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Abstract

This paper describes the implementation of a parallelized
conjugate gradient solver for linear equation systems us-
ing CUDA-C. Given a real, symmetric and positive def-
inite coefficient matrix and a right-hand side, the paral-
lized cg-solver is able to find a solution for that system by
exploiting the massive compute power of todays GPUs.
Comparing sequential CPU implementations and that al-
gorithm we achieve a speed up from 4 to 7 depending on
the dimension of the coefficient matrix. Additionally the
concept of preconditioners to decrease the time to find a
solution is evaluated using the SSOR method. In the end
additional suggestions are provided to further increase the
speed of the presented CUDA cg-solver.

Keywords: parallized GPU solver, sparse matrix solver,
conjugate gradient, ELLPACK-R, NVIDIA CUDA, SSOR
precondition, 2D heat equation

1 Introduction

In several applications one has to solve linear equation sys-
tems with real, symmetric and positive definite coefficient
matrices. Examples for such systems are broadly available
e.g. physical deformation (cf. [6]), implicit mesh smooth-
ing, mesh parameterization (cf. [9]), diffusion equation
for terrain generation (cf. [8]). Usually linear equation
systems are derived from dicretizing a continous problem
resulting in very sparse coefficient matrices because only
a small number of neighboring elements take influence on
a specfic element. Therefore coffecient matrices can be
stored very efficiently using sparse matrix formats e.g. the
ELLPACK-R format which is used here. Such linear sys-
tems can become very large regarding to the given problem
and one would like to find a time efficient solution for such
systems. In literature the conjugate gradient algorithm is
suggested to solve such linear, symmetric and positive def-
inite systems. Specific operations of that algorithm can
be parallelized e.g. scaled vector addition, dot product
and matrix-vector multiplication. In this work a parallel
implementation of the conjugate gradient algorithm using
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the NVIDIA CUDA architecture is presented to exploit the
massive compute power of todays GPUs. Additionally the
performance of the algorithm is compared to sequential
and parallel implementations. Finally the 2D heat equa-
tion is solved using the parallized cg-solver.

2 Related Work

The conjugate gradient algorithm was introduced in [7] as
an efficient method to solve linear equation systems with
real, symmetric and positive definite coefficient matrices.
Additional details regarding the conjugate gradient algo-
rithm can be found in [1], [11] and [12]. With the appear-
ance of programmable graphics hardware a cheap way for
getting massive parallel processors to the masses became
possible. Therefore, general people can also take advan-
tages from parallel algorithms. When analysing the con-
jugate gradient algorithm one will recognize that serveral
operations within one iteration of the algorithm can be
computed in parallel. In [5] a parallel implementation was
introduced using GLSL shader programs. The necessary
data for the computation was stored in textures and the al-
gorithm was implemented in a pixel shader. Due to the
general purpose GPU paradigm encoding of data in tex-
tures got superfluous because new technologies, like the
NVIDIA CUDA architecture allow programming the par-
allel processors using an extended version of the C pro-
gramming language (see [10]). An exemplary implemen-
tation of the conjugate gradient algorithm using CUDA is
shown in [2]. If one wants to reach a time efficient im-
plementation of the conjugate gradient algorithm it is es-
sential to have an efficient way to compute sparse matrix
vector products. In [4] an efficient storage for sparse ma-
trices the ELLPACK format was suggested, which was ex-
tended to the ELLPACK-R format in [13] (explained later)
especially for the use on GPUs. For time efficient solution
of linear systems it is not enough to have efficient data
structures and a lot of compute power: There exist exten-
sions to the conjugate gradient algorithm which use a pre-
conditioning matrix which is applied to the system matrix
to decrease its condition number. In this paper a sequen-
tial version of such preconditioner is evaluated using the
SSOR method described in [3].
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3 Conjugate Gradient Algorithm

The primary introduction of the conjugate gradient algo-
rithm from 1952 can be found in [7]. This method is used
to solve linear systems Ax = b with A ∈ Rn×n (symmetric,
positive definite) and b ∈ Rn.
In this case the solution of the linear system is equivalent
to the minimum of the function

E : Rn→ R,x 7→ 1
2
〈Ax,x〉−〈b,x〉 ,

meaning x solves Ax = b if and only if E has a global min-
imum at x.
To proof the equivalence calculate ∇E(x) = Ax− b and

∇2E(x) = A. Therefore, ∇E(x0)
!= 0 ⇔ Ax0 = b and

∇2E(x0) is positive definite, wherefore x0 is a local min-
imum. This is the only extremum, so x0 is also a global
minimum. This equivalence is the basic idea of the conju-
gate gradient algorithm. Instead of solving a linear system
in a typical way, we search the minimum of the function
E. Let x = x(0) ∈Rn be an arbitrary start vector. We search
the miminum of E on the line

g : R→ Rn,α 7→ x+α p.

The search direction p is arbitrary for now. Let r := b−Ax
be the residual. With A = At we get

dE (g(α))
dα

=−〈r, p〉+α 〈Ap, p〉

and with dE (g(α))/dα
!= 0

α =
〈r, p〉
〈Ap, p〉

. (1)

That is a minimum, because A is positive definite and we
get

d2E (g(α))
dα2 = ptAp > 0.

To obtain the minimum approximately we use an iterative
search with different search directions. For that purpose
set an arbitrary start vector x and calculate a more precise
approximation of the minimum in every iteration

x(m)← x(m−1) +α
(m) p(m−1).

To calculate α we need r and p. The residuals r(m) = b−
Ax(m) can be computed iteratively using

r(m)← r(m−1)−α
(m)Ap(m−1),

because

r(m−1)−α
(m)Ap(m−1)

= b−A
(

x(m−1) +α
(m) p(m−1)

)
= b−Ax(m)

= r(m).

We get the gradient descent algorithm (see Algorithm
1), if we choose the direction of the steepest descent
p = −∇E(x) as our search direction (cf. [1]). We set
x(0) = 0 and get r(0) = b−Ax(0) = b.

x(0)← 0
r(0)← b
p(0)← r(0)

for m← 1 to mmax do
α(m)←

〈
r(m−1), p(m−1)

〉
/
〈

Ap(m−1), p(m−1)
〉

x(m)← x(m−1) +α(m) p(m−1)

r(m)← r(m−1)−α(m)Ap(m−1)

p(m)←−∇E(x)
return x(mmax)

Algorithm 1: Gradient descent.

The convergence of this algorithm is a problem, because
this method uses search directions, which are similar to
each other. Resulting we get an increased number of iter-
ations to reach sufficient accuracy. So we use a set of lin-
early independent search directions (A-conjugated direc-
tions). This seems to be a good approach, because the al-
gorithm is able to minimize in every direction of the space
Rn in n steps.
Two vectors xi,x j ∈ Rn are called A-conjugated (xi⊥Ax j)
to a symmetric, positive definite matrix A ∈ Rn×n,
if
〈
xi,Ax j

〉
= 0 (cf. [1]). A set {r1,r2, ...,rk} with

r1,r2, ...,rk ∈ Rn and xi⊥Ax j for all i 6= j is linearly in-
dependent.
The proof is easy. For all l ∈ {1,2, ...,n} with ∀i 6= l :
rt

lAri = 0 is

0 !=
k

∑
i=1

αiri

⇒ 0 != rt
lA

k

∑
i=1

αiri = rt
lAαlrl = αl(rt

lArl) = 0

⇒ αl = 0,

because A is positive definite and therefore rt
lArl 6= 0.

The search directions can be created iteratively. With the
approach

p(m+1) = r(m+1) +β
(m+1) p(m) and p(0) = r(0)

and the request p(m+1)⊥A p(m) we get〈
r(m+1),Ap(m)

〉
+β

(m+1)
〈

p(m),Ap(m)
〉

!= 0

and therefore

β
(m+1) =−

〈
r(m+1),Ap(m)

〉
〈

p(m),Ap(m)
〉 . (2)
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With this selection of β (m+1) we get a new search direction
p(m+1), which is A-conjugated to the old direction p(m).
Terms (1) and (2) can be written in the advantageous form

α
(m+1) =

〈
r(m),r(m)

〉
〈

p(m),Ap(m)
〉 and β

(m+1) =

〈
r(m+1),r(m+1)

〉
〈
r(m),r(m)

〉
(cf. [11]). So we save the computation of a dot product.
Using A-conjugated search directions we get the conjugate
gradient method (see Algorithm 2 cf. [12]). The output of
the algorithm is shown for n = 2 in Figure 1.

x(0)← 0
r(0)← b
p(0)← r(0)

for m← 1 to n do
α(m)←

〈
r(m−1),r(m−1)

〉
/
〈

p(m−1),Ap(m−1)
〉

x(m)← x(m−1) +α(m) p(m−1)

r(m)← r(m−1)−α(m)Ap(m−1)

β (m)←
〈

r(m),r(m)
〉

/
〈

r(m−1),r(m−1)
〉

p(m)← r(m) +β (m) p(m−1)

return x(n)

Algorithm 2: Conjugate gradient (cg).

Figure 1: Cg-demo with n = 2.
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(
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)

Using induction shows, that these n search directions are
pairwise A-conjugated and therefore pairwise linearly in-
dependent.
By using this result it is possible to show that with exact
arithmetic the method finds the solution x of the linear sys-
tem Ax = b after at most n steps (cf. [1] and [12]).
The worst case runtime is O

(
n3
)

FLOPS, because we
need the matrix-vector multiplication Ap(m−1) with run-
time O

(
n2
)

in every iteration. The other operations can be

realized in linear time. It is recommended to calculate only
one matrix-vector multiplication per iteration and store the
result.

For sparse matrices exist adapted data structures to
accelerate the matrix-vector multiplication. With
parallelization it is possible to decrease the runtime.

In some cases we need less than n iterations to get a precise
approximation of the solution. We use the 2-norm of the
residual after every iteration to decide if more iterations
are necessary. The 2-norm can be derived from 〈r,r〉which
is already calculated to determine β .
There again it makes sense to run more than n iterations to
minimize the numerical error in some cases.

4 Compute Unified Device Architec-
ture (CUDA)

The parallelization of the algorithm is done using the
NVIDIA CUDA technology. This technology makes it
possible to exploit the massive compute power of todays
GPUs for general purpose computing by creating kernel
programs which execute in parallel.

4.1 CUDA-Programing Paradigm

Next the CUDA programming paradigm is reviewed, for
additional details the reader is referred to [4] and [10]. In
this paper the CUDA Toolkit 3.1 is used. As mentioned
above using the CUDA technology we gain the possibil-
ity to exploit the massive compute power of modern GPUs
by writing kernel programs e.g. in an extended version of
C and execute these programs N times in parallel on the
available hardware. The program is executed by N dif-
ferent threads while no assumption can be made in which
order the threads are executed. Started from the CPU a
kernel is attached to a compute grid, which is separated
into a number of blocks. In each block a specific amount
of threads is running (see Figure 2). The threads of a

Grid

Block 0

Thread 0  (i=0)

Thread 1  (i=1)

Block 1

Thread 0  (i=2)

Thread 1  (i=3)

Figure 2: CUDA-programming model.

block are executed as packages of 16 threads which is also
called halfwarp. The threads inside a halfwarp are gener-
ally running in parallel. The blocks of a compute grid are
executed sequentially but in case of available hardware re-
sources blocks are dispatched and executed in parallel to
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other blocks. Every thread has two information: first in
which block it is running and secound by which block in-
ternal number it is identified. Hence the numbering of the
threads can be done by

int i = blockIdx.x * blockDim.x + threadId.x.

This is also illustrated in Figure 2. The next example
demonstrates the addition of two vectors implemented in
C for CUDA (see Algorithm 3).

01 global void VecAdd(float* A, float* B, float* C, int n){
02 int i = blockIdx.x * blockDim.x + threadId.x;
03 if (i < n) C[i] = A[i] + B[i];
04}

Algorithm 3: CUDA-vector addition
C = A+B mit A,B,C ∈ float256.

The data transfer between the CPU and GPU is done by
cudaMemcpy which allows the transfer of data either from
the CPU to the GPU or vice versa (cudaMemcpyHost-
ToDevice, cudaMemcpyDeviceToHost). Within a kernel
program one can only operate on data available in the
GPUs memory. Normally the data is first stored in the
global persistent GPU memory. This memory can be allo-
cated by cudaMalloc and deallocated by cudaFree similar
to the C programming language. The global thread iden-
tifier is stored in the local thread memory which is only
available during the life time of a thread. Additionally the
hardware provides shared memory which can be accessed
very fast compared to the data access in the global mem-
ory. A specific compute kernel is initiated by the CPU
with the information how many blocks inside the compute
grid should be allocated and how many threads per block
shall be spawned (see an example for the provided vector
addition kernel below).

VecAdd <<< blocksPerGrid, threadsPerBlock >>>
(A, B, C, 256);

A synchronization of the GPU with the CPU is possible by
using cudaThreadSynchronize.

5 Parallelized Conjugate Gradients

In every iteration of the cg-algorithm we have to compute
several scaled vector additions, dot products and a matrix-
vector multiplication (see Algorithm 2).

5.1 Parallel scaled Vector Addition

The λ -scaled vector addition

sum = x+λy

of two vectors each with n components can be realized
with n threads, which execute in parallel. Every thread cal-
culates one component of the result. This method equates
to Algorithm 3 with additional λ -scaling. If t threads run
in parallel the runtime can be decreased from O (n) to
O (n/t).

5.2 Parallel Dot Product

The calculation of the dot product

dot = 〈x,y〉

of two vectors each with n components is realized in two
steps. First we have to calculate a vector

hel p = x.∗ y,

which contains the pointwise product of the vectors. This
procedure is similar to Algorithm 3, but we have to replace
the addition by a multiplication. The acceleration is ana-
log a decrement from O (n) to O (n/t).
In the second step we have to sum up all components of the
vector hel p. The complexity of the sequential method is
in O (n). To parallelize the calculation we have to sum up
all neighboring components first (≈ n/2 FLOPS) and re-
peat this kind of summation with the resulting sums. This
procedure can be realized iteratively (≈ log2 n + 1 itera-
tions) and is pictured in Figure 3. Let t be the number of

→ *
*
*
*

→
 

→ 
→

 

*

*

*→ 

→
 

Figure 3: Parallel summation.

threads which run in parallel. Every thread calculates one
sum of neighboring components. So the complexity for
the second step and the whole dot product calculation is in
O (n logn/t).
If the number of threads is significantly lower it is more
efficient to sum up not only two neighboring components.
One option is that every thread has to add n/t elements
first. So we get a new vector with t components, which
has to be summed up. This can be done in O (log t) and we
get a complexity in O (n/t + log t) for the second step and
the dot product calculation. In this paper the first method
is used.

5.3 Parallel Matrix-Vector Multiplication

The product of a n×m-matrix and a vector with m com-
ponents can be realized with n threads, where every thread
calculates a component of the result.
This strategy is not efficient, if we want to calculate the
product with a sparse matrix, because we execute many
unessential operations with zeros. An approach to acceler-
ate the calculation is using a special data structure to store
the matrix.

5.3.1 ELLPACK-R-Data Structure

The classical formats to store a sparse matrix (coordi-
nate storage, compressed column storage, compressed row
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storage) are not applicable to parallelize the matrix vector
product (e.g. [13]). In [4] an efficient storage for sparse
matrices the ELLPACK format was suggested, which was
extended to the ELLPACK-R format in [13] especially for
the use on GPUs. A matrix A ∈ Rn×m is represented by
Nz ∈ N the maximal number of elements unequal to zero
per row, a representation matrix A ∈ Rn×Nz for the ele-
ments unequal to zero, a representation matrix j ∈ N0

n×Nz

for the indices of the elements and an information vector
rl ∈ N0

n containing the number of the elements per row.
For

A =


1 3 0
0 1 1
4 0 0
0 0 2

 ∈ R4×3

with Nz = 2 we have the following ELLPACK-R repre-
sentation:

A =


1 3
1 1
4 ∗
2 ∗

 ∈R4×2, j =


0 1
1 2
0 ∗
2 ∗

 ∈N0
4×2, rl =


2
2
1
1

 ∈N0
4,

which has to be saved in column-major order. The (∗)-
elements are replaced with zeros. This representation is
dense in many applications (e.g. discretized surfaces).

5.3.2 Matrix-Vector Multiplication

Let A be a matrix in ELLPACK-R representation. We
realize the matrix-vector multiplication with n threads as
seen in Algorithm 4.

Input: A ∈ Rn×m, v ∈ Rm

Output: u = Av ∈ Rn

for threadIndex← x← 0 to n−1 do in parallel
svalue← 0
max← rl[x]
for i← 0 to max−1 do

value← A[x+ in]
col← j[x+ in]
svalue← svalue+ value ·v[col]

u[x]← svalue

Algorithm 4: Matrix-vector multiplication in
ELLPACK-R format.

Let t be the number of threads which run in parallel. By us-
ing the ELLPACK-R format the runtime can be decreased
from O (nm) to O (nNz/t).

6 Running Time

In this paper the cg-algorithm was parallelized with the de-
scribed methods. It terminates after mmax iterations, if the
2-norm of the residual is less than a given upper bound of

the error. By using the upper estimates for the parallelized
operations we get a runtime in

O
(mmax

t
n(Nz+ logn)

)
,

in which n is the dimension of the coefficient matrix with
at most Nz elements unequal to zero per row and t denotes
the threads running in parallel. This promises a significant
acceleration compared to the runtime of the sequential im-
plementation, which is in O

(
mmaxn2

)
.

6.1 Runtimes of the Algorithm

This section provides a comparison of the runtimes of the
sequential and the parallel implementation of the conju-
gate gradient algorithm. As an application the heat equa-
tion is solved and different sizes of the n× n-coefficient
matrix are chose. When solving a linear system the con-
vergence speed of the conjugate gradient algorithm to
compute an acceptably accurate solution strongly depends
on the condition number of the system matrix. Therefore,
the time per iteration is used for detailed comparison. The
table below presents this times (in ms) of different CPU
implementations (Armadillo, MATLAB, MKL), the run-
times of the presented GPU version in CUDA 3.1 (high-
lighted in orange) and a CUDA 3.2 implementation from
NVIDIA.

n CPU Matl. MKL Cu. 3.1 Cu. 3.2
5122 12.9 13.3 3.4 3.1 3.0

10242 56.6 40.6 19.4 7.3 4.6
20482 238.6 153.0 79.9 21.5 9.2

The second column (CPU) contains the runtimes of a se-
quential CPU implementation. This implementation uses
the Armadillo C++ Library 1.0.0 (based on LAPACK) for
scaled vector additions and dot product calculations. The
matrix is stored in the ELLPACK-R format to realize an
efficient matrix-vector multiplication.
Intel®MKL 10.3 (Math Kernel Library) is a library of
threaded math routines, which contains an implementation
of the conjugate gradient algorithm using the compressed
row storage (CRS) format to store the matrix. The con-
vergence tolerance from the correct solution is set to 1.0
regarding the 2-norm of the residual. The implementa-
tions were tested on a PC with Intel® Core™ i7 860 (2.80
Ghz) and NVIDIA® GeForce® GTX 480 graphics card.
In the CUDA 3.1 implementation the number of threads
per block was set to 512, because on the used hardware
the configuration was always optimal. This is shown in
Figure 4 in case of the n = 5122 matrix.
For the implementation of the conjugate gradient solver,
which is described in this paper the CUDA Toolkit 3.1 was
used. NVIDIA has now published the version 3.2, which
includes a conjugate gradient solver using the CRS for-
mat. This solver is in case of large matrices about a factor
of two faster then the described implementation.
Additionally it should be mentioned that the data transfer
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time to the GPU memory is compensated when using co-
efficient matrices with dimension n > 1000.
Collectively, we can say that in comparison to the sequen-
tial CPU implementation (MATLAB) a speed up between
4 to 7 is reached with the presented implementation for
the tested coefficient matrices depending on the size. For
larger coefficient matrices additional speed up is expected.

3

3.2

3.4

3.6

3.8

4

64 128 256 512

ru
nt

im
e 

pe
r 

ite
ra

tio
n 

in
 m

s

threads per block

512²x512²-HEQ-Matrix

1024

Figure 4: Dependence of the runtime of the number of
threads per block.

7 Application: Heat Equation

In this paper the parallel cg-algorithm was tested on solv-
ing the heat equation. Let G be a n×m grid (see Figure 5)
and let u(x,y, t) be the temperature at a given time t at the
point (x,y) ∈ G. The temperature gradation on the grid is
in case of diffusion represented by the differential equation

∂u(x,y, t)
∂ t

=
∂ 2u(x,y, t)

∂x2 +
∂ 2u(x,y, t)

∂y2 .

7.1 Discrete Heat Equation

Using finite differences the discretization of the heat equa-
tion is given by

u(x,y, t) = (1−4τ) u(x,y, t +∆t)
+τ u(x+∆x,y, t +∆t)
+τ u(x−∆x,y, t +∆t)
+τ u(x,y+∆y, t +∆t)
+τ u(x,y−∆y, t +∆t)

in the case of ∆x = ∆y and τ := −∆t/∆x2. A problem
occurs if a discretized point (x,y) is located on the bound-
ary of the grid, because such a point is located in a neigh-
borhood consisting of only two or three points. In such
a case the term for the missing grid point has to be re-
moved. The equation above can then be written as a linear
equation system and is shown in Figure 5 for n = m = 4
with τ̄ := 1− 4τ . The coefficient matrix of the system
A = A(G) can be represented as

τ̄ τ τ

τ τ̄ τ τ

τ τ̄ τ τ

τ τ̄ τ τ

τ τ τ̄ τ τ

τ τ τ̄ τ τ

τ τ τ̄ τ τ

τ τ τ̄ τ τ

τ τ τ̄ τ τ

τ τ τ̄ τ τ

τ τ τ̄ τ τ

τ τ τ̄ τ τ

τ τ τ̄ τ

τ τ τ̄ τ

τ τ τ̄ τ

τ τ τ̄

In this case the red elements in the cofficient matrix cause
a wrap around from the and the left-hand side and will be
removed.

For larger grid sizes the coefficient matrices can be derived
analogously. From the previous statements a discretization
of the heat equation can be done using finite differences.
The computation of the heat dissipation is done by solv-
ing a linear system of size n ·m (cf. Figure 5) starting
from a given initial configuration u(0) ∈ Rn·m. The result-

u(0,0, t)
u(0,1, t)
u(0,2, t)
u(0,3, t)
u(1,0, t)
u(1,1, t)
u(1,2, t)
u(1,3, t)
u(2,0, t)
u(2,1, t)
u(2,2, t)
u(2,3, t)
u(3,0, t)
u(3,1, t)
u(3,2, t)
u(3,3, t)

= A



0,0 0,1 0,2 0,3

1,0 1,1 1,2 1,3

2,0 2,1 2,2 2,3

3,0 3,1 3,2 3,3


·

u(0,0, t +∆t)
u(0,1, t +∆t)
u(0,2, t +∆t)
u(0,3, t +∆t)
u(1,0, t +∆t)
u(1,1, t +∆t)
u(1,2, t +∆t)
u(1,3, t +∆t)
u(2,0, t +∆t)
u(2,1, t +∆t)
u(2,2, t +∆t)
u(2,3, t +∆t)
u(3,0, t +∆t)
u(3,1, t +∆t)
u(3,2, t +∆t)
u(3,3, t +∆t)

Figure 5: Discretization of a 4×4-grid.

ing coefficient matrix is symmetric and positive definite,
wherefore the solution can be computed using the conju-
gate gradient algorithm. From a current heat dissipation
the previous dissipation can be computed by multiplying
the coefficient matrix with the current result.

7.2 Implementation

The presented parallel conjugate gradient algorithm was
used to solve the 2D heat equation (see Figure 6). The
implementation was tested (hardware specification above)
with square images with different sizes 256, 512 and 1024
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Figure 6: Heat distribution on the 256× 256-emblem of
the University of Bonn.

resulting in simulating the heat flow in 20, 10 and 7 time
steps per second (interactive frame rates).

8 Future Work

In this paper, an accelerated cg-algorithm was imple-
mented. To reduce the processing time the coefficient ma-
trix was stored in ELLPACK-R format and the matrix vec-
tor operations were parallelized.
Another approach to advance stability and acceleration is
the preconditioning of the matrix. A sequential implemen-
tation of the preconditioned conjugate gradient algorithm
(pcg) was implemented in MATLAB to evaluate this.
Furthermore, the use of Shared Memory and Texture
Cache could accelerate the runtime on older graphics
cards.

8.1 Precondition and SSOR

One approach to advance stability and acceleration is
the preconditioning of the coefficient matrix A. The cg-
algorithm converged much faster for coefficient matrices
with smaller condition number. For example this is shown
in [12].
We can use this by left multiplication of the matrix A ∈
Rn×n with a preconditioning matrix M−1, in which M ∈
Rn×n is symmetric and positive definite. We have to
choose M in a way, where κ(M−1A) << κ(A). So we can
solve the equivalent linear system M−1Ax = M−1b instead
of Ax = b. But a problem occurs, if we want to use the cg-
algorithm to solve it, because the new coefficient matrix
M−1A is in general not symmetric and positive definite.
So we have to decompose the matrix with the Cholesky
method and get M = M1M2 called the left and the right
preconditioning matrix and execute the cg-algorithm on
the linear system

M−1
1 AM−1

2︸ ︷︷ ︸
=:Ã

M2x = M−1
1 b︸ ︷︷ ︸
b̃

.

That is possible, because Ã is symmetric and positive
definite. So we can solve the linear system Ax = b in two
steps. First we have to solve Ãy = b̃ with the cg-method.
After that we can get the solution x by solving M2x = y.

The second step is realizable with back substitution,
because M2 is an upper triangular matrix.
If we do it that way we have to calculate the matrix
product Ã = M−1

1 AM−1
2 first. This would be a kind of

a bottleneck. To avoid this we can use the substitution
x̂ = M2x, r̂ = M−1

1 r and p̂ = M2P in Algorithm 2. This
way we get the simplified preconditioned conjugate
gradient algorithm (see Algorithm 5, c.f. [11]).

x(0)← 0
r(0)← b
p(0)←M−1r(0)

for m← 1 to n do
α(m)←

〈
r(m−1),M−1r(m−1)

〉
/
〈

p(m−1),Ap(m−1)
〉

x(m)← x(m−1) +α(m) p(m−1)

r(m)← r(m−1)−α(m)Ap(m−1)

β (m)←
〈

r(m),M−1r(m)
〉

/
〈

r(m−1),M−1r(m−1)
〉

p(m)←M−1r(m) +β (m) p(m−1)

return x(n)

Algorithm 5: Preconditioned conjugate gradient (pcg).

In this paper the preconditioned algorithm was tested with
the SSOR method (Symmetric Successive Overrelaxation,
cf. [3]) in MATLAB. This method uses the strict lower
triangular matrix L and the diagonal matrix D of A.
The SSOR preconditioning matrix

M := C−1 = (D+L)D−1(D+L)t

is an approximation of the coefficient matrix A.
In every iteration we have to solve the linear system

C−1z = rm−1

to get z = Crm−1 = M−1rm−1.
In the MATLAB implementation the decomposition
C−1 = KKt with K = (D+L)D−1/2 was used to solve the
system with forward and back substitution.
A disadvantage of SSOR is the use of D−1/2, which is only
available for matrices with a positive main diagonal. All
elements of D+L are included in A. So the required mem-
ory is less.
The implementation shows a convergence in mind of the
number of required iterations to get a precise approxima-
tion of the solution, which is significant faster compared to
the unpreconditioned method. But the algorithm solves an
linear system in every iteration, for which reason the total
runtime is only faster for large (n > 1000) and bad condi-
tioned matrices. Another aspect is the enhanced stability
because of the decreased condition number.
This concept could be another approach to accelerate the
parallelized algorithm. For this purpose it is essential to
realize the solution of the linear system Mz = rm−1 effi-
ciently, for example with parallelization. The paralleliza-
tion of the back substitution is still an unsolved topic in
science.
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8.2 Shared Memory and Texture Cache

In the implementation, which is described in this paper
the input data were copied into the global memory of the
graphics card. During the execution, the threads get the
required data only from this memory, which is about 512
to 2048 MB on modern graphics hardware. There exists
also a comparatively small shared memory (it can also be
configured as a L1-cache) and texture cache, which is only
about a few KB. The access time to this kind of memory
is much shorter (sometimes about a factor in the dimen-
sions of 100) in comparison to the often uncached global
memory (cf. [13]). Because of the small size in the most
cases it is not possible to store the whole coefficient matrix
inside of it.
Another way to speed up the process is the skillful use of
this memory. Therefore, it is necessary to copy parts of
data for future calculations from global memory to shared
memory and texture cache. In order to achieve an acceler-
ation, this must be constructed so that most of these trans-
fers occur in parallel to the running threads.

9 Conclusion

This work presents a parallel implementation of the con-
jugate gradient algorithm using the NVIDIA CUDA ar-
chitecture. The operations which were parallelized are
the scaled vector addition, the dot product and the sparse
matrix-vector multiplication. As sparse matrix format
ELLPACK-R was used which provides an memory effi-
cient storage for large coefficient matrices on the GPU. To
compare the presented implementation, a comparison with
a sequential CPU implementation using the LAPACK-
based Armadillo C++ Library 1.0.0 and different CPU im-
plementations (MATLAB, MKL) was made. In compar-
ison to the sequential CPU implementations the parallel
version of the conjugate gradient algorithm is in average
4 to 7 times faster. The speed-up of the algorithm is fur-
ther increased if larger coefficient matrices are used. The
transfer time between the CPU and the GPU will be com-
pensated if the system matrices are acceptably large, in the
presented case n > 1000. An additional speed up can fur-
ther be gained if a preconditioner is used (e.g. SSOR). In
this case in each iteration an additional equation system
must be solved by back subsitution but currently there ex-
ists no efficient solution to that problem.
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