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Abstract

Today’s graphics hardware is not capable of displaying ar-
bitrarily detailed terrains in real–time. Above a certain
number of triangles rendering becomes too slow, frame
rate drops below 30. Known methods – such as Level
of Detail (LOD) or Realtime Optimally-Adapting Meshes
(ROAM) – simplify the triangle meshes to maintain speed.
With fewer triangles real–time speeds are possible, but it
decreases the visual quality. This paper presents a fast,
real-time method that combines triangle mesh simplifica-
tion with pixel shader displacement mapping. This method
first builds up an approximate low resolution triangle mesh
and applies displacement mapping on that. In the pixel
shader it computes the intersection of rays and the terrain.
For the best result, it combines linear search with secant
search. The result is independent from the resolution of
the heightmap and is capable of displaying terrains with-
out decreasing detail.

Keywords: Terrain rendering, Real-time, Displacement
mapping, Ray tracing, Linear search, Secant method

1 Introduction

Usually height values of terrains are stored in heightmaps,
i.e. two dimensional grayscale textures. Above a certain
resolution of the heightmap, too many polygons need to be
displayed if we draw triangles between each height point.
The result will not be real-time. For example, a heightmap
with 2049 x 2049 points would mean more than 8 million
triangles. At present, an average GPU could display it only
below 30 fps. There are known methods, which simplify
the triangle mesh. Most popular are Level of Detail (LOD)
and Realtime Optimally-Adapting Meshes (ROAM). As
they display fewer triangles, frame rate is higher and ac-
ceptable, but visual quality is reduced. It is also possi-
ble to display the land with displacement mapping. This
could be faster and independent of the resolution of the
heightmap, but also could be inaccurate.
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This paper presents a method that combines triangle
mesh simplification with displacement mapping. It com-
bines the advantages of both methods. With reduced num-
ber of triangles, high frame rate is possible. With displace-
ment mapping there is no loss in detail. The triangle mesh
helps displacement mapping to be faster and much more
accurate. The algorithm first builds up an approximate low
resolution triangle mesh above the real relief, then it uses
displacement mapping on that. The pixel shader of the
GPU determines the ray, and on a segment of the ray, it
searches for the intersection with the real terrain. Mini-
mizing inaccuracy, first it uses linear search, and finally
refines the result with secant search. The result is fast, in-
dependent of the resolution of the heightmap, and there is
no degradation in detail.

2 Related Work

Graphics hardware is only able to display a limited number
of triangles in real-time. For acceptable frame rate and vi-
sual quality several algorithms have been developed in the
last decades. These algorithms reduce the number of tri-
angles without significantly decreasing the visual quality.
An often used method is LOD [4] [15]. Simplest version
divides the surface to quads. In the quad where the camera
is, the resolution of terrain is not changed. In distant quads
the resolution is highly reduced. The border between two
quads is noticeable and could be annoying. Due to the dif-
ferent resolutions, gaps could appear.

Another solution is the ROAM [5]. This algorithm splits
triangles into two smaller triangles if the difference be-
tween the original and the new triangles is too big, and
merges neighboring triangles if the difference is small.
This algorithm considers the variety of surfaces. Flat part
of the terrain would only consist of few triangles. It also
considers what is visible from the camera. Far parts are
displayed with fewer triangles than near parts. Both al-
gorithms have an annoying problem. When the resolution
of the triangle mesh changes somewhere, this change is in-
stant. The surface pops between two frames, which is easy
to notice.

I developed a method that simplifies the triangle mesh.
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First the terrain consists of a few big triangles. The algo-
rithm recursively examines every triangle if it is necessary
to split it into two equal triangles. A triangle won’t be split
if the difference between the original and the new one is
small. The algorithm handles the variety of surfaces and
the triangle mesh doesn’t change during running. How-
ever gaps could appear on the surface, due to the different
size of triangles. Figure 1 shows a simplified terrain with
gaps produced by this algorithm. There exist methods to
fill these gaps, but they require additional computation and
still create difference from the original terrain.

Figure 1: Simplified terrain with gaps

It is also possible to display a terrain without using trian-
gle mesh. Using displacement mapping on a quad is capa-
ble of visualizing 3D surfaces. There are several methods
that calculate the surface in the pixel shader [1], including
parallax mapping, linear – binary search, secant method,
cone stepping, sphere tracing etc. Displacement mapping
could be really fast, due to the minimal polygon number.
Unfortunately it could be also inaccurate.

The widely used per-vertex displacement mapping
method (see [1]) differs from our approach, since it uses
the vertex shader only, while our method uses both vertex
and pixel shaders for displacement mapping.

There also exist a few approaches that combine triangle
mesh with displacement mapping [2] [3]. In [2] a sim-
ilar approach is used for vegetation visualization on or-
thographic landscape. Our approach is addressed for dis-
placement mapping in general, for example to be used by
visualizing reliefs. By our approach, the input is a homo-
geneous, high resolution height map, while [2] uses dif-
ferent datasets as the input of the visualizing algorithm.
In [2], the determination of the height offset is not de-
tailed, in our method it is calculated correctly and based
on the height map.

3 Approximate Low Resolution Tri-
angle Mesh

With basic displacement mapping we encountered a seri-
ous problem. Displacement mapping is usually used to in-
crease the detail of a surface without using more polygons.
Displacement mapping algorithms usually assume that the
camera doesn’t go below the original surface, and doesn’t
fly between bumps. In our application we would like to fly
among the hills. If we draw the displaced terrain below the
polygons, the terrain disappears when camera move below
them. A better solution is to create the terrain above the
polygons. Then the camera can fly between hills, but for
horizontal and above horizon rays the terrain doesn’t ap-
pear. When a ray doesn’t intersect the original polygons,
the pixel shader algorithm doesn’t start calculating the in-
tersection with terrain (see Figures 2and 3).

Figure 2: Ray doesn’t intersect polygons

Figure 3: Terrain is not displayed above the base triangles
(without using bounding box)

A known solution to this problem is the application of
a bounding box. It builds up a box around the displaced
surface, therefore every ray would intersect a polygon, and
the pixel shader could determine the intersection with the
terrain.

In the project we developed a faster method for this
problem. It builds up an approximate low resolution tri-
angle mesh above the real terrain in three steps. On this
mesh it applies displacement mapping. Since the real ter-
rain is very close to the mesh, the searches in pixel shader
will be much faster.
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3.1 First Step: Low Resolution Triangle
Mesh

First the algorithm creates a low resolution triangle mesh.
It uses height values from the height map. It doesn’t use
all pixels from height map, but skips a certain number of
pixels. The resolution of the new mesh can be 16× 16,
32×32, 64×64 or 128×128 quads. The optimal choice
depends on the graphic card. On an Nvidia Geforce 8400
M the best result was observed at 32×32, but on an 8800
GT we got better outcome with 128× 128. For arbi-
trary resolution, it is important that the resolution of the
heightmap is 2n +1.

3.2 Second Step: Push Up the Quads

For each quad1, the algorithm examines the height values
covered by a quad. It computes if a point is above the
quad, then stores the highest among them. After the high-
est point above the quad is determined, the whole quad
is being pushed upward to the maximum point. To do
this, it is necessary to calculate the distance between the
proper triangle’s plane and the point. A simple method is
to compute intersection between the plane and a vertical
line. Place vector r0 of the line is at 0 height.

t =
(p− r0) ·n

v ·n
(1)

where p is a point of the plane2, r0 is a point of the line,
n is the normal vector of the plane and v is the direction
vector of the line. It is easy to compute the plane’s normal
vector from the vertices of the triangle.

n = (b−a)× (c−a) (2)

where a and b are vertices of the triangle. Since the point
of the line is at 0 height, parameter t is the exact height
of the intersection. The difference between t and the real
height value shows how far the quad should be raised.
The algorithm stores in an array how each quad has been
pushed up. This is used in step three.

3.3 Third Step: Fill Gaps

Each quad rose differently, scales of pushes are different
at neighbors, therefore gaps appear between quads. These
gaps should be removed. For every quad at every vertex,
the algorithm examines the other (maximum three) ver-
tices at that point and determines which one is the highest.
The vertex (not the entire quad) should be pushed to the
height of the highest vertex at that point. After every ver-
tex raised to the proper height, there will be no gaps.

With these three steps, we got a low resolution terrain.
The original terrain is never above the new surface but is
very close to it.

1A quad consists of two triangles.
2In this case any vertex of the triangle

4 Displacement Mapping on Approx-
imate Triangle Mesh

If we apply displacement mapping on the approximate tri-
angle mesh, we get better results than using it with bound-
ing box, because the triangle mesh is very near to the real
surface. The relevant part of the ray is shorter, and with
linear search the intersection could be found mostly within
a few steps.

The heightmap texture stores height values between 0
and 255. These will be normalized to the range 0 and 1
on the GPU. In the rest of the article we assume that both
[U W H] coordinates are normalized to 0 and 1.

During basic displacement mapping in the pixel shader
we calculate which segment of the ray falls between 0 and
1. On this segment we search for the intersection with the
terrain. For this new method, the segment of the ray that
enters below the triangle mesh usually starts far below 1.
Therefore the segment is shorter, and the terrain is very
near to the entry point. An example can be seen in Fig-
ure 4.

Figure 4: On approximate triangle mesh the segments of
the rays are shorter and the terrain is nearer

The binary search or the secant method improved only
slightly due to the shorter segment, but linear search be-
came significantly faster. The search begins close to the
intersection, generally the intersection is found within a
few steps. Using 4 linear search steps, and 1 secant search
step, the displayed terrain looks good (Figure 5).

Figure 5: Terrain with 4 linear and 1 secant search steps.

For steep rays, the result is satisfactory, but when the
camera is at low height, the upper part of the terrain
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doesn’t appear correctly. For near horizontal rays, the re-
sult is wrong. The triangles above the horizon show upside
down, far away repeated terrain. Figure 6 shows the terrain
rendered with basic linear search.

Figure 6: The problems of basic linear search.

4.1 Upward Rays

Basic displacement mapping assumes that the ray enters at
H = 1 and exits at H = 0. The intersection will be found
between these points. The ray never reaches H = 0 if it
starts somewhere between 0 and 1, and is going upwards.
The basic algorithm takes steps towards 0. On upward
rays, it would also step towards 0. In this case these steps
go behind the camera, because 0 can be reached only there.
This is the reason for the appearance of the upside down
terrain above the horizon. To solve this problem we should
handle upward rays differently. It is sufficient to examine
the ray’s direction vector’s H (3rd , vertical) coordinate. It
is positive for upward rays. The determination of the ray’s
endpoints needs to be changed. The endpoint of an upward
ray is at H = 1 instead of H = 0. Results show that the
above problem is solved by this change. Upward rays also
find intersection (shown in Figure 7), but there are still
problems with pixels (rays) close to the horizon.

Figure 7: The problem of near horizontal rays.

4.2 Near Horizontal Rays

The original algorithm steps vertically the same ranges be-
tween the in and out points for linear search. When a ray
is flat, a small vertical step could result in huge step for-
ward on the ray. Figure 8 shows an example. It is possible
that one step skips the whole terrain. In this case the inter-
section cannot be found. This is the reason why a part of
the terrain doesn’t appear in Figure 7. We found two dif-
ferent solutions for this problem: Exponential Search and
Equidistant Linear Steps.

Figure 8: The problem of flat (near horizontal) rays.

4.3 Exponential Search

Standard linear search has the problem that for flat rays it
uses too large steps and it steps over the whole terrain. A
better solution is that the algorithm steps rather exponen-
tially than linearly. At first the steps are very small, but
increase exponentially. However, it reaches the end of the
ray with finite steps, similarly to standard linear search.
The range of the steps are:

H = 1−1/2Niter−1−i (3)

where Niter is the number of the iterations and i is iteration
variable. H is the height of the steps on the ray segment.
The steps go from the enter point – the H is 1 there, and
go forward to the end of it – where H is 0. The current
position is calculated by linear interpolation between the
two tips by the following code:

uv = uv_in * H + uv_out * (1-H);

where uv_in the enter point and uv_out is the end
point. Table 1 shows an example for exponential steps at
10 iterations.

The result is much better than for linear search (shown
in Figure 9). Most of the horizontal rays find proper in-
tersections, however not all of them. In a few pixel width
strip there is still no intersection. The horizontal and al-
most horizontal rays are flat, they can have nearly infi-
nite length. On these rays even a very small step skips
the whole terrain (see Figure 8).

4.4 Equidistant Linear Steps

The main problem with the standard algorithm is that it
steps vertically the same ranges to ensure it always reaches
the end of the segment, but it does not consider the ray’s
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Iteration Height of step
0 0.998046875
1 0.99609375
2 0.9921875
3 0.984375
4 0.96875
5 0.9375
6 0.875
7 0.75
8 0.5
9 0

Table 1: Exponential Search with 10 iterations

Figure 9: Terrain with Exponential Search, 10 iterations.

length. Therefore the lengths of the steps are not equal for
rays of different declination angles.

Instead of stepping vertically, the algorithm should step
equal distances. Thus, for every ray the length of the steps
would be the same. At flat rays, the algorithm does not
skip the terrain. Figure 10 shows the same example, but
with the new linear search. It is observable that this time it
does not step too much, and the intersection can be found.
However a new problem appears. The former algorithms
always can reach the end of the segment, but this algo-
rithm can not. For example, if the iteration number is 5,
than the upper ray in Figure 10 is unable to reach the real
intersection.

Figure 10: Improved linear search with fix step ranges.

To determine the step’s range, at first the length of the
ray’s segment should be computed. Then a constant is di-
vided by this length. At each step this value is subtracted

from H3.

tview =
Mterrrain ∗peye−pterrain

‖Mterrrain ∗peye−pterrain‖
(4)

step = c
tviewz

(hend−pterrainz)
(5)

where Mterrrain is the UWH matrix, peye is the position of
the camera and pterrain is the UWH position of the pixel.
hend is 0 when the ray goes downward, 1 otherwise.

The constant depends on the resolution of the triangle
mesh. If the resolution is high, then the real terrain is
nearer, thus smaller steps give better results, so the con-
stant is smaller. At lower resolution the distance between
the triangle mesh and the real terrain could be larger, thus
greater constant is better. E. g. at 32×32 resolution a good
constant was 0.025, and 5 steps were enough.

For a small part of the pixels, this linear search could
not reach the real terrain, thus the intersection cannot be
found. Mostly this problem occurs for those rays which
enter below the triangle mesh, but they are above the real
terrain. To solve this problem, the algorithm handles these
rays separately. If the intersection was not found, the
search continues with more iteration. In the new iterations
the steps could be large, e.g. twice as big as originally.
As these rays are in minority, the algorithm would not be
significantly slower. If the increased number of steps still
cannot find an intersection (it is possible that they never
would), then neither the pixel will be colored, nor the Z-
buffer will be written.

Using standard linear search, the terrain will be striped.
Therefore, the search continues after an intersection is
found, but using secant search. The two start points of the
secant search are the last two points of the linear search.
With the penultimate linear step, the algorithm determines
a point where the terrain is still below the ray. The last
step shows that the terrain is above the last point. The sur-
face of the real terrain intersects the ray between these two
points. The secant method finds an accurate intersection
quickly, thus the strips are eliminated.

As Equidistant Linear Steps perform much better than
the Exponential Search, the Exponential Search is not used
in the final version.

5 Results

It is hard to determine the optimal constant values in the
algorithm such us triangle mesh resolution, first linear
search’s iteration number, second linear search’s iteration
number, step ranges, secant search’s iteration number etc.
The performance of the described algorithm is highly af-
fected by the length of the ray sections which fall between
the course triangle mesh and the real terrain. Average
of these lengths depend on the local roughness and lo-
cal curvature of the real terrain, but is nearly independent

3At beginning H is 1.
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of the local steepness.Rendering speed also highly depend
on graphics hardware. The algorithm was developed and
tested on an Nvidia R© Geforce R© 8400M4. The viewport
resolution was 640× 480 pixels. The frame rate dropped
at 64× 64 quads, thus 32× 32 quads was a better choice.
With 5 linear steps most of the intersection was found. For
pixels, where the search could not reach the intersection,
10 further linear steps followed. If the search was still in-
efficient, the pixel became transparent, thus other part of
the terrain or the skybox could appear. However if the lin-
ear search entered below the real terrain, 2 secant search
steps refined the result. Figure 11 shows the terrain with
these values. The frame rate was between 55-100 fps5.

Figure 11: Final terrain.

As seen in Figure 11 the terrain appeared correctly. The
algorithm finds the proper intersection for almost every
pixel. However, at some pixels the algorithm makes mis-
takes. These mistaken pixels mostly appeared at the edge
of hills.

Using the same paremeters, the frame rate on a desktop
PC with Nvidia R© Geforce R© 8800 GT was much higher,
over thousand fps. After changing parameter values, the
algorithm was more accurate, pixel errors barely appeared.
The triangle mesh resolution was set to 256× 256, step
ranges was the quarter of original, linear step numbers
doubled. The result was still over hundreds of fps and
with unnoticeable errors. Figure 12 shows an example,
where the heightmap’s and the texture’s resolution was
2049×2049. Table 2 shows results on different GPUs and
settings. As the rendering time was highly dependent of
camera position, four points of view has been selected. It
was intentional to use fundamentally different views (see
Figure 13). Frame rate tests for different configurations
were tested on these fixed views. Refresh times show min-
ima and maxima of the four measured values.

4Notebook version
5Depends on percentage of terrain on screen

Figure 12: Final, 2049× 2049 resolution terrain on 8800
GT with 256×256 quads.

GPU Heightmap Mesh Speed[ms]
8400 M 257×257 32×32 9.52–18.87
8400 M 2049×2049 32×32 9.62–20
8400 M 2049×2049 256×256 22.22–41.67
8800 GT 257×257 32×32 0.55–0.8
8800 GT 2049×2049 32×32 0.55–0.83
8800 GT 2049×2049 256×256 3.7–3.82

Table 2: Rendering times

6 Conclusion and Future Work

There are several known algorithms that use only the pixel
shader or only the vertex shader for displaying terrains.
We developed a new technique that combines the pixel
shader and vertex shader techniques. It resulted in a faster
and more accurate algorithm than widely used ones. The
main advantage of this new method is that it is indepen-
dent of the heightmap’s resolution. The approximate tri-
angle mesh’s resolution is constant, does not consider the
heightmap’s resolution and the displacement mapping is
also independent of the heightmap’s size. The frame rate
is similar e.g. at 257×257 and at 2049×2049 resolution
heightmaps.

However it is hard to determine the balance between
speed and accuracy. If the decision is to be more accu-
rate, the frame rate decreases. The method is also capable
of reaching high frame rate on slower GPUs, but then ac-
curacy has to be decreased.

In the future we shall make the algorithm better. E.g.
improve the displacement mapping searches or make the
triangle mesh dynamically changeable. A new method
could be also promising: using height mipmaps the algo-
rithm would not make mistakes, the proper intersection al-
ways could be found rapidly. Our research is going on by
utilizing maps for local height minima and maxima. In-
stead of [2], the resolutions of these extremum maps are
decreased in our research, similarly to the Mip-Map ap-
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Figure 13: These four viewpoints were selected to be used
during frame rate test of the algorithm on different plat-
forms with different options. Shown frame rates were
achieved on Geforce 8800 GT, 2049× 2049 height map,
256×256 quads.

proach.
After a fast, accurate, detailed terrain displaying algo-

rithm is developed, it could be improved by adding new
elements, such as new detailed textures close to camera,
dynamic light and shadows, vegetation, water etc.
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