
A Constraint Based System to Populate Procedurally Modeled
Cities with Buildings

Johannes Scharl∗

Supervised by: Daniel Scherzer†

Institute of Computer Graphics and Algorithms
Vienna University of Technology

Austria

Abstract

Creating large-scale virtual environments for interactive
applications such as computer games poses a demanding
challenge for computer graphics. We present a system that
procedurally creates urban environments including street
networks, street geometry and building parcels. Our main
contribution is a constraint based system that chooses the
”best fitting” building for every parcel from a set of ex-
isting buildings. Building properties such as the footprint,
area, and faces that should have street access are used to
select the most suitable building.

Furthermore we introduce a robust technique to create
3D street geometry for streets that adapt to different terrain
heights and describe a method to create a more realistic
city shape and more detailed outer regions.

Keywords: Procedural Modeling, Urban Environments,
Computer Games

1 Introduction

The usual way to create urban environments for computer
games or movies is to use commercial modeling packages
like Autodesk Maya. This is a very time consuming, te-
dious and expensive task and gets less and less suitable
for modern applications that demand even larger and more
detailed environments. A promising approach that has
emerged in recent years is to create content procedurally.

Urban environments are mainly defined by their street
network. Such a network forms the back bone of a city

∗johannes@cg.tuwien.ac.at
†scherzer@cg.tuwien.ac.at

and determines its layout. Therefore it is the first thing
that has to be generated when modeling a city.

Recent state-of-the-art techniques [10, 15] rely on ex-
tended L-systems to create such networks. Usually a top-
down approach is used, meaning that major roads are cre-
ated first, because they define the main routes and districts
in the city. Regions surrounded with major roads are then
filled by minor roads, creating the finer structures of dis-
tricts and neighborhoods. When using this approach, areas
surrounded by major roads are usually located at the city
center. This often leads to sparse regions at the outskirts
of the city, where no minor roads can be created. We pro-
pose an approach to generate cities where minor roads are
also generated in the outer regions. This is illustrated in
figure 1.

Figure 1: Left: In previous methods, no detailed neighbor-
hoods are created in the outskirts of the city. Right: Outer
regions created with our method.

After the street network is generated, street geome-
try is created and the blocks in between are subdivided
into building parcels. Tessellating the street geometry is
straightforward in a case where all streets are in a single
plane, but gets complicated if streets adapt to three dimen-

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)



sional terrain. In this case, junctions have to be kept planar.
This is usually handled by forcing the junction geometry
to be parallel to the ground plane, resulting in unnatural
steps in steeper roads. We introduce a way to adjust these
junctions to adapt them to the underlying terrain.

Buildings are an essential part of every urban environ-
ment. Usually each model is hand-crafted in a model-
ing software and placed at its destination by a designer
or artist. This approach is not feasible for larger urban en-
vironments. Typically only certain regions of the city are
crucial for a computer game, while other regions do not
contain a lot of individual detail. A method that fills these
regions automatically greatly reduces the time needed to
add building models to a road network. As our main con-
tribution, we propose a method to select a building from a
set of existing models that fits best for a certain building
parcel and place it there.

2 Related Work

Our work is based on previous procedural modeling meth-
ods that employ L-systems. L-systems where originally
developed as a formalism for plant modeling [12].

An extension to L-systems that allowed plants to com-
municate bidirectionally with their environment, called
Open L-systems, was introduced later by Měch et. al. [9].
This method was developed further by Parish et. al. [10]
to create city street maps using a set of production rules.

Weber et. al. [15] extended this method to simulate a
three-dimensional urban model over time. They define a
city hierarchy that guides the creation of such networks.
Because we use this hierarchy definition, we will discuss
it in greater detail in Section 3.1.1.

The CityEngine [11] is a commercial software package
that is capable of procedurally generating complete cities.
Input is provided in the form of many controllable param-
eters and various image maps: height maps can be used
to model terrain, obstacle maps denote regions where no
streets should be created and population density maps con-
trol the type and density of the streets and buildings in cer-
tain regions. The system is capable of creating large street
networks, building parcels and even buildings. Streets
are generated using L-systems, while buildings are created
with a shape grammar technique.

Other methods to create street layouts and networks in-
clude interactive editing of a tensor field [2], a mixture of
interactive and procedural techniques where main streets
have to be created manually, while minor roads are gen-
erated automatically [5], and image based approaches that
rely on aerial images to reconstruct a road network [1]

Recently, procedural generation of buildings and fa-
cades has been researched heavily, including the genera-
tion of facades using shape grammars [8, 16] and interac-
tive editing of shape grammar rules [7].

An excellent review of various urban modeling tech-
niques can be found in a recent survey paper by Vanegas

et. al. [14].
Gebhart [3] describes a system that helps artists to

create 3D street networks. Streets are “drawn” by an
artist or designer, and detailed geometry is created semi-
automatically by setting parameters such as the number of
lanes, the radius of a curve, etc. Zimmermann [17] pre-
sented a technique to construct a fully polygonal 3D street
representation out of centerlines. Although both methods
produce visually impressive results, both fail to address
the problem of maintaining a stable and realistic tessella-
tion for 3D streets that adjust to terrain levels of different
heights.

The problem of finding a model that fits into a certain
environment has not been investigated very extensively.
Kjølaas [6] presented a system that automatically places
furniture into a given floor plan by selecting a template
from a given set of default templates for common rooms
and adapting it to the given room.

In the field of automated building placement a lot of
work has been done in the direction of recognition and re-
construction of buildings from aerial images [4, 13]. This
is usually done in the process of reconstructing existing
cities, e.g. for mapping applications, but not for artist-
created urban environments.

3 Our System

In this section we present our techniques to create street
networks for urban environments, as well as a method to
tessellate the street geometry in a simple and stable way.
Additionally, we propose a technique to match the ”most
suitable” building to a parcel from a set of previously mod-
eled buildings.

3.1 The Street Network

Our algorithm to create street networks is based on the
work of Parish et. al [10] and Weber et. al. [15]. Streets
are created using a system similar to extended L-Systems,
although we chose not to implement a string rewriting
system, but to apply the production rules directly to the
street objects to avoid slow string operations, as proposed
in [15]. We will first explain our city hierarchy definition
in Section 3.1.1 and describe a set of important control pa-
rameters that are used for creating streets in Section 3.1.2.
Finally, we will describe the algorithm based on the de-
scribed hierarchy in Section 3.1.3.

3.1.1 City Hierarchy

We use a city hierarchy definition similar to the one intro-
duced by Weber et. al. [15]:

A street network is a planar graph (V,E) with nodes V
and edges E. A street consists of one or more edges e ∈ E,
the street segments. Each street segment e connects two
nodes n(e)1,n(e)2 ∈ V 2. Streets can be major or minor

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)



streets and have different widths. A facet in the planar
graph (Vma jor,Ema jor) is referred to as quarter, that is an
area surrounded by major roads. A facet in (V,E) (an area
surrounded by any street) is called a block. Each block
can be subdivided into building parcels. This hierarchy is
illustrated in Figure 2.

Figure 2: City Hierarchy. Main roads are displayed red,
minor roads are orange. Quarters are areas surrounded
by major roads. Blocks are surrounded by any road and
divided into parcels.

To create a city obeying this hierarchy, major streets are
created first, and spaces in between are filled with minor
roads afterwards. This results in a planar street network
and buildings blocks in between. A block consists, ac-
cording to our hierarchy definition, of multiple building
parcels, each defining the space a single building can take
up. These parcels can be generated by repeatedly subdi-
viding a building block.

3.1.2 Control Parameters

The creation of streets can be controlled with a lot of dif-
ferent parameters:

• Cities usually have different layouts. Streets in New
York City are strictly rectangular, whereas Paris fol-
lows a loosely circular pattern. Cities with no super-
imposed pattern grow organically. In our system, ma-
jor and minor roads can follow different patterns.

• Street length, width and angles between adjacent
street segments can be controlled.

• To avoid street ends near existing junctions, a dis-
tance snappingDistance can be defined. If
the distance between a street end and a junction is
smaller than snappingDistance, the street end
is snapped to this junction.

• A height map may be specified to create a terrain (see
Figure 3). The streets will then adjust to this terrain.
If the slope of the street is larger than a user defined
threshold maxSlope, the street is rotated until it is
plain enough, or removed if that is not possible.

• Urban environments may contain areas where no
streets should be created, such as parks or water.
Such areas can be denoted in an obstacle map (see
Figure 3). This map is sampled regularly and streets
will avoid any obstacles.

• Real cities grow after demand: Major roads con-
nect centers of high population densities, while minor
roads provide access to the major roads in populated
areas. A population density map (Figure 3) can be
set to control the development of major and minor
streets.

• The average size of a building parcel can be con-
trolled to adjust the parcels to the desired building
size.

All of these parameters can be set using the user inter-
face of our application.

Figure 3: Input maps for a bay area environment. From left
to right: (1) Height map, (2) Obstacle map, (3) Population
density map.

3.1.3 Creating the Street Network

As explained above, the algorithm is divided in two stages:
(1) creating major streets and (2) identifying quarters sur-
rounded by major streets and filling them with minor
streets. Quarters and blocks can be identified easily using
a planar graph face traversal algorithm.

As discussed in [10] we use a 3-level hierarchy to eval-
uate parameters for a new street segment: First, an ideal
successor is created. This is a new street segment without
any parameters assigned. For this new street segment, the
global goals function is evaluated. The location and ori-
entation of the street is set according to the superimposed
street pattern and the local population density. After the
initial parameters have been evaluated, the street segment
is adapted to its local environment by calling the local con-
straints function: This function changes the location and
orientation of the street according to the parameters in Sec-
tion 3.1.2: The new street segment is snapped to existing
junctions, the street is adjusted to the local terrain slope
or changed to avoid any obstacles such as parks. The pro-
cedure is the same for major and minor streets, although
different parameter sets can be used.

One of the main problems of this approach is that minor
streets are only created inside quarters that are surrounded
by major streets. This leads to unrealistic results at the

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)



boundaries of the street network, where no minor streets
are created.

We have solved this problem by calculating the convex
hull around the whole street network and using this hull to
create additional quarters at the city boundaries.

If the points of the convex hull are connected by a
straight line, outer regions of the city look ”cut off” and
unnatural. To account for that, we bulge the hull by ran-
dom amounts to create a more realistic city shape.

After all streets have been created, we use the same al-
gorithm we used before for identifying quarters to now
find all blocks surrounded by streets (major and minor).
To create parcels of the size the user specified, each block
is recursively subdivided into building parcels using a
method similar as the one described in [15]: (1) Select
the longest side of the polygon and create a perpendicular
split line at its center. (2) Split the polygon along this line.
(3) Repeat this for each new polygon if its area is larger
than a predefined threshold maxArea.

In most cases, only parcels with street access should
be created, because most buildings have an entrance
that should face a street. If the boolean parameter
deleteInnerLots is set, we delete all parcels that
have no direct street access. The algorithm is illustrated
in Figure 4.

The complete street creation process is illustrated in fig-
ure 5.

Figure 4: This figure illustrates how a block is recursively
split into parcels until each parcel is below the area thresh-
old maxArea.

3.2 Street Geometry Tessellation

Street tessellation is not the main scope of our work, so
we wanted to implement a simple, but stable geometri-
cal representation of the street network that enables simple
shading of streets that adjust to the slope of the underlying
terrain.

Tessellating a single street is straightforward, but some
problems arise at junctions: If each street would be tessel-
lated and rendered independently, discontinuities and z-
fighting would appear where two streets meet. Therefore
we need a special geometric representation for junctions.

Another problem that arises is how streets that adjust to
multiple height levels should be tessellated so that junc-
tions are planar, but do not form unnatural steps on slopes.

We will first describe our method for street tessellation in
case of streets that are coplanar in Section 3.2.1. In Sec-
tion 3.2.2, we will discuss how we solved the problem of
non-coplanar street networks.

3.2.1 Geometry for Planar Streets

The street network is represented as a planar graph of
edges that connect to each other at junctions. To draw this
network, we need to construct a fully polygonal street rep-
resentation. The original edges serve as centerlines for the
street geometry.

The geometric representation of a street network con-
sists of junctions and street segments. Each street has a
certain streetWidth that was set in the street network
creation process. We call the point where two street cen-
terlines meet the center point of a junction.

To create a polygonal representation of the street, we
use a similar approach as the one discussed in [17]:
we offset lines from the centerline on both sides by
streetWidth

2 . These offset lines are called street out-
lines. Street outlines of two adjacent street segments in-
tersect at the corner points that define the corners of the
junction and separate the junction geometry from the street
segment geometry. To create the junction geometry, the
two corner points of one end of a street segment form a
triangle together with the junction center point. This trian-
gle is called a street head.

A junction consists of n street heads, where n is the
number of street segments adjacent to the junction. This
is illustrated in Figure 6. In cases where two junctions are
too near to each other, so that junction geometries overlap,
the two center points are merged to create a stable junction
geometry.

Our method produces simple, but stable results, as can
be seen in Figure 7.

Figure 6: This figure illustrates how a junction is defined
by 4 street heads. The street centerlines are displayed in
red and meet at the center point. Street outlines are colored
black. Street heads are shown in green, the lower right
street head is highlighted for clarity (A).

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)



Figure 5: This figure illustrates the steps necessary to create a street network. From left to right: (1) Major streets are
created (organic pattern, red). (2) the convex hull is calculated and bulged (blue). (3) Minor streets are created inside the
quarters (grid pattern, orange) (4) The final street network with building parcels, convex hull and dead end roads removed.

Figure 7: Even complex junctions are tessellated correctly
with our method.

3.2.2 Geometry Displacement for 3D Streets

The method described in [17] creates good results as long
as all streets are in one plane. When streets are not copla-
nar, a number of problems arise: The junction geometries
described in Section 3.2.1 need to be flat, otherwise streets
will twist unnaturally. We introduce a method that nes-
tles street segments and junctions to the terrain underneath
while preserving the planarity of junction geometries.

To create flat junction geometries, initially all the ver-
tices of the junction geometry are placed at the same height
as the center point of the junction. This leads to unaes-
thetic and unrealistic steps and extreme slopes, as can be
seen in Figure 8. These steps can be smoothed by moving
the junction geometry into the tangent plane to the terrain
surface at the junction center point. This can be done by
calculating how much the normal of the terrain is rotated
against the up vector. Based on that, a rotation matrix is
calculated around an arbitrary axis that is later applied to
every vertex of the junction. As a result, the whole junc-
tion geometry is rotated into the tangent plane of the ter-
rain surface. An illustration can be found in Figure 8.

Unnatural steps in steep streets are avoided this way, but
we introduce a certain lateral grade. This lateral grade is
limited by the longitudinal slope of all other streets ad-
jacent to this junction. This is acceptable for interactive
applications such as games, since the maximum allowed
longitudinal slope (12%) is not much higher than the max-
imum allowed lateral grade (8%)1.

We follow the approach in [17], where street segment

1In Austria, this may differ in other countries, and for mountain roads.

Figure 8: Smoothing of junction geometry. Top: The ini-
tial geometry is displayed transparent. It is then rotated
into the tangent plane of the terrain surface. Bottom, left:
Geometry before rotation. Right: After rotation.

ends are modified so that they connect to the junction at
a line perpendicular to the direction of the segment. This
is done for the following reason: If the two corner points
of a street head do not lie on a line perpendicular to the
street segment direction, the street may twist unnaturally
or become uneven. Refer to Figure 9 for an illustration.

In between the street heads, the geometry of the street
segment is subdivided regularly and displaced according
to the terrain height to nestle against the underlying terrain
surface.

3.3 Building Assignments

Our main contribution is a technique to assign buildings
to parcels from a set of previously modeled buildings. Af-
ter the street network creation process described in Sec-
tion 3.1, building parcels of various size and shape have
been created, most of them being rectangular. Modeling a
suitable building for all of them by hand would be a huge
and tedious effort. We propose a method that selects the
”best fitting” model for each parcel from a set of exist-
ing buildings. By ”best fitting”, we mean the model that

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)



Figure 9: Street ends are modified to create connecting
lines perpendicular to the street segment direction. The
original junction geometry is shown in green (A), the mod-
ified geometry in blue (B).

occupies most of the building parcel, while satisfying var-
ious constraints, such as not protruding from the parcel.
These buildings can be created using a commercial model-
ing software like Autodesk Maya, or may be procedurally
generated.

The rest of this section is structured as follows: we first
discuss some characteristics of building models in Sec-
tion 3.3.1. Then we describe our method for selecting the
”best fitting” building for a parcel in Section 3.3.2.

3.3.1 Building Properties

Each house has a footprint that can be defined as the con-
vex hull of all vertices in its geometry projected onto the
ground plane. This gives a good estimate for the area the
building will need on a parcel. If this area exceeds the area
of a certain parcel, the building will not be considered fur-
ther for it (Constraint 1).

A building consists of sides that have to face a street
side, e.g. because there is a door that needs street access.
Also, there are sides that must not face a street, e.g. be-
cause there is a plain brick wall on this side. We refer to
them as Street Access Sides and Inaccessible Sides. These
sides pose constraints for our system that have to be met.
Street Access Sides have to be aligned and placed next to
streets to guarantee direct street access (Constraint 2), and
Inaccessible Sides have to point away from streets so that
they are not directly visible (Constraint 3). All other faces
of the building may face a street, but they do not have to.
See Figure 10.

All these properties are stored as meta information in a
XML file for each building model.

3.3.2 Selecting a Building

The building with the largest footprint that meets all the
criteria described above will be selected as the ”best fit-
ting” building for a parcel.

The set of previously modeled buildings is stored in a
list ordered by footprint area size from largest to small-
est. This list is enumerated for each parcel. All models

Figure 10: A simple building model. Street Access Sides
are displayed by green lines on the ground plane (A), red
lines denote Inaccessible Sides (B).

that have a larger footprint area than the current parcel are
discarded. Also, models that contain more Street Access
Sides than the parcel has adjacent street sides are not con-
sidered, because it is not possible to align them all cor-
rectly. For every remaining building, a series of transfor-
mations and tests are applied. The first model that passes
all the tests is chosen for the current parcel. This guaran-
tees that the building that occupies most of the parcel area
while meeting all constraints is selected. The process is
illustrated in Figure 11.

• The building footprint is moved into the center of the
parcel.

• The largest Street Access Side of the footprint is
aligned to the largest side of the parcel that is adjacent
to a street to get an initial alignment for the building.
This suffices for most of the buildings, since many of
them only have one front side that needs to face the
street.

• Rotate the building footprint until all Street Access
Sides face a street and all Inaccessible Sides do not. A
side faces a street if it is nearly parallel2 and a ray cast
perpendicular from its center directly hits a street.

• Move the footprint as near as possible to any streets
adjacent to the parcel. Buildings usually adjoin di-
rectly to streets, but a minimum distance can be con-
figured in the user interface.

• Check if all points of the footprint are inside the par-
cel.

• If any of the above tests failed, repeat the process
with the next smaller building. If a valid solution was
found, assign the building to this lot considering the
found transformations.

If the parcel is located on a slope, the building is moved
down so that every vertex is on the ground or beneath.
If the slope of the gradient of the parcel exceeds a user
defined threshold maxParcelSlope, the parcel is dis-
carded and no building is assigned.

2we chose a max. deviation of ± 30 degrees

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)



Figure 12: Some results from our system. Top left: a small village on a hillside next to a bay. Note how the roads adapt to
different terrain heights and stop if they become too steep. If the ground is too uneven, no parcels are created. Top right:
Close-up of a more complex junction in the village. Bottom left: Close-up with view over the bay to the hillside where
streets spread over the plain of the terrace. Bottom right: a larger city without terrain with far over 100 streets and more
than 2.500 buildings.

Figure 11: Steps for fitting a building footprint into a par-
cel. The outer polygon illustrates the parcel, the inner one
the building. Street Access Sides and parcel sides adjacent
to a street are colored green (A), Inaccessible Sides red
(B). (1) The footprint is moved into the center of the par-
cel. (2) The largest Street Access Side is aligned with the
largest parcel side with street access. (3) The footprint is
rotated. (4) The footprint is moved near to the streets.

4 Results

Our system is capable of procedurally generating whole
cities with dozens of streets and hundreds of buildings
within seconds. Most parameters used for the creation
of street networks and the assignment of buildings can be
changed in our user interface. The assignment of buildings

worked well in our tests, however the visual result depends
on the quality and amount of models used. If only a few
buildings are available, very uniform neighborhoods are
created. The larger the set of models is, the more diverse
the cities become. For our tests, we used 20 models avail-
able freely at Google 3D Warehouse and achieved pleas-
ing results. Some screen shots of our results can be seen
in Figure 12.

We implemented our system in C# using the XNA
framework for rendering. All tests and images in this paper
were made on a system consisting of a Core 2 Quad 6600
with 4GB RAM. At the moment our system is single
threaded, but it could easily use multi threading, especially
for the parcel subdivision and building assignments. See
Table 1 for detailed results.

Task Count Time
Street creation 73 streets, 283 segments 0.65s

Street tessellation 73 streets, 283 segments 0.17s
Parcel Creation 811 parcels, 107 blocks 0.08s

Buildings 776 buildings assigned 2.24s
Total 3.14s

Table 1: Performance benchmarks of our system for a
small city consisting of 4 main and 69 minor roads. The
whole city was created in just over 3 seconds.

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)



5 Conclusion and Future Work

We presented a system that procedurally creates urban en-
vironments including street networks, street geometry and
building parcels. Very different types of cities can be cre-
ated by changing parameters in the graphical user inter-
face. Our main contribution is a constraint based sys-
tem that choses the ”best fitting” building for every parcel.
Building properties such as the footprint, area and faces
that should have street access are used to select the most
suitable building.

Furthermore we describe for the first time a robust
method to create 3D street geometry for streets that adapt
to different terrain heights.

In existing street generation systems, no minor roads are
created at the city borders. We addressed that problem by
calculating a convex hull around the city and widen it by
random amounts to create a more realistic city shape and
more detailed outskirts.

5.1 Future Work

Image maps could be used to control more parameters of
the building assignment process and give the user more
control over the selection of buildings for the parcels.

An input map similar to a height map could be used to
control the building height for different regions. Another
map could be used to manage the type of buildings: A
building can be of a certain type (residential, industrial,
suburban, etc.), and each type is associated with a certain
color in the map. This information could be used in the
building assignment process to create districts with a dif-
ferent look and feel.

The main limitation of our current system is that it is
static. Models placed automatically can not be moved or
modified in any way. We want to give the user the power
and flexibility to change the environment after it has been
created automatically.

References

[1] D. G. Aliaga, C. A. Vanegas, and B. Beneš. Inter-
active example-based urban layout synthesis. ACM
Trans. Graph., 27(5):1–10, 2008.

[2] G. Chen, G. Esch, P. Wonka, P. Müller, and E. Zhang.
Interactive procedural street modeling. ACM Trans.
Graph., 27(3):1–10, 2008.

[3] Gernot G. Automatisches generieren von 3d-
straßensystemen. Master’s thesis, Vienna University
of Technology, March 2008.

[4] C. Jaynes, E. Riseman, and A. Hanson. Recognition
and reconstruction of buildings from multiple aerial
images. Comput. Vis. Image Underst., 90(1):68–98,
2003.

[5] G. Kelly and H. McCabe. Citygen: An interactive
system for procedural city generation. In Fifth Inter-
national Conference on Game Design and Technol-
ogy, pages 8–16, 2007.

[6] K. A. H. Kjølaas. Automatic furniture population of
large architectural models. Master’s thesis, Depart-
ment of Electrical Engineering and Computer Sci-
ence, MIT, January 2000.

[7] M. Lipp, P. Wonka, and M. Wimmer. Interactive vi-
sual editing of grammars for procedural architecture.
In SIGGRAPH ’08: ACM SIGGRAPH 2008 papers,
pages 1–10, New York, NY, USA, 2008. ACM.

[8] P. Müller, P. Wonka, S. Haegler, A. Ulmer, and
L. Van Gool. Procedural modeling of buildings.
ACM Trans. Graph., 25(3):614–623, 2006.

[9] R. Měch and P. Prusinkiewicz. Visual models of
plants interacting with their environment. In SIG-
GRAPH ’96: Proceedings of the 23rd annual con-
ference on Computer graphics and interactive tech-
niques, pages 397–410, NY, USA, 1996. ACM.

[10] Y. I. H. Parish and P. Müller. Procedural model-
ing of cities. In Proceedings of ACM SIGGRAPH
2001, Computer Graphics Proceedings, Annual Con-
ference Series, pages 301–308, August 2001.

[11] Procedural Inc. Cityengine, www.procedural.com,
2010.

[12] P. Prusinkiewicz and A. Lindenmayer. The Algorith-
mic Beauty of Plants. Springer Verlag, 1991.

[13] I. Suveg and G. Vosselman. Reconstruction of 3d
building models from aerial images and maps. IS-
PRS Journal of Photogrammetry and Remote Sens-
ing, 58(3-4):202 – 224, 2004.

[14] C. Vanegas, D. Aliaga, P. Wonka, P. Müller, P. Wad-
dell, and B. Watson. Modeling the appearance and
behavior of urban spaces. Comput. Graph. Forum.
to appear.

[15] B. Weber, P. Müller, P. Wonka, and . Gross. Inter-
active geometric simulation of 4d cities. Computer
Graphics Forum, 28(2):481–492, April 2009.

[16] P. Wonka, M. Wimmer, F. Sillion, and W. Ribarsky.
Instant architecture. ACM Trans. Graph., 22(3):669–
677, 2003.

[17] M. Zimmermann. Procedural construction of streets.
Technical report, ETH Zürich, 2007.

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)


