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Abstract

The most common approach to animate models and deter-
mine their shape attributes in computer graphics is using
skeletons. The skeleton and skinning weights can be either
assigned manually or computed from an input mesh. This
paper proposes the extraction of a skeleton and skinning
weights from a mesh, describes how to store computed
data in Collada 1.5 and use it for an animation. Firstly, the
mesh is contracted using constrained Laplacian smoothing
in a few iterations. Then the most important vertices from
the contracted mesh are chosen as control points. Mul-
tiple edges are removed and vertices that are very close
to each other are merged. We select and collapse a ver-
tex pair with the minimum cost in every iteration using a
greedy algorithm. The greedy selection is applied repeat-
ably until we have the requested number of bones. In the
next step the skinning weights are computed, according to
if we want rigid or soft skinning. In the postprocessing
stage the user can inspect the skeleton by previewing skin-
ning deformations, make desired changes and export the
skeleton to Collada 1.5. Transformation matrices used in
a hierarchical skeleton tree are not transformed to joint’s
local transformation frame, so they are immediately com-
patible with majority of animation software and libraries.
After the Collada file with the mesh, the skeleton and skin-
ning data is exported, data can be imported in animation
software such as 3D Studio Max, Blender or Maya and a
skinning animation can be rendered.

Keywords: skeleton extraction, mesh contraction, Col-
lada 1.5, skinning

1 Introduction

A frequently used approach for animation and modifica-
tion of 3D models is based on creating articulated hier-
archical structures - skeletons. Skinning data as a skele-
ton tree and weights can be either assigned manually or
computed from an input mesh. The first option is most
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often chosen by artists, although sometimes it is unneces-
sary and time consuming. The skeleton has to be created
(or imported from templates), rigged into the mesh and in-
fluence weights have to be set. Skilled artists are able to
create and rig the skeleton in a short time, but sometimes
they have to make a lot of rigging adjustments during the
skinning process. In this paper we present how to auto-
matically compute the hierarchical skeleton and skinning
weights from an input mesh and use them in a skinning
animation using Collada 1.5 as export format between our
application and a graphic animation software such as 3D
Studio Max, Blender or Maya. Our application also pro-
vides a way how to examine the computed skeleton be-
fore exporting. The skeleton can be inspected by applying
skinning deformations using direct kinematics. The inter-
face also allows to dynamically add or remove a bone or a
branching if the user thinks some changes are needed.

2 Related work

2.1 Skeleton extraction

Numbers of algorithms have been proposed to compute
a skeleton from the mesh geometry. There are three
main groups of algorithms: volumetric methods, exam-
ple based methods and geometric methods. In this paper
we focus on geometric methods, they are the most suit-
able for meshes, because there is no conversion needed.
The geometric methods work directly on polygon meshes.
The most widely used geometric methods are Reeb graph
based methods [2], Voronoi diagram based [7] and Lapla-
cian smoothing based methods [1].

Reeb graph based methods need a suitable real-value
function, defined on the model surface, for a successful
extraction of a skeleton. Using this function, nodes of 1D
graph can be computed. This graph encodes topology of
the mesh and after resampling it is used as a base for the
skeleton. The method based on a harmonic function pro-
posed by [2] captures after resampling all the features of
the model well, but requires the user to specify the bound-
ary condition explicitly.

Laplacian smoothing based methods work directly on
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the mesh geometry. The main idea of this approach is to
apply a well defined filter on mesh vertices. These meth-
ods solve the Laplacian system with different weights to
constrain the global smoothness and the volume preserva-
tion.

A few more approaches to the skeleton extraction prob-
lem are worth to mention. [13] extract skeleton by simpli-
fying the Voronoi skeleton with a small amount of user as-
sistance. [11] use repulsive force fields to find a skeleton.
The problem has received a lot of attention in recent years
and yet the design of a simple and robust method for ex-
tracting curve-skeletons remains a research challenge [5].

2.2 Skinning

Many types of mesh deformations can be performed by
a skeleton-driven deformation. However, there are types
of mesh deformations such as wrinkles, skin folds and
another non-bone-driven deformations, where skeleton-
driven deformation is not a sufficient option. Examples of
non-bone-driven deformation methods are surface based
methods [10, 15] and volume based methods [16]. Un-
fortunately, these methods are not suitable for a real time
animation of high resolution meshes in present. Because
of its efficiency and simple GPU implementation the most
popular skeleton-driven method still remains linear blend
skinning (LBS), also known as skeleton subspace defor-
mation. Some real time skinning works have focused on
improving the LBS by inferring the character articulation
from multiple meshes.

A few solutions to the problem of finding skinning
weights were proposed [3], but the methods are either res-
olution dependent [9] or the weights do not vary smoothly
along the mesh [14], causing artifacts with high resolution
models.

3 Graph conversion

For running our graph algorithms, we need to have the in-
put mesh as one connected object. The object needs to be
converted into a 3D graph, defined by an edge matrix E.
It is quite common that models are composed of more ob-
jects. These objects appear to be connected visually, but
edges in the model structure between these objects are not
defined - Figure 1. Also the opposite problem has to be
considered. There can be edges defined in an input mesh
which connect parts that should not be connected - Figure
2. These edges are remains of the work of graphic design-
ers or artifacts after format conversion and therefore have
to be excluded.

3.1 Joining and splitting of objects

Using a simple depth-first search suitable joining distances
can be found to connect or disconnect all graph compo-
nents. The algorithm works in two phases. First, we con-

Figure 1: Joining of the mesh graph is needed.

Figure 2: Splitting of the mesh graph is needed.

struct a mesh graph from an input mesh. This mesh graph
is constructed in a straight-forward way from the original
model structure and may consist of components. In the
next step, we compute distance between each pair of com-
ponents. For each component, the joining distance is com-
puted as a minimum of distances to each other component.
In the second phase, we construct the mesh graph again,
using joining distance tolerance computed in first phase.
This means that each vertex is joined with vertices which
lie in the joining distance radius. This condition joins the
closest vertices in neighbouring components which cre-
ates a one-component graph. An opposite approach can
be used when we want to avoid cycles in the final skeleton.
We can either compute or manually set splitting distance
tolerance. All the edges with a distance smaller than this
tolerance, will be removed.

4 Mesh contraction

For contraction of the generated mesh graph we use the
contraction algorithm using Laplacian smoothing pro-
posed by [1]. The algorithm does not alter geometry con-
nectivity (final skeleton curve is homotopic to the original
mesh), is noise sensitive and works directly on the mesh
geometry (the model does not have to be resampled). Ge-
ometry contraction removes details from the surface by ap-
plying Laplacian smoothing.

4.1 Laplacian smoothing

Vertex positions are smoothly contracted along their nor-
mals by solving the equation (2). The Laplacian smooth-
ing operator (1) was introduced by [6] for surface smooth-
ing. Laplacian smoothing operator L is the n× n square
matrix. This operator is applied on n vertices in vector V
as a filter. Term LV approximates curvature flow normals,
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so solving LV
′
= 0 removes normal components of ver-

tices and contracts the geometry, resulting into a new set
of vertices V

′
.

Li j =


wi j = cotαi j+ cotβ i j if (i, j) ∈ E
∑k
(i,k)∈E −wik if i = j

0 otherwise
(1)

where:
E – is the set of edges defined in the previous section

during a graph conversion process
αi j,β i j – are the opposite angles corresponding to the

edge (i, j) [6]

4.1.1 Linear equation

Unconstrained solving of this equation contracts the mesh
graph into a single point, so the equation is solved in more
iterations with carefully chosen weights which control the
contractions. WL and WH are diagonal weighting matrices
which control the contraction process. Weighting matrices
have to be updated after each iteration to drive the iteration
process into a desired state. By increasing WL,i we can in-
crease the collapsing speed for vertex i and by increasing
WH,i we increase the attraction weight to attract vertex i to
its current position. All the WL,i are in the next step multi-
plied by a predefined constant (sL) and WH,i are updated in
such a way, that the attraction weight is multiplied by a ra-
tio of the change of the area of faces adjacent to the vertex
i. If the area of adjacent faces is smaller, the multiplicative
term is higher, vertices are more attracted into their cur-
rent positions and in the next iteration the geometry is less
contracted in these vertices.[

WLL
WH

]
V

′
=

[
0

WHV

]
(2)

Each step of the iterative contraction process works as
follows (t denotes the iteration number):

1. Solve
[

Wt
LLt

Wt
H

]
V t+1 =

[
0

Wt
HV t

]

2. Update W t+1
L = sLW t

L and W t+1
H,i = W 0

H,i

√
A0

i /At
i ,

where A0
i and At

i are the original and current areas
of adjacent faces for the vertex i, respectively.

3. Compute the new Laplacian operator Lt+1 with the
vertex positions computed from the previous iteration
V t+1 using equation (1).

The iterations converge when the volume is close to
zero. After each iteration, the volume approximation has
to be computed. In our implementation we used an ap-
proximation algorithm which subdivides the bounding box
of the model into an octree structure.

Figure 3: The half-edge collapse (ṽ2 → ṽ1).

5 Skeleton construction

The contracted mesh graph from the last iteration is sim-
plified, very close vertices are merged and a greedy algo-
rithm is used to select the most important control points. In
this section we are going to work with already contracted
vertices from previous section, they will be denoted as ṽi.
In our implementation the user can choose, how many con-
trol points he wants. We used 24 control points by default
which worked well for almost all GPUs and also it is a suf-
ficient number to control the skinning process of complex
high resolution models. During the collapsing process, for
each control point, the collapsed vertices into this control
point are stored in a hash map. Vertices are merged into
control points and every control point is shifted into the
center of its local mesh area which can be computed from
the stored hash map. For each control point, the volume of
the mesh region the control point represents in the original
mesh is computed. The control point which represents the
largest volume is chosen as the skeleton root.

5.1 Mesh graph simplification

The first step in the mesh graph simplification is to col-
lapse all edges, whose vertex distance is smaller than a
predefined threshold. Vertices in such pairs can be inter-
preted as the same control point, because the distance be-
tween them is very small and the influence over the mesh
vertices is almost the same. The second step is to col-
lapse edges which are the least important. For every edge
the cost value is computed and edges with minimum cost
are collapsed. For simplicity we apply half-edge collapse.
The half-edge collapse (i → j) merges vertex i to vertex j
and removes all the faces that are incident to the collapsed
edge. The half-edge collapse (ṽ2 → ṽ1) is shown in Figure
3. This step is repeated so many times that in the end we
will have the desired number of control points. The cost
value is computed as a weighted sum of a sampling cost
term and a shape cost term.

The sampling cost term (3) penalizes collapsing which
generates long edges, because in that way we will loose
the good mapping between the skeleton and the surface.
The term is computed as a weighted sum of distance of
adjacent vertices to the collapsed vertex.

SCTa(i, j) = ∥ṽi − ṽ j∥ ∑
(i,k)∈Ẽ

∥ṽi − ṽk∥ (3)

where:
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Ẽ – is the current simplified edge set

The shape cost term (4) works in almost the same way as
in QEM simplification method [8] with one change. The
error matrices are computed over the edges, because the
contracted mesh has zero area faces, so the original vol-
ume based approach cannot be used. A symmetric 4× 4
matrix Q is associated with every vertex. Q is defined in
a such way, that term Fi(p) = pT Qi p is a squared distance
between point p and the edge (i, j). The initial error ma-
trix for vertex i is the sum of all squared distances to its
adjacent edges. For more detailed description of these ma-
trices, their initialization and their use in calculation of the
shape cost term we refer to [1]. For a given contraction
(ṽi, ṽ j) a new matrix Q needs to be derived to approximate
the error at ṽ j. Error matrices from previous iterations are
stored, so each cost update involves only matrix addition.
The shape cost term guarantees to keep the shape of the
contracted mesh graph as undisturbed as possible during
the simplification. The idea to assign these cost terms to
each edge after the iterative contraction converges success-
fully origins from [1].

SCTb(i, j) = Fi(ṽ j)+Fj(ṽ j) (4)

6 Binding skin vertices

Once we get the skeleton, we bind the mesh vertices to
its joints. If we attach a rigid model, the skin is supposed
to be inflexible. Therefore we only anchor a mesh vertex
to one nearest control point. In other way, when we want
to animate a character, we want the vertices to transform
smoothly. In this case, mesh vertices have to be anchored
to more control points with corresponding weights.

6.1 Skinning weights

Skinning indices are computed by finding a set of clos-
est control points to each vertex. The geodesic distance
is used as a distance measure. A distance between each
pair of vertices on the mesh graph from 0th iteration (after
conversion from an input mesh) is calculated and stored
in matrix D. It is calculated using Floyd-Warshall algo-
rithm [4], before the mesh graph is contracted. For each
control point Ck, the closest mesh graph vertex is found,
for instance v j. Then, the resulting geodesic distance (5)
between the control point Ck and the mesh vertex vi is
computed as a sum of distance between v j and vi on the
mesh graph calculated by Floyd-Warshall algorithm and
the euclidean distance between Ck and v j. The illustration
is shown in Figure 4.

gd(i,k) = D[i, j]+d(Ck,v j) (5)

where:
d(Ci,vk) – is euclidean distance between the mesh ver-

tex v j and kth control point Ck

Figure 4: This figure shows computation of the geodesic
distance between the control point marked with red cross
and the mesh vertex (1) on the bottom right. The red
path is the shortest path on the mesh calculated by Floyd-
Warshall algorithm and the blue line is the euclidean dis-
tance between the selected control point and the closest
vertex (2) to this control point on the mesh.

Weights (6) are assigned in a way that weight sum for
each vertex is equal to 1.0. Fractions are constructed in a
way that weights are indirectly dependent on the geodesic
distance. This construction guarantees that the closer con-
trol points will have greater influence over mesh vertices
than the further ones. The geodesic distance is a real-value
function defined on the mesh surface. Because the func-
tion varies smoothly along the mesh, the resulting weights
are fluently distributed over the mesh regions.

weight(i,k) =

1
gd(i,k)

∑
k′∈S

(
1

gd(i,k′
)

) (6)

where:
gd(i,k) – is geodesic distance between the mesh vertex

vi and kth control point Ck

S – is the set of control point indices controlling the
vertex vi

Floyd-Warshall algorithm has time complexity O(n3),
so it takes quite a long time on models with higher number
of vertices. To optimize that time, we can use a downsam-
pled mesh for this computation. For downsampling, we
used previously mentioned QEM simplification method
[8]. The downsampled mesh preserves the mesh branch-
ing, tunnels and important vertices.
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6.2 Joint matrices

Bind pose matrices and current transformation matrices
for all the nodes are stored in the global (root local) space.
They are not transformed into node’s local space. The dis-
advantage is that during the skinning preview the matrices
have to be transformed into node’s local space. On the
other hand, the main advantage is that the skeleton struc-
ture is compatible with the majority of animation software.

6.3 Skinning on GPU

Our framework provides linear blend skinning imple-
mented on GPU for real-time examination of computed
skeletons. It is the most suitable method how to inspect
the skeleton structure and data, because of its efficiency
and simple GPU implementation. After the skeleton is
computed, the ”bind pose” world-space snapshot of all
transformation matrices of the skeleton nodes is taken, de-
noted as Bi, for each skeleton node. During the real-time
deformation process, transformation matrices are com-
puted. Each transformation matrix, storing the current
affine transformation, denoted as Pi, is computed each time
the user manually changes skeleton nodes. In each frame,
the resulting transformation Mi is computed as Mi = PiB−1

i
on CPU and uploaded into GPU. New deformed vertices
are computed using GLSL shader as :

v
′
=

n

∑
i=0

wiMivi (7)

where:
Mi – is the resulting transformation matrix, computed

on the CPU as Mi = PiB−1
i

wi – is the associated weight
vi – is the original vertex position in the Mi coordinates

system

6.4 Robustness

The mesh contraction and the skeleton extraction phases
are pose independent. It enables extraction of compat-
ible skeletons from different poses of the same model.
By compatible, we mean compatible in the sense of the
same branching, tunnels and the homotopy with an in-
put mesh. Also, the length of preserved edges will be the
same, because edges are collapsed in the same order. In the
end of the skeleton construction process, all corresponding
skeleton bones will have the same lengths. The geometry
meshes in different poses have corresponding edges of the
same length as well, so the skinning weights and indices
will result into identical values.

7 Collada 1.5 support

Model data and all important skinning data is saved in a
compatible way into the Collada .dae XML file. Collada

is a Collaborative Design Activity for establishing an in-
terchange file format for interactive 3D applications. Col-
lada supports storing of the mesh geometry, the hierarchi-
cal skeleton structure, indices, weights and inverse bind
pose matrices. With version 1.5 comes the possibility to
store kinematics as well. To use the full support of a kine-
matics model in Collada 1.5, computation of approxima-
tion of the minimum, the maximum and the current angle
for each joint is needed. Angles can be computed using
the inverse kinematics approach or assigned manually by
the user. In our implementation we use the latest version
of Collada DOM 2.2 with Collada 1.5 [12] support.

8 Results

Figure 5: The contraction and the extraction of the skele-
ton from low resolution geometry. (Top-left) The con-
verted mesh graph. (Top-right) The mesh graph after 2
iterations. (Bottom-left) The mesh graph after the last iter-
ation, the volume approximation is close to zero. (Bottom-
right) The extracted skeleton.

We have tested the framework on a wide range of differ-
ent models. We have achieved good results with both high
resolution and also with low resolution models. The more
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Figure 6: The contraction and the extraction of the skele-
ton in few iterations from higher resolution geometry and
its comparison to manually rigged skeleton by an artist.
(Top-left) An input model. (Top-right) The converted
mesh graph. (Middle-left) The mesh graph after 2 itera-
tions. (Middle-right) The mesh graph after the last itera-
tion. (Bottom-left) The extracted skeleton. (Bottom-right)
The skeleton rigged by an artist.

vertices the model has, the better skeleton can be com-
puted, but the algorithm takes more time. Also the low
resolution models (less than 5000 polygons) can be con-
tracted in a good way, but it is harder to set good contrac-
tion weights. Setting the right contraction weights is the
most problematic part of this approach. Low resolution
models are more sensitive for high curvature differences
and can be easily over-contracted. Weights often have to
be set manually and the user needs some experience. Con-
traction of high resolution models is more deterministic
and good weights can be set automatically. Contraction
of geometry with lower number of vertices can be seen in
Figure 5 and contraction of geometry with more vertices
can be seen in Figure 6 and 7. The model of a worm in
Figure 6 was published with a manually rigged skeleton
(Bottom-right image). After the comparison we can con-
clude that the extracted skeleton is very close to the manu-

Figure 7: Another example of higher resolution geometry.
The extracted skeleton has sparser nodes at the core parts.
This feature can be observed, because many faces at core
parts are contracted into the same region. The points are
also moved towards the mesh boundary of the limbs, be-
cause of the shifting of the control points to the center of
its local mesh.
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ally rigged one. It can be used as a sufficient supplicant for
a manually created and rigged skeleton. The major differ-
ence can be observed on the both ends of the worm and in
the largest bend. Nodes of the skeleton tree were pushed
into their centers of local mesh areas and that is why they
were pushed inside, away from the mesh boundary.

9 Conclusion

In this paper we propose a framework for extracting a
skeleton and skinning data from the geometry mesh using
an iterative mesh contraction. The approach begins with
converting the geometry into a mesh graph. This graph is
iteratively contracted and a greedy algorithm is applied to
choose the most important subset of vertices. In the next
step, these vertices are converted into a hierarchical skele-
ton. Important skinning data such as indices and weights
which are controlling the influence of the skinning process
over vertices are computed as well. When the data is com-
puted, our framework also provides a way to inspect the
skeleton, simulate the skinning deformation process with
full GPU support and allow the user to change the skeleton
branching, if it is needed. After all, geometry and skinning
data can be exported into Collada 1.5 .dae file and trans-
ferred into an external application to create animations.

The extracted skeletons have sparser nodes at the core
parts of the model. This feature can be observed, because
many faces at core parts are contracted into the same re-
gion. Computed skeletons are independent of the size and
resolution of the models. The approach is insensitive to
noise, but works only for closed mesh models with 2D
manifold connectivity.
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