
Proceedings of CESCG 2011: The 15
th

 Central European Seminar on Computer Graphics (non-peer-reviewed)

Particle-based Visualization of Large Cosmological
Datasets

Niko Lukač
*

supervised by: Borut Žalik
†

University of Maribor

Faculty of Electrical Engineering and Computer Science

Laboratory for Geometric Modelling and Multimedia Algorithms

Smetanova ulica 17, SI-2000 Maribor, Slovenia.

*
 niko.lukac@uni-mb.si

†
 zalik@uni-mb.si

Abstract

Large quantities of simulated cosmological particle-

based data cause considerable problems when it comes to

real-time visualization. This paper considers an out-of-

core approach for solving visualization problems on a

single-desktop workstation. The approach proposed in

this paper consists of two phases: the data preprocessing

and its visualization. During the preprocessing, the

cosmological data is hierarchically organized and

efficiently ordered. Before rendering, the data is

streamed to the memory from the disk. The culling

techniques, such as view frustum culling and level-of-

detail (LOD) are applied for visualization. In most cases,

the real-time visualization of large cosmological particle

datasets is achieved.

Keywords: Cosmological data, Particle-based

visualization, Level-of-detail

1 Introduction

A computer based 3D visualization of observed or

simulated particle data provides an insight for

astrophysicists into a better understanding of the

universe’s properties. Cosmological visualization is

extremely important for enabling the interactive

exploration of not fully understood phenomena. Because

the quantity of cosmological particle-based data

increases every year, it has become a challenge to

visualize this data in real-time on a single desktop

workstation despite the recent advances in technology.

This paper presents an approach for the efficient

visualization of large cosmological datasets using various

paradigms, such as hierarchical data structure (octree),

data ordering using hierarchical clustering, particle

culling (frustum culling and LOD), data streaming, and

prefetching.

The paper is organized into 6 sections. Section 2

provides a short summary and comparison with related

work. Section 3 briefly describes cosmological particle-

based data origin and properties. Section 4 focuses on the

proposed visualization approach. Section 5 describes the

results of our experiments on a desktop workstation. The

conclusion summarizes the paper and suggests for

improvements.

2 Related work

Several out-of-core point-based rendering approaches

have already been developed over recent years [1], in

order to efficiently visualize particle-based data. There

are different kinds of hierarchical data structures, and

LOD methods. Most of these methods are targeted

towards rendering surface or mesh-based point-cloud

data [2, 3, 4, 5]. The proposed method is designed to

visualize cosmological particle-based data that can

exceed system memory and represent an entirely

different point distribution i. e. the "cosmic web".

Because of clear differences in point distribution, the

proposed method differs from point-cloud surface

rendering methods, even though there are some

similarities: use of clustering for LOD simplification [5]

and hierarchical culling [2, 3, 4].

Several different approaches exist for cosmological

particle-based visualization: advanced visualization

toolkits [6], particle raytracing [7], isosurfaces extraction

[8], parallel-based visualization using clusters of

computers [9], particle culling methods [10, 11], spatial

data division by hierarchical data structures [10 ,11, 12],

exploiting the advantages of GPU [9, 10, 11], particle

splatting techniques [11, 12], and particle attributes

quantization and/or compression [11].

3 Cosmological particle data

Cosmological data is obtained from either observations

or simulations. Most simulations are linked to the cosmic

expansion of the universe [13, 14, 15] within a spatial

cube, the size of which is defined in megaparsecs [Mpc]

(1 Mpc is ~3.262 × 10
6
 light years or ~3.08 × 10

19
 km).

A time-step snapshot from cosmological simulation is

defined using cosmological redshift z, to describe the

Proceedings of CESCG 2011: The 15
th

 Central European Seminar on Computer Graphics (non-peer-reviewed)

specific time of expansion. There are different N-body

algorithms (cosmological codes) [16] that are used to run

a particle-based simulation. They are based on a

theoretical model describing not fully understood

cosmological phenomena, such as dark matter. The data

from observations contains portions of the observable

universe [17] and is considerably smaller in size than

simulated data. It is evident that large simulated

cosmological particle datasets contain millions, even

billions of particles, which makes it difficult to visualize

them in real-time. One of the better known cosmological

simulations is Millennium simulation [13], based on a

Cold Dark Matter (ΛCDM) model, and contains over

2160
3

particles resulting in large ~320 GB datasets for

each single time-step snapshot. Individual particle of a

cosmological simulation can represent different

structures (e. g. dark matter fluid) and has a range of

various attached attributes, depending on the simulation

type. Most common attributes are particle floating point

values of mass, spatial position and velocity.

4 Visualization approach

Our approach includes several methods aimed at

reducing hardware load by rendering fewer particles,

without visible loss of quality. The hardware load has the

following constraints: GPU memory capacity, system

memory capacity, disk capacity, disk latency, and a data

transfer bandwidth between different components. Large-

scale cosmological structures (e. g. filaments, clusters

and halos) need to be preserved, in order to retain quality

during the visualization. The proposed visualization

solution is targeted towards static particle data, such as

specific time-step snapshot of cosmological simulations.

Figure 1: Workflow of the entire visualization approach.

The entire visualization process is shown in Figure 1.

Firstly, the data is preprocessed by a hierarchical spatial

subdivision using an octree, and efficient ordering. This

phase is executed only once. Before rendering, the data

has to be streamed from the disk to the system or,

preferably, to the GPU memory. During the visualization

phase, the rendering process is speeded-up by removing

particles using view frustum culling, and LOD. Data

prefetching is utilized to further increase the rendering

performance.

4.1 Preprocessing phase

Firstly, the cosmological particle data is inserted into an

octree structure. The octree is then constructed in a top-

down manner, taking into account the particles positions.

The inner nodes are only used for visibility testing, and

the particles are stored inside the leaf nodes. The leaf’s

particles are stored on disk and later streamed to the

GPU, because of the memory capacity constraint. A leaf

node is constructed when there are fewer particles inside

a given node than the threshold, which defines the

maximum amount of particles that should be inside a leaf

node at a specific tree depth. The threshold is defined as

1/(M–N+1) % of the number of particles from the node’s

parent node, where N is the node’s tree depth and M is

the maximum tree depth. When a node has more particles

than the threshold, it will become an inner node and will

be further divided. The particles inside a leaf node are

spatially closer to the given leaf node’s center than to any

other node’s center in the octree structure (see Figure 2).

Although an inner node does not contain any data, it has

information about the number of particles, which is the

sum of the number of particles from all its descendants.

Figure 2: An example visualization of all octree nodes

bounding boxes. The particles are visualized from all the

viewable leaf nodes.

The adjacent leaf nodes are defined using the method

described in [18] which is required for efficient data

streaming and prefetching (see Subsections 4.5 and 4.6).

At the end of preprocessing, the data inside each leaf

node is additionally arranged using clustering, in order to

minimize quality loss during LOD.

4.2 Data ordering

The order of the particle data inside a leaf node is the

fundamental basis of the entire visualization quality.

During the visualization phase, LOD calculates the

amount of particles to be rendered for each visible leaf

node. The data is read from the disk in linear order and

streamed to the GPU, in order to gain the desired

performance. Without careful data ordering, there would

be huge quality losses during the visualization process,

because of the removal of important particles.

The particle-based data inside a leaf is ordered

according to the spatial distribution of the particles. A

clustering algorithm is used that orders the particles

using Euclidian distance metric. The results are particles

that are bound in clusters according to their proximity.

The smaller clusters (e. g. isolated particles) are more

important than the larger clusters. The importance of a

particle obtained in this way defines the particle order

within the octree leaf node. Of course, the less important

particles are retained, because they gain more importance

Proceedings of CESCG 2011: The 15
th

 Central European Seminar on Computer Graphics (non-peer-reviewed)

linearly as the camera moves closer. Consequently, at the

end of the leaf node’s final order, only the least important

particles remain, belonging to the largest cluster.

As can be seen in Figure 3, the clusters of particles

are arranged according to their capacities, in descending

order. One particle from each arranged cluster is

accepted in a bottom-up manner, and it is inserted into

the final order, which is then stored on the disk for a

particular leaf node.

a) b)

c)

Figure 3: Data ordering - an illustrative example of

particles data: a) colored clusters of particles, b)

descending order of clusters according to capacities, c)

final ordering of the particles within a stream.

There are several different and useful algorithms for

spatial clustering [19]. The Chameleon hierarchical

clustering algorithm, as proposed by Karypis et al. [20]

was used in our implementation, because it offers a good

trade-off between accuracy and speed.

4.3 Visualization phase

The visualization phase consists of three steps: particle

culling, streaming, and rendering. Before rendering it is

necessary to determine which particles to stream to the

GPU. Frustum culling and LOD are employed for this

purpose. The synergy of the culling and streaming allows

the obtaining of suitable amount of data for rendering,

based on the camera’s viewpoint, and the view frustum’s

size. When the camera moves, any new data has to be

streamed for rendering and the redundant data has to be

removed from the memory. An illustration of the view

frustum is shown in Figure 4.

Figure 4: Illustration of the view frustum and the octree

structure.

The view frustum culling and LOD can exploit the

properties of the octree structure, because the data is

preprocessed. The octree node’s center points are used to

represent the proximity of multiple particles within a

specific spatial subvolume. Both culling methods

traverse the octree structure from the root node and check

the considered center points of the nodes for their

visibility. Clearly, if the parent node is entirely outside

the view frustum, its descendants are unchecked. The

same applies if the entire node lies inside the view

frustum. This allows for the skipping of many nodes

during the culling process. The view frustum culling

methods were used, as described in [21].

4.4 Level of Detail

After the view frustum culling is complete, the particles

are further culled inside the view frustum using LOD.

Better rendering performance is achieved, by adaptively

adjusting the visualization details. The loss of quality is

negligible, because the data was optimally ordered

during the preprocessing phase. Consequently, the

general particle distribution is preserved. The LOD

streams the given leaf nodes data for rendering in linear

order.

The LOD method uses the Euclidian distance metric

between the center points of the leaf nodes and the

position of the camera, in order to determine the amount

of particles, to be loaded into the memory and then

rendered for the given leaf node. The following equation

is used for this:

(1)

where Cdist is the current distance from the camera to

the leaf node, and Mdist is the maximum distance

between the camera and the leaf node. In practice, this

variable is limited by the distance from the front to the

far plane of the view frustum. Pn is the total amount of

particles in the leaf node. This equation provides similar

effects as the traditional LOD error metric [1], which

computes the projected screen space area of a leaf node.

The further the camera is from the considered leaf

node, the fewer particles are rendered for this node. The

direct consequence of this is that small details disappear

from the greater distances, since larger clusters of

particles are stuck within an area of few pixels or even a

single pixel. The opposite happens, if the camera moves

inside the given leaf node; in that case, all the particles

inside the node are rendered. LOD quality can be

observed in Figure 5, where the structure is retained

intact even from the greater distances.

Figure 5: LOD on sample cosmological particle data

(dark matter halo): a) 40%, b) 60%, c) 80% and d) 90%

of Mdist.

Proceedings of CESCG 2011: The 15
th

 Central European Seminar on Computer Graphics (non-peer-reviewed)

4.5 Data streaming

The sizes of the large cosmological particle datasets

exceed the memory capacity of any recent desktop

workstation. The memory has to be used in an efficient

manner, where only the recently viewed particles in a

particular visualization instance are stored within the

memory. Any preprocessed particle data from leaf nodes

that have the same parent node are packed together and

stored as a package into one file, in order to stream the

data efficiently for thousands of octree leaf nodes from

the disk to the memory. Threshold for a minimum

package size has to be defined, because it is possible that

a parent node does not contain 8 leaf nodes or that the

capacities of the leaf nodes are small. In case the sum of

the leaf nodes particles is below the threshold, the data of

adjacent leaf nodes from other parent nodes is stored in

the same file (see Figure 6). In our implementation the

threshold was experimentally set to 1% of all particles

for a given dataset. For a single snapshot dataset of the

Millennium simulation, the minimum package file size is

~1.17 GB, storing only positions of the particles.

The reason for packing particle data together is based

on the following premise: if one particular leaf node is

rendered, then there is a high probability that the

particles from the adjacent leaf nodes have be rendered,

too. Prefetching is thus employed, at this stage.

Figure 6: Example of non-balanced octree hierarchy,

where the same colored leaf nodes are stored together.

4.6 Data prefetching

The use of available memory is maximized by

prefetching proximal particle data outside the view

frustum. A bounding sphere around the camera’s center

is constructed, for this purpose (see Figure 7).

Figure 7: Illustration of the bounding sphere around the

camera and the octree structure.

The radius of the bounding sphere is defined as the

half distance between the front and the far plane of the

frustum. This method is performed in the background

and is efficient, when the camera is close to a specific

area of interest. Based on the practical premise that the

camera does not move over long distances when the area

of interest is small, the required adjacent leaf nodes can

be loaded into the memory. This applies to all the leaf

nodes inside the defined bounding sphere or intersecting

it, because the camera can move in any possible

direction.

5 Results

This approach was tested on a single desktop

workstation, using the following hardware: ATI Radeon

HD 5750 GPU (1GB GDDR5 memory), AMD Phenom

1090T hexa-core CPU, 4 GB system memory (DDR3

1333 MHz), and SATA-II hard disk (7200 RPM, 1 TB

capacity, 140MB/s average read speed). The OpenGL

graphical library was used, where the particles were

rendered as point primitive using color and alpha,

without texture sprites. The streamed data from the disk

to GPU was stored in VBO (Vertex Buffer Object) for

each leaf. The visualization viewport resolution, was set

at 1280x960, during the experiments.

In order to test the efficiency of the proposed

visualization approach, several different and available

cosmological particle simulation datasets were tested:

Millennium (500 Mpc; z=0) [13, 24], MPA Larger box

ΛCDM (479 Mpc; z=0) [23], GIF2 ΛCDM (110 Mpc;

z=0) [14, 23], Mini Millennium (62.5 Mpc; z=0) [13, 24]

and The Santa Barbara cluster (64 Mpc; z=0; gadget

output) [15, 22].

The preprocessing required double the capacity of the

input dataset. Around 80% of the preprocessing time was

dedicated to data ordering for each dataset. However, this

still took considerably less time than running a

cosmological simulation, which takes several days on

parallelized systems [13].

After preprocessing the quality loss and the

performances gained for different datasets, were tested.

To measure these properties, a predetermined camera

path was made, which does a fly-through in the

visualized data. The camera position was initially aligned

with the X coordinate axis and distanced by the Mdist

variable from the LOD. The cameras viewpoint was set

to face the center point of the octree root node. The

predetermined fly-through consisted of 10 steps. For

each step the camera made a full 360 degree rotation,

using 1 degree steps around the center point, and

afterwards moved towards the center point over 10% of

the initial distance Mdist. The testing was completed

when the camera’s position was equal to the center point.

The speed was measured by performing fly-through three

times for each dataset, in order to obtain more reliable

results. FPS (Frames per second) was measured for speed

comparison. A modified fly-through was made, in order

to measure the quality difference. Each frame was

visualized with the LOD both enabled and disabled. The

per-pixel difference from both frames (LOD on and off)

was calculated using the Euclidian distance metric, in

Proceedings of CESCG 2011: The 15
th

 Central European Seminar on Computer Graphics (non-peer-reviewed)

order to measure the quality. This comparison is suitable,

because the projected particles on the frustum’s near

plane are the end result of rendering. The experimental

results of the average culled particles for the whole fly-

through, average fps and average quality decrease when

LOD is on, are shown in Table 1.

Table 1: Results of the experiments on different

cosmological datasets.

Cosmological

particle-based

dataset

Number of

particles

Average

culled

particles

Average

FPS

Average

quality

decrease

Millennium 10 077 696 000 88.2% 11.3 7.4%

MPA ΛCDM 134 217 728 80.2% 67.4 6.7%

GIF2 ΛCDM 64 000 000 85.3% 88.5 4.9%

Mini Mill. 19 683 000 87.9% 142.0 6.1%

The Santa

Barbara

16 777 216 86.7 % 177.1 5.3%

Proposed out-of-core visualization approach was not

compared to brute-force rendering, because this is

practically impossible. A desktop workstation would run

out of memory, when trying to render huge amount of

particles (exceeding GPU and system memory several

times) using the brute-force rendering approach.

Figure 8: Average FPS increase (%).

FPS increased when employing LOD, providing a

significant boost (see Figure 8). The quality decreased

only slightly when the number of particles increased

significantly (see Figure 9). When LOD was disabled,

visualization remained in real-time, as long as there was

enough GPU memory.

Figure 9: Average quality decrease (%).

Due to efficient data ordering and the hierarchical

spatial subdivision, the average quality loss, which was

around 5%, was hardly noticeable with the naked eye, as

shown in the example in Figure 10. This is because the

data ordering was done during the preprocessing phase,

where the most clustered particles are of least importance

(see Figure 10c).

a) b) c)

Figure 10: Sample visualized cosmological particle data

using a) LOD enabled, b) LOD disabled and c) the

difference (~5%).

Table 2 presents the averaged results for each even

fly-through step for one of the largest tested particle

dataset; Millennium. The average FPS dropped and the

quality increased when the camera moved into the region

of the visualized data. Within the areas of interest, LOD

had less importance than frustum culling, which helped

to preserve real-time visualization, since more nodes

were being culled outside the view frustum, and data

prefetching was being utilized in the background.

Table 2: Results for camera fly-through even steps of the

Millennium dataset.

Step Camera distance from

octree root node

center point (% of

Mdist)

Average culled

particles

Average

FPS

Average

quality

decrease

2. 80% 96.9% 15.3 2.9%

4. 60% 84.2% 8.1 6.4%

6. 40% 88.5% 9.2 8.1%

8. 20% 94.8% 11.9 5.9%

10. 0% 95.3% 14.2 2.4%

Data prefetching was implemented on two

background threads, each on its own CPU core, in order

to have a smaller impact on the actual visualization. The

FPS difference was measured by applying prefetching,

using the same fly-through as before on the Millennium

particle dataset. The results of this test are shown in

Figure 11. The method paid off when the camera was

close or inside the region of the visualized data.

Figure 11: Average FPS for each camera fly-through

even step of the largest tested dataset, with and without

prefetching.

Proceedings of CESCG 2011: The 15
th

 Central European Seminar on Computer Graphics (non-peer-reviewed)

6 Conclusion

This paper shows that the large-structures of the

cosmological particles are visualized in high details, with

minimal impact from particle culling. We can efficiently

render any cosmological particle dataset and in most

cases achieve real-time visualization on a single desktop

workstation, with a small quality loss.

We found that the main hardware bottlenecks on the

desktop workstations are the disk read speed and on-

demand data transfer from the memory to GPU in large

quantities. In the near future such bottle-necks would

limit real-time visualization, if the cosmological particle

datasets snapshots are of the size of several terabytes. In

order to overcome this problem, the presented approach

could be extended using parallelization. There are also

other ways for possible extension, such as data

compression via GPU using technologies such as CUDA.

Acknowledgements

Some of the used datasets in this paper are from

simulations carried out by the Virgo Supercomputing

Consortium [23]. We would like to thank V. Springel et

al. [13] for giving us insights in to the Millennium

simulation, L. Gao et al. [14] into the GIF2 simulation

and K. Heitmann et al. [15] into the Santa Barbara cluster

simulation. The Millennium Simulation databases used in

this paper and the web application providing online

access to them were constructed as part of the activities

of the German Astrophysical Virtual Observatory

(GAVO) [24]. Thanks to Gerard Lemson from GAVO

for his support on the transmission of large Millennium

simulation raw particle data. Thanks to Mel Krokos from

the University of Portsmouth, U.K., who initiated this

work.

References

[1] M. Sainz, R. Pajarola, Point-based rendering

techniques, ACM Computers and Graphics, vol. 28,

no. 6, pp. 869-879, December 2004.

[2] C. Erikson, D. Manocha, W. V. Baxter III, HLODs

for Faster Display of Large Static and Dynamic

Environments, Proceedings of ACM Symposium on

Interactive 3D graphics, New York, USA, March

2001.

[3] C. Dachsbacher, C. Vogelgsang, M. Stamminger,

Sequential point trees, ACM Transactions on

Graphics - Proceedings of ACM SIGGRAPH 2003,

vol. 22, no. 3, pp. 657~662, New York, USA, July

2003.

[4] S. Rusinkiewicz, M. Levoy, QSplat: A

Multiresolution Point Rendering System for Large

Meshes, ACM SIGGRAPH Proceedings of the 27th

annual conference on Computer graphics and

interactive techniques, pp. 343-352, New York,

USA, July 2000.

[5] M. Pauly, M. Gross, L. P. Kobbelt, Efficient

Simplification of Point-Sampled Surfaces, IEEE

Visualization Proceedings, pp. 163-170, Boston,

USA, November 2002.

[6] M. Comparato, U. Becciani, A. Costa, B. Larsson,

B. Garilli, C. Gheller, J. Taylor, Visualization,

Exploration and Data Analysis of Complex

Astrophysical Data, The Publications of the

Astronomical Society of the Pacific, vol. 119, no.

858, pp. 898-913, August 2008.

[7] K. Dolag, M. Reinecke, C. Gheller, S. Imboden,

Splotch: Visualizing Cosmological Simulations,

New Journal of Physics, vol. 10, no. 12, 2008.

[8] P. A. Navrátil, J. L. Johnson, V. Bromm,

Visualization of Cosmological Particle-Based

Datasets, IEEE Transactions on Visualization and

Computer Graphics, vol. 13, no. 6, pp. 1712-1718,

2007.

[9] Z. Jin, M. Krokos, M. Rivi, C. Gheller, K. Dolag,

M. Reinecke, High-performance astrophysical

visualization using Splotch, Procedia Computer

Science, ICS 2010, vol. 1, no. 1, pp. 1769-1778,

May 2010.

[10] T. Szalay, V. Springel, G. Lemson, GPU-Based

Interactive Visualization of Billion Point

Cosmological Simulations, November 2008.

[11] R. Fraderich, J. Schneider, R. Westermann,

Exploring the Millennium Run-Scalable Rendering

of Large-Scale Cosmological Datasets, IEEE

Transactions Visualization and Computer Graphics,

pp. 1251-1258, June 2009.

[12] M. Hopf, T. Ertl, Hierarchical Splatting of Scattered

Data, IEEE Visualization Proceedings, pp. 433-440,

Washington, USA, October 2003.

[13] V. Springel, S. D. M. White, A. Jenkins, C. S.

Frenk, N. Yoshida, L. Gao, J. Navarro, R. Thacker,

D. Croton, J. Helly, J. A. Peacock, S. Cole, P.

Thomas, H. Couchman, A. Evrard, J. Colberg, F.

Pearce, Simulating the joint evolution of quasars,

galaxies and their large-scale distribution, Nature,

vol. 435, pp. 629–636, 2005.

[14] L. Gao, S. D. M. White, A. Jenkins, F. Stoehr, V.

Springel, The subhalo population of LCDM dark

haloes, Monthly Notices of the Royal Astronomical

Society, vol. 355, no. 3, pp. 819-823, 2004.

[15] K. Heitmann, P. M. Ricker, M. S. Warren, S. Habib,

Robustness of Cosmological Simulations I: Large

Scale Structure, The Astrophysical Journal

Supplement Series, vol. 160, no. 1, pp. 28-58, 2005.

[16] K. Heitmann, Z. Lukic, P. Fasel, S. Habib, M.

Warren, M. White, J. Ahrens, L. Ankeny, R.

Armstrong, B. O'Shea, P. M. Ricker, V. Springel, J.

Stadel, H. Trac, The Cosmic Code Comparison

Project, Computational Science and Discovery, vol.

1, no. 1, 2008.

Proceedings of CESCG 2011: The 15
th

 Central European Seminar on Computer Graphics (non-peer-reviewed)

[17] J. R. Gott III, M. Juric, D. Schlegel, F. Hoyle, M.

Vogeley, M. Tegmark, N. Bahcall, J. Brinkmann, A

Map of the Universe, The Astrophysical Journal,

vol. 624, no. 2, pp. 463-484, 2005.

[18] J. Vörös, A strategy for repetitive neighbor finding

in octree representations, Image and Vision

Computing, vol. 18, no. 14, pp. 1085-1091, 2000.

[19] J. Han, M. Kamber, A. K. H. Tung., Spatial

Clustering Methods in Data Mining: A Survey,

Geographic Data Mining and Knowledge

Discovery, vol. 21, pp. 1–29, 2001.

[20] G. Karypis, E. Han , V. Kumar, Chameleon:

Hierarchical clustering using dynamic modeling,

Computer, vol. 32, no. 8, pp. 68-75, 1999.

[21] U. Assarsson, T. Möller, Optimized view frustum

culling algorithms for bounding boxes, Journal of

Graphics Tools, vol. 5, no. 1, 2000.

[22] The Cosmic Data Bank, Online:

http://t8web.lanl.gov/people/heitmann/arxiv/data.ht

ml (14.03.2008)

[23] MPA Numerical Cosmology, Online:

http://www.mpa-garching.mpg.de/NumCos/

(30.10.2006)

[24] German Astrophysical Virtual Observatory

(GAVO) – Virgo Millennium Database, Online:

http://www.g-vo.org/Millennium/ (10.02.2011)

http://t8web.lanl.gov/people/heitmann/arxiv/data.html
http://t8web.lanl.gov/people/heitmann/arxiv/data.html
http://www.mpa-garching.mpg.de/NumCos/
http://www.g-vo.org/Millennium/

