic, which
offers advantages and disadvantages depending on the
environment parameters of the sorting. These algorithms
are based on different concepts like partitioning, merging,
selection or insertion, some of them providing bigger
overheads or different efficiency under different condi-
tions. The implementation of the methods can also have
a slight effect on their performance. At first we have to
give an estimated number of the elements of the array
we have to sort. In our case the fragments for each pixel
are stored in these arrays, the GPU will sort each array
independently and will run the same sorting algorithm
for each pixel. So we have one array of fragments in our
shader code, which belongs to the currently processed
pixel. Most of the cases the rendered scene contains some
transparent objects in an opaque environment, but even if
we are experimenting with more complex composition,
it is reasonable to say that the average depth complexity
of a transparent scene is lower than 100 layers. The
algorithms have average, worst and best case scenarios,
since the GPU will run the sorting many thousand times
for each frame, we have to analyze the average speed of
the method. Another important attribute to consider is
whether the elements are presorted in some way. We can
assume here, that the fragments are collected randomly.
However, since we have information about the order of
the objects drawn to the screen, some kind of presorting
could be possible, but right now this enhancement is left
for the future. The computational complexity is maybe
the most important parameter of an algorithm along with
memory usage, we try to find a sorting algorithm that

performs the best under the above mentioned conditions
and needs the lowest amount of memory space. Quicksort
is one of the most popular sorting algorithms and its
optimized versions are considered the fastest of them. As
a general rule this statement can be true, however, it is a bit
more complex than the simpler methods, which provides
remarkable overhead. Additionally the current GPUs do
not support recursive calls, and the basic quicksort is a
recursive algorithm. Its non-recursive version needs also
a stack to implement generating more overhead. In the
case of relatively small lists a much simpler algorithm
can perform better and the insertion sort is a popular
choice. Its disadvantages begin to come forward on
longer lists, while sorting an array of 100 items the
insertion sort outperforms the other sorting algorithms.
(http://warp.povusers.org/SortComparison/integers.html)
Additionally its easy to implement, does not change
the relative order of elements with equal keys, only
requires a constant amount of additional memory space
and performs even more faster on pre-sorted lists. These
attributes makes us insertion sort the best choice here.

3.5 Processing the lists

Figure 5: Distinction of front and back facing surfaces.

After the sorting, the shader blends the fragments ac-
cording to the physical model of light absorption, and
every segment yields its contribution in the final value.
When the GPU finishes sorting the list, the sorted array
of fragments divides the ray into segments. In our model,
both the intersecting and the stand-alone objects divide the
space into homogenous regions, which are represented by
the segments defined by the list of the fragments. Each
segment possesses properties of contributed color Ci and
transparency Ti (equations 3 and 4). These values are
based on the attributes of the objects and the length be-
tween consecutive intersections.

If objects intersect, the contributed color and the trans-
parency should be computed from the length the ray trav-
els in the intersection and the combined attenuation and
albedo. Suppose that the attenuation coefficients are τ1
and τ2 in object 1 and object 2, respectively, and similarly
their albedos are a1 and a2. In their intersection, the parti-
cles of both objects are present, so the probability density
of photon–particle collision is the sum of the elementary

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)



probability densities:

τ = τ1 + τ2.

Considering the albedo, i.e. the conditional probability
that reflection happens given that the photon collides, we
can obtain the following combined value:

a =
τ1a1

τ1 + τ2
+

τ2a2

τ1 + τ2
.

The properties of the segments can be determined while
traversing the list. The list items represent surfaces, i.e.
object boundaries, where the optical properties of only the
respective object can be fetched. Thus, the optical prop-
erties of the segments, including the combination of the
albedos and the attenuation coefficients, need to be com-
puted on the fly while we are traversing the list.

Suppose, we maintain two running variables a and τ that
represent the albedo and the attenuation coefficient of the
current segment. When a list item is processed, i.e. when
we cross a surface, these running variables are updated.
If the list item represents a front facing surface, then we
enter object o whose parameters are stored in the list, in
variables ao and τo. Consequently, the running albedo and
attenuation are updated to reflect the properties of this new
object:

a ← (τa+ τoao)/(τ + τo),

τ ← τ + τo.

When the traversal encounters a back-facing fragment,
we leave an object, thus its attenuation and albedo should
be removed from the combined values. To execute this,
the inverse of the previous formulae should be evaluated:

τ ← τ− τo,

a ← (τa+ τoa− τoao)/τ.

In order to initialize these iterations when we start the
list traversal from the eye position, we should determine
which objects contain the eye position. This information
can be found by traversing the ordered list backward start-
ing at the farthest intersection point, where we assume that
we came from free space, thus τ = 0 and a = 1. During
this initial traversal, the same operations are performed,
just the roles of front-facing and back-facing segments are
exchanged.

4 Results

The presented algorithm has been implemented in a Di-
rectX 11/HLSL environment on an ATI Radeon 5700
graphics card. The modeled scene consists of 50000
opaque triangles and 150000 transparent triangles, the res-
olution for the tests is set to 800× 600. The frame rate
mainly depends on the depth complexity of the currently

rendered scene. If no transparent object is present, the per-
formance is about 110 FPS because of the overhead of the
two-step process. As the depth complexity and the trans-
parent area grow, the frame rate decreases. If there are
more than 20-30 layers of transparent surfaces, the perfor-
mance falls below 10 FPS.

The test scene for the table above consists of full screen
layers, so each frame’s linked list contains the same num-
ber of layers.

Table 1: Results with 800×600 resolution
Layer count FPS

2 90
4 49
6 32
8 23
10 18
12 14
14 12
16 10

Table 2: Results with 1024×768 resolution
Layer count FPS

2 51
4 27
6 18
8 13
10 10
12 8
14 6
16 5

5 Conclusions

The paper introduces a real-time method for rendering
transparent, and possibly intersecting objects considering
the order of the fragments. The implementation is capa-
ble of running relatively high framerates and provides a
mathematically correct and more realistic result. The pre-
vious approaches were able to render simple scenes with
low resolution and frame rates, thus, the method presented
here demonstrates a significant advancement. In the future
this technique can be used in particle systems, improving
the quality of particles and eliminating artifacts when in-
teracting with each other. Currently, we can handle about a
hundred particles in real-time. The plans for the future also
involve the shading of the transparent objects. The cur-
rent solution uses only ambient lights and Rayleigh shad-
ing, the introduction of various light sources and shadows
would significantly improve the rendering quality.

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)



Figure 6: Rendering results (internal view of a space ship).

Acknowledgements

This work has been supported by OTKA K-719922, and
by the scientific program of the “Development of quality-
oriented and harmonized R+D+I strategy and functional
model at BME” (Project ID: TMOP-4.2.1/B-09/1/KMR-
2010-0002). The authors are grateful to NVIDIA for do-
nating the GeForce 480 GPU cards.

References

[1] M. de Berg. Efficient Algorithms for Ray Shooting and
Hidden Surface Removal. PhD thesis, Rijksuniversiteit te
Utrecht, The Nederlands, 1992.

[2] Oskar Elek and Petr Kmoch. Real-time spectral scatter-
ing in large-scale natural participating media. In Helwig
Hauser and Reinhard Klein, editors, Proceedings of Spring
Conference on Computer Graphics 2010, pages 83–90.
Comenius University, Bratislava, 2010.

[3] C. Everitt. Interactive order-independent transparency.
Technical report, NVIDIA Corporation, 2001.

[4] Nicolas Thibieroz Holger Gruen. Oit and indirect illumina-
tion using dx11 linked lists. In Game Developers Confer-
ence, 2010.

[5] Kevin Myers Louis Bavoil. Order Independent
Transparency with Dual Depth Peeling. 2008.
http://developer.download.nvidia.com/SDK/10/opengl/src/
dual depth peeling/doc/DualDepthPeeling.pdf.

[6] L. Szirmay-Kalos and W. Purgathofer. Global ray-bundle
tracing with hardware acceleration. In Rendering Tech-
niques ’98, pages 247–258, 1998.

[7] L. Szirmay-Kalos, L. Szécsi, and M. Sbert. GPU-Based
Techniques for Global Illumination Effects. Morgan and
Claypool Publishers, San Rafael, USA, 2008.

[8] N. Thibieroz. Robust order-independent transparency via
reverse depth peeling in Direct3D 10. In Wolfgang Engel,
editor, ShaderX 6: Advanced Rendering Techniques, pages
211–226. Charles River Media, 2008.

[9] T. Umenhoffer, L. Szirmay-Kalos, and G. Szijártó. Spheri-
cal billboards and their application to rendering explosions.
In Graphics Interface, pages 57–64, 2006.

[10] Phil Willis. Projective alpha colour. Computer Graphics
Forum, 25(3):557–566, 2006.

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)


