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Abstract

A suitable selection of facial features is of key importance
for the successfulness of face recognition algorithms. Be-
cause a straightforward selection of them does usually not
ensure sufficient reliability, statistical tools are often used
for feature extraction. In this paper the influence of the
selected set of learning samples on the efficiency of face
recognition algorithms is observed. For this purpose, three
of the most often used algorithms are presented in de-
tail. The feature description based on the Gabor wavelet
transformation is presented first. In this approach fea-
tures are selected based on human physiognomy basis and
formed to feature graphs, where the actual recognition is
performed by graph matching. On the other hand, prin-
cipal component analysis (PCA) is a statistical tool for
identifying patterns in data by reducing its dimensionality.
That way, key features for face recognition are extracted to
a comparable form. Meanwhile, linear discriminant anal-
ysis (LDA) allows for face recognition by establishing the
borders between classes in multidimensional data. To en-
sure equal conditions for those algorithms, a method for
image normalization is presented also. By the results it
is shown, that the statistical approaches are significantly
more reliable yet at the same time strongly dependant on
the learning set selection. Even if no significant influence
of the learning set on the Gabor wavelets based method
can be observed, its successfulness is clearly below those
of PCA and LDA.

Keywords: Face recognition, PCA, LDA, Gabor
wavelets, Learning set selection

1 Introduction

Although various methods for face recognition have been
developed, it remains an important field of research. One
of the main reasons certainly lies in high market demands
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for secure systems based on biometrical identification.
Face recognition is recognized as one of the more ele-
gant approaches, since it is user-friendly as well as cost-
efficient. At the same time, findings in face recognition
research are often applied to industrial projects for the pur-
pose of pattern recognition in general [1]. Whatever the
purpose may be, the efficiency is strongly dependent on
the detected features and the quality of their representa-
tion in the model base [2]. Although many approaches
are known for this task [2, 3], features are usually assem-
bled as components of a feature vector [2, 5, 6, 7]. In
such cases, each component of a vector caries important
information, which is the basis for distinguishing between
faces. In a most simple case, features can describe the
colour of the human eye, the colour of the skin or the shape
of the face, but unfortunately such simple features are usu-
ally not sufficient enough. Therefore, statistical techniques
are often used to determine adequate features. When the
feature extraction is based on statistical attributes of the
selected face population, then the final set of features may
be very dependent on the subset of faces that were used
in the learning process. Because of that it makes sense to
study the possible influence on the accuracy of the face
recognition algorithms.
In this paper we present a study of the influence of the
training set selection on the face recognition accuracy. For
this purpose the training set dependency of three algo-
rithms was analyzed: feature graphs based on a wavelet
transform, principle component analysis (PCA), and lin-
ear discriminant analysis (LDA). The efficiency of recog-
nition techniques was compared in terms of dependency
on the learning set of faces.
A detailed review of the image normalization procedure,
which ensures robust detection of features and provides
equal conditions for testing the efficiency of methods, is
given in Section 2. This is followed by a detailed presen-
tation of the used face detection techniques (Section 3).
Results, obtained using these procedures are presented in
Section 4. The most important conclusions are empha-
sized in Section 5.
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2 Input image normalization

Main issues that need to be considered when dealing with
computer based detection and recognition systems are re-
lated to unequal light distribution, camera position, image
quality, and image resolution. The capabilities of such
systems can be reduced dramatically by these parameters.
Therefore, the elimination of these factors needs to be
accomplished before the recognition is performed. This
process is called image normalization [5, 6] and is, in our
case, achieved in four steps:

Step 1 (face detection): The detection of the face is
usually the first step of the image normalization process.
A neural network is used for this purpose. In the training
process the neural network was trained to detect the
presence of a face in an image with resolution of 128x128
pixels. Such a neural network is capable of detecting faces
only in images with the same resolution. Because the
input images are of arbitrary size, face detection cannot
be performed directly. Therefore a sliding window is
defined. By testing the sliding window region for the
presence of a face at each position, faces can be detected.
That way all faces in the input image, located at one of the
regions sized 128x128 pixels, can be found. Nevertheless,
the faces in input images are usually much larger and
are not detected at this step. Therefore the input image
size has to be reduced multiple times and scanning for
faces repeated at each iteration. For this task a sufficient
scaling factor has to be chosen, which is a trade-off
between execution speed and reliability of detection.
In our case a scale factor of 0.9 is used that assures us
with 100% face detection ratio on the FERET database [4].

Step 2 (histogram equalization): According to the
detected face region, the image is then cropped and thus
the background is removed. However, noise, caused by
illumination, may still present a disturbing influence. To
increase robustness of the face recognition process against
that, histogram equalization is performed on the cropped
image.

Step 3 (eye detection and rotation of the image): Eye
detection is performed during image normalization to in-
crease robustness of the following steps against camera ro-
tation (or rotation of the head) and thus ensures that all
faces appear in horizontal position. Similar to the face de-
tection, the detection of eyes is performed with a neural
network. The middle points of the eyes are then used to
calculate the sufficient angle of rotation θ . The rotation of
the image is formally defined by the following equation:

x′1 = cos(θ) · (x1 − x0)− sin(θ) · (y1 − y0)+ x0 , (1)
y′1 = sin(θ) · (x1 − x0)− cos(θ) · (y1 − y0)+ y0 ,

where (x0, y0) is the centre point of the rotation; in our
case this is the middle point between the eyes, (x1, y1) is

the pixel that is transformed at the given step, and (x′1, y′1)
are the transformed coordinates of the pixel.

Step 4 (scaling of the image): To achieve the best pos-
sible matching among the normalized images, they are
scaled so that the centre points of the eyes are located at
the same positions on the normalized images. The scal-
ing factor is defined as the ratio between the desired and
observed between eye distance.

When scaling the image is completed, an additional
mask is applied to it, so the remaining background fac-
tors, like hair for example, are eliminated. Examples of
normalized images can be seen in Figure 1.

Figure 1: Normalized images, which are the input to face
recognition techniques.

3 Face recognition techniques

The process of image normalization leads us intuitively to
the possibility of face recognition by feature graph match-
ing. This is the first presented approach, where features for
face representation are selected on human physiognomy
basis and represented using a wavelet transformation with
Gabor wavelets. In the continuation, two more often used
techniques for face recognition are presented also. Both
are based on a linear transformation of the image to a fea-
ture subspace. These techniques are Principal Component
Analysis (PCA) and Linear Discriminant Analysis (LDA).

3.1 Feature graph matching based on Gabor
wavelet transformation

Because of the image normalization process, the introduc-
tion of face recognition according to feature graph match-
ing is relatively straightforward. In our case a modified
approach presented in [7] is used for this purpose. The
presented approach introduces a vector of wavelet coeffi-
cients (jet), which carries the facial features at a given key
point. The components of such a jet describe the response
to a Gabor wavelet transformation at a given key point.
Since the key points are at fixed positions, the structures
of the graphs are equal and thus the graph matching can
actually be performed only by comparing the jets, using
the given metric.

The Gabor wavelet transform is employed here because
it is robust against variations in illumination and small
changes in phase [7]. In our case 40 different wavelets (5
different frequencies at 8 different orientations) are used.
Figure 2 shows the construction of such jets, and their for-
mation to a feature graph.
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Figure 2: Construction of a vector of wavelet coefficients,
where the convolution with the Gabor wavelets is per-
formed at a given point.

The basic difference between our approach and the ap-
proach, presented in [7], is that in our case no complete
adaptation of the feature graph is needed, since the input
images have already been normalized. This way the pro-
cedure is much more time efficient, but it also becomes
much less flexible. Some important information regarding
distances between features is lost, making the recognition
less reliable (Section 6).

The facial features are chosen with regard to facial phys-
iognomy [8], where four points, which are important for
human facial recognition yet not subject to quick evolu-
tion, are chosen. These points are selected at the left and
right cheek, on the forehead, and above the chin. At each
of the selected points the vectors of wavelet coefficients
can now be obtained by calculating the responses to all
of the 40 Gabor wavelets. Because even small changes in
position can cause a phase shift in the response [7], the
wavelet transformation is calculated actually in a 7x7 ad-
jacency of the selected key points. Thus a single face is
presented in the model base with 49 feature graphs.

In the process of recognition the jets can now be com-
puted only at the selected key points of the test image. The
model base is then searched for the best match to the re-
sulting graph, where the distance between jets is measured
with the L1 or Manhattan metric, defined with the

d(p,q) = ∥p−q∥1 =
n

∑
i=1

pi −qi , (2)

where d(p, q) is the distance between two vectors p and
q.

3.2 PCA

PCA is a statistical tool for identifying patterns in data.
It allows a representation of various sets of data in a
way, where similarities between samples are emphasized.
Because it is difficult to search for patterns in multidimen-
sional data, PCA is an important tool for data analysis.
Nowadays, PCA is present also as one of the most popular
approaches for recognition of faces [9, 10, 11] and
patterns in general [12, 13]. The implementation of PCA

for face recognition can be described in six steps:

Step 1: The inputs of the process are normalized facial
images, from which a model database is built. The images
are transformed to vectors by dividing them to rows (or
columns) which are placed one after another (in our case
the images are of dimension 256 x 256, thus each vector
has 65.536 components). Each image now represents a
base vector of a vector space, with as many dimensions
as there are input images. These vectors are formed in
a matrix, where each vector represents a column, for a
clearer representation.

Step 2: The origin of the vector space is then translated
to the point (0, 0, ... , 0) by subtracting the average value
of each base vector from its components (the average
image intensity is subtracted from its pixels).

Step 3: The dimensionality of the vector space is then
decreased by expressing the mutual dependency of the
base vectors with a covariance matrix:

Ci, j =
∑N

i=1(xi − x̄i)(x j − x̄ j)

(NPCA −1)
, (3)

where Ci, j is the (i,j)-th element of the covariance
matrix, xi and x j are the vectors for which the covariance
in the given step is calculated, x̄i and x̄ j are their average
values, which are because of step 2 in our case always 0
and NPCA is the dimensionality of the vectors.

Step 4: The eigenvectors and according eigenvalues of
the covariance matrix can then be obtained. Because the
eigenvectors represent the interdependency of data, they
can be interpreted as facial features in which the patterns
from the learning set resemble or differ (Figure 3). Al-
though the obtained vector space allows for face recogni-
tion, its efficiency can be increased by discarding eigen-
vectors corresponding to the highest eigenvalues. These
vectors are namely under the influence of illumination
distribution and do not resemble valid facial information
[11]. In our case, the eigenvectors are sorted descend-
ing in terms of their eigenvalues and the first two vectors
are discarded. The remaining eigenvectors form the vector
subspace E, and are presented in matrix form, where each
vector represents one column.
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Figure 3: The eigenvectors, where the influence of illumi-
nation in the input images on the vectors with the biggest
eigenvalues can be seen (the upper row), and the vectors
with smaller eigenvalues, which represent features (the
two bottom rows).

Step 5: In vector space E face recognition can be per-
formed. The base of known faces is created by projecting
the input images to the vector space E, thus expressing
them as a linear combination of the eigenvectors, what can
be defined by the following equation:

yi = ET ·xi , (4)

where yi is the projection of the input image xi to the
PCA vector subspace E defined by the reduced matrix of
eigenvectors of the covariance matrix C.

Step 6: In the process of recognition each input image
is projected to the vector subspace E and then compared
to the vectors in the model base of known faces using the
normalised Euclidean, or the Mahalanobis metric, defined
by:

d(yi,y j) =

√√√√NPCA

∑
n=1

(yin − yjn)
2

σ2
n

, (5)

where d(yi,y j) is the distance between vectors yi and y j,
σi is the standard deviation, which is in our case replaced
by the eigenvalue corresponding to the i-th eigenvector.

3.3 LDA

Similar to PCA, also LDA can be used for data classifi-
cation. LDA is based on maximizing the between-class
variance to within-class variance ratio. The most im-
portant difference between PCA and LDA is that PCA
minimizes the projection error by emphasising similarities
between samples; meanwhile LDA defines the classifica-
tion boarders. Both methods include a projection of data
to a subspace, where classification can be performed more
accurately. PCA changes the form and location of the
input data, while LDA leaves the input data unchanged
[14]. In our case LDA is performed globally on the PCA

output vectors and this can be described in five steps:

Step 1: The inputs to the LDA process are vectors
already projected to the PCA subspace. Because LDA
permits many samples belonging to a single class (each
person can be presented by multiple images), an additional
component is added that defines the class of the vector.

Step 2: The average of each class separately
(µ1,µ2, ...,µNR) and the average of all classes µ are then
computed. The average of all classes is obtained using the
following equation:

µ =
NR

∑
i=1

piµi , (6)

where pi is the probability of occurrence of a spe-
cific class, and can be computed as straightforward as
pi = 1/NR for all classes, where NR is the number of all
classes.

Step 3: From the data collection two scatter matrices
can now be obtained. The scatter matrix Sw describes
the expected covariance within each class R j;1 ≤ j ≤ NR,
while the scatter matrix Sb describes the scattering be-
tween classes. When many samples of a class yj

i ;1 ≤ i ≤
M j, exist, the matrix Sb can be understood as a descrip-
tion of covariance between the average vectors µ j of each
class. The equations for calculating the two matrices can
be written as:

Sw =
NR

∑
j=1

M j

∑
i=1

(y j
i −µ j)(y

j
i −µ j)

T , (7)

Sb =
NR

∑
j=1

(µ j −µ)(µ j −µ)T ,

Step 4: As already mentioned the LDA optimization
criterion is defined as the ratio between Sw and Sb. Since
Fisher LDA is used, the optimization criterion can be writ-
ten as:

J(W) =
WT SbW
WT SwW

, (8)

where the matrix W is obtained by maximizing the
value J(W). Although this can be achieved by several
methods, in our case the ratio det|Sb|/det|Sw| is max-
imized [15]. It has already been shown that, if Sw is
a nonsingular matrix, the ratio is maximized, by form-
ing the columns of W from the eigenvectors of S−1

w Sb
[16]. Although in real cases Sw is usually nonsingular,
its non-singularity can be ensured by using at least
two samples of each class [15]. After that, the matrix W
is normalized before it is used in the following procedures.

Step 5: W now represents the vector subspace in which,
according to the given set of learning patterns, optimal
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classification can be performed. Formally the process of
recognition in the LDA space can be defined with the fol-
lowing equation:

yi = ET ·xi , (9)
zi = WT · yi .

where E is the vector space of PCA, W is the projection
matrix of LDA, yi the image xi projected to PCA subspace
and zi the projection of yi to subspace W. The patterns are
compared using the Euclidean or L2 metric, defined by the
following equation:

d(zi,z j) =
√
(zi1 − z j1)

2 + ... +(ziNLDA
− z jNLDA

)2 , (10)

where d(zi,z j) is the distance between NLDA-
dimensional vectors zi and z j.

4 Measurements and results

Tests were performed on the FERET image database [4].
The FERET image database consists of images of more
than one thousand people, taken at different time inter-
vals, with different poses and facial expressions. The pre-
sented approaches were tested on three model bases, se-
lected from the FERET base. The first base contains 10
individuals, the second 20 and the third 40 individuals,
varying in gender, age, pose, and race. For each individual
five images were used for testing, while one images was
employed as the learning sample. Because the main inter-
est of our work is the influence of the learning set selec-
tion, and not the efficiency of the algorithms, only limited
numbers of individuals and only one training image per in-
dividual were employed. That way this effect can clearly
be studied. Table 1 shows the number of correctly identi-
fied samples x̄ in percents, while the standard deviation σ
describes the class variance from the average efficiency.

Table 1: Successfulness of face recognition with Gabor
wavelets, PCA, and LDA.

Gabor wavelets PCA LDA
Base 1: x̄ 68% 80% 77%
Base 1: σ 0.9940 0.5164 0.4830
Base 2: x̄ 56% 88% 85%
Base 2: σ 1.0940 0.9987 0.9679
Base 3: x̄ 56% 82% 79%
Base 3: σ 1.3940 1.1873 1.4118

The first, perhaps a bit surprising, result is that PCA as
well as LDA produced better results on base 2 than on base
1, where less testing samples were used. The main reason
for this is that both methods can become over-determinate
[11, 14], when the learning base contains a smaller number
of samples. LDA is especially prone to this effect, since

PCA is part of it, and thus produces worse results than
PCA alone. Because it is evident that statistical methods
of recognition need more learning samples to extract im-
portant features, it could be expected that both methods
would work even more efficient on base 3. But that is not
the case, even an unexpected high decrease in effective-
ness can be observed.

To study this effect, several testing sets were employed,
created by replacing the learning samples of individuals.
By doing that, a high increase of efficiency was noticed
when a specific image (see figures 4a and 4b) was not in-
cluded in the training process. The efficiency of PCA in-
creased to 90% (with standard deviation σ = 1,0671) and
that of LDA increased to 87% (with standard deviation σ
= 0,9901). In figures 4c and 4d the significant influence
of an individual on the entire projection space can be seen
clearly. When the specific image of an individual is in-
cluded in the formation of the projection space, features
are accented weakly and are under the influence of illu-
mination distribution (figure 4c). This is evident even on
eigenvectors with smaller eigenvalues, although this effect
would usually be expected only on some of the eigenvec-
tors with higher eigenvalues (figure 4d).

For the verification of the obtained results, a base of
known faces with a higher number of training samples
was created. In test base 4 images of 236 persons were
included (again only one training image per person was
used). The results of our experiments have shown that
by applying the same methods as mentioned above, the
recognition ratio could be improved by 4%. The relative
improvement is this time smaller, which is not entirely un-
expected, but the number of additionally recognized im-
ages is still a good motivation to observe the influence of
the learning set selection also on bases including a higher
number of samples.

Figure 4: The influence of a learning sample on the eigen-
vectors, where (a) shows the image of the specific individ-
ual, (b) is the normalized form of that image, (c) displays
the first 10 eigenvectors when this image was used as a
learning sample and (d) are the corresponding eigenvec-
tors when another image of the individual was used.
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The selection of the model base has no such particu-
lar influence on the recognition method based on Gabor
wavelets. The decrease of effectiveness of recognition
with increasing number of models in the base is evident,
but it is not unexpected. Anyhow, this method produces
a relatively unsatisfying result compared to PCA or LDA.
The main drawback here is the method for measuring dis-
tances between graphs. When using this method, a higher
degree of recognition cannot be achieved with simple met-
rics (like L1). Because of that, various authors have pro-
posed a use of Gabor wavelet based methods, where the
actual comparison is performed with statistically based
tools, such as PCA or LDA [17, 18].

Situations, where the tested person is not present in the
model base, are often encountered in real-world applica-
tions. In such cases the person must be classified as an
unknown individual. Because of that, an additional thresh-
old needs to be introduced. If the calculated distance be-
tween a sample and its nearest class is greater than the
threshold, the given sample is identified as unknown. In
our case this threshold is defined as the mean value be-
tween the average distance of correctly identified samples
and the average distance of a set of unknown samples.
For this purpose, additional 100 negative testing samples
were included iqnto the previously described test base 3,
which contains 200 positive testing samples. The results
of this test are shown in Table 2, where the number of cor-
rectly identified positive samples is presented as TP (true
positives), FN (false negatives) is the number of errors,
where a positive sample is recognized as a negative one,
FP (false positives) is the number of errors, where a nega-
tive sample is recognized as a person from the base and TN
(true negatives) represents the number of correctly identi-
fied negative samples. The numbers TP and FN sum up
to the percentage of correctly identified persons from the
test base 3 as shown in Table 1 (thus they represent how
many of the previous correctly recognized images are still
correctly recognized - TP, and how many are recognized
as unknown because of the introduced threshold - FN).

Table 2: Efficiency of face recognition with Gabor
wavelets, PCA and LDA, tested on positive and negative
samples

Gabor wavelets PCA LDA
TP 50% 80% 76%
TN 81% 96% 94%
FP 19% 4% 6%
FN 6% 2% 3%

From the results shown in Table 2, it can be observed
that the introduced threshold does not reduce significantly
the efficiency of the presented methods. At the same time,
a relatively high percent of negative images is identified.
This is most obvious for the PCA and LDA techniques,
which again confirms the mentioned fact about the influ-
ence of training samples on the efficiency. The distance

between a negative sample and its closest class is in most
cases significantly greater than the distance from a positive
sample to the classification classes. Because of that, there
is a higher error rate in recognition of known samples, than
of those which are not. Based on the mentioned facts, it
can be concluded that the selection of training samples for
the creation of the projection subspace is of high impor-
tance for the efficiency of PCA and LDA. Consequently,
this applies also for methods based on Gabor wavelets, if
the actual comparison between features is performed with
one of these two techniques.

5 Conclusion

Three approaches to face recognition were presented in
this paper; an approach based on the Gabor wavelet trans-
form, PCA, and LDA. Additionally, a method for image
normalization, which ensures sufficient conditions for face
recognition, was demonstrated. The presented methods
were tested on different testing sets with special empha-
sis on analyzing the influence of learning samples on their
efficiency. The first conclusion is that the efficiency of
the PCA and LDA techniques improves with an increas-
ing learning set. Because both methods are based on sta-
tistical laws, they require a larger set of learning sam-
ples that provide high representability. Even further, using
PCA or LDA the selection of eigenvectors for the projec-
tion subspace formation is of great importance. Some of
the eigenvectors associated with the highest eigenvalues
namely represent illumination distribution in the learning
samples, and it thus makes sense to exclude them. It also
makes sense to observe the influence of each learning sam-
ple on the efficiency of recognition. It was shown how a
single learning sample can noticeably change the projec-
tion space and decrease the efficiency of the PCA and LDA
techniques. At the same time, it is possible to identify un-
known samples reliably by projecting them to the eigen-
vector subspace. Because these samples were not included
in the formation of projection subspace, their features are
not emphasized and the distance to the defined classes is
noticeably greater. Most of the undesired effects can be
omitted using the technique based on the Gabor wavelet
transform.
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