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Abstract 

Large quantities of simulated cosmological particle-

based data cause considerable problems when it comes to 

real-time visualization. This paper considers an out-of-

core approach for solving visualization problems on a 

single-desktop workstation. The approach proposed in 

this paper consists of two phases: the data preprocessing 

and its visualization. During the preprocessing, the 

cosmological data is hierarchically organized and 

efficiently ordered. Before rendering, the data is 

streamed to the memory from the disk. The culling 

techniques, such as view frustum culling and level-of-

detail (LOD) are applied for visualization. In most cases, 

the real-time visualization of large cosmological particle 

datasets is achieved. 

 

Keywords: Cosmological data, Particle-based 

visualization, Level-of-detail 

1 Introduction 

A computer based 3D visualization of observed or 

simulated particle data provides an insight for 

astrophysicists into a better understanding of the 

universe’s properties. Cosmological visualization is 

extremely important for enabling the interactive 

exploration of not fully understood phenomena. Because 

the quantity of cosmological particle-based data 

increases every year, it has become a challenge to 

visualize this data in real-time on a single desktop 

workstation despite the recent advances in technology.   

This paper presents an approach for the efficient 

visualization of large cosmological datasets using various 

paradigms, such as hierarchical data structure (octree), 

data ordering using hierarchical clustering, particle 

culling (frustum culling and LOD), data streaming, and 

prefetching. 

The paper is organized into 6 sections. Section 2 

provides a short summary and comparison with related 

work. Section 3 briefly describes cosmological particle-

based data origin and properties. Section 4 focuses on the 

proposed visualization approach. Section 5 describes the 

results of our experiments on a desktop workstation. The 

conclusion summarizes the paper and suggests for 

improvements. 

2 Related work 

Several out-of-core point-based rendering approaches 

have already been developed over recent years [1], in 

order to efficiently visualize particle-based data. There 

are different kinds of hierarchical data structures, and 

LOD methods. Most of these methods are targeted 

towards rendering surface or mesh-based point-cloud 

data [2, 3, 4, 5]. The proposed method is designed to 

visualize cosmological particle-based data that can 

exceed system memory and represent an entirely 

different point distribution i. e. the "cosmic web". 

Because of clear differences in point distribution, the 

proposed method differs from point-cloud surface 

rendering methods, even though there are some 

similarities: use of clustering for LOD simplification [5] 

and hierarchical culling [2, 3, 4]. 

Several different approaches exist for cosmological 

particle-based visualization: advanced visualization 

toolkits [6], particle raytracing [7], isosurfaces extraction 

[8], parallel-based visualization using clusters of 

computers [9], particle culling methods [10, 11], spatial 

data division by hierarchical data structures [10 ,11, 12], 

exploiting the advantages of GPU [9, 10, 11], particle 

splatting techniques [11, 12], and particle attributes 

quantization and/or compression [11]. 

3 Cosmological particle data 

Cosmological data is obtained from either observations 

or simulations. Most simulations are linked to the cosmic 

expansion of the universe [13, 14, 15] within a spatial 

cube, the size of which is defined in megaparsecs [Mpc] 

(1 Mpc is ~3.262 × 10
6
 light years or ~3.08 × 10

19
 km). 

A time-step snapshot from cosmological simulation is 

defined using cosmological redshift z, to describe the 
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specific time of expansion. There are different N-body 

algorithms (cosmological codes) [16] that are used to run 

a particle-based simulation. They are based on a 

theoretical model describing not fully understood 

cosmological phenomena, such as dark matter. The data 

from observations contains portions of the observable 

universe [17] and is considerably smaller in size than 

simulated data. It is evident that large simulated 

cosmological particle datasets contain millions, even 

billions of particles, which makes it difficult to visualize 

them in real-time. One of the better known cosmological 

simulations is Millennium simulation [13], based on a 

Cold Dark Matter (ΛCDM) model, and contains over 

2160
3 

particles resulting in large ~320 GB datasets for 

each single time-step snapshot. Individual particle of a 

cosmological simulation can represent different 

structures (e. g. dark matter fluid) and has a range of 

various attached attributes, depending on the simulation 

type. Most common attributes are particle floating point 

values of mass, spatial position and velocity. 

4 Visualization approach 

Our approach includes several methods aimed at 

reducing hardware load by rendering fewer particles, 

without visible loss of quality. The hardware load has the 

following constraints: GPU memory capacity, system 

memory capacity, disk capacity, disk latency, and a data 

transfer bandwidth between different components. Large-

scale cosmological structures (e. g. filaments, clusters 

and halos) need to be preserved, in order to retain quality 

during the visualization. The proposed visualization 

solution is targeted towards static particle data, such as 

specific time-step snapshot of cosmological simulations. 

 

Figure 1: Workflow of the entire visualization approach. 

The entire visualization process is shown in Figure 1. 

Firstly, the data is preprocessed by a hierarchical spatial 

subdivision using an octree, and efficient ordering. This 

phase is executed only once. Before rendering, the data 

has to be streamed from the disk to the system or, 

preferably, to the GPU memory. During the visualization 

phase, the rendering process is speeded-up by removing 

particles using view frustum culling, and LOD. Data 

prefetching is utilized to further increase the rendering 

performance.  

4.1 Preprocessing phase 

Firstly, the cosmological particle data is inserted into an 

octree structure. The octree is then constructed in a top-

down manner, taking into account the particles positions. 

The inner nodes are only used for visibility testing, and 

the particles are stored inside the leaf nodes. The leaf’s 

particles are stored on disk and later streamed to the 

GPU, because of the memory capacity constraint. A leaf 

node is constructed when there are fewer particles inside 

a given node than the threshold, which defines the 

maximum amount of particles that should be inside a leaf 

node at a specific tree depth. The threshold is defined as 

1/(M–N+1) % of the number of particles from the node’s 

parent node, where N is the node’s tree depth and M is 

the maximum tree depth. When a node has more particles 

than the threshold, it will become an inner node and will 

be further divided. The particles inside a leaf node are 

spatially closer to the given leaf node’s center than to any 

other node’s center in the octree structure (see Figure 2). 

Although an inner node does not contain any data, it has 

information about the number of particles, which is the 

sum of the number of particles from all its descendants. 

 

Figure 2: An example visualization of all octree nodes 

bounding boxes. The particles are visualized from all the 

viewable leaf nodes. 

The adjacent leaf nodes are defined using the method 

described in [18] which is required for efficient data 

streaming and prefetching (see Subsections 4.5 and 4.6). 

At the end of preprocessing, the data inside each leaf 

node is additionally arranged using clustering, in order to 

minimize quality loss during LOD. 

4.2 Data ordering 

The order of the particle data inside a leaf node is the 

fundamental basis of the entire visualization quality. 

During the visualization phase, LOD calculates the 

amount of particles to be rendered for each visible leaf 

node. The data is read from the disk in linear order and 

streamed to the GPU, in order to gain the desired 

performance. Without careful data ordering, there would 

be huge quality losses during the visualization process, 

because of the removal of important particles. 

The particle-based data inside a leaf is ordered 

according to the spatial distribution of the particles. A 

clustering algorithm is used that orders the particles 

using Euclidian distance metric. The results are particles 

that are bound in clusters according to their proximity. 

The smaller clusters (e. g. isolated particles) are more 

important than the larger clusters. The importance of a 

particle obtained in this way defines the particle order 

within the octree leaf node. Of course, the less important 

particles are retained, because they gain more importance 
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linearly as the camera moves closer. Consequently, at the 

end of the leaf node’s final order, only the least important 

particles remain, belonging to the largest cluster. 

As can be seen in Figure 3, the clusters of particles 

are arranged according to their capacities, in descending 

order. One particle from each arranged cluster is 

accepted in a bottom-up manner, and it is inserted into 

the final order, which is then stored on the disk for a 

particular leaf node. 

  

a) b) 

 

c) 

Figure 3: Data ordering - an illustrative example of 

particles data: a) colored clusters of particles, b) 

descending order of clusters according to capacities, c) 

final ordering of the particles within a stream. 

There are several different and useful algorithms for 

spatial clustering [19]. The Chameleon hierarchical 

clustering algorithm, as proposed by Karypis et al. [20] 

was used in our implementation, because it offers a good 

trade-off between accuracy and speed. 

4.3 Visualization phase 

The visualization phase consists of three steps: particle 

culling, streaming, and rendering. Before rendering it is 

necessary to determine which particles to stream to the 

GPU. Frustum culling and LOD are employed for this 

purpose. The synergy of the culling and streaming allows 

the obtaining of suitable amount of data for rendering, 

based on the camera’s viewpoint, and the view frustum’s 

size. When the camera moves, any new data has to be 

streamed for rendering and the redundant data has to be 

removed from the memory. An illustration of the view 

frustum is shown in Figure 4. 

 

Figure 4: Illustration of the view frustum and the octree 

structure. 

The view frustum culling and LOD can exploit the 

properties of the octree structure, because the data is 

preprocessed. The octree node’s center points are used to 

represent the proximity of multiple particles within a 

specific spatial subvolume. Both culling methods 

traverse the octree structure from the root node and check 

the considered center points of the nodes for their 

visibility. Clearly, if the parent node is entirely outside 

the view frustum, its descendants are unchecked. The 

same applies if the entire node lies inside the view 

frustum. This allows for the skipping of many nodes 

during the culling process. The view frustum culling 

methods were used, as described in [21]. 

4.4 Level of Detail 

After the view frustum culling is complete, the particles 

are further culled inside the view frustum using LOD. 

Better rendering performance is achieved, by adaptively 

adjusting the visualization details. The loss of quality is 

negligible, because the data was optimally ordered 

during the preprocessing phase. Consequently, the 

general particle distribution is preserved. The LOD 

streams the given leaf nodes data for rendering in linear 

order. 

The LOD method uses the Euclidian distance metric 

between the center points of the leaf nodes and the 

position of the camera, in order to determine the amount 

of particles, to be loaded into the memory and then 

rendered for the given leaf node. The following equation 

is used for this: 

 

(1) 

where Cdist is the current distance from the camera to 

the leaf node, and Mdist is the maximum distance 

between the camera and the leaf node. In practice, this 

variable is limited by the distance from the front to the 

far plane of the view frustum. Pn is the total amount of 

particles in the leaf node. This equation provides similar 

effects as the traditional LOD error metric [1], which 

computes the projected screen space area of a leaf node. 

The further the camera is from the considered leaf 

node, the fewer particles are rendered for this node. The 

direct consequence of this is that small details disappear 

from the greater distances, since larger clusters of 

particles are stuck within an area of few pixels or even a 

single pixel. The opposite happens, if the camera moves 

inside the given leaf node; in that case, all the particles 

inside the node are rendered. LOD quality can be 

observed in Figure 5, where the structure is retained 

intact even from the greater distances. 

 

Figure 5: LOD on sample cosmological particle data 

(dark matter halo): a) 40%, b) 60%, c) 80% and d) 90% 

of Mdist. 
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4.5 Data streaming 

The sizes of the large cosmological particle datasets 

exceed the memory capacity of any recent desktop 

workstation. The memory has to be used in an efficient 

manner, where only the recently viewed particles in a 

particular visualization instance are stored within the 

memory. Any preprocessed particle data from leaf nodes 

that have the same parent node are packed together and 

stored as a package into one file, in order to stream the 

data efficiently for thousands of octree leaf nodes from 

the disk to the memory. Threshold for a minimum 

package size has to be defined, because it is possible that 

a parent node does not contain 8 leaf nodes or that the 

capacities of the leaf nodes are small. In case the sum of 

the leaf nodes particles is below the threshold, the data of 

adjacent leaf nodes from other parent nodes is stored in 

the same file (see Figure 6). In our implementation the 

threshold was experimentally set to 1% of all particles 

for a given dataset. For a single snapshot dataset of the 

Millennium simulation, the minimum package file size is 

~1.17 GB, storing only positions of the particles. 

The reason for packing particle data together is based 

on the following premise: if one particular leaf node is 

rendered, then there is a high probability that the 

particles from the adjacent leaf nodes have be rendered, 

too. Prefetching is thus employed, at this stage. 

 

Figure 6: Example of non-balanced octree hierarchy, 

where the same colored leaf nodes are stored together. 

4.6 Data prefetching 

The use of available memory is maximized by 

prefetching proximal particle data outside the view 

frustum. A bounding sphere around the camera’s center 

is constructed, for this purpose (see Figure 7).  

 

Figure 7: Illustration of the bounding sphere around the 

camera and the octree structure. 

The radius of the bounding sphere is defined as the 

half distance between the front and the far plane of the 

frustum. This method is performed in the background 

and is efficient, when the camera is close to a specific 

area of interest. Based on the practical premise that the 

camera does not move over long distances when the area 

of interest is small, the required adjacent leaf nodes can 

be loaded into the memory. This applies to all the leaf 

nodes inside the defined bounding sphere or intersecting 

it, because the camera can move in any possible 

direction. 

5 Results 

This approach was tested on a single desktop 

workstation, using the following hardware: ATI Radeon 

HD 5750 GPU (1GB GDDR5 memory), AMD Phenom 

1090T hexa-core CPU, 4 GB system memory (DDR3 

1333 MHz), and SATA-II hard disk (7200 RPM, 1 TB 

capacity, 140MB/s average read speed). The OpenGL 

graphical library was used, where the particles were 

rendered as point primitive using color and alpha, 

without texture sprites. The streamed data from the disk 

to GPU was stored in VBO (Vertex Buffer Object) for 

each leaf. The visualization viewport resolution, was set 

at 1280x960, during the experiments. 

In order to test the efficiency of the proposed 

visualization approach, several different and available 

cosmological particle simulation datasets were tested: 

Millennium (500 Mpc; z=0) [13, 24], MPA Larger box 

ΛCDM (479 Mpc; z=0) [23], GIF2 ΛCDM (110 Mpc; 

z=0) [14, 23], Mini Millennium (62.5 Mpc; z=0) [13, 24] 

and The Santa Barbara cluster (64 Mpc; z=0; gadget 

output) [15, 22]. 

The preprocessing required double the capacity of the 

input dataset. Around 80% of the preprocessing time was 

dedicated to data ordering for each dataset. However, this 

still took considerably less time than running a 

cosmological simulation, which takes several days on 

parallelized systems [13]. 

After preprocessing the quality loss and the 

performances gained for different datasets, were tested. 

To measure these properties, a predetermined camera 

path was made, which does a fly-through in the 

visualized data. The camera position was initially aligned 

with the X coordinate axis and distanced by the Mdist 

variable from the LOD. The cameras viewpoint was set 

to face the center point of the octree root node. The 

predetermined fly-through consisted of 10 steps. For 

each step the camera made a full 360 degree rotation, 

using 1 degree steps around the center point, and 

afterwards moved towards the center point over 10% of 

the initial distance Mdist. The testing was completed 

when the camera’s position was equal to the center point. 

The speed was measured by performing fly-through three 

times for each dataset, in order to obtain more reliable 

results. FPS (Frames per second) was measured for speed 

comparison. A modified fly-through was made, in order 

to measure the quality difference. Each frame was 

visualized with the LOD both enabled and disabled. The 

per-pixel difference from both frames (LOD on and off) 

was calculated using the Euclidian distance metric, in 
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order to measure the quality. This comparison is suitable, 

because the projected particles on the frustum’s near 

plane are the end result of rendering. The experimental 

results of the average culled particles for the whole fly-

through, average fps and average quality decrease when 

LOD is on, are shown in Table 1. 

Table 1: Results of the experiments on different 

cosmological datasets. 

Cosmological  

particle-based 

dataset 

Number of  

particles 

Average 

culled 

particles 

Average 

FPS 

Average 

quality 

decrease 

Millennium   10 077 696 000 88.2% 11.3 7.4% 

MPA ΛCDM 134 217 728 80.2% 67.4 6.7% 

GIF2 ΛCDM 64 000 000 85.3% 88.5 4.9% 

Mini  Mill. 19 683 000 87.9% 142.0 6.1% 

The Santa 

Barbara  

16 777 216  86.7 % 177.1 5.3% 

Proposed out-of-core visualization approach was not 

compared to brute-force rendering, because this is 

practically impossible. A desktop workstation would run 

out of memory, when trying to render huge amount of 

particles (exceeding GPU and system memory several 

times) using the brute-force rendering approach. 

 

Figure 8: Average FPS increase (%). 

FPS increased when employing LOD, providing a 

significant boost (see Figure 8). The quality decreased 

only slightly when the number of particles increased 

significantly (see Figure 9). When LOD was disabled, 

visualization remained in real-time, as long as there was 

enough GPU memory.  

 

Figure 9: Average quality decrease (%). 

Due to efficient data ordering and the hierarchical 

spatial subdivision, the average quality loss, which was 

around 5%, was hardly noticeable with the naked eye, as 

shown in the example in Figure 10. This is because the 

data ordering was done during the preprocessing phase, 

where the most clustered particles are of least importance 

(see Figure 10c).  

   
a) b) c) 

Figure 10: Sample visualized cosmological particle data 

using a) LOD enabled, b) LOD disabled and c) the 

difference (~5%). 

Table 2 presents the averaged results for each even 

fly-through step for one of the largest tested  particle 

dataset; Millennium. The average FPS dropped and the 

quality increased when the camera moved into the region 

of the visualized data. Within the areas of interest, LOD 

had less importance than frustum culling, which helped 

to preserve real-time visualization, since more nodes 

were being culled outside the view frustum, and data 

prefetching was being utilized in the background. 

Table 2: Results for camera fly-through even steps of the 

Millennium dataset. 

Step Camera distance from 

octree root node 

center point (% of 

Mdist) 

Average culled 

particles 

Average 

FPS 

Average 

quality 

decrease 

2. 80% 96.9% 15.3 2.9% 

4. 60% 84.2% 8.1 6.4% 

6. 40% 88.5% 9.2 8.1% 

8. 20% 94.8% 11.9 5.9% 

10. 0% 95.3% 14.2 2.4% 

Data prefetching was implemented on two 

background threads, each on its own CPU core, in order 

to have a smaller impact on the actual visualization. The 

FPS difference was measured by applying prefetching, 

using the same fly-through as before on the Millennium 

particle dataset. The results of this test are shown in 

Figure 11. The method paid off when the camera was 

close or inside the region of the visualized data. 

 

Figure 11: Average FPS for each camera fly-through 

even step of the largest tested dataset, with and without 

prefetching. 
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6 Conclusion 

This paper shows that the large-structures of the 

cosmological particles are visualized in high details, with 

minimal impact from particle culling. We can efficiently 

render any cosmological particle dataset and in most 

cases achieve real-time visualization on a single desktop 

workstation, with a small quality loss. 

We found that the main hardware bottlenecks on the 

desktop workstations are the disk read speed and on-

demand data transfer from the memory to GPU in large 

quantities. In the near future such bottle-necks would 

limit real-time visualization, if the cosmological particle 

datasets snapshots are of the size of several terabytes. In 

order to overcome this problem, the presented approach 

could be extended using parallelization. There are also 

other ways for possible extension, such as data 

compression via GPU using technologies such as CUDA. 
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