
Multiplatform framework for managing windows

Michal Kevický∗

Supervised by: Silvester Czanner†

Department of Applied Informatics
Faculty of Mathematics, Physics and Informatics

Comenius University
Bratislava / Slovakia

Abstract

We introduce a multiplatform C++ framework for man-
aging application windows respectively displayed content.
The framework provides an API for handling display de-
vices, representation and presentation of displayed con-
tent, managing input events and other actions. Further-
more, objects are extended with semantic context which
defines their functional properties. Semantics allows more
accurate classification of entities, choosing more accurate
reactions for incomming signals. The framework pro-
vides platform, which does not strictly rely on classical
WIMP (windows, icons, menu, pointer) paradigm and
gives ability to develop solutions non-conventional way
(e.g. zoomable UI, tangible UI).

Keywords: Graphical user interfaces, Windowing sys-
tems, Frameworks, Scalability

1 Introduction

Lately we experience vast expansion of electronic gadgets
with many different graphical user interfaces. Each new
interface introduces new philosophy of control, thus con-
fusing users and leading to deformation of user’s learning
curves of such systems in a negative way. It increases the
costs of the development of multiplatform applications
and brings new possibilities for various errors.

Graphical user interface usually depends on 4 parts.
The first part, an operating system (OS), is not the one
which should be important for real layout. OS is here to
provide communication with input/output (I/O) devices,
management of resources, communication between
processes, and handling permissions, and entire user
model. OS defines a ”platform”. The second part is a
window managing application (i.e. window manager,
WM). It manages the content and defines how should this
be displayed on attached displays. Windows management
is the main contribution of our work. The third part is
represented by the content of windows. It usually consists

∗kevicky@gmail.com
†s.czanner@warwick.ac.uk

of a canvas containing set of well positioned widgets.
Since there are many multiplatform widget sets (e.g.
wxWidgets, Qt, GTK, Swing, AWT, . . . ), there should
be no problem of designing and implementing portable
layout of window. The fourth part is represented by input
devices, i.e. physical interaction, is the part which can not
be modified software way and hence also is not field of
our interest.

WMs are either part of OS (like in Windows series from
Microsoft) or can be separate application like in many of
*NIXes. As a bonus, in *NIX X Window system, each
application can act like a WM, what caused there are really
a plenty of WMs now.

WMs of present days usually do not provide inter-
face for customization/extension in non-layout properties
(i.e. in behaviour, input devices, representation of win-
dows) using predefined APIs, leading to workaround solu-
tions. Our solution implements modular framework model
which is easy to extend and modify. An end user for
our framework is primarily WM or presentation logic pro-
grammer.

The framework is here to define and implement abstract
interfaces for the end user to ease writing of portable
respectively multiplatform code. The implementation of
the framework for a specific platform consists of core
code of the framework and set of the platform specific
modules or wrappers providing functionality defined by
the abstract interfaces mentioned above.

The structure of this paper is organized as follows:
Section 2 introduces few existing projects implementing

similar functionality or providing relevant informations to
our work.

In Section 3, we describe used technologies, reasons for
their selection and their pros and cons.

Section 4 describes architecture of framework, object
structure and application flow.

Section 5 presents advantages of framework and pos-
sibilities it brings for window manager / application pro-
grammer and end user of final window manager.

Section 6 sumarizes our results, section 7 presents our
plans for future work and section 8 provides conclusion of

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)



entire article.

2 Related work

In the world of WMs, there is a large scale of a different
applications or application packages, from lightweight
programs to complex desktop environment packages.
Especially in world of *NIXes, there are hundreds of
options to choose WM. Here is an overview of few works
interesting to us:

The Compiz-fusion [3] project is alpha for recent
Linux world in field of desktops and visual effects. The
Compiz-fusion project implements using AIGLX/XGL
extensions to the X Windows system an compositing
windows manager introducing different visual effects
(wobbly windows, transparency, desktops mapped on
rotatable cube, . . . ) to the world of Linux.

The Metisse [8] is French project extending FVWM
project which has brought their own implemention of
composite extension and has come up with their modifi-
cation of X server. The goals of the project are similar
to ours - easing the design, implementing and testing
of new human computer interaction (HCI) approaches
and techniques. What is worse, the Metisse is primary
X Window System oriented. On the other hand, one of
goals of our framework is the development of unified
multiplatform base for managing windows.

The SphereXP [5] is Slovak project by Dušan Hamar,
and it has been one of the pioneers of Microsoft Windows
XP window managing customization. SphereXP provides
extension of standard flat rectangle desktop to space
inside sphere. Together with KDE project and Black-
box, SphereXP is the one that proves, that customization
of the presentation layer of Windows XP is really possible.

Last but not least there are Blackbox [1] and
Fluxbox [4], the fork of Blackbox. Both are very
lightweight WMs implementing stackable WM concept,
providing spartan visual interface. For minimum func-
tions they provide, and MIT license, they are released
under, they has became inspiration and basic code of our
framework.

The Quartz-compositor as part of MacOS X by Apple
or the Aero from Windows 7 by Microsoft are well known
technologies so they will not be discussed.

3 Used technology

Response times of the visual interfaces are one of their
critical features, so it is expected to use speed efficient lan-
guage. WM can also be considered as feature from ”sys-

tem programming” category. On the other hand, frame-
work is here for other users to simplify them implemen-
tation. The C sometimes appears to be one of the syn-
onyms for system programming, but also it is not so sim-
ple as Java or C#. Compromise between the power and
the userfriendliness seems to be combination of the C and
the C++ with possible inter process communication (IPC)
with modules written in different languages.

However Portable Operating System Interface [for
Unix] (POSIX IEEE 1003 standard [6]) is primarily ori-
ented to the *NIXes, and it should be considered as a
guideline for the multiplatform computing.

We have used Boost[2], because it is set of peer-
reviewed C++ libraries which are almost the part of the
upcoming C++ standard. It also comes here to provide
rapid application development features.

Ontologies and description logics are concepts known
from semantic web. Main reason for using them is a pos-
sibility of describing objects by their properties, where
classification of objects using taxonomies faces problems.
These entities should act like good candidates for multiple
branches of a tree. Except for the problem with multi-
ple occurances in the taxonomy tree1, description logics
solve also the problem with resolving context and scala-
bility. For example, there is no need for launching a par-
ticular multimedia player2, there is only need for a player
capable of playing 7.1 sound, respecting DRM3 as well as
the possibility of controlling with a mobile phone using a
bluetooth technology.

4 Architecture

WMs can be divided into 3 categories: the tailing WM, the
stacking WM, the compositing WM.

The tailing WM splits planar screen into the disjoint
zones (with no visual overlaping between applications).
This concept has been used in earlier versions of Microsoft
Windows (e.g. version 1.0).

The Stacking WM introduces the layers of windows,
allowing overlaping of windows. This concept can be
found in classical WMs running on X Windows System,
including Blackbox and Fluxbox, KDE to version 4, also
Microsoft Windows prior to Microsoft Aero technology,
and Mac OS prior to OS X. Main difference between the
stacking and the compositing WMs is, that stacking ones
draw content of windows directly meanwhile compositing
ones let application to render their output to buffers
and the WM work with content from WM’s buffers.
Representatives of the compositing WMs are the Apple’s
Quartz-compositor, the Compiz-fusion project or the
Microsoft’s Aero. The primary goal of the framework
was to develop the compositing window manager, but it

1one object could belong to multiple tree branches, which should be
disjoint

2such a player might not even exists on target system
3digital rights management

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)



is not problem to customize it for the old school methods
mentioned above.

Most of the recent WMs which are implementing stan-
dard WIMP paradigm user interface suffers with several
limitations. The first to mention is, that the object’s
structure has fixed amount of properties (e.g. window:
dimensions, position, title, scalability, min/max/normal
state and that is almost complete listing). There is no
native way to communicate any different properties
between the applications.

As WMs assume 2D windows, recent controls has also
been designed for 2D interfaces. 3 (and more) dimen-
sional interfaces are just part of sci-fi or experiments,
but there is not native way for integration into the WM’s
system. Similar situation occures while considering
displays - 2D is standard, 3D is sound of future.

The framework solves this problem with dynamic
amount of properties of the ”window” object. Window
object itself is quite confusing notation in the context of
the framework. The framework itself contains ”content”
entity which the most important property is the binary
blob. The binary blob contains only ”some kind of data”.
Other relevant property is dataType which determines,
which interpreter to use (does binary blob represent
pixmap, plain text, h264 video stream, set of 3D instruc-
tions?).

Our framework consists of core, which defines basic
structure split into the four layers (figure 1): Input layer
(IL), Application logic layer (ALL), Presentation layer
(PL) and Client application layer (CAL). Other impor-
tant parts of core are abstract interfaces and functions for
management of modules and communication between
them and the platform specific wrappers.

Figure 1: Framework’s core

The input layer (figure 2) handles input events received
from the OS, the client applications, or events generated
inside the system. Events are being classified, passed to
the priority queue, subsequently routed with respect to
the security policies to different queues - high priority
for realtime applications and slower one with ontology
mapping for future pass into application logic layer.

The application logic layer (figure 4) is the brain of en-
tire framework. Here is the place for modification of appli-

Figure 2: Input layer

cation logic, write own rules, generate events and change
configuration of state machine. ALL configures actions
for PL, passes commited events to client applications (i.e.
”windows”). Aplication logic is designed to be fully mod-
ifiable and portable, as far as it operates with the abstract
entities. At the time, only conservative processing engine
is fully implemented. It processes events by executing
code in written form (i.e. C++). Another available con-
cept for processing unit is using visual modelling - in our
case there is the modified timed petri network (mTPN).

TPN consists of places and transitions connected with
directed arcs (each arc connects one place with one tran-
sition). Places acts as accumulators of tokens - requests.
Transitions represents actions or parts of code. They can
be enabled or disabled. Directed arcs represents set of
conditions that have to be satisfied (accumulated sufficient
amount of tokens) to enable transition. If conditions are
not satisfied, transition is disabled. Enabled transition have
to fire (execute code) in defined time conditions (i.e. it
have to fire from t f rom to tto time units since transition has
been enabled). There are various modifications of Petri
Networks, introducing different enhancements like men-
tioned time, different types of tokens, spetial additional
conditions. Petri Networks are also designed for verifica-
tion of algorithms, detecting deadlocks, infinite loops etc.,
which are not considered in this stage.

Modeling with TPN is illustrative enough for people
not experienced in programming but with mathematical
aparate. Visual modeling utility for mTPN is part of future
work.

ALL can be also extended with any other visual mod-

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)



Figure 3: Petri network sample: places (rings), transitions
(rectangles), tokens (dots) [7]

eling system4, but we are not planning to implement any
others.

Figure 4: Application logic layer

The client application layer provides interface between
the applications outside the framework (clients) and
framework functionality. This should be done in two
ways. The first is done by the wrapper, which does not
need cooperation from client, wrapper just parasites on
its interfaces and translate framework’s communication
to platform native codes and vice versa. The second is to
handle communication native way, i.e. write ”window”
application using framework’s API, what makes the client
application framework dependant. Using framework’s
API may be useful for example if a user needs quickly
gain existing feature. As example should be simple image
viewer, which only initializes framework’s communi-
cation object, sets dataType to ”image/jpeg”, and loads
image into the attached binary blob property. The rest is
work of PL and framework’s interpreters/renderers.

The presentation layer is processing configuration pre-
pared by the ALL. PL is the one responsible for visual in-
terpretation binary blobs (by renderers), preparing scene,

4like timed automata etc.

Figure 5: Client application layer

caching scenes, work with hardware acceleration, buffers,
decorating output with special effects, finalization of ren-
dered scene. PL is also place for user’s own modules for
special effects and visual data interpretation.

Figure 6: Presentation Layer

5 Possible applications

In fact framework separates output from application, what
gives us flexibility for further manipulations. Several ex-
amples are mentioned here, but they are just examples,
they should look simple but are there mentioned just for il-
lustration. Not every of modules is implemented at present
time, few are part of future work.

5.1 Image processing

As mentioned above, a visual output from application is
just a binary blob, which could but does not have to be

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)



passed for further graphical/data processing. For exam-
ple, there is need to display histogram of a 24bpp5 bitmap.
Once a module implementing that functionality is imple-
mented, programmer just need to load it and add to pro-
cesschain for specific window and application developer
does not need to implement it again (i.e. reuse of code).

5.2 Distributing output

Can be useful for viewing and recording video at same
time - one machine can act as a high quality display, an-
other as a recorder/encoder and last one as a streaming
server for the internet (i.e. load balancing).

Another example is sharing applications by extending
paradigm of a remote desktop. Machine A is running ap-
plication and renders output, machines B and C are dis-
playing same output window for two different users and
are receiving inputs from them, both B and C are passing
input signals back to A (i.e. collaboration).

5.3 Space

Most of recent WMs are still 2D and single machine ori-
ented. Framework does not rely on any number of dimen-
sions or machines. If there is need of 3D interpretation of
a content, there is possibility to add property6 of depth and
Z coordinate of position to each window and write logic,
which operates in 3D space. If there is need of union of
vritual space of multiple machines, there is possibility join
them into virtual domain.

5.4 Application classification

Each person has it’s own organizational structure for ob-
jects by their characteristics. Dishes, food and things as-
sociated with eating are usually stored in kitchen. Also
applications can be grouped to categories - work, social
interaction, relax, etc. . This can also lead to organizing
them in space, giving several groups of applications dif-
ferent priorities in interaction and machine time. Switch-
ing between applications (usually by pressing Alt+Tab)
can also be extended with groups, like keys on different
keyrings and user can quickly switch between ”windows”
in specific group and does not have to traverse unimportant
ones.

Frequently popuping applications can also receive less
priority by classifiers in ALL to surpress disturbing effect.
Multiple behaviours of entire interaction systems can be
introduced based on user’s settings or for example user’s
mood (switched on requests or by receptors).

5.5 Kiosk mode

Or restricted (interaction) environment is often used for
single purpose applications installed in a public or open

5color depth 24 bits per pixel
6dynamic properties vs. limitation of existing WMs

space, where a machine should serve only one specific ap-
plication and should be resistant again attempts to gain un-
privileged control of a machine. Building restricted envi-
ronment is not a simple task, which usually requires san-
itizing of input systems. Customization via framework is
simple task, because can be switched to mode when no
other application can be displayed or receive input from
user.

6 Results

We have developed the core and basic parts (i.e. systems
wrappers) of framework. Actual port is working on 32 /
64bit Linux versions, port to Windows XP is in progress
at the moment. In actual state of development, porting the
framework to a specific platform is mainly work of porting
wrappers to OS + platorm specific utilities to handle com-
munication with drivers (including renderers, wrapper for
CAL as shown on figure 7). At the moment, framework is
not oriented to high performance.

Figure 7: Portability

7 Future work

Future development can be divided to

• a visual modeling tool for mTPN as well as pre-fail
verification for modelled mTPN structures

• visual configuration utilities

• porting to mobile devices

• network functionality, visual domain - a space of a
rendered output shared between multiple worksta-
tions in domain

• improving performance

• improving security

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)



8 Conclusion

Basic structures of concept were successfuly imple-
mented, but there is still place for improvements. Our
interest for future work focuses to mobile platforms, im-
proving configuration interface and implementing mTPN
visual interface to ease interaction for common people.

References

[1] Blackbox, February 2011.
http://blackboxwm.sourceforge.net/.

[2] Boost c++ libraries, feb 2011.
http://www.boost.org.

[3] The compiz-fusion project, February 2011.
http://www.compiz.org/.

[4] Fluxbox, February 1. 2011.
http://fluxbox.org/.

[5] Dušan Hamar. Spherexp, feb 2011.
http://www.spheresite.com/.

[6] IEEE. IEEE Standard Interpretations for IEEE Std
1003.1-1990 and IEEE Std 2003.1-1992. IEEE, 1994.

[7] Jan Krumsiek. Petri nets for network analysis, 2007.
http://www2.bio.ifi.lmu.de/
lehre/SS2007/SEM_Advanced/Folien/
petrinets_slides.pdf.

[8] Nicolas Roussel Olivier Chapuis. Metisse is not a 3D
desktop. UIST ’05 Proceedings of the 18th annual
ACM symposium on User interface software and tech-
nology, ACM New York, NY, USA , 2005.
http://insitu.lri.fr/metisse/.

Proceedings of CESCG 2011: The 15th Central European Seminar on Computer Graphics (non-peer-reviewed)

http://blackboxwm.sourceforge.net/
http://www.boost.org
http://www.compiz.org/
http://fluxbox.org/
http://www.spheresite.com/
http://www2.bio.ifi.lmu.de/lehre/SS2007/SEM_Advanced/Folien/petrinets_slides.pdf
http://www2.bio.ifi.lmu.de/lehre/SS2007/SEM_Advanced/Folien/petrinets_slides.pdf
http://www2.bio.ifi.lmu.de/lehre/SS2007/SEM_Advanced/Folien/petrinets_slides.pdf
http://insitu.lri.fr/metisse/

	Introduction
	Related work
	Used technology
	Architecture
	Possible applications
	Image processing
	Distributing output
	Space
	Application classification
	Kiosk mode

	Results
	Future work
	Conclusion

