
Real-Time Global Illumination in Point Clouds

Reinhold Preiner∗

Supervised by: Michael Wimmer†

Institute of Computer Graphics And Algorithms
Vienna University of Technology

Vienna / Austria

Abstract

In this paper we present a real-time global illumination
approach for illuminating scenes containing huge point
clouds. Our GI approach is based upon the distribution of
Virtual Point Lights (VPLs) in the scene, which are then
used for the indirect illumination of the scene geometry,
using Imperfect Shadow Maps for visibility calculation of
the VPLs. We are able to render multiple indirect light
bounces at real-time rates, where each light bounce han-
dles the transport of both the diffuse and the specular frac-
tion of the reflected light.

Keywords: Global Illumination, Point Clouds, ISM, Im-
perfect Shadow Maps, VPL, Virtual Point Light

1 Introduction

Point clouds are a convenient type of geometry representa-
tion when huge amounts of geometrical data are to be dis-
played quickly, or when geometrical data is given in this
way (e.g. gathered from a 3D scanning device) and has to
be displayed immediately and without a time-consuming
triangulation preprocessing step. The Scanopy applica-
tion1 developed at the Vienna University Of Technology
and at Imagination2 in Vienna is able to show huge point
clouds in real-time and was originally developed to display
scanned objects.

There are various approaches for global illumination
(GI) in scenes containing conventional mesh geometry.
Virtual Point Lights (VPLs) were introduced by Keller in
1997 [4] for indirect illumination, and Ritschel et al [7]
proposed Imperfect Shadow Maps (ISMs) as an efficient
way for visibility calculation even for a high number of
VPLs. The methods and algorithms in our approach base
on the thesis of Knecht [6], who implemented GI using
VPLs for indirect illumination and ISMs for visibility.3

In order to render the ISMs, a number of sample points
covering the scene’s surfaces, are taken from the meshes,
and then are splatted onto the maps. Since we already deal

∗reinholdpreiner@gmx.at
†wimmer@cg.tuwien.ac.at
1www.cg.tuwien.ac.at/research/projects/Scanopy
2www.imagination.at
3Note: Knecht also applies temporal coherency, which we do not.

Figure 1: Point cloud scene containing over 5 million
points rendered with our global illumination algorithm

with point clouds describing our geometry, it is an obvi-
ous step to take advantage of this fact by applying this GI
method on point clouds.

Contribution. In this paper, we present our GI-
algorithm on point clouds and introduce our approach in
illumination computation over several light bounces. Our
approach combines the advantages of fast point render-
ing and efficient ISM rendering for visibility in GI. Fur-
ther, we advance the illumination method implemented by
Knecht by increasing the number of VPLs available for in-
direct illumination in multiple bounces by simultaneously
incorporating one direct- and one indirect bounce with one
VPL.

In Section 2 we give a short overview of related work
and the background in point rendering, Virtual Point
Lights and Imperfect Shadow Maps. In Section 3 and 4,
we introduce our approach and describe our algorithm in
detail, showing how the implementation of Knecht [6] was
advanced in our approach in order to implement real-time
GI for point clouds. Finally, in Sections 5 and 6, we
present the results of our work and subsequently discuss
its restrictions and future work to be done.

2 Related Work

Considering a correct simulation of global illumination in
a scene, the rendering equation, first introduced by Kajiya
[3] in 1986, represents an ideal and complete description
of the illumination process.

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)



Lo(p,ωo) = Le(p,ωo)+
∫

Ω

ρ(p,ωi,ωo)Li(p,ωi)cosθdωi

(1)

Equation 1 shows a common notation of the rendering
equation. The energy radiating from a point p to a direc-
tion ωo equals the sum of energy emitted from p in that di-
rection (represented by emittance-term Le(p,ωo)), and the
energy from all light from the whole hemisphere above
p that is reflected in direction ωo. The latter is given by
the BRDF ρ(p,ωi,ωo), and the integrand of the incoming
light direction Li(p,ωi) incorporates all light incident from
the hemisphere Ω over p.4 θ is the angle between inci-
dent light direction and the surface normal at p, and cosθ

represents a geometry factor that influences the amount of
reflected light based on the incident light direction.

Several offline techniques exist, that simulate light prop-
agation as described by the rendering equation, but, since
too time-consuming, are inapplicable for real-time render-
ing. Real-time Global Illumination is a challenging task
and with current hardware can often only be achieved by
introducing speed-gaining approximations that result in
acceptable images.

Keller introduced Virtual Point Lights (VPLs) in his
Instant Radiosity approach in 1997 [4]. Those VPLs
are seeded over the scene geometry and act as ”virtual”
light sources for the overall illumination computation of a
screen pixel. They represent a sampled subset of all points
contributing incident energy on a given point p in the ren-
dering equation. The main issue with the use of many
VPLs is the visibility information for all possible outgo-
ing light directions of each single VPL.

In 2008, Ritschel et al [7] proposed so called Imperfect
Shadow Maps (ISMs) as a method for efficiently comput-
ing indirect illumination. The main idea behind ISMs is,
that it is sufficient to create fast and inaccurate (imperfect)
shadow maps, if used for a large number of Virtual Point
Lights. With growing number of VPLs used for indirect
illumination, visible errors or artifacts from the shadow
maps’ imperfectness get more and more obliterated.

We apply global illumination on point clouds, imple-
mented in a renderer that is able to render enormous point
clouds at interactive frame-rates. The technique bases on
Wimmer and Scheiblauer’s Instant Points approach [8], in-
troduced in 2006. They use a new out-of-core algorithm
that uses nested octrees for efficiently building a hierar-
chy on the point set, significantly reducing the memory-
overhead for the data-structure. Figure 2 shows a 3d-
scanned point cloud scene rendered in the Scanopy appli-
cation.

4Note: When rendering translucent objects, we have to extend to
BSDFs and integrate over the whole sphere around p

Figure 2: Point cloud scene of St. Stephan’s Cathedral in
Vienna, rendering over 20 million points (over 420 mil-
lion points in model) with the Instant Points approach in
Scanopy (no illumination computation).

3 Overview

Our scene is represented by a point cloud and illuminated
by a spot-lightsource. Illumination of the scene geome-
try mainly consists of two parts: direct and indirect illu-
mination. The direct illumination part is straightforward:
The geometry within the spotlight-cone is shaded, and
shadow-mapping is performed. Indirect illumination is the
more sophisticated part. The term indirect illumination
describes all illumination from light rays, which do not
come directly from the light source, but rather come from
some surface point where the ray was reflected (bounced).
Of course, light rays in real world can be bounced several
times until their energy is totally absorbed by the reflect-
ing surfaces. Therefore, a good GI implementation also
includes multiple light bounces (while maintaining an ac-
cordant high frame rate).

To perform indirect illumination, the bulk of light rays
from the light source that are reflected at different sur-
face points and from there are illuminating other parts of
a scene, is approximated by a number of Virtual Point
Lights (VPLs). Those VPLs are seeded over the directly
illuminated area in the scene, and from there on each one
acts as a point light illuminating the geometry within the
whole hemisphere over that point. In an own render pass,
those parts of the scene which are visible to the camera are
shaded with respect to the previously seeded VPLs. This
shading is performed in image space. We use a Camera G-
Buffer which stores necessary data of the scene per pixel
- i.e. only for those points of the scene which are visible
to the camera - and each consecutive shading is performed
per pixel on this G-Buffer.

When rendering multiple light bounces, those steps are
repeated, i.e. first the VPLs have to be redistributed (orig-
inating from the current VPL positions), and then the
G-Buffer is again shaded from the new VPL positions,
accumulating illumination in the G-Buffer over several
bounces.

In order to improve speed, we perform interleaved shad-

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)



ing on the accumulation buffer, as proposed by [5]. Only
a interleaved subset of pixels is shaded per VPL, resulting
in fewer computations, at costs of reduced quality. After
all indirect illumination computations - probably iterative
over multiple light bounces - are finished, the interleaved
accumulation buffer is merged to an image of original size.
This merged image can show local differences in the shad-
ing of the pixels (see Figure 7). Therefore, we apply an
geometry-aware filter kernel in order to smooth the re-
sult image [5]. Finally, direct illumination with shadow-
mapping is added, and the resulting HDR scene image
is tone-mapped in order to obtain an LDR image of the
scene.

Basically, the implementation of indirect illumination
in our approach represents an extension to the method de-
scribed by [6]. While [6] just follows an indirect light ray
over several bounces reducing its energy with each reflec-
tion, this implementation additionally takes a possible di-
rect illumination of each single reflecting point into ac-
count. A comparison of these approaches is given in fig-
ure 3.

Figure 3: Comparison between Indirect Illumination by
Knecht (left side) and our implementation (right side). At
multiple bounces, Knecht only reflects the light coming
from the last VPL at following VPLs in direction of the
surface point to be shaded. The new approach imple-
mented in Scanopy reflects both the light from the last
VPL and additionally the possibly incident light coming
directly from the light source.

Specular bounces. We are able to correctly render
multiple specular bounces. At each bounce, we incorpo-
rate both diffuse and specular components of light inci-
dent when shading specular reflections5, considering that
the color of specular reflected light deflects over several
bounces due to mixed diffuse light (see Figure 4). To ac-
complish this, for each VPL at each bounce, we cache the
incoming light from the previous VPL scaled by the cosine
of the light incident angle (geometry term) to lookup the
diffuse contribution of any incident light ray.

5Note that this is the same as for diffuse reflections

Figure 4: Illustration of our method for computing spec-
ular reflections. At each reflection point, N is the surface
normal, and R is the direction of max. specular reflection.
The incident light reflected at P is the sum of diffuse re-
flected light (green) and the specular reflected light (blue)
at a VPL, resulting in a slightly changed color of the inci-
dent light reflected at P.

4 Detailed Algorithm

To perform global illumination in point clouds, our algo-
rithm incorporates several rendering passes, which are il-
lustrated in Figure 5. This sections describes the several
steps of the algorithm in more detail. Figure 7 illustrates
the intermediate buffers (G-Buffers, ISMs, Accumulation
Buffer), and their place in the rendering chain.

4.1 Camera- and Light-G-Buffer

In the first step, the whole scene is rendered from the cam-
era’s point of view into a Camera G-Buffer. The G-Buffer
stores necessary information of the accordant geometry
or surface behind each pixel in image space. This infor-
mation is distributed over several textures, and consists of
the RGB color of the surface, its material properties (dif-
fuse intensity, specular intensity and shininess), the sur-
face normal and the linear depth of the geometry in view-
space.

In the second pass, the whole scene is rendered again,
but this time from the spot-light-source’s point of view.
The scene information rendered in this pass is stored into
the Light G-Buffer, which contains the same per-pixel in-
formation as the Camera G-Buffer, but further stores an
importance value. This value correlates with the intensity
of the surface color and the surface’s shininess (specular
power), and is needed for importance sampling of when
distributing VPLs in a following step.

4.2 Distribute VPLs

As mentioned before, indirect illumination is calculated
by shading scene geometry with respect to Virtual Point

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)



Figure 5: algorithm overview of the global illumination
rendering chain

Lights (VPLs), which represent a number of surface points
that are directly (or already indirectly) illuminated from
some previous light source, and from there illuminate
other parts of the scene by reflecting their incident light.

The first set of VPLs is distributed on the surface area
illuminated directly by the spot light. The quality of the
resulting image increases with the number of VPLs used.
However, the number of VPLs significantly influences the
frame rate. Therefore, an importance sampling approach
is used in order to achieve good results even with fewer
VPLs. We start at a pseudo-random distribution of the
VPL positions over the spot-light-illuminated area stored
in the Light G-Buffer. A 2d-Halton distribution is used
in order to achieve a controlled homogeneous distribution,
since simple random distributions contain a higher level of
noise and locally inhomogeneous areas. Based upon this
distribution, hierarchical warping proposed by [2] is used
to relocate the VPL positions to obtain denser VPL distri-
butions where needed, and less VPLs where they do not
contribute much to the final scene illumination anyway.

When sampling of the VPL positions is done, all neces-
sary data of the VPLs is stored into a VPL-Buffer, which
is represented by several 1d-textures. This VPL data con-
sists of the VPL’s world space position, the surface normal
and material properties (color, reflection indicators) of the
surface point the VPL is located on, and two values indi-
cating (or related to) the illuminance of the VPL from both
its previous VPL (from a previous bounce) and directly
from the light source (see figure 3). The latter values are
needed later when calculating the VPL’s diffuse reflection
of light from both the previous VPL and the light source

itself. Since both the sampling of the VPL positions and
the hierarchical warping can be done in image space of the
light source, all other VPL data can simply be looked up
in the Light G-Buffer.

4.3 Setup Imperfect Shadow Maps

The main issue for indirect illuminating of scene points
is VPL-visibility. We have to know, whether a currently
shaded surface point is visible to a VPL or not. If the
point is occluded by some other object, light reflected at
the VPL doesn’t reach this point and no indirect illumina-
tion takes place. Such indirect shadows have a high con-
tribution to scene realism. Figure 6 shows a simple scene
setup demonstrating shadows cast from an indirectly illu-
minated object.

To store the necessary visibility information for each
VPL, simple shadow-mapping is insufficient, since the
area of the scene visible to a VPL covers the whole hemi-
sphere over the VPL’s surface point. Therefore, parabolic
maps introduced by Brabec et al [1] are used.

Figure 6: Indirect shadow realized by Imperfect Shadow
Maps. The white sphere and arrow indicate the position
and direction of the spot-lightsource. Only the wall on the
right side is directly illuminated, resulting in the centered
cube to cast a smooth indirect shadow.

For each VPL, we create an Imperfect Shadow Map
(ISM), as proposed by [7]. To create an ISM, the parabolic
projected points of the scene geometry are (box-)splatted
onto a map (e.g. by rendering point sprites). The size of
a box splat is thereby quadratic proportional to the depth
of the point. This imperfect approximation of a perfect
shadow map is sufficient for our needs and rendering is
much faster this way, especially when using many VPLs.
To support large numbers of VPLs, we use one huge ISM
buffer which contains all ISMs for each VPL in the scene.
Figure 7 illustrates a part of a huge ISM buffer (upper
right side of the figure).

To be able to create all ISMs for the whole set of VPLs
in the scene in one render pass, we do not render all points
of the scene into each single ISM. Rather the whole scene
is rendered once, and the points of the scene geometry
are distributed over the ISMs as they are passed through
the vertex shader. Therefore, each ISM contains only of
a subset of the total number of points within the scene,
and each point is rendered to only one ISM in fact. This

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)



Figure 7: Overview of the GI image synthesis chain and its buffers involved.

further approximation is sufficient for the creation of an
ISM, as long as a point cloud of a model within the scene
doesn’t consist of too few points and the relative number
of VPLs is not too high. This point distribution approach
makes the time consumed by the ISM setup pass indepen-
dent of the number of VPLs, which allows for high image
quality (high number of VPLs) at real-time frame rates.
However, for models with a too low number of points,
this distribution approach could certainly yield to unus-
able, perforated mappings within the ISMs. This problem
could be addressed by e.g. rendering multiple passes on
the ISM creation stage (using different point-to-ISM as-
signment offsets per pass), or finding a convenient ISM
splat-size scaling factor per point cloud depending on the
number of points per ISM and the distance to the ISM’s
VPL-position.

Since ISMs are created by box-splatting a subset of the
points in the scene, the resulting parabolic image can con-
tain holes. To improve the quality of the ISMs, we per-
form a pull-push-operation on the ISM buffer in order to
fill those holes, as described by [6]. The quality of the
result depends on the number of pull-push-iterations, but
already a number 2-3 iterations can gain good improve-
ments (see Figure 8).

4.4 Shading Split-G-Buffer

Based upon the visibility information encoded for each
VPL in the ISM buffer, indirect illumination shading can
be performed. As already mentioned, shading of indirect
(and, also of direct) illumination is performed in image

Figure 8: Comparison between a raw ISM buffer (left) and
a improved ISM buffer after a pull-push-operation with 2
iterations (right).

space, i.e. only for the pixels in the camera G-buffer. In
general, for each pixel we would have to calculate the
transported energy from each single VPL to the surface
point corresponding with that pixel. Since this can be very
time consuming with a large number of VPLs, interleaved
sampling introduced by [5] is used.

4.5 Redistributing VPLs

When rendering multiple indirect light bounces, the VPLs
have to be redistributed after each indirect illumination
shading pass, in order to obtain a new set of VPLs repre-
senting surface reflection points for the next light bounce.

Similar to the method implemented by [6], we assign
one new VPL to each current VPL, so that the number
VPLs in the scene remains constant. All points of the
scene are passed through a shader which distributes all
points among the current VPLs and renders a VPL buffer
containing the new set of VPLs. To select the best candi-
date for a new VPL per existing VPL, our shader assigns

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)



Figure 9: An object stack illuminated by a spot-light inside a Cornell Box, rendered with 256 VPLs and (from left to
right) with 1, 2, 3 and 4 light bounces. Considering a distortion by the tone-mapping operator, we can clearly see that the
biggest difference in the light situation is given between the first and the second bounce, while the third and fourth bounce
only contributes minimal additional brightness.

to each incoming point a z-value that corresponds with
the VPL quality of that point. This value is dependent on
whether the new point is visible to the current VPL at all,
and on how much luminance this new VPL can contribute
to the result in the next bounce. Using the right setup, for
each current VPL the GPU depth-test automatically leaves
those scene points in the buffer, which are best suited as
new VPLs. This buffer is then used as new VPL buffer for
the next light bounce.

5 Results

Our algorithm supports multiple indirect light bounces at
interactive frame-rates. However, in our test scenes, ren-
dering 2-3 bounces already covered the dominant part of
the global scene illumination (refer to Figures 9 and 12).

Figure 10: Frame-rate dependency from the number of
light-bounces and the number of VPLs in the scene shown
in Figure 9.

Figure 9 compares several light bounces in a small
Cornell-Box point cloud scene (4.7M points at 1 bounce
and 256 VPLs) containing a few boxes and an asian dragon
model. Figure 10 illustrates the dependency of the frame-
rate from the number of light bounces, the number of
VPLs and the size of the ISM-buffer used in this scene. At
128 and 64 VPLs, we used a smaller ISM buffer size (with
a different resolution per ISM). Note that with increasing
number of light bounces, the total number of points per
frame rendered increases too.

Figure 12 shows our GI render mode in the scene of
the scanned-dataset of St. Stephan’s Cathedral shown in
Figure 2, comparing 1, 2 and 3 light bounces at both 4x4
interleaved and non-interleaved VPL shading.6 The scene
was rendered using 256 VPLs. Performance is strongly
depending on the number of indirect light bounces, im-
age quality (number of interleaving sub-panes), number of
VPLs a.s.o. Figure 11 compares the frame-rates achieved
for the St. Stephan’s Cathedral scene in Figure 12, render-
ing 20.6 million points at one light bounce (increases with
additional bounces).

The frame-rates shown for both the Cornell-Box and the
Cathedral scene were achieved on a platform with a In-
tel Xeon X5550 2.67GHz CPU, with 72 GB RAM and a
GeForce GTX 285 GPU with 2.8 GB RAM.

Figure 11: Comparison of frame-rates with 1, 2 and 3 light
bounces using 1x1, 2x2 and 4x4 subdivisions for inter-
leaved sampling for the scene shown in Figure 12 (20.6M
points).

Due to the importance sampling of the VPL positions by
hierarchical warping (concentrating more VPLs on shiny
surfaces), we are also able to reproduce caustics from
curved surfaces (as shown in figure 13), without the use
of additional VPLs. Further, the method of hierarchi-
cally warping the VPLs works against a weakness of Vir-
tual Point Lights: the tendency to create sparkles when

6Note: The holes in the scene due to an imperfect/incomplete dataset,
which was acquired by 3D-scanning. We used an imperfect normal-
estimation algorithm, occasionally leading to wrong or missing normals
and thus to to local illumination errors.

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)



Figure 12: Comparison of different GI-parameters rendering the scanned inside of St. Stephan’s Cathedral in Vienna. In
the dark scene, we placed a big spotlight at the ceiling pointing at the floor. The upper row shows screens with 4x4 panes
interleaved indirect illumination shading. The series in the lower row is rendered without interleaving (consuming more
time), which leads to a higher overall-illumination, since each pixel is illuminated by each VPL. Note that with increasing
number of indirect light bounces, the higher areas of the walls get more and more illuminated (converging at 3-4 bounces).

placed on surfaces with a high specular component (see
figure 14). The appearance of those sparkles often due to
an undersampling of VPLs in highly shiny areas, which
can not be avoided in cases of too few VPLs in a scene
with balanced reflection behavior.

We support transport of specular reflected light over
several bounces, allowing for highly specular scenes.
However, those situations often require a higher VPL den-
sity to avoid the mentioned sparkle effects, while a proper
diffuse illumination suffices less VPLs.

Figure 13: Left: caustic created by a ring. Right: Illumina-
tion of a parabolic surface, causing a highlight at its focal
point at a nearby wall.

6 Conclusions and Future Work

We have shown a way to perform global illumination on
point cloud scenes at real-time frame-rates. It benefits

Figure 14: Scene rendered with global diffuse intensity
0.5, specular intensity 0.95 and shininess 1000. At the
highly glossy surfaces, the distribution of VPLs lead to
the appearance of sparkles.

from the efficiency of Imperfect Shadow Maps for visi-
bility calculation of Virtual Point Lights in our scenes. We
are able to calculate diffuse and specular reflections for
multiple indirect light bounces. Our approach works best
in scenes containing geometry with a high diffuse reflec-
tion component and lower specular intensity, since sur-
faces with too high specular intensity can result in unin-
tended sparkle artifacts.

Our implementation yet handles only one spot-light
source, since this eases the way of performing impor-

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)



tance sampling of VPLs over a limited area (in light view
space) for the first bounce. In fact, directional light sources
would work the same way using just orthogonal instead
of perspective projection. Point lights on the other hand
should be handled differently, since they would require
eight Light-G-Buffers using the same G-Buffer setup. For
this light source type, the use of two parabolic maps would
be more encouraged, each one storing one of its hemi-
spheres.

Extending to multiple lightsources, a linear relation be-
tween light source count and per-lightsource VPL density
is expected, when maintaining equal frame-rates. How-
ever, some kind of importance sampling over the different
light sources, which adjusts the number of VPLs seeded by
a single light source depending on its total scene contribu-
tion (light source intensity, distance to the viewer), could
be applied to speed up rendering.

All test scenes used in this paper, even those containing
plane surfaces like the Cornell Box, are fully represented
by point clouds. The implementation does not support
polygon models for Global Illumination rendering yet. But
since the integration of a polygon model support would re-
quire the sampling for surface points on this models any-
way (ISM splatting), it would be more expedient to create
a preprocessed point cloud representation of the model if
possible.

References

[1] Stefan Brabec, Thomas Annen, and Hans peter Seidel.
Shadow mapping for hemispherical and omnidirec-
tional light sources. In In Proc. of Computer Graphics
International, pages 397–408, 2002.

[2] Petrik Clarberg, Wojciech Jarosz, Tomas Akenine-
Möller, and Henrik Wann Jensen. Wavelet importance
sampling: Efficiently evaluating products of complex
functions. In Proceedings of ACM SIGGRAPH 2005,
2005.

[3] James T. Kajiya. The rendering equation. SIGGRAPH
Comput. Graph., 20(4):143–150, 1986.

[4] Alexander Keller. Instant radiosity. In SIGGRAPH
’97: Proceedings of the 24th annual conference
on Computer graphics and interactive techniques,
pages 49–56, New York, NY, USA, 1997. ACM
Press/Addison-Wesley Publishing Co.

[5] Alexander Keller and Wolfgang Heidrich. Interleaved
sampling. In Proceedings of the 12th Eurographics
Workshop on Rendering Techniques, pages 269–276,
London, UK, 2001. Springer-Verlag.

[6] Martin Knecht. Real-time global illumination using
temporal coherence. Master’s thesis, Vienna Univer-
sity of Technology, 2009.

[7] T. Ritschel, T. Grosch, M. H. Kim, H.-P. Seidel,
C. Dachsbacher, and J. Kautz. Imperfect shadow
maps for efficient computation of indirect illumina-
tion. ACM Trans. Graph., 27(5):1–8, 2008.

[8] Michael Wimmer and Claus Scheiblauer. Instant
points, July 2006.

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)


