Overview of current developments in haptic APls

Petr Kadlecek
Supervised by: Petr Kmoch

Charles University in Prague
Faculty of Mathematics and Physics
Prague / Czech Republic

Abstract

Haptic technology as a key part of human-computer inter-
action allows us to use sense of touch in virtual reality by
kinesthetic feel using force feedback. Increased produc-
tion of haptic devices in recent years supported the devel-
opment of many tools and libraries for programming appli-
cations with support of haptics. This paper introduces hap-
tic technology and focuses on comparison of haptic appli-
cation programming interfaces, especially on open-source
and cross-platform solutions. We present different types
of abstraction layers used in haptic APIs, basic haptic ren-
dering methods and effects as well as a general overview
of design concepts used in selected APIs. CHAI 3D haptic
library is analyzed in more detail.

Keywords: haptic technology, human-computer interac-
tion, haptic rendering, CHAI 3D, H3D API

1 Introduction

Kinesthetic sense provides us with information about
movement and position of our body parts in the environ-
ment. We are able to feel various forces in different di-
rections and use this information to determine the size,
shape and other characteristics of objects we touch and
forces they exert. Haptic modality of human-computer in-
teraction utilizes sense of touch which is generally incor-
porating hands, upper torso, head and other parts of the
body. The purpose of a haptic device is to generate force
feedback of a given direction and magnitude in a speci-
fied workspace and send the position of a control part of
the apparatus to the computer. One of the most valuable
applications of haptic devices is in medicine (simulations
of surgical operations, teleoperation, virtual palpation [5]).
Haptic devices are also valued as assistive technology for
visually impaired or blind people [7]. Other applications
can be found in military, painting, CAD systems and gam-
ing.

Haptic devices can be generally divided by the di-
mension of an orientation ability called degrees of free-
dom (DOF). That is basically translation (3-DOF) and
translation combined with rotation (6-DOF). A typical ex-
ample is a movable grip for 3-DOF devices (e.g. Novint

Figure 1: PHANToM Desktop (on the left) and Novint
Falcon (on the right)

Falcon shown in Figure 1) and a pen on a pivot with the
ability to rotate and translate in all three dimensions for 6-
DOF devices. There are also 6/3-DOF devices that com-
bine 6-DOF positioning and 3-DOF force feedback (e.g.
PHANToM Desktop shown in Figure 1). 7-DOF devices
have a scissors snap-on, a thumb-pad or any other extra
grip.

Common comparable properties which can be found
in technical specifications of haptic devices include:
workspace specifying a maximal reach of a touch tool (of-
ten measured in inches) and maximal rotation abilities if
appropriate, position resolution of a touch tool measured
in dots per inch (DPI), maximal force specified in new-
ton unit or as a force capability in kilograms or pounds
and stiffness of a haptic device along a degree of freedom
measured in newtons per metre.

While force feedback gives a sense of force or gener-
ally a kinesthetic feel, tactile and touch sensing is used
when one wants to feel pressure, heat or fine textures (and
any other sensation felt by the skin). Haptic devices do
not usually provide cutaneous sensation and it should not
be confused with kinesthetic feel. Technology prototypes
using both kinesthetic and tactile feedback have been pro-
posed [6].

Although the sense of touch is not as acute as hearing,
its accuracy is somewhere in between sight and hearing.
Humans need approximately 1000 Hz frequency of haptic
feedback to achieve smooth force perception. If the fre-
quency is smaller than 1 kHz, a haptic stimulus felt by or-
gans of human kinesthesia is unrealistic and may even lead

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)

to system instability, potentially causing injury or damag-
ing the device as stated in [11]. This means that a haptic
loop has to be at least 30 times faster compared to min-
imal real-time computer graphics rendering rates, which
demands great optimizations in haptic applications.

The remainder of this paper is organized as follows: In
Section 2, we discuss different abstraction layers of haptic
APIs. Basics of haptic rendering algorithms, haptic effects
and other extensions are presented in Section 3. Sections
4, 5 and 6 are devoted to overview of CHAI 3D, HAPI,
H3DAPI and other haptic APIs. The paper concludes with
a table of haptic APIs specification and benchmark.

2 Abstraction layers of Haptic APls

There are various methods of implementing haptic device
control into an application ranging from the lowest driver
layer to the highest scene graph layer. The most important
decision a software architect has to make is a choice of the
particular abstraction layer (shown in Figure 2) at which
the rest of the application communicates with haptics.

scene graph API

high-level layer

haptic rendering

low-level API

driver

kinematic algorithm

Figure 2: Abstraction layers of haptic APIs

2.1 Driver layer and kinematic algorithm

The lowest layer at which the programmer can communi-
cate with the device is a driver of the operating system. At
this layer the driver receives raw data through a serial bus
(e.g. USB, IEEE 1394) from encoders that has to be pro-
cessed with kinematics algorithms to get the data that cor-
responds to a three-dimensional vector of the haptic tool
position in Cartesian coordinates. Kinematic algorithms
are often a part of the driver because of specific techni-
cal specifications of every device. Manual initialization,
opening and closing communication with the device or an
inverse kinematics algorithm which computes force data
in the application and sends it to the device to compute an-
gles at haptic device joints is also essential. To preserve a
smooth haptic response thread handling has to be done.
For this reason, an extra haptic thread which calculates
physics in the application is necessary.

The driver layer provides the fastest and the most pre-
cise response but demands a great effort to get the device
working. Support of any other haptic device that has no
compatible communication protocol means rewriting a lot
of source code.

Manufacturers of haptic devices often provide opti-
mized and well documented drivers in the C or C++ pro-
gramming language. There are also open source and cross
platform drivers that can provide support in officially un-
supported operating systems such as Linux or Mac OS.

2.2 Low-level API

While the driver layer communicates in raw data, a low-
level API hides the kinematics algorithm implementation
from the programmer and allows developers to work di-
rectly with position, rotation and force vectors in the appli-
cation. Many low-level APIs works as a common interface
for different drivers which is very helpful when supporting
a lot of haptic devices. A device handler is then used for
getting information on haptic devices available on the cur-
rent machine. Reading information from haptic devices
may be blocking or non-blocking. Blocking servo loop
callback stops the application thread where the function
was called and reads the data at the frequency of haptic
interface servo loop. A typical haptic application using
low-level API is presented in algorithm 1.

Algorithm 1 Application using low-level haptic API
Initialize haptic device handler
number of haptic devices < haptic device handler
if number of haptic devices = 0 then
Exit
end if
specification of haptic devices < haptic device handler
Initialize specified haptic device(s)
while Simulation running do
position < haptic device {blocking or non-blocking}
compute force {haptic rendering}
force — haptic device
end while

2.3 High-level layer

A graphical and haptical data representation of a model
may be very similar or sometimes even identical. Integra-
tion of graphics and haptics into one API is therefore rea-
sonable. There are several different approaches to create
high-level API. One of the most intuitive way of incorpo-
rating haptics into application is based on calling similar
functions that are provided in OpenGL graphics library.

A layer which handles computation of forces for a given
model is called a haptic rendering layer. We describe it in
more detail in the next section.

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)

2.4 Scene graph API

A scene graph haptic API often uses a tree structure of ob-
jects in the virtual world with a specific root node such as
a world node. It is possible to apply graphical and hap-
tical properties to an object and set the specific property
recursively to its child objects.

A scene graph API often includes low-level APIs for
haptics, graphics, physics and audio processing. It pro-
vides all the features of low-level APIs and even more by
combining them together. Haptic and graphic rendering is
essential in the scene graph API oriented on haptics.

The concept of combining low-level APIs into one often
creates many drawbacks which the high-level scene graph
API implementation may or may not hide from the pro-
grammer. Difficulties connected with such a combination
of different APIs may result in a thorough problem anal-
ysis that may not even be solvable with a feasible effort
because the APl itself may be proprietary and authors may
not support the API any more.

A scene graph haptic API is the best choice for proto-
typing an application when the speed of development is
crucial and performance is not a priority. Support of a
scripting language or standard file format representation
of a scene helps even more with rapid development.

3 Haptic rendering

One of the most important algorithmic problems associ-
ated with haptics is computation of interactions between
the haptic tool and virtual objects. Creating a convinc-
ing force reaction on a complex object is a nontrivial task
that is dependent on data representation. The technique of
haptic interaction processing in the virtual scene is called
haptic rendering (or haptic display). As in graphic render-
ing, where the image is composed from a model based on a
virtual camera position, the process of haptic rendering re-
turns a force on the basis of a model with which the haptic
tool interacts. Creating a good haptic rendering algorithm
is a struggle to maintain realistic force feedback without
using cumbersome computations which raise memory and
CPU requirements.

There are basically two accepted standard methods that
are implemented in high-level haptic APIs for 3-DOF hap-
tic rendering: God-object method by Zilles et al. [15] and
Virtual proxy method by Ruspini et al. [11]. It should be
noted that even though there are many articles concerning
6-DOF haptic rendering, there is no standard widely-used
implementation.

The maximal stiffness capability along any degree of
freedom is limited on every haptic device. Therefore, a
user may move a haptic tool with a force which lets them
penetrate into a rigid body or any kind of object. Hap-
tic rendering algorithms are trying to solve this problem
by exerting an adequate force that is pushing a haptic tool
away from the object.

3.1 Penalty based methods

The simplest type of haptic rendering technique specifies
a force vector for every point in a scene by calculating the
nearest resting position of a haptic tool also represented as
a point. If the haptic interface point is outside the object,
the resulting force is zero, otherwise the force vector has
a magnitude proportional to the penetration distance. This
kind of method is also called vector field method [15] or
penalty based method [11]. This technique, however, has
many drawbacks which make it useless for at least plausi-
ble simulations. As this method does not save a history of
haptic interface point movement, discrete space of haptic
servo updates may result in unnoticed penetration through
an object in one haptic loop step as shown in Figure 3
on the left. Another pop-through problem may come up
when penetration is too deep and the desired nearest rest-
ing point is on the other side of the object as shown in
Figure 3 on the right.

time n+1

.-@ @ resting point

timem .

Figure 3: Pop-through problems with penalty based meth-
ods

3.2 God-object method

To solve pop-through problems mentioned in penalty
based methods a God-object method was proposed [15].
The God-object represents a virtual point in the scene that
is not able to penetrate into rigid bodies and thus behaves
correctly. A position of the God-object is updated in every
haptic loop step.

¢ timen

God-object God-object

‘: time n+1

Haptic interface point
Figure 4: God-object

If the haptic interface point (HIP) penetrates into an
object, the movement of god-object towards HIP is con-
strained by a surface of this object and the resulting force is
calculated by simulating an ideal mass-less spring (shown

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)

in Figure 4) which is, according to Hooke’s law, defined
as follows:

F,=—kAx = —k()CHIP _xGodObject) ey

where Ax is a displacement of spring and k is a spring
constant defining the stiffness of the surface.

The God-object method can be easily extended [14] to
support static and dynamic friction on rigid bodies which
is essential to achieve realistic haptic stimulus. Haptic
shading, an analogous algorithm to Phong shading can be
applied on force feedback on surface normals to create an
effect of smooth surface. Another association to computer
graphics is in the use of textures. A haptic texture mapped
on the object can be used to simulate different kinds of
materials such as wood, stone or metal. Realistic haptic
texture rendering has been investigated in [3].

3.3 Virtual proxy method

Polygonal meshes often contain small surface gaps be-
cause of low-quality digitization or non-precise modeling.
When the god-object enters a mesh through a small gap,
the user gets stuck inside the mesh until he finds the gap
again. To resolve the problem we either fill in small gaps
in the process of loading the mesh or we set a radius of the
god-object in collision detection with constraint planes.
The Virtual proxy method [11] proposes to treat a pre-
sentation of the haptic tool in the virtual environment as
a sphere (as shown in Figure 5). Extensions discussed
in God-object method are applied simply by moving the
proxy and thus changing the resulting force.

Virtual proxy

haptic interface point
Figure 5: Virtual Proxy

In the remainder of this paper, we will examine several
common haptic APIs in more detail.

4 CHAI3D

CHALI 3D [4] is a scene graph API written in the C++ pro-
gramming language with aim to create a modular, open
source and cross platform haptic API with a wide support
of different haptic devices (and a virtual device working on
Microsoft Windows platform). CHAI 3D is licensed under
GNU General Public License (GPL) version 2 but also of-
fers a Professional Edition License. The main reason to
create CHAI 3D was that all available APIs developed by

manufacturers of haptic devices were proprietary and sup-
ported only the one specific device or a group of devices
from the manufacturer.

The scene graph capabilities of CHAI 3D mainly fo-
cus on haptics combined with graphics. It does not in-
clude any extra visual or sound effects but it does propose
lightweight and compact functionality. CHAI 3D is defi-
nitely not the API with tons of functions ready for the im-
plementation of sophisticated applications. It is rather the
API for academic and research use where the extra func-
tionality can be easily added.

Though the API manual or tutorials do not yet exist, the
source code is very well documented and is very easy to
read and scan through. The reference guide generated by
a Doxygen documentation system could serve as a quick
guide over the source code but it is not a comprehensive
source of learning CHAI 3D. Authors of CHAI 3D rec-
ommend to learn by the examples in packages for dif-
ferent platforms. This method gives the learner a decent
overview of the API but does not allow to fully understand
some fundamental characteristics of the API which makes
the learner read part of the API source code eventually.

4.1 Low-level use of API

Though the CHAI 3D library is a scene graph API, use
of CHAI 3D as a low-level communication layer is conve-
nient. CHAI 3D provides support of many devices and an
easy to use device handler cHapticDeviceHandler. Every
device is then treated as a generic haptic device cGener-
icHapticDevice with basic ability to get a position, set a
force, device communication opening, initialization and
closing.

4.2 CHAI 3D scene graph

A scene graph of CHAI 3D contains standard shapes,
meshes, virtual cameras and lights. The main unit of
all objects in the scene graph is a cGenericObject class
which inherits from a general abstract type cGenericType.
The generic object creates a tree structure of objects using
a standard template vector class of children objects in a
m_children member. All methods for object modification
or property setting allow propagation to children by setting
an optional function parameter a_affectChildren, which is
by default set to false. CHAI 3D scene graph has one root
node class for every object in the scene called cWorld. This
class is essential for further communication with graphics
and haptics.

The API contains only three standard object shapes (two
implicit surface objects): sphere (cShapeSphere) defined
by a radius, torus (cShapeTorus) defined by an inside and
an outside radius and line (cShapeLine). Beside standard
shapes implemented in CHAI 3D API, it is possible to load
complex meshes in OBJ and 3DS formats.

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)

4.3 Haptic tool

The scene graph representation of a haptic device is
called a tool. An abstract class defining all tools in the
scene graph is cGenericTool. The only specific tool that
CHALI 3D provides at this time is a 3-DOF tool identified
as a cGeneric3dofPointer. 6-DOF force rendering algo-
rithms are not supported.

The generic tool is also a generic object which means
that the tool has its position, rotation and all other object
properties. The tool itself needs only a pointer to the hap-
tic device from a device handler. It manages all the ini-
tialization automatically by calling a start method. A stop
method does the opposite.

The default device mesh of the generic 3-DOF pointer
displays the tool as a sphere. God-object algorithm with
variable radius is used for the haptic force rendering for
which there are two meshes representing the tool:

e a device mesh (m_deviceMesh) which represents the
real current position of the haptic device touch tool

e a proxy mesh (m_proxyMesh) which represents a
model of the haptic interface in the virtual environ-
ment

The force model is also defined as the abstract
model (with a generic class cGenericPointForceAlgo) split
into cProxyPointForceAlgo and cPotentialFieldForceAlgo
classes. The cProxyPointForceAlgo class implements the
God-object method and cPotentialFieldForceAlgo class
process local interaction relating to haptic effects.

An overall force contains assigned local haptic effects
and interaction forces computed on the base of haptic de-
vice properties (e.g. stiffness), a position relative to an in-
teraction projected point on the interacting object surface
and a best new position of the proxy model in the proxy
point force algorithm. Interaction detection is not always
precise especially in complex meshes and the proxy model
gets sometimes stuck and generates excessive force.

The tool works in a workspace set by a radius. It is pos-
sible to change the radius and position of the workspace
and its rotation relative to the scene. The tool is often at-
tached to the camera so that the workspace corresponds to
the view of the camera. A schema of haptic tool interac-
tion process is shown in Figure 6.

4.4 Haptic effects

The CHAI 3D scene graph provides a set of haptic ef-
fects that can be assigned to implicit surface objects [12].
These effects are computed using a local interaction com-
puteLocallnteraction method of each object. The mesh or
any other complex object without overridden computeLo-
callnteraction method is not able to apply haptic effects
because there is no way how to compute an interaction
projected point from a generic object algorithm. Only the

proxy point algorithm is used for these objects to calculate
forces.

Haptic effects with the base abstract class cGenericEf-
fect in the API are as follows:

e Magnetic model effect cEffectMagnet provides a
magnetic field effect near the object

o Stick-slip effect cEffectStickSlip provides an effect of
sliding one object on another with sticking caused by
friction (e.g. rubber on a desk)

e Surface effect cEffectSurface provides a basic surface
effect of a tool pushing against the object

e Vibrations effect cEffectVibration provides an effect
of a vibration with a specific frequency and amplitude

o Viscosity effect cEffectViscosity provides an effect of
a tool moving through a fluid

cGeneric3dofPointer
cWorld

cGenericTool
cMesh *

cGenericObject

cProxyPointForceAlgo [| God-object* [T

cPotentialFieldForceAlgo cGenericEffect ° cShapeSphere °

o cGenericObject
cGenericPointForceAlgo cEffectMagnet

cEffectVibration

Figure 6: Schema of a haptic tool interaction process in
CHAI 3D - effects can be applied only on implicit surface
objects, God-object method is used for mesh objects in
cWorld, as denoted by asterisk and circle

All effects are very sensitive to a good setting of proper-
ties such as a maximal stiffness of the haptic device. A rel-
atively small change of effect properties can make a great
difference in the effect perception and sometimes even a
different driver may result in a different effect behavior.

4.5 ODE module

The CHAI 3D library does not implement its own rigid
body dynamics simulation. There is, however, a module
that connects the CHAI 3D scene graph with the Open Dy-
namics Engine (ODE) library.

Communication of CHAI 3D and ODE is handled by
cODE, cODEWorld and cODEGenericBody classes. The
API contains precompiled ODE libraries for both dynamic
and static linking with double precision. Preprocessors
definitions need to be set correctly in order to run an ap-
plication properly without runtime errors.

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)

Every object in the ODE simulation has to be added to a
specific ODE world. Such an object is defined as an ODE
generic body with properties of physical simulation and
a CHAI 3D body image model of the scene graph. The
ODE world is a generic object which behaves as a child
object in the standard parent world object but has a list of
bodies instead of a list of children. However, all recursive
algorithms in CHAI 3D look up children list in the scene
graph. For instance, it is therefore not possible to assign a
haptic effect to an object in the ODE simulation because
the rendering algorithm is using the mentioned recursion
through children list. A fix of this behavior can be found
in [10].

The ODE module enables creation of a dynamic box,
sphere, capsule and a mesh from an assigned CHAI 3D
body image model. Static planes are also available. A
global gravity can be set as a three-dimensional vector de-
scribing a force. Calling an ODE world updateDynamics
method with a step time function parameter updates the
simulation. Though the implementation of dynamics into
the scene graph is simple, a programmer still has to work
with the ODE world as a separate world and encounters
a lot of disadvantages when using recursive scene graph
algorithms.

4.6 GEL module

The haptic technology utilizes an implementation of a de-
formable body simulation more than any other technology.
CHALI 3D provides a module to create such deformable
objects in the scene graph which uses the GEL dynamics
engine developed at Stanford University.

As in the ODE module, the GEL module is imple-
mented as a separate world (cGELWorld) of deformable
objects. The main idea behind the deformation is a skele-
ton model made of nodes (cGELSkeletonNode) and links
(cGELSkeletonLink) between them. Nodes are represented
as spheres with a given radius and mass connected with
elastic links with spring physics defined by elongation,
flexion and torsion properties (as shown in Figure 7). Ev-
ery node has its physical properties (linear damping, angu-
lar damping, gravity field definition) and provides methods
to control force and torque.

The GEL module provides a simple way to add de-
formable objects to the scene graph, but integration of the
GEL dynamics engine in the lower layer of the scene graph
with automated skeleton modeling would considerably en-
hance the high level use of CHAI 3D.

5 H3D APl and HAPI

H3D API [1] is a high level scene graph API developed
by SenseGraphics. H3D API uses HAPI as a low-level
layer for haptics, OpenGL for graphics and the X3D XML-
based file format to represent the scene. The library is
written in the C++ programming language and is licensed

Figure 7: CHAI 3D GEL module example

under GNU GPL v2. Closed source license for commer-
cial use is also available.

5.1 X3D

The most interesting feature H3D API provides is scene
definition in X3D file format. The whole scene with a
camera set, lights, primitive objects, complex meshes, tex-
tures, etc. is defined as XML nodes. As X3D is originally
web-based technology, a texture or any other object loaded
from a file can have a URL path.

The haptic device is defined through a Devicelnfo node
with the haptic renderer specification, position calibration
and the proxy model appearance. H3D API implements
all HAPT haptic rendering functionality to the X3D speci-
fication. For instance, to add a frictional surface effect to
the shape in the scene, a XML node FrictionalSurface is
added to the appearance node of the shape with appropri-
ate properties.

H3D API also supports X3D routes which makes it pos-
sible to read data from one source and route it to a specified
destination. That is for instance routing the position of the
mouse from the MouseSensor node to the shape node posi-
tion. A PythonScript node allows to route data from X3D
to Python programming language functions.

5.2 Python interface

H3D API propose a very unique way of haptic program-
ming using Python scripts on top of the X3D scene defini-
tion. A Python interface to the H3D API implements X3D
creation and write functions, special bindable node access
(haptic device info, viewpoint, etc.) and X3D field types
so that it is possible to create a comprehensive application
just using the X3D and Python when there is no reason to
develop efficient real-time application.

5.3 Scene graph and C++

H3D API is not only the Python and X3D. The entire ap-
plication can be written in the C++ programming language

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)

for better performance. The C++ code allows to parse
X3D strings which makes it easier to create objects or set
materials in C++. This method should be used only in ini-
tialization of the scene because real-time X3D parsing in
a graphics loop of the application would lower the perfor-
mance.

H3D API s a perfect tool to create fast prototypes of ap-
plications using haptics. Python and X3D is available for
a very rapid development and C++ for higher performance
applications.

5.4 HAPI

HAPI [1] is a new complex open source high-level hap-
tic API also developed by SenseGraphics licensed under
GNU GPL v2. As with the H3D API, a closed source
license is also available. HAPI is written in the C++ pro-
gramming language and works on all major operating sys-
tems: Microsoft Windows, Linux and Mac OS.

HAPI is one of the most active haptic APIs support-
ing devices from Sensable, Force Dimension, Novint and
Moog FCS Robotics. There are four haptic rendering al-
gorithms available: God-object algorithm (described in
Section 3), Ruspini algorithm - Virtual proxy method,
CHALI 3D rendering, OpenHaptics rendering.

HAPI provides not only the basic device handling, but
there is also a number of haptic force effects, surface
effects, collision detection, primitive shape creation and
thread handling. A very specific functionality is graphics
rendering based shape creation. It allows a programmer
to create haptic shapes using standard OpenGL drawing
functions. A FeedbackBufferCollector class collects all
triangles that are rendered via the OpenGL library.

HAPI is very well documented with an accompanying
manual, reference manual generated by Doxygen docu-
mentation system and a lot of examples of all features. The
source code of a basic device handling application written
in HAPI using the AnyHapticsDevice class has just about
20 lines. HAPI can be downloaded as a Windows Installer
or as the source code.

The manual and examples make HAPI very easy to use.
HAPI is one of the best choice of commercial and non-
commercial high-level APIs with a very good support from
authors and can be also used as a low-level APIL

6 Other haptic APIs

OpenHaptics[13] is a commercial software development
toolkit designed for SensAble devices. The toolkit con-
tains scene graph API for rapid development, high-level
and low-level APIs and support for integration of haptics
into existing applications. OpenHaptics is also available
in Academic Edition.

There are many low-level APIs designed for specific
devices: HDAL [8] (Novint Haptic Device Abstrac-
tion Layer) which is a commercial closed source SDK

H3DAPI CHAI 3D
HAPI
HAPIHapticsDevice cGenericHapticDevice

cLibnifalconDevice °
cFalconDevice *

FalconHapticsDevice *
NiFalconHapticsDevice °

HDAL SDK * libNiFalcon °

Novint Falcon

Figure 8: Haptic API abstraction layers for Novint Falcon.
HDAL SDK wrapping classes are denoted by asterisk, lib-
NiFalcon wrapping classes are denoted by circle

for Novint Falcon device working only on Microsoft
Windows, libNiFalcon [9] - an open-source driver for
Novint Falcon working on all major platforms or JTouch-
Toolkit [2] (HDAL SDK and OpenHaptics HDAPI/HLAPI
wrapper for Java platform). Example of haptic API ab-
stract layers for Novint Falcon device is shown in Fig-
ure 8 (experimental implementation of libNiFalcon into
CHAI 3D is a part of [10]).

Conclusion

We have introduced haptic technology and discussed as-
pects of programming with haptics. We have shown that
there are many ways how to add support of haptic technol-
ogy into an application using different abstraction layer of
haptic APIs varying from haptic device driver, low-level
APIs to high-level scene graph APIs. We have presented
basic methods of 3-DOF haptic rendering - specifically
the God-object method and Virtual proxy method which
are used in high-level APIs such as CHAI 3D, HAPI or
OpenHaptics. Relevant parts of CHAI 3D haptic library
have been analyzed in detail including haptic tool, hap-
tic effects or ODE and GEL module support. Very active
haptic APIs HAPI and H3D API have also been analyzed.
H3D API brings a possibility to create haptic applications
in declarative programming language X3D with an inter-
face to Python programming language. Another commer-
cial device specific haptic APIs were mentioned such as
HDAL SDK or OpenHaptics.

Final comparison of haptic APIs is given in Table 1.
Computational load benchmark has been implemented in
selected low-level haptic APIs as a simple force field hap-
tic rendering algorithm. Benchmark ran on Intel Atom
330 1.6 GHz dual core CPU and results are shown in fig-
ure 9. Some APIs do not support blocking servo calls
which make fast haptic rendering algorithms (under 1ms)
to create pointless CPU load by polling data in loop. This

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)

API CHAI3D HDAL SDK JTouchTool. libNiFalcon HAPI H3D API OpenHaptics
Open source ° o . . ° ° o
Cross platform . o *) . ° °
License GPL/C C/N GPL BSD GPL/C GPL/C C/A
Development state ee0 eece e00 eeo0 eee cee eee
API manual o °) o ° ° .

API reference)) ° ° ° ° °
DeViCerange XX J [_NeXe] L X XNeJ [_XeXe] [XX J L X X] L X XeJ
Abstraction layer | High/Low Low Low Low/Driver High/Low High High/Low

Table 1: Haptic APIs comparison, C = commercial, N = non-commercial, A = academic, * = partial

behavior is taken into account and some APIs were extra

benchmarked with simple polling prevention.

48ME
14,7%

Force field haptic rendering benchmark

m CPU load
CPU load (without polling prevention)
Memory load

9,1%
8,1%

o
7,1% 7.0%

6,9%

3,8ws
1,8%
1,7we 1,8us I1:1ME

HDAL HAPI CHAI3D libNiFalcon JTouchToolkit

Figure 9: Benchmark based on simple haptic rendering
algorithm simulating force field with ideal spring defined
by Hooke’s law

Acknowledgements

I would like to thank Petr Kmoch for his support and ad-
vice throughout the creation of this work.

References

[1]

(3]

[4]

SenseGraphics AB. H3D API - haptics soft-
ware development platform, 2011. http://www.
h3dapi.org/.

John Archer. JTouchToolkit, 2008. https://
Jjtouchtoolkit.dev. java.net/.

S. Choi and H.Z. Tan. Toward realistic haptic ren-
dering of surface textures. In ACM SIGGRAPH 2005
Courses. ACM, 2005.

Conti Francois et al. CHAI 3D set of libraries, 2009.
http://www.chai3d.org/.

(5]

(6]

(7]

(8]

[9]

[10]

(11]

(12]

(13]

[14]

[15]

Williams II et al. The virtual haptic back for pal-
patory training. In Proceedings of the 6th interna-
tional conference on Multimodal interfaces, pages
191-197. ACM, 2004.

M. Fritschi, M.O. Ernst, and M. Buss. Integration of
Kinesthetic and Tactile Display—A Modular Design
Concept. In Proceedings of the EuroHaptics, 2006.

J.P. Fritz, T.P. Way, and K.E. Barner. Haptic repre-
sentation of scientific data for visually impaired or
blind persons. In Proceedings of the Eleventh An-
nual Technology and Persons with Disabilities Con-

ference. CSUN, 1996.

Novint Technologies Inc. HDAL - Novint Fal-
con SDK, 2008. http://home.novint.com/
products/sdk.php.

Kyle Machulis. [libNiFalcon - open source driver
for the Novint Falcon, 2009. http://qgdot.
github.com/libnifalcon/index.html.

Kadlecek Petr. A Practical Survey of Haptic APIs,
Bachelor’s thesis, Charles University in Prague,
Czech Republic, 2010.

Diego C. Ruspini, Krasimir Kolarov, and Oussama
Khatib. The haptic display of complex graphical en-
vironments. SIGGRAPH ’97, pages 345-352, 1997.

Kenneth Salisbury and Christopher Tarr. Haptic ren-
dering of surfaces defined by implicit functions. In
Proceedings of the ASME 6th Annual Symposium,
pages 61-68, 1997.

Sensable. OpenHaptics software development
toolkit , 2011. http://www.sensable.com/
products-openhaptics—-toolkit.htm.

C. B. Zilles. Haptic Rendering with the Toolhandle
Haptic Interface. Master’s thesis, Massachusetts In-
stitute of Technology, 1995.

C. B. Zilles and J. K. Salisbury. A constraint-based
god-object method for haptic display. IEEE Com-
puter Society, 1995.

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)

