
Modern Methods of Realistic Lighting in Real Time

István Szentandrási
Supervised by: Adam Herout

Faculty of Information Technology
Brno University of Technology

Brno / Czech Republic

Abstract

Physically plausible illumination in real-time is often
achieved using approximations. Recent methods approxi-
mate global illumination in the screen space by exploiting
the capabilities of modern graphics cards. Two of these
techniques, screen-space ambient occlusion and screen-
space directional occlusion, are described in this work.
Screen-space directional occlusion is a generalized version
of screen-space ambient occlusion. It supports one indirect
bounce of diffuse light and depends on the direction of in-
coming light. The main goal of this project is to further
experiment with these methods and improve them. For
a uniform distribution of the sampling points, the Halton
sequence is used. In order to reduce the noise, geometry-
aware bilateral filtering is presented. Methods are further
sped up by computing them in a lower resolution, and they
are restored to full resolution using joint bilateral upsam-
pling in order to create the final image.

Keywords: global illumination, ambient occlusion,
screen-space ambient occlusion, screen-space directional
occlusion, halton sequence, bilateral filtering

1 Introduction

Computing global illumination in real-time has been and
still is a major challenge in computer graphics. Due to the
complexity of light transport and some material properties,
real-time frame rates can only be achieved at the cost of
trade-offs and rough approximations. Perceptually among
the most important optical phenomena belong soft shad-
ows and indirect lighting. There have been many attempts
to simulate either of these in real time. A handful of these
attempts are based on ambient occlusion (AO) [13], which
is very popular in the film industry as well as in games.
The main advantage of these techniques lies in their speed
and simple implementation.

As in every approximation, ambient occlusion has some
limitations, too. The basic method [13] displays darkening
of cavities; however, it does not take into account the di-
rection and intensity of light coming from light sources or
environmental maps. A better method has been introduced
by Ritschell et al. [11] called screen-space directional oc-

clusion (SSDO). SSDO provides more realistic illumina-
tion: it accounts for the direction of the incoming light
and supports a single indirect bounce of light.

The aim of this work is to experiment with these meth-
ods and improve them. The improvements are mostly fo-
cused around speeding up the methods. This work is struc-
tured as follows. In Section 2 we describe the present
state of methods used in the area. Then Section 3 we
will present screen-space ambient occlusion (SSAO) and
SSDO.

Section 4 presents possible modifications and optimiza-
tions to the SSDO method: speed optimizations, an alter-
native method for uniform distribution of sampling points
using Halton sequence and using a variable number of
sampling points for each pixel based on local scene com-
plexity. Section 5 summarizes the achieved results.

2 Related Work

Ray tracing and radiosity have always been the two ba-
sic approaches to approximate physically correct lighting.
However, both methods require massive computations. In
the case of radiosity, it solves a system of equations. In the
case of ray tracing, the major slowing factors are the num-
ber of object-ray intersections and visibility tests. There
are many techniques to accelerate these methods, such as
final gathering, irradiance caching, sparse sampling, ad-
vanced space division structures, etc. Even with the re-
cent growth in processor speeds and the introduction of
GPGPU solutions, these methods are still too slow for in-
teractive applications. Rendering on GPU remains the su-
perior solution for real-time rendering. It still has a major
lead, especially for dynamic scenes. This barrier caused
the development of alternative methods which did not try
to simulate physically correct lighting. They just aim to
give perceptually convincing approximations.

Since the introduction of ambient occlusion [2][13], it
has been widely adopted both in gaming and the film in-
dustry. Ambient occlusion computes the visibility of the
hemisphere at each point of the scene. The method is often
calculated by casting rays in every direction over the hemi-
sphere using Monte Carlo sampling. The calculated factor
is used to modulate ambient lighting, just as the name sug-
gests. [4]

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)

Casting rays in every point still requires too much com-
puting power, so a few alternative methods were intro-
duced. These methods compute AO less accurately in or-
der to achieve higher frame-rates. Instead of computing
occlusion over surfaces in 3D, these methods usually ap-
proximate AO in the screen space [12][8][1][5]. SSAO is
very popular due to its simplicity and speed. It does not
require any additional data and can be applied as a post-
process to the scene.

Ambient occlusion is just a rough approximation of gen-
eral light transport. It does not take into account any di-
rectional information or other more expensive illumination
effects (interreflections, caustics, subsurface scattering). A
different family of techniques, the precomputed radiance
transfer (PRT) [4], does support the aforementioned fea-
tures. On the other hand, PRT algorithms typically assume
static scenes, distant lights or environment maps.

Screen-space directional occlusion (SSDO) [11] tries to
combine the speed and simplicity of SSAO methods with
directional information of lighting and near field indirect
color bleeding.

In order to avoid some limitations of screen space am-
bient occlusion, a hybrid method was introduced by Rein-
bothe et al. [10]. This method works in 3D space by
voxelization of the scene, calculating occlusion based on
this information and finally using bilateral filtering in the
screen space to smooth the shadows.

A completely different approach was taken by Ka-
planyan et al. [6]. They approximate indirect illumination
in fully dynamic scenes using cascaded light propagation
volumes. This method supports single bounce illumina-
tion with occlusion, but it can be extended to support mul-
tiple bounces and to handle participating media.

These techniques show that in order to generate visually
convincing images, no physically precise computations are
needed. Simple approximations using soft shadows, am-
bient occlusion, and optionally, a single bounce of indirect
light can give out acceptable results even in real-time.

3 Real-Time Global Illumination
Techniques

There are many techniques to approximate global illumi-
nation in real time. We focused on methods that can be
computed in a postprocessing step so as to improve over-
all quality of the rendered images.

3.1 Screen-Space Ambient Occlusion

Screen-space ambient occlusion (SSAO) is a coarse ap-
proximation of ambient occlusion that works in the screen
space in order to achieve real-time frame rates. The idea
behind SSAO is to reuse the z-buffer data, which was al-
ready computed during the rendering of the scene. This
approach is based on sampling the surrounding pixels
combined with simple depth comparisons. Based on these

results, an average visibility value can be computed. This
visibility property is used as a darkening factor for cavities
and corners in the scene. This way SSAO can be computed
in one pass as a post-process over the image.

z-buffernormal

camera

sampling
directions

original point

occluders

surface

hemisphere

Figure 1: SSAO principle. An area around the pixel is
sampled in 2D (bottom image). Based on the normal, sam-
pling points are generated inside the hemisphere (top im-
age). The generated depths for each sampling point are
compared to the depth of the appropriate pixel to deter-
mine if the pixel corresponds to an occluder object (yellow
(light) and red (dark) points. Based on the results of the
depth comparisons, the pixel’s intensity will be darkened
(on the image to half, since half of the sampling points are
below scene surface).

Additional information can be used to achieve more pre-
cision and hence better looking results. The normals for
each pixel could be a good choice. Without taking the
normal into account and just randomly generating points
in a close proximity of the pixel may cause darkening of
unwanted parts of the scene, such as planes that are al-
most parallel with the view direction. Using the normal
of the pixel sampling directions outside the hemisphere
can be filtered out (Figure 1). However, random sampling
may cause problems in the image which have to be sorted
out. So as to avoid artifacts, the distribution of the gen-
erated random samples over the hemisphere is needed to
be as uniform as possible. Also, the noise caused by non-
uniform sampling should be smoothed.

Usually in SSAO methods, the problem of generating

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)

samples randomly with a uniform distribution is solved by
precomputing a few uniformly distributed random direc-
tions in a sphere. Variation to the sampling points is added
using random normals to reflect the directions. These new
directions are then optionally reversed to be in the hemi-
sphere around the normal of the pixel. In this project
we used the Halton sequences with appropriately chosen
bases.

Computing ambient occlusion from simple depth values
has some drawbacks, too. First the precision of SSAO is
highly dependent on the size of the scene. The bigger the
scene, the coarser the object shape approximation. This
can lead to unwanted effects, like darkening the whole sil-
houette of an object.

The second problem is caused by the limited area that is
sampled for occluders. Let us consider two objects close to
each other in the scene in 3D. Using a classical ambient oc-
clusion method, such as using ray tracing, the two objects
are darkened. However, using SSAO the distance between
the projected positions of the objects might be larger then
the sampled area. As a consequence SSAO will not detect
any occluders and the objects will not be darkened.

3.2 Screen-Space Directional Occlusion

SSDO is a fast approximation of global illumination. It
works in the screen space, takes into account the direc-
tion of the light, and is able to handle one indirect bounce
of diffuse light [11]. In order to compute light transport,
SSDO uses the 3D positions and normals of each pixel in
the screen space as input. The output is created in two
passes. In the first pass, the direct illumination is com-
puted. In the second pass, the indirect bounce of light is
computed using the data from the previous pass.

3.2.1 Direct Illumination Using Directional Occlusion

While standard SSAO methods use only the positions and
normals of each pixel, SSDO also takes into account the
direction of the incoming light. The amount of directional
light is computed as follows for each point P and normal
N:

Ldir(P) =
1
π

∫
Ω

ρ

π
Lin(ω)V (ω)(N ·ω)dω, (1)

where ρ

π
is the diffuse BRDF, Lin is the incoming radiance

from direction ω in the hemisphere Ω and V is the visi-
bility test. When using Monte Carlo sampling the integral
is replaced by a sum of K samples each covering a solid
angle of ∆ω = 2π/K:

Ldir(P) =
K

∑
i=1

ρ

π
Lin(ωi)V (ωi)(N ·ωi)∆ω. (2)

This method assumes that Lin can be efficiently computed
from environment maps or point lights. Similar to SSAO,
so as to avoid ray-tracing, the occluders are approximated
in the screen space. The difference is that while in SSAO

the samples are generated in 2D in image space, SSDO
uses sample points generated in the hemisphere in 3D us-
ing the normal and the 3D position of the pixel. The sam-
ple points are then backprojected into the image space in
order to determine if within the given direction is an oc-
cluder or not. This way SSDO does not suffer from the
problem mentioned in SSAO, that is: objects further away
in the screen-space, but closer in 3D in the scene may
cause occlusion.

The sampling of the hemisphere is done in the follow-
ing way: for every generated direction ωi and a random
step ri ∈ [0 .. rmax], the position of the sampling points is
computed as P+ riωi. The generated points are located in
the hemisphere with a center of P and oriented around the
normal N. The depth of the backprojected sampling points
is compared with the values from the original z-buffer. If
the depth value from the original z-buffer is smaller than
the depth of the sampling point, the sampling point is be-
low the surface. The light from this direction is blocked
by an occluder. Otherwise, the light has a clear path from
this direction and the incoming radiance can be computed.

B

C

rMax

Camera

Not in the
hemisphere,

discard for bounce

occluder

environment
map or light

source
computation

A
Dbounce

no bounce

A,B,C,D pseudo-randomly
generated points

C,B - light comes from this
direction

A - occluder, but no bounce
D - occluder, bounce

C - no bounce

normal

original
point

Figure 2: SSDO principle. Random samples are gener-
ated in 3D in the hemisphere. Samples under the surface
are classified as occluders. Otherwise, the incoming radi-
ance can be computed from the direction defined by the
sampling point. The sampling points classified as occlud-
ers are projected on the surface. Based on the color and
position of the pixels on the surface, indirect bounces are
computed.

The method is demonstrated in Figure 2 for four sam-
pling points A, B, C, D (red dots). The sampling points
are generated randomly with a uniform distribution over
the hemisphere with a random step from the original point
and then backprojected onto the image. Now that the im-
age space coordinates are known, the 3D coordinates can
be computed or read from a frame buffer (green, orange
and black dots). These points are again projected into the
image in order to get the distance from the camera. If the
sampling point is further than the appropriate point on a
surface in the scene, the sampling point is classified as an

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)

occluder (A and D points). Otherwise, the illumination
can be computed from the direction defined by the point
and the origin (B and C points). The direction is shown by
the yellow line.

3.2.2 Indirect Bounce

Since the 3D position and normal are available for each
sampling point projected to the surface, they can be used to
get one indirect bounce of light from the given directions.
In the original paper, only the points on the surface pro-
jected from sampling points classified as occluders were
taken into account (A and D points). For each of these
pixels the computed directional light intensity and the cor-
responding pixel color from the direct illumination pass is
used as the base for indirect light. In order to calculate the
indirect radiance sent to the origin, these pixels are treated
as small patches oriented around the normal. Using the
sender normal, back facing patches can be filtered out (for
example, for sampling point A).

The equation for the additional incoming indirect radi-
ance for a point P:

Lind(P) =
1
π

∫
Ω

ρ

π
Ldir(Pω)(1−V (ω)) ·

As(N ·ω)(Nω · (−ω))

|P−Pω |2
dω, (3)

where Pω and Nω are the point and normal from point
and normal buffer, each corresponding to a sampling point
taken from the hemisphere in direction ω . As is the area
associated with the sender patch. This equation respects
the mutual orientation of the surfaces based on the normals
((N ·ω)(Nω ·(−ω))) and that the intensity of the incoming
radiance decreases quadratically with the distance of the
surfaces.

The modified version of the equations for K samples is
then:

Lind(P) =
K

∑
i=1

ρ

π
Li(1−V (ωi))

As(N ·ωi)(Ni · (−ωi))

|P−Pi|2
∆ω,

(4)
For the initial value for As, the base circle is subdivided
into K regions, each covering As = πr2

max/K. This value
can also be used as a parameter to control the strength of
the color bleeding manually.

In the example above (Figure 2), points A and D are
the only occluders. After projecting these points onto the
surface from the cameras viewpoint, the information about
the normal, position and color are also available. The pro-
jected point for A has a back facing normal, so it will not
contribute to the final bounce. The patch for sampling
point D, on the other hand, will qualify as a sender of in-
direct light towards point P.

4 Modifications and Implementation
Notes

The aim of this project is to experiment with the meth-
ods described in the previous chapter and to potentially
improve them. We will next describe three modifications
and improvements we experimented with and which are
potentially beneficial.

4.1 SSDO for Directional and Point Lights

When SSDO is computed for scenes with directional and
point lights, several modifications are possible. Comput-
ing the pixels intensity in real implementations based on
the equation (2), due to the random or pseudo-random
sampling of the directions in the hemisphere, causes noise
even on plain surfaces with no occluders nearby. So as to
avoid this, SSDO can be computed as follows: when ren-
dering the scene before computing SSDO to get the ma-
terial, normal, depth information, the overall intensity of
the pixels can be computed using the appropriate light-
ing model. The overall intensity should be equal to the
value computed using equation (1) without the visibility
function. When computing direct illumination (first step)
in SSDO, instead of computing the intensity for the pix-
els, a modulation factor can be computed for each pixel.
This modulation factor is the ratio of the intensity com-
puted with the visibility function and without it using
equation (2). The modulation factor can be used to darken
the diffuse and/or the ambient component of the overall
intensity when creating the final image. The modulation
factor can either be per channel or a single value based
on scene and lighting properties. When there are multiple
lights in the scene with radically different colors, a dark-
ening factor for each color channel is best. However, for
most scenes a single modulation factor is sufficient, since
the lights are usually white or the distance between them is
large enough, so they have only a minor effect on objects
close to other lights. A single modulation factor also helps
to reduce memory usage.

This modulation factor can be further processed. In or-
der to reduce noise, smoothing can be used. A simple
Gaussian blur is not enough in this case. The usage of
geometric information is necessary to prevent bleeding of
values over edges and between distant pixels in 3D, but
close in 2D. A geometry-aware filtering, like a modified
bilateral filtering on the base of normals and depth value,
is suitable. Firstly, this method was used by Reinbothe et
al. [10]. So as to approximate the results of a full bilat-
eral filtering, they separated the calculations into a vertical
and horizontal pass. A combination of the results of these
two one-dimensional filters improves the frame rates sig-
nificantly and still provides an acceptable quality.

Since this modulation factor is actually a generalized
version of the darkening factor computed with ambient oc-
clusion, it changes, similar to the ambient occlusion fac-

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)

(a) No filtering, 10 sampling
points - 74FPS

(b) 2x subsampling (3x3 upsam-
pling kernel, 20 sampling points
per pixel and 11x11 bilateral filter-
ing - 78 FPS

Figure 3: Comparison of non-filtered and smoothed re-
sults. Regions with the yellow border are shown in more
detail on the right side of the images.

tor, slowly over spatial space on surfaces. This permits
one to compute it in lower resolutions. As a consequence
the method could be sped up radically; on the other side,
the result should be upsampled correctly. For this joint
bilateral upsampling [7] can be used with the same mod-
ifications as for smoothing to honor geometry properties
(Figure 3).

More speed improvement can be achieved by merging
the two steps of SSDO together. This means that the
source color for the bounces is taken from the scene ren-
dered without SSDO darkening (the same image, that is
later darkened by SSDO). The modulation factor and indi-
rect bounces are stored and filtered separately. In order to
avoid pixels being too bright in darkened corners, the indi-
rect bounces should also be darkened using the modulation
factor.

4.2 Sampling and the Halton Sequence

In both SSAO and SSDO, Monte Carlo sampling is used to
approximate the correct solutions. Absolute random dis-
tribution of samples in Monte Carlo methods can cause
problems; one of the worst of these is clumping (when for
small number of random numbers, the variance between
the values is low). So as to decrease the effect of clumping
in samples, quasi-Monte Carlo methods eliminate the ran-
domness completely. Samples are deterministically com-
puted to achieve a stochastic distribution as close to the
uniform distribution as possible.

In order to describe how much the point distribution of a
given method derivates from an ideal solution, a measure
called discrepancy is used. Quasi-Monte Carlo methods
try to minimize this discrepancy. There are several low-
discrepancy sequences that are used for generating sam-
pling points: Hammersley, Halton, Sobol, Niederreiter,
etc. [4]

The Halton sequence generation is based on the radical

inverse function applied to an integer i. This integer can
be expressed in a base b with terms a j:

i =
∞

∑
j=0

a j(i)b j. (5)

The radical inverse function is computed by reflecting the
resulting digit sequence around the decimal point:

Φb(i) =
∞

∑
j=0

a j(i)b− j−1. (6)

For generating multi-dimensional low-discrepancy se-
quences, a different radical-inverse sequence is used in
each dimension. The ith point in the sequence is given
as:

xi = (Φb1(i),Φb2(i), . . . ,Φbd (i)), (7)

where the bases b j are relatively prime and d is the dimen-
sion of the sequence.

An intuitive explanation of the uniformness of the Hal-
ton sequence is as follows. Let us consider the gen-
erated floating point numbers as digit sequences in the
given base expressed as strings. Before generating strings
of length m + 1, all the strings of length m are pro-
duced. This means that before generating a new point
on an interval, all intervals of size b− m will be vis-
ited first. This fact also suggests some kind of peri-
odicity in similarity of the generated values. For ex-
ample, let us consider a Halton sequence with base 2:
Φ2(50) = 0.296875,Φ2(50 + 16) = 0.2578125,Φ2(50 +
32) = 0.2890625,Φ2(50+64) = 0.3046875. This period-
icity can be expressed [3]:∣∣(Φb(i)−Φb(i+mNg)

∣∣< 1
bk ;Ng = lbk, l > 0,k ≥ 0, (8)

where l, m, k are integers, and Ng is the period to generate
similar sampling points. For multidimensional Halton se-
quences, the least common multiple of the periods for each
dimension is used as Ng. This property is demonstrated in
Figure 4.

This periodicity can be exploited to control the number
of sampling points and still have a quasi uniform distribu-
tion. For example, with a period 10, 10 samples can be
used for pixels where the low number of sampling points
does not matter. For pixels, where more sampling points
are needed to get a smoother result, 20,30, ...,k ·10;k ∈ N
sampling points can be used (see Section 4.3). Another
possibility for future improvements may be, for example,
in the case of occlusion detection to filter out directions,
where an occluder was already found.

4.3 Preprocessing

In SSDO, the same amount of sampling points is gener-
ated for every pixel. Setting this amount higher means
better results, but it will cause a performance drop. Gen-
erating more samples for planes which do not have any

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 4: Projected view of the hemisphere - Halton se-
quences with bases 2, 5 and period 10. Each pixel is col-
ored based on the index in the sequence and the period.
Every 10th pixel has the same color.

occluders nearby is a waste of computing power. The solu-
tion would be to generate more sampling points for pixels
which are potentially occluded and less for pixels where
the probability of finding an occluder is low. The number
of occluders is usually higher at parts of the image where
the normals or the depth values differ significantly. So as
to get areas where the higher number of sampling points
should be generated, a preprocessing step could be added
to SSDO calculations. In this preprocessing step, a weight
is calculated to define the number of sampling points to be
used. Areas where the changes in normal and depth values
are bigger are given a higher weight. Planes, on the other
hand, will have much smaller weight since the normals are
constant for pixels on the same plane.

Figure 5: Preprocessed images with different sizes of fil-
tered images. The darker regions represent higher number
of sampling points. The blue color just shows the com-
puted SSDO darkening factor.

In order to calculate this weight, a simple filtering using
the normal and depth values can be used to get the gradient
magnitude. This value can be used to determine the num-
ber of sampling points. So as to get wider areas around
discontinuities and in order to speed up the filtering, it can
be computed in much lower resolutions. Optionally com-
bining results from different resolutions should give more

precise results of areas where SSDO values may change
more. Using just one resolution is not the best solution.
A more advanced method was used by Nichols et al. [9]
to get locations where higher resolution was required for
computing image space radiosity.

5 Results

With both methods (SSAO and SSDO) we were able to
produce realistic images in real-time (Figure 7). The re-
sults of the achieved frame rates are summarized in Ta-
ble 1. The methods were tested on three scenes with reso-
lution 1024x768 (Figure 6). These numbers are just exem-
plary. The speed of these methods depends also to a great
extent on the resolution, graphics hardware, as well as the
degree of required smoothing.

SSAO was naturally the fastest. The additional compu-
tation and texture reads to get bounces for SSDO makes
it 25% slower with the same number of sampling points.
However, to get good results for SSDO with a larger hemi-
sphere radius, many sampling directions are needed. From
the measured frame-rates it is clear that the limiting factor
for SSDO computation is the speed of the fragment shader
and the number of texture lookups per pixel. These are the
areas that should be more optimized in the future.

Due to the fact that SSDO is computed in the screen
space, a few problems arise. The lack of complete knowl-
edge of 3D causes occluders not visible from the camera’s
point of view to be discarded, hence making the results
highly view-dependent. For more complex scenes even a
small change in camera position may reveal parts of the
scene previously hidden and cause new shadows and indi-
rect bounces. The authors of the original paper suggested
using depth peeling for partly solving this problem. Stor-
ing multiple depth values for each point in multiple passes
gives more information on the scene structure; however,
it makes the speed of the technique dependent on scene
complexity. It also further slows down occlusion computa-
tions by forcing it to read values from multiple buffers and
calculating the depth test for each. Alternatively, the au-
thors also suggest using multiple viewpoints. This in the-
ory could give better results than depth peeling, but correct
positioning of the cameras may vary based on the scene
type.

A comparison of SSAO and SSDO can be seen in Fig-
ure 8. The difference in the two techniques can be eas-
ily observed on the darkening factor around the tail of the
dragon. While SSAO darkens only the silhouette, the tail
in SSDO darkens the wall close to it in 3D. The next differ-
ence is when the light position is changed. While SSAO
remains static with moving light, the shadows caused by
occlusion in SSDO move a little in the opposite direction.
This nice feature of SSDO with the addition of the bounce
gives us much more believable results than SSAO.

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)

(a) Pyramids (b) Cornell box (c) Dragon

Figure 6: Scenes rendered using SSDO with variable number of sampling points based on preprocessing (20, 30, 40 or
50), 2x subsampling, 11x11 kernel for bilateral smoothing and 3x3 upsampling filter. (Dragon model is from the The
Stanford 3D Scanning Repository)

(a) SSDO 2 step (b) SSDO 10 points (c) SSDO with preprocessing and
subsampling

(d) SSAO

Figure 7: SSDO 2 step – separate step for computing direct and indirect illumination; SSDO 10 points – SSDO computed
in one step using modulation factor; SSDO with preprocessing and subsampling – SSDO computed in one step with 2x
subsampling, 3x3 kernel for upsampling and variable number of sampling points per pixel based on a preprocessing step
(20, 30, 40 or 50 samples). For all methods 11x11 smoothing kernel was used. Regions with the green border are shown
in more detail on the left side of the images.

[FPS] Number of Pyramids Cornell box Dragon
sampling points (15804 faces) (30 faces) (201037 faces)

SSAO no subsampling 10 72 77 72
SSDO 2 steps 10 42 37 33

SSDO no subsampling 10 51 46 42
SSAO 20 115 127 113
SSDO 20 90.5 83 74
SSDO 50 67 55 49

SSDO with preprocessing 20-50 74 67 60

Table 1: Frame rates for each scene and method with 11x11 kernel for bilateral smoothing and 3x3 kernel for upsampling,
if not specified otherwise. In the second column are the number of sampling points used per pixel. For the ’SSDO with
preprocessing’ row variable number of sampling points (20, 30, 40 or 50) was used based on a preprocessing step. For
the rest of the rows constant number of sampling points was used. The ’SSDO 2 steps’ row represents the original two-
step algorithm with a separate step for computing direct and indirect illumination. For the other SSDO rows indirect
illumination and modulation factor was computed in one pass. For testing an ATI RadeonTM HD 4850 GPU was used.

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 8: On the left SSAO; on the right SSDO with dif-
ferent light positions for the rows. The light is placed in
front of the dragon, closer to the left wall in the top row of
images and behind the dragon, closer to the right wall for
the bottom row images.

6 Conclusions

Screen-space ambient occlusion is a very fast approxima-
tion of ambient occlusion, but it has some limitations.
Screen-space directional occlusion includes two general-
izations that add directional occlusion and diffuse indirect
bounces. Both extensions improve realism considerably
for a minor computational cost.

In this paper, a few experiments were made to the
screen-space directional occlusion. Sample point genera-
tion based on the Halton sequence is an easy way to get
uniform distribution of the sampling points. The peri-
odic properties of the Halton sequence can also be used
to potentially further optimize the method. This was ex-
ploited to generate a variable amount of sampling points,
but still have a pseudo-uniform distribution. So as to re-
duce noise, a modified version of bilateral filtering was
used, which took into account the geometry information
as well to avoid color bleeding over edges and between
objects. The SSAO and SSDO methods were computed in
lower resolutions to speed up the method. For upsampling
to the original resolution, joint bilateral upsampling was
used to honor geometry properties.

In the future, more experiments can be made to SSAO
and SSDO accompanied with more comprehensive test-
ing based on the controllable features of each method. In
order to get a clearer picture where these methods stand
performance-wise, a few other methods could be explored,
too.

References

[1] Louis Bavoil, Miguel Sainz, and Rouslan Dimitrov.
Image-space horizon-based ambient occlusion. In
ACM SIGGRAPH 2008 talks, SIGGRAPH ’08, page
22:1, New York, NY, USA, 2008. ACM.

[2] Robert L. Cook and Kenneth E. Torrance. A re-
flectance model for computer graphics. SIGGRAPH
Comput. Graph., 15:307–316, August 1981.

[3] Kirill Dmitriev, Stefan Brabec, Karol Myszkowski,
and Hans-Peter Seidel. Interactive global illumina-
tion using selective photon tracing. In Proceedings
of the 13th Eurographics workshop on Rendering,
EGRW ’02, pages 25–36, Aire-la-Ville, Switzerland,
Switzerland, 2002. Eurographics Association.

[4] P. Dutré, K. Bala, and P. Bekaert. Advanced global
illumination. Ak Peters Series. AK Peters, 2006.

[5] Dominic Filion and Rob McNaughton. Effects &
techniques. In ACM SIGGRAPH 2008 classes, SIG-
GRAPH ’08, pages 133–164, New York, NY, USA,
2008. ACM.

[6] Anton Kaplanyan and Carsten Dachsbacher. Cas-
caded light propagation volumes for real-time indi-
rect illumination. In Proceedings of the 2010 ACM
SIGGRAPH symposium on Interactive 3D Graphics
and Games, I3D ’10, pages 99–107, New York, NY,
USA, 2010. ACM.

[7] Johannes Kopf, Michael F. Cohen, Dani Lischinski,
and Matt Uyttendaele. Joint bilateral upsampling.
In ACM SIGGRAPH 2007 papers, SIGGRAPH ’07,
New York, NY, USA, 2007. ACM.

[8] Martin Mittring. Finding next gen: Cryengine 2.
In ACM SIGGRAPH 2007 courses, SIGGRAPH ’07,
pages 97–121, New York, NY, USA, 2007. ACM.

[9] G. Nichols, J. Shopf, and C. Wyman. Hierarchical
image-space radiosity for interactive global illumi-
nation. page 11411149, 2009.

[10] C. Reinbothe, T. Boubekeur, and M. Alexa. Hybrid
ambient occlusion. EUROGRAPHICS 2009 Areas
Papers, 2009.

[11] Tobias Ritschel, Thorsten Grosch, and Hans-Peter
Seidel. Approximating dynamic global illumination
in image space. In Proceedings of the 2009 sympo-
sium on Interactive 3D graphics and games, I3D ’09,
pages 75–82, New York, NY, USA, 2009. ACM.

[12] Perumaal Shanmugam and Okan Arikan. Hardware
accelerated ambient occlusion techniques on gpus. In
Proceedings of the 2007 symposium on Interactive
3D graphics and games, I3D ’07, pages 73–80, New
York, NY, USA, 2007. ACM.

[13] S. Zhukov, A. Inoes, and G. Kronin. An ambient
light illumination model. In proceedings of the Eu-
rographics Workshop in Vienna, Austria, Rendering
Techniques ’98, pages 45–56, Springer, 1998.

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)

