
GPU-supported bubble and foam rendering

Tamás Huszár ∗

Supervised by: László Szécsi†

Department of Control Engineering and Information Technology,
Budapest University of Technology and Economics,

Budapest, Hungary

Abstract

Several types of foam can be found both in nature and arti-
ficial environments; yet it is rare in computer graphics due
to its complexity. Modelling foam structure and dynamics
by simulating the underlying bubble structure has a high
computational cost. To model such a complex phenomena
we need to use serious simplifications while maintaining
realism and detail.
In this paper we propose a method for rendering dense
soap foam in real time. We first build a foam blob — from
realistic soap bubbles — which has a solid inner structure.
We use a hybrid method based on ray tracing and 2D bill-
boards to render dense foam constructed from hundreds
of these blobs. To model foam behaviour and interaction,
we present a simple particle based physics simulation ap-
proach. While our method is capable of rendering foam
featuring a large number of bubbles, it has certain limita-
tions we also discuss in this paper.

Keywords: Bubble rendering, foam rendering, impostors

1 Introduction

Presenting natural phenomena like smoke, fire or fluids in
a realistic way is a tough challenge in computer graphics.
Even though the equations describing the physics of these
phenomena are known, the exact calculations are too com-
plex to perform in real time. Today’s graphics hardware
requires some intuitive simplifications or artistic input to
efficiently present these phenomena in real-time applica-
tions like computer games.

Bubble and foam simulation falls into the above cate-
gory. The structure of dense foam built of soap bubbles
exhibits large complexity. While modelling a physically
correct soap bubble is an easy task, building complex foam
structures from individual bubbles cannot be done in real
time on current hardware.

In this paper, we propose a method to render and sim-
ulate dense soap bubble foam. We give an intuitive sim-
plification of foam structure which enables us to simulate
realistic foam with the speed, detail and quality necessary

∗hthomas92@gmail.com
†szecsi@iit.bme.hu

for real-time applications. After the introduction and pre-
vious work, we give a short overview of bubble simula-
tion, discussing the actual techniques used in our method
in section 3, including our solution for efficiently model-
ing multiple connected bubbles. Section 4 introduces the
idea of building foam from blobs of soap bubbles. We dis-
cuss the structure of these blobs and provide two different
methods of storing and rendering blob structure. In section
5, the technique of building actual foam of the blobs is dis-
cussed, including a basic physics simulation described in
section 6. In the next section we present our result, and
provide possible enhancements and future work in further
sections, including the conclusion of this paper.

2 Previous Work

Interference phenomena required to understand bubble
physics were described by Dias [1]. Later, Glassner gave
a thorough overview on several aspects of soap bubble
physics, including soap film interference and geometric
structure of multiple soap bubbles [3, 4]. Most attempts
to model bubble and foam structures are offline meth-
ods based on ray tracing [7], and even these offline ap-
proaches [6] use simplified reflection model to render the
inner dense parts of the foam to maintain reasonable ren-
dering times.

Recent articles present real-time approaches and use the
GPU to simulate bubble formations. Sunkel simulates a
magnitude of hundreds soap bubbles in real time using
simplified reflection and lighting model [8].

3 Realistic rendering of soap bub-
bles

3.1 Soap film interference

In order to simulate foam, we must first understand the
physics of soap bubbles, and provide an efficient way to
render soap films and bubble structures. Basically soap
bubbles are gas trapped in a thin fluid layer. Because of
surface tension and the inside pressure of the contained
gas, the surface of a bubble tends to be minimal. This
means soap bubbles can be easily modelled as spheres;

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)



this is a common simplification used by most approaches.
The interference phenomenon on bubble surfaces can be
understood by examining soap film reflection — light in-
terference caused by reflection on two parallel surfaces.
Usual soap films are 1–2000 nm wide and have a refrac-
tion index of 1.4. Given these values, the intensity change
of the reflected light can be calculated by the following
equations [4, 5].

ps =
4π
λ

nd cosϑi

R f = 1− cosϑi

Ir = Ii4R f sin2 ps

The intensity change Ir depends on the incoming inten-
sity Ii, the reflection factor R f and the phase shift ps. The
phase shift can be calculated using the wavelength λ and
the incident angle of the light ϑi, the index of refraction
n and the film width d. The refraction index is calcu-
lated using a Fresnel approximation, the film width and
the refraction index are constant (we can perturb the film
width with random noise to make the bubble more realis-
tic, simulating film thickness changes caused by air pres-
sure variation). By using these simplifications, the inten-
sity change is only dependent on the incident angle and the
wavelength, so it can be easily computed or stored in a tex-
ture. We used the representative wavelengths of the RGB
components, as the achieved quality is acceptable and it is
more efficient than calculating the values over a continu-
ous spectrum. Using these equations and simplifications,
a soap film shader can be easily constructed.

3.2 Soap bubble geometry

As we saw earlier, a single soap bubble can be approxi-
mated by a sphere. However, for modelling bubble struc-
tures, we must compute the shared wall film between the
bubbles. Based on Glassner’s observations, three soap
films always meet at 120◦ angle and the mutual wall is
spherical itself [4]. First, considering two intersecting bub-
bles, we must determine this auxiliary sphere’s centre and
radius. The easiest approximation would be a simple pla-
nar soap film between the two bubbles. This is an accept-
able approximation for distant bubble formations but un-
realistic when examined closely. In his article, Glassner
gives a formula, in which he exploits the aforementioned
120◦ property. In a general situation without proper phys-
ical simulation, when bubbles are spheres of random radii,
this rule does not hold. To overcome this we provide a sim-
ple but intuitive and visually convincing approximation.

Figure 1 shows the geometry in a 2D slice. We used
a simple observation: the tangent Tc is the angle bisector
of the angle determined by the intersection of the spheres
and the centres (AMC ̸ ). If we extend the bubble model by
keeping this rule, but omitting the 120◦ restriction, we still
get acceptable results with reasonable calculation com-
plexity.

Figure 1: Geometry of bubble walls. Point C is the centre,
rc is the radius of the sphere which forms the common wall
of sphere A and B.

First, using the observation above, we realize that the
triangles AMC and BDC are similar. This means that
DC = rcrB/rA. As MC = MD+DC, we get the follow-
ing equation (assuming rA > rB):

rc =
rAMD
rA − rB

The length of MD can be calculated using the cosine rule
two times in triangles AMB and MBD.

AB2
= r2

A + r2
B −2rArBcosδ

MD =
√

rB + rB −2r2
B cosδ = rB

√
2−2

r2
A + r2

B +AB2

2rArB

Finally, we can calculate the centre using the law of
cosines the third time, in triangle AMC.

AC =

√
r2

A + r2
C −2rArC cos

d +π
2

4 Modeling foam using soap bub-
bles

4.1 Foam structure

While soap foam consists of several soap bubbles, the
inner structure of the foam is so complex, that simply
modelling it as individual bubbles is not a working so-
lution. Today’s real-time methods are capable of render-
ing hundreds of bubbles, but this is far from the complex-
ity of dense foam. To overcome this, we examined the
macrostructure of soap foam. On a large enough scale, be-
low the surface bubbles of dense foams, we see a nearly
diffuse and opaque whitish body, hiding the deeper mi-
crostructure of the foam. Our idea was to model a foam
blob possessing this property. The surface of this blob is
built of realistic soap bubbles, and the inside is approxi-
mated by an artist-drawn bubble texture representing the
inner structure of the foam. This creates the impression of
a dense interior with individual transparent bubbles pro-
truding from the blob.

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)



R o

x

r

p

p'

l R'

R

Figure 2: Using the distance impostor technique to model
foam blobs. The curve inside the bounding sphere visu-
alizes the distance values stored in the cube map. R′ is
the view ray and l is the intersection point provided by the
algorithm.

The outer bubbles are spheres drawn using the soap film
shader, including the walls between neighbouring bubbles.
Due to the complex nature of the blobs, classic polygon-
based rendering is not a feasible solution. On the other
hand, classic ray tracing is too slow, as complex foam can
contain thousands of bubbles. We needed a data structure
to store bubble data that makes fast and efficient intersec-
tion of the blob and view rays possible.

4.2 Blob intersection using a distance im-
postor

Our first proposed method is based on the distance impos-
tor technique [9]. The original technique is used for cal-
culating position dependent reflections using environment
maps. It stores environment geometry in a cube map, and
uses it to iteratively calculate surface points intersected by
reflection rays. We imagine the foam blob as an entity
trapped in a cube, represented by a cube map storing the
distance between the blob surface and the centre in every
texel. Now finding the intersection of the ray and the blob
is the same problem as the one stated above, with one mi-
nor difference: our rays come from outside of the cube
map, not from the inside.

As seen in Figure 2, R′ is the original ray. We reverse
the direction of this ray to get R⃗, and place its origin x⃗ at
the second intersection of the original ray and the blob’s
bounding sphere. As the new ray points towards the near
side of the blob (closer to the origin of R′), the iterative
search algorithm will find an intersection l⃗ on this side.
Reading a distance value from the side closer to x⃗ would
give a wrong intersection point. Therefore, running the

p
0 p

1

p
2

p
3 p

4

r

Figure 3: Illustration of the bubble ID technique. The view
ray r⃗ is sampled in points P⃗0 - P⃗4. The dotted lines show
the bubble id stored in the cube map in the designated di-
rection.

original algorithm with the reversed ray will give the right
result.

The required cube map resolution and iteration count
depend on the blob geometry. For a common blob con-
sisting of 64 bubbles, which we used for testing, a resolu-
tion of 64× 64 and a maximal iteration count of 20 were
adequate. When using smaller values, visible artifacts ap-
peared near the intersection of the bubbles.

The cube map itself is generated by rendering the bub-
bles from the centre of the blob. Using a geometry shader
and a render target array, only one rendering pass is re-
quired. We render a full screen quad, and calculate the
world coordinates of the quad’s vertices at the near clip-
ping plane for each render target, using different view ma-
trices (a total 6 cameras covering both directions in all 3
axes). In the fragment shader, we compute the farthest in-
tersection point with each of the bubbles, getting the out-
side surface geometry of the blob. While the intersection
calculation is done by checking all the bubbles in the blob,
this is not a performance bottleneck as the cube map has
to be generated only once during the program startup.

The disadvantage of the method is that we lose the in-
ner structure of the blob as only the outer shell is stored
in the texture. As a side effect, this allows the shape of
the outer bubbles to be other than spheres. However, when
rendering soap bubbles, this does not grant us an advan-
tage, but makes further calculations — like intersection
with the inter-bubble wall — impossible. This recognition
motivated our second method. Instead of storing distances
of the surface, we store the original bubble data, but we
heavily reduce the number of necessary intersection cal-
culations.

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)



4.3 Blob intersection by storing bubble
identifiers

Once again, we use a cube map to store blob geometry. But
instead of distances, we store an ID of the bubble visible
from the outside in the given direction. We also have to
store the bubble radii and centres in a separate texture or
buffer.

First we calculate the intersection of the ray and the
bounding sphere, and then we have to find the bubble it in-
tersects first. This would allow us to use an iterative search
similar to the one used in the distance impostor technique,
but we found that a simple linear search is adequate. This
is because finding any texel that contains the ID of the first
intersected sphere is sufficient to get an accurate result.
As seen in Figure 3, we divide the section of the ray in-
side the sphere to a fixed number of segments, and then
start reading the values from the cube map in the given di-
rections and calculate the intersection of the ray and the
corresponding bubble. The first intersection is the one we
are looking for.

The advantage of this method is that in most cases, es-
pecially if the bubbles are nearly the same size, we will get
the result in the first few iterations. Usually the loop ends
in the first iteration when the incident angle is high (the ray
goes through the middle of the sphere) and the required it-
eration count increases as the ray gets further from the cen-
tre. Also nothing guarantees that we find the right intersec-
tion; in theory we can easily skip the right bubble during
the linear search. However experiments showed that when
using reasonably sized and evenly distributed bubbles, the
results are acceptable. A 128× 128 cube texture with 10
iterations produced minor artifacts comparable to the dis-
tance impostor technique, and it was also slightly faster.

The actual implementation including the cube map gen-
eration is similar to the distance impostor technique. The
identifiers are stored in the cube map using the same ren-
dering technique, but instead of the distance, the bubble’s
id is stored. The bubble identifiers and the correspondent
radius and centre values are stored in a buffer located in
the video memory.

Storing bubble IDs has another advantage over the dis-
tance impostor method: not only the first intersection, but
also the intersection with interior walls between bubbles
can be computed. When using distance impostors, we only
preserve surface geometry, which makes the representa-
tion of the precise sub-surface structure impossible. When
using the bubble ID technique, we have the exact bubble
geometry stored in a buffer. We can use this geometry
to calculate inner bubble walls. The linear search algo-
rithm will yield a list of bubble IDs along the ray, if we do
not stop it after finding the first intersection. Consecutive
bubbles in this list are most likely to form a mutual wall,
which can be computed as described in Section 3.2 and
intersected with the ray. This is also an approximate solu-
tion, as internal bubbles not stored in the ID map are not
considered and small bubbles can be skipped by the linear

Figure 4: Illustration of the blob normals. The green ar-
rows are light rays. Vector v1 and v2 are sampling direc-
tions using different calculation methods presented in the
paper.

Figure 5: Different foam textures. The texture on the left
was used in the final renderings.

search algorithm. However, with similarly sized bubbles
of a soap foam blob this rarely happens, and it does not
influence visual quality.

4.4 Inner structure and other details

Using any of the techniques presented above, the rendering
of the blob is quite straightforward using ray tracing. We
calculate the intersection of the blob and the ray coming
from the camera. Then we compute the incident angle of
the ray and the surface normal in the previously calculated
intersection point. We use these values and an environ-
ment map to calculate bubble reflections using the soap
film shader. We can also calculate the internal walls for
neighbouring bubbles.

Finally we have to draw the inner structure using the
bubble texture. It can be an artist-drawn image of small
bubbles (5), representing the inner structure of the foam,
or a computer generated foam image using a complex non
real-time simulation. The foam texture can be stored in
another cube map. The sampling direction can be adjusted
several ways as it is depending on the given blob and foam
type. We used a weighted sum of two vectors (4). The
first vector (v1) is the direction of the second intersection

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)



Figure 6: A single foam blob rendered using the bubble id
method

of the first intersected bubble (P1) relative to the centre of
the blob (P1). This spherically projects the texture onto
the interior surface of the blob, which is what we get if
we remove the outer bubbles. The second vector is the in-
verse normal of the bubble (v2) at the first intersection (P2).
Combining these two vectors slightly distorts the original
mapping based on the outer bubble geometry.

As stated before, the middle of the blob is opaque, while
the outer bubbles are nearly transparent. To achieve this
effect, the transparency of the inner texture is set accord-
ing to the second intersection point’s distance from the in-
ner and outer bounding sphere. In the middle of the blob,
the second intersection of the current bubble is closer to
the centre as the ray is almost perpendicular to the blob’s
bounding sphere. Near the outer region, the intersection
point is farther from the centre, so the blob will be more
transparent there.

The last issue is the surface normal of the blob used for
lighting equations. The nearly diffuse inner surface should
slightly follow the wrapping surface of the outer bubbles.
Therefore we used a weighted average of the bubble’s nor-
mal and the blob’s bounding sphere’s normal. The normal
and the other aforementioned parameters should be fine-
tuned and set according to the actual blob structure and
the desired foam type. A typical foam blob used in our
renderings can be seen on Figure 6.

5 Rendering foam using foam blobs

Realistic dense foam needs to be constructed from many
blobs, so we need a fast technique to render them. While
ray tracing the blobs could be straightforward, it would be
too slow for large foam. We propose a method based on
particle systems, that is capable of rendering hundreds of

Figure 7: Dense soap foam rendered using the proposed
technique

blobs real time. Blobs are rendered as 2D billboards. The
ray from the eye position is calculated for all pixels of the
billboard, and it is used to render the corresponding blob
as described in the previous section. This means we do
not have to do the intersection calculations for all blobs,
but also means we cannot calculate inter-blob reflections
(which would be too slow to use in real time anyway).

The data associated with the blobs are stored on the
graphics card in a vertex buffer. The billboards are gen-
erated by the geometry shader using this data. The vertex
positions in world space are also calculated in the shader,
and used in the pixel shader to get the view rays for every
pixel. Besides the colour, the depth of the blob is also com-
puted for every pixel to address problems of overlapping
particles.

Since the blobs are transparent, we need to sort the parti-
cles according depth, in order to use alpha-blending. How-
ever, depth is different in the pixels of the billboards, so we
have to do the sorting at pixel level. Depth peeling [2] is
a technique rendering translucent objects. It basically ac-
complishes pixel level sorting by using multiple rendering
passes to store multiple depth levels for every pixel. We
use two buffers to store depth data. First we render the
scene depth into the first buffer, and then render it again
into the second buffer, but only those pixels that are fur-
ther than the stored depth in the first buffer. Then we flip
the two buffers and repeat. We store the blob identifiers
in a third buffer, in a different colour channel for each it-
eration. In the end, the n closest bubble identifiers will be
in the final buffer. In the final rendering pass we render
the blobs in order with proper transparency. While this
method uses multiple rendering passes and it is generally
slow, it provides a real-time alternative to ray tracing.

This method has one serious shortcoming in cases
where multiple blobs overlap each other. Let’s assume that
we use three rendering passes (and store 3 layers of blob
depths). Now imagine that the first three blobs are rather
transparent, but there is a fourth, solid blob behind them.
In this scenario, the resulting foam would be transparent,

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)



resulting a transparent hole in the foam. To overcome this
limitation, we use an extra rendering pass to calculate the
maximal opaqueness for all visible blobs (not just the 3
closest to the viewer). When we draw the diffuse foam
texture, we use this value to plug the unwanted holes in
the foam. The main disadvantage of this method is the re-
source consumption, as we have to calculate intersection
points for all blobs (however we do not calculate surface
interference, reflections or wall geometry for these blobs).
Figure 7 shows dense foam rendered using this technique.
All the free parameters were set to grant visually appealing
result.

It was not stated explicitly before, but blob rendering
techniques require the blob structure to be static. The blob
texture is prerendered once and then used for all blobs.
This means that all the blobs are the same (it is possible
to use several blob textures to construct a fixed number
of different blobs). To counteract this limitation, we used
transformations to change the size and orientation of indi-
vidual blobs. This can be easily done real time in the pixel
shader during the intersection calculations and grants us
more diverse foam. To store these transformations, only
one additional float vector is required in the vertex buffer.
We can represent the orientation as a quaternion and store
it in a four-dimensional vector. The blob size can be the
fourth, previously unused coordinate of the position vec-
tor. We can also use a transformation matrix to store more
general affine transformations, but in our implementation
it was unnecessary to do so.

6 Foam physics

To provide even the most basic physical simulation, we
must render solid objects beside the foam. As we used
environment mapping for reflections and refractions, solid
objects must be rendered using a blending technique. We
first render these objects, and then blend the foam over
them without clearing the depth buffer. This is efficient but
this does not handle reflections of solid object on bubbles,
or the rendering of transparent objects like smoke or glass.

Figure 8: Foam formations sliding down on a slope

To simulate foam dynamics and present the characteris-
tics of this rendering technique we created a basic but fast
physical simulation based on particle dynamics. The simu-
lation is able to handle inter-particle forces and outside ob-
jects. In the technical demonstration we presented a foam

mass sliding down on a slope (see Figure 8). Each blob
has a position, mass, and velocity, with forces acting be-
tween blobs and other objects. The blobs are represented
by their bounding spheres. If two blobs get too close, two
types of force can affect them: if they are far enough an
attractive elastic force arises, modelling the different parts
of the foam sticking together. However, if two blobs get
too close, they collide, resisting collapse and giving the
foam a solid structure. By properly adjusting these forces
and the gravity, a good approximation can be achieved for
the desired foam type. The simulation is done on the CPU.
Further exploration in this topic could yield more realistic
results and boost performance by implementing a physical
simulation on the graphics card.

7 Results

We implemented the technique using DirectX 10 and
Shader Model 4.0 on an NVIDIA Geforce GTX 260
graphics card. We achieved real-time simulation (32 FPS)
of 100 blobs and a total number of 22700 separate bub-
bles, using the bubble ID technique for calculating inter-
sections. The images were rendered at the resolution of
640 × 480. The various parameters like iteration count,
texture size, and the number of bubbles in a blob were set
to imitate soap foam to the highest possible fidelity with-
out visible graphical glitches. Further tweaking these pa-
rameters could result in performance increase, while main-
taining acceptable graphic quality.

Figure 9: A box shaped form consisting of 5000 blobs

Using these same parameters, simulating between 100
and 1000 blobs the FPS stays above a reasonable rate
(around 10). Figure 9 shows a foam formation of 5000
blobs and a total number of 1135000 bubbles, rendered at
5 FPS. Given these numbers, in the near future with further
optimizations the real-time simulation of foam consisting
of hundreds of thousands of bubbles could be possible.

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)



8 Future work

The most serious limitation of the proposed technique de-
rives from the particle based approach. Our blobs are static
entities with fixed size and structure, and when we start
to divide the foam into smaller pieces comparable to the
blob size, it leads to artificial and unnatural results. To
overcome this, we propose a possible direction. First, we
need a model to adjust blob size dynamically, based on
some physical observations, but not too complex to un-
dermine the performance. Another possible way is to lo-
cally increase and decrease the simulation resolution (the
blob size in this case) by the local foam characteristics and
viewer distance. Blobs inside a dense foam or far from the
viewer could be merged together, or their simulation and
render quality should be otherwise decreased, while larger
blobs broken out of the foam should break up into smaller
blobs.

9 Conclusion

Bubbles and foam are extremely complex natural phenom-
ena, the formation, motion and optics of which obey com-
plex physical laws practically impossible to simulate in
real time. A visually convincing result, however, is feasi-
ble with decent data structures and subtle approximations.
As with a wide range of natural geometries, the concept of
impostors is very helpful. We have shown how a generic
impostor technique – the distance impostors – can be mod-
ified to represent bubble clusters, and we also proposed a
specialized representation that exploits the fact that bub-
bles are spherical, and allows not only for a more accu-
rate representation, but also for an approximation of inter-
nal foam walls. Furthermore, we described algorithms for
the simulation and rendering of massive foam composed
of the bubble clusters, based on particle systems and the
billboard visualization technique. Our method is capable
of real-time rendering dense foam consisting of ten thou-
sands of bubbles on modern graphics hardware.

Acknowledgement

This work has been supported by the Teratomo project
of the National Office for Research and Technology, and
OTKA K-719922 (Hungary).

References

[1] L.M. Dias. Ray tracing interference color. IEEE Com-
puter Graphics and Applications, 11(2):54–60, 1991.

[2] C. Everitt. Interactive order-independent transparency.
White paper, nVIDIA, 2(6):7, 2001.

[3] A. Glassner. Soap bubbles: Part 1. IEEE Computer
Graphics and Applications, 20(5):76–84, 2000.

[4] A. Glassner. Soap bubbles: Part 2. IEEE Computer
Graphics and Applications, 20(6):99–109, 2000.

[5] K. Iwasaki, K. Matsuzawa, and T. Nishita. Real-time
rendering of soap bubbles taking into account light
interference. In Computer Graphics International,
pages 344–348, 2004.

[6] S. Rosenbaum and M. Bergbom. Foam.
http://cs.stanford.edu/people/rosenbas/foam, 2007.

[7] Y. Sun, F. D. Fracchina, T. W. Calvert, and M. S. Draw.
Deriving spectra from colors and rendering interfer-
ence. IEEE Computer Graphics and Applications,
19(4):61–67, 1999.

[8] M. Sunkel, J. Kautz, and H.-P. Seidel. Rendering and
simulation of liquid foams. In Vision, Modelling and
Visualization, 2004.

[9] L. Szirmay-Kalos, B. Aszodi, I. Lazanyi, and M. Pre-
mecz. Approximate ray-tracing on the gpu with
distance impostors. Computer Graphics Forum,
24(3):695–704, 2005.

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)


