
Towards Supporting Volumetric Data in FurryBall GPU Renderer

Michal Benátský∗

Supervised by: Jiřı́ Bittner†

Department of Computer Graphics and Interaction
Faculty of Electrical Engineering

Czech Technical University in Prague

Abstract

This paper describes an implementation of volumetric ren-
dering for FurryBall gpu renderer. Since FurryBall is di-
rectly integrated into Autodesk Maya, our volumetric ren-
derer supports all types of fluids, which can be simulated
in Maya. We discuss the issues of integrating volumetric
rendering into the FurryBall renderer. We show that our
implementation of volumetric rendering is up to 3 orders
of magnitude faster than Mental Ray on the tested scenes.

Keywords: volumetric rendering, fluids, modeling tools

1 Introduction

Fast rendering preview integrated directly into 3D mod-
eling tools, would significantly enhance the artists com-
fort and productivity. Most 3D modellers however do not
provide high quality realtime feedback and rendering of
scenes can take hours even days.

GPU based multi pass rasterization can be used to gen-
erate fast realistic previews and with some limitations it
can also be used to generate final high quality results. One
of such renderers is FurryBall [10], which is a GPU based
rasterization renderer, directly integrated into Autodesk
Maya.

In this paper we show how to extend the renderer for
dealing with fluids. In particular we discuss how to in-
tegrate our volumetric renderer with the rasterization of
transparent objects, shadows, hair systems, and how to
deal with volumetric grid containers intersections. We
present results obtained on several test scenes representing
simulated fluids and show that these results are consistent
with Mental Ray while obtaining a significant speedups.

2 Related Work

Rendering volumetric data is well studied area of com-
puter graphics. For a comprehensive overview of realtime
volumetric rendering techniques please refer to Hadwiger
et al. [3].

∗benatmic@fel.cvut.cz
†bittner@fel.cvut.cz

Figure 1: Church model render in FurryBall, model cour-
tesy of Art and Animation studio

Pixar’s RenderMan based on Reyes architecture [1] is
known as industry’s standard and is very widely used.
Render Ants [13] shows that it is possible to move all
stages of Reyes to the gpu. V-Ray is one of the leading
renderers in the field of GPGPU raytracing and it is fully
integrated into Autodesk Maya and 3ds Max. Another
well known render is iray from Mental Images, creators
of Mental Ray raytracer.

Apart from FurryBall we are aware of only a few com-
mercially available renderers based on multi pass rasteri-
zation. The most similar is pixar’s lpics [8] for realtime
preview of lighting on 3D scene. Another related renderer
is Mach Studio, which is a realtime GPU rasterization ren-
derer. However these renderers aren’t fully integrated into
3D modeling software such as Maya or 3Ds Max.

The rest of the paper is organised as follows: The basics
of volumetric rendering and our implementation of render-
ing volumetric data will be described in the next section.
In section 4 we will describe the integration of volume ren-
dering into existing renderer based on multi pass rasteriza-
tion on the gpu and the integration with Autodesk Maya
fluid rendering as well. In section 5 we will present results
of our work.

3 Volumetric Rendering

In this section we first describe the theoretical background
of volume rendering and then outline our implementation.

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)



Figure 2: Fur rendering with FurryBall, model courtesy of
Art and Animation studio

3.1 Theoretical background

The physical basis for volume rendering relies on geomet-
ric optics, in which is light assumed to travel along straight
line unless interaction with participating media takes place
[3]. The following types of interaction are typically taken
into account.

Figure 3: Ray in volume with emission, absorption and
scattering.

Emission Volume emits light and increasing the ra-
diative energy. Practical example could be fire, which
emits light by converting heat into light.

Absorption Volume absorbs light by converting ra-
diative energy into heat.

Scattering Light can be scattered by volume, chang-
ing the direction of light propagation.

For solving complex light transport problem are com-
monly used simplified models. In ”Absorption only”
model volume absorb incident light. No light is emitted or
scattered. ”Emission only” model presents volume which

is completely transparent, but can emit light. ”Emission-
Absorption” model is most common in volume rendering.
Volume emits light and absorb incident light. ”Single Scat-
tering” model counts with single scattering from light that
comes from external light source (not from the volume).
”Multiple Scattering” model has goal to evaluate the com-
plete illumination model for volumes.

Autodesk Maya uses ”Emission-Absorption” model.
Light scattering is approximated by shadow diffusion. Our
renderer is implemented into Maya, so we use Emission-
Absorption as well.

Emission-Absorption model can be described by
Volume-Rendering Integral, which integrates radiance
along the direction of light flow from the starting point
s = s0 to the endpoint s = D.

I(D) = I0e
−

D∫
s0

κ(t)dt
+

s∫
s0

q(s)e
−

D∫
s0

κ(t)dt
ds (1)

The term I0 represents the light from the background.
I(D) is the radiance leaving the volume at s = D. κ is
the absorption coefficient and q is emission. First term
of the equation 1 describes the light from the background
attenuated by volume. Second term represents the integral
contribution of the source terms attenuated by the volume
along the remaining distance to the camera.

τ(s1,s2) =

s1∫
s2

κ(s)ds (2)

τ defines optical depth between positions s1 and s2,
which defines how long can light travel before it is ab-
sorbed. Smaller values defines material which is near to be
transparent and higher values defines nearly opaque mate-
rial. Transparency for a material between s1 and s2 is:

T (s1,s2) = e−τ(s1,s2) = e
−

s2∫
s1

κ(t)dt
(3)

Once we define transparency, we can rewrite volume
rendering integral into:

I(D) = I0T (s0,D)+

s∫
s0

q(s)T (s0,D)ds (4)

Volume rendering integral cannot be solved analytically,
that’s why we use discretisation. Common approach is to
split integration domain into n intervals: s0 < s1 < ... <
sn−1 < sn. Transparency and color contribution of the ith
interval is:

Ti = T (si−1,si),ci =

si∫
si−1

q(s)T (s,si)ds (5)

The radiance at the exit point is:

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)



I(D) = I(sn) = I(sn−1)Tn + cn =

(I(sn−2)Tn−1 + cn−1)Tn + cn = ...

which can be rewritten as

I(D) =
n

∑
i=0

ci

n

∏
j=i+1

Tj (6)

with c0 = I(s0). Which leads to recursive front to back
equations

Ci =Ci+1 +Ti+1Ci

Ti = Ti+1(1−αi)

and back to front equation:

Ci =Ci−1(1−αi)+Ci

Ti = Ti−1(1−αi)

α is opacity and α = (1−T ).

Volume raycasting Volume raycasting [5] traces ray
from the camera into the volume and solves volume ren-
dering integral along these rays. The biggest advantage of
volume raycasting is that rays are completely independent
on each other and can be processed in parallel.

3.2 Implementation

We implemented two techniques for rendering the vol-
umes. The first method is very simple and visualises the
volume data as sprites (see Figure 4) and the second uses
volume raycasting.

Particle rendering - splatting We represent every voxel
of the volume as a vertex that is processed by a geometry
shader to create a billboard. When the billboard is raster-
ized, the pixel shader samples the color and value ramps
(transfer functions) to get appropriate color and opacity for
every pixel. This part was not expected to produce high
quality results, it was implemented only for the verifica-
tion of received data from Maya and especially for the fast
previews.

Volume raycasting Our second method uses volume
raycasting written in HLSL on the pixel shader. It was first
design decision to use direct compute, which is GPGPU
part of the DirectX 11 API, but the nature of volume ray-
casting is allowing to implement it on the pixel shader,
because of no need of synchronisations.

The rays are created based on the camera parameters.
We support variable focal points and off-axis stereo cam-
era. Ray origin and direction are converted into texture

Figure 4: Fluid rendered using splatting in FurryBall

space using inverted world matrix. Converting to texture
space allows faster raymarching and also it allows to per-
form a fast AABB test, because fluid container is a unit
cube in texture space. This tells us minimum and maxi-
mum distance where to sample on the ray.

The sampling has a fixed step, but depth jitter can be
used. Sampling is performed in parallel in the world space
and in the texture space. The world space position is im-
portant for connecting to existing and optimized Furry-
Ball shaders, especially for getting attenuation, light color
(which can be defined as a texture) and shadow.

Note that our current implementation of volumetric ray
casting fully replaced the splatting based approach as it
can render a more accurate preview even faster (when us-
ing under sampling).

4 Integration with FurryBall and Au-
todesk Maya

FurryBall is a GPU based rasterization plug-in for Au-
todesk Maya [10]. FurryBall’s initial purpose was a fast
preview for artists, before raytracing a CG movie. As its
development continued, the rasterization possibilities were
able to suit most of the artist’s needs and therefore it was
extended from a simple previewer into a complete produc-
tion renderer. FurryBall is written in C++, using DirectX
11 API and Open Maya API. It uses also Python and Maya
Embedded Language (MEL). See Figure 1 and 2 for exam-
ples of images rendered with FurryBall.

4.1 Integration with FurryBall

Camera settings FurryBall supports all Autodesk
Maya’s camera settings, which means that implemented
volume raycaster must support all this settings too and
build rays correctly. We solved this problem by recon-
structing near and far plane in world space using viewport,
view and projection matrix and passing them to the shader.
Then we interpolate between corner values and find cor-
rect ray origin and direction.

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)



Opaque objects FurryBall allows to render all polygo-
nal meshes and apply various textures such as color tex-
tures, bump textures and displacements textures. It also
supports Maya layered textures and realtime adaptive Di-
rectX 11 HW tessellation with displacement textures.

Volume raycasting can be combined with opaque geom-
etry easily by stopping sampling at z-buffer value. Prob-
lematic part if this approach is when the size of the final
render is not equal with the size of fluid render pass. This
is supported because gaseous phenomena basically doesn’t
have hard edges and can be rendered in lower resolution.
It is possible to have fluid render pass at 1/2 resolution
of final render without visible quality loss. However this
produces artifacts if geometry is inside volume, if no lower
resolutions are possible to use even for final rendering.

Transparent objects Transparent objects in FurryBall
are rendered with depth peeling [2] , with the possibility
to set up the number of layers.

Integration of volumetric objects with transparent ge-
ometry is problematic, especially when geometry inter-
sects fluid container, there is need to blend objects into
the fluid in correct sample.

Two approaches were considered. First use customised
depth peeling which take into account fluid rendering.
That would solve the problem of sorting and also would
solve problem of transparent object and fluid intersection
by splitting fluid sampling into more parts.

Another considered approach was using order indepen-
dent transparency presented by AMD at GDC 2010 [7],
which uses unordered access writes into the output mem-
ory and outputs linked list for every rendered fragments
containing informations about depth and color. This linked
list is then sorted per fragment on the compute shader,
blended with each other in correct order and then with the
final render. This should be combined with fluid rendering
by passing ordered lists to the fluid rendering pass.

Shadows for meshes FurryBall integrates various
shadow mapping techniques. Basic shadow mapping tech-
niques, including basic shadow mapping for spot and point
lights and cascade shadow maps for directional lights [6].
[11]. For computing simplified soft shadows it uses PCF
or more advanced PCSS [6], which can either use regular,
Perlin or Poisson disk sampling.

It is not hard to combine our volumetric rendering with
shadow mapping. Ray sampling in raycaster knows world
position of the sample, so it can ask shadow map for shad-
ows.

Reflections and planar mirrors General reflections and
refractions and computed using environment mapping.
Planar mirror reflections use rendering into a texture from
the reflected camera position.

Both of these methods are not problematic to combine
with described volume raycasting as rays can be created

from the viewport and camera matrices.

Hair systems FurryBall has its own hair rendering sys-
tem. It is based on constructing billboards or regular ge-
ometry along curves on geometry shader. This might be
slower than a solution with lines, but it offers much more
control and possibilities. Such as vegetation rendering us-
ing textured fur. Curves can be fully independent of Maya
or can be connected to Maya hair system and benefit from
Maya hair simulation.

Fluid integration with the hair rendering is the same as
with regular geometry and rays stops at z-buffer value.

Shadow for hair and fur Shadows for hair can be com-
puted by common shadow mapping techniques, which,
however, do not provide sufficient quality. Tiny objects
like hair appear much better when being shadowed with a
transition function. Therefore FurryBall implements Deep
Opacity Maps [12] and Fourier Opacity maps [4] for these
cases.

Self shadowing and casting shadows for fluids is using
Fourier Opacity maps, which allows us to save multiple
hair systems and fluid containers into one map and cast
shadows one to another and on the geometry.

Fluid containers intersections Fluid container inter-
sections is common case in Autodesk Maya rendering. It
is used for create sky, where one container simulates blue
atmosphere and second contains clouds. Problem of fluid
intersections is that samples has to be blended together
correctly.

More approaches was considered. First one was very
similar to depth peeling, where volume sampling is done
in layers and layers are blended together. This wasn’t ac-
cepted as too slow. We decided that FurryBall will sam-
ple two fluids together in one pass, if they intersects each
other. This solution is faster and more accurate than mak-
ing slices.

4.2 Integration with autodesk Maya

Maya offers very complex fluid solver, which is based on
Navier-Strokes equations. The solver can handle both 2D
and 3D grids and simulates density, temperature, speed,
fuel and pressure. It also supports user defined gradients
and constants in the simulation.

For fluid shading the most important are the ramps for
colors and other values. Ramps define transfer functions
by piece-wise linear functions. The user can connect one
of the functions (like density or temperature) with one of
the shading ramps (color, incandescence and opacity). It is
also possible to connect gradients. Every ramp also has a
specified bias. Color ramp defines the RGB transfer func-
tion which is affected by each light. Incandescence is also
color transfer function which defines emitted light from

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)



the volume. And at last is there opacity ramp which de-
fines opacity transfer function.

Figure 5: Fluid shading setup in Autodesk Maya

The final appearance depends on several additional set-
tings. The user can define RGB transparency, which af-
fects final opacity and color and also can choose some of
the dropoff functions. User also define the number of sam-
ples per voxel and choose whether the fluid in container
will receive/cast shadows. Maya light linking is also avail-
able (linking lights with scene objects to determine which
one is lighted with which light). User chooses volume res-
olution and size, which affects final density, regular scale
doesn’t.

Fluid can be affected by procedural noises. Perlin [9],
Billow, Volume wave and Wispy noises are employed.
Lots of setting is possible. Coordinates can be fixed with
volume grid or can flow fluid simulation by using velocity
vectors. In FurryBall fluid renderer is currently Perlin and
Billow noise implemented.

Fluids can receive and cast shadows. Self shadowing of
fluid can be turned off for better performance of rendering.
For better performance is also possible set fluid to do not
interact with all lights in scene (or linked lights) but only
one defined via fluid node gui.

Fluid node also enables to choose number of sample per
voxel and interpolation method (linear or Smooth - cubic).

Our fluid renderer reads all ramps through the Maya
API, samples them into a 2D texture. The attached func-
tions such as density or temperature are loaded into 3D
textures. The gradients are not loaded as they are com-
puted directly in a shader.

FurryBall Mental Ray speed up
no shadows 11ms 12000ms 1009 ×
shadows 36ms 18000ms 534 ×
shadows and noise 96ms 26000ms 279 ×
fire 96ms 6000ms 62 ×

Table 1: Rendering performance of FurryBall compared
to Mental Ray. For rendered images see Figure 6. Im-
age resolution was 800x600px. Scene with percolator con-
tained 12000 triangles and fluid container with resolution
10×10×10. And scene with fire contained 300 triangles
and fluid container with 35×35×35 resolution.

5 Results

FurryBall is able to render all of the maya fluids and pro-
vide same or very similar results as built-in renderers. In
this section we will present several images rendered with
FurryBall with their render times. Table 1 shows the ren-
dering performance of FurryBall compared to Mental Ray,
which we used as reference, on 4 different scenes. Figure
6 shows scenes referred in table 1. Figure 7 shows clouds
created using perlin noise and Figure 8 shows scene with
homogenous volume and two spot lights.

Figure 6: Images with render times. Left column: ren-
dered with FurryBall. Right column: rendered with Men-
tal Ray

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)



Figure 7: Procedural clouds rendered in FurryBall

Figure 8: Volume with constant density, two lights are in
scene

6 Conclusion

FurryBall became an interesting alternative to traditional
renderers. It can be used for previsualization and realtime
feedback before raytracing, but also as a final renderer,
which can still provide results 50 - 300 times faster than
traditional renderers. It is current being used for produc-
tion of a new feature movie. Currently the fluid rendering
plugin for FurryBall supports ray marching with emission
and absorption and without restricting the user it produces
the same or very similar results as reference built-in ren-
derers.

References

[1] Robert L. Cook, Loren Carpenter, and Edwin Cat-
mull. The reyes image rendering architecture. SIG-
GRAPH Comput. Graph., 21:95–102, August 1987.

[2] Cass Everitt. Interactive order-independent trans-
parency, 2001.

[3] Markus Hadwiger, Joe M. Kniss, Christof Rezk-
salama, Daniel Weiskopf, and Klaus Engel. Real-
time Volume Graphics. A. K. Peters, Ltd., Natick,
MA, USA, 2006.

[4] Jon Jansen and Louis Bavoil. Fourier opacity map-
ping. In Daniel G. Aliaga, Manuel M. Oliveira,
Amitabh Varshney, and Chris Wyman, editors, SI3D,
pages 165–172. ACM, 2010.

[5] Marc Levoy. Display of surfaces from volume data.
IEEE Comput. Graph. Appl., 8:29–37, May 1988.

[6] Mahdi Mohammadbagher, Jan Kautz, Nicolas
Holzschuch, and Cyril Soler. Screen-space
percentage-closer soft shadows. 2010.

[7] Holger Grn Nick Thibieroz. Oit and gi using dx11
linked lists. AMD, 2010.

[8] Fabio Pellacini, Kiril Vidimce, Aaron E. Lefohn,
Alex Mohr, Mark Leone, and John Warren. Lpics:
a hybrid hardware-accelerated relighting engine for
computer cinematography. ACM Trans. Graph,
24(3):464–470, 2005.

[9] Ken Perlin. Improving noise. ACM Trans. Graph.,
21:681–682, July 2002.

[10] FurryBall renderer. http://furryball.aaa-studio.eu.
Art and Animation studio, 2010.

[11] Erik Sintorn, Elmar Eisemann, and Ulf Assarsson.
Sample-based visibility for soft shadows using alias-
free shadow maps. December 10 2008.

[12] Cem Yuksel and John Keyser. Deep opacity maps.
Comput. Graph. Forum, 27(2):675–680, 2008.

[13] Kun Zhou, Qiming Hou, Zhong Ren, Minmin Gong,
Xin Sun, and Baining Guo. Renderants: interactive
reyes rendering on gpus. Number 5, pages 155:1–11,
New York, NY, USA, 2009. ACM. SIGGRAPH Asia
2009.

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)


