
Layered Materials in Real-Time Rendering

Oskar Elek

Faculty of Mathematics and Physics
Charles University

Prague / Czech Republic

Abstract

Today’s games and other real-time 3D applications often use only
basic empirical models for modelling the appearance of materi-
als and rely on complex geometry and texturing to make them
more visually appealing. In this paper we explore the possibili-
ties of bringing more physically plausible models to real-time 3D
graphics.

We do this by implementing the layered BRDF of Wei-
dlich and Wilkie on GPU. This model utilizes the well-known
Torrance-Sparrow and Oren-Nayar microfacet models. We show
how to make this layered model useful for real-time rendering
through various optimizations. Then we derive two specialized
models based on this basic layered model. These two models at-
tempt to simulate the appearance of metallic car paints and metal-
lic patinas.

Keywords: surface reflectance models, appearance modelling,
layered materials

1 Introduction

Our environment contains a large variety of objects and materials
with surfaces composed of multiple layers, for instance coated
ceramics and plastics, varnished and patinated metals, organic
tissues etc. Rendering such materials in real-time applications
is difficult — traditionally used empirical BRDFs, such as the
Phong reflectance model, are not capable of reproducing the
appearance of most of them, and possibility of utilization of
measured BRDF or BTF data is limited on GPU. There is a need
for a simple analytical BRDF that can reproduce the appearance
of layered materials in interactive applications.

This paper extends the work of Weidlich and Wilkie [21],
who presented a simple analytical physically-based BRDF
suitable for rendering layered materials. Their model is based
on combination of commonly used BRDFs, such as Torrance-
Sparrow [20] and Oren-Nayar [15] reflectance models. We show
how to transfer their work into the environment of real-time
evaluation in fragment shaders, along with various convenient

optimizations. We then demonstrate the potential of this model
by employing it in two specialized models for rendering metallic
car paint and copper patina.

The paper is organized as follows: we first give an overview
of related work in the field and review the layered model of Wei-
dlich and Wilkie. Then we discuss a real-time adaptation of this
model, along with two specialized models for rendering metallic
car paint and metallic patinas. Finally, we measure the perfor-
mance of our implementation and discuss its possible utilization
in real-time applications.

2 Background and Related Work

2.1 Microfacet Reflectance Models

Analytical reflectance models used in 3D computer-generated
imagery can be generally divided between two groups: empir-
ical and physically-based. Empirical models are based on direct
observation and therefore are usually physically implausible (ex-
cept for the limit cases — ideal diffuse and mirror reflectors).
The most common BRDFs from this group are Phong [16] model
and its modification by Blinn [1], both widely used in real-time
rendering applications. The prevalence of these models in real-
time rendering is due to their low computational requirements
and fairly good reproduction of overall object appearance.

In contrast to these, physically-based BRDFs model re-
flectance properties of materials from first optical principles,
which leads to a more plausible appearance of materials. A
BRDF is physically plausible, if it conserves energy (i.e. albedo
is always at most 1), obeys Helmholtz reciprocity principle
and is non-negative. To retain a closed analytical form, they
often use a statistical surface representation, instead of an
explicit one. Surfaces are represented by statistically distributed
tiny microfacets or V-shaped cavities. We will discuss two
physically-based BRDFs, namely the Torrance-Sparrow [20]
and Oren-Nayar [15] reflectance models.

The Torrance-Sparrow reflectance model builds on the as-

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)

sumption that the material surface consists of microscopic V-
shaped cavities that behave like perfect mirrors with Fresnel re-
flectance. The amount of reflected light fr is defined as

fr =
FDG

π(N ·L)(N ·V)
(1)

• F(β ,n,κ) is the Fresnel term. It expresses the reflectance
coefficient of each individual microfacet. β is the angle
between incident light direction L (or view direction V) and
half vector H, n and κ are real and imaginary components
of the material’s index of refraction (IOR). Note that F is
wavelength-dependent. The full Fresnel term equations can
be found in [2] or [7].

• D(α,m) is the microfacet slope distribution function rep-
resenting the amount of microfacets oriented towards the
observer. α is the angle between half vector H and sur-
face normal N, m ∈ 〈0,1〉 is the surface roughness param-
eter. Small values of m represent very smooth surfaces,
while values close to 1 correspond to rough surfaces. For
m→ 0 the term D converges to Dirac δ -function. Com-
monly used distributions are for instance the Beckmann
distribution (D = 1

m2 cos4 α
e−(tanα/m)2

), the Blinn distribu-
tion or the Gaussian distribution.

• G(L,V,N) is the geometry attenuation term, which ex-
presses the amount of light attenuated after shadowing-out
in the surface microfacet structure. Please refer to [3] for
the complete formula.

The Torrance-Sparrow model was introduced to computer
graphics by Cook and Torrance [3], who added a diffuse term
and some minor modifications into the model. It is suitable
for modelling wide variety of surfaces, especially metals. It is
also successful in predicting phenomena such as off-specular
reflection and specular backscattering. The HLSL code of this
model can be found in Appendix B.

The Oren-Nayar model represents a generalization of the
standard Lambertian reflectance. It is similar to the Torrance-
Sparrow model in its assumptions; the only difference between
them is that the Oren-Nayar model treats each individual micro-
facet as diffuse reflector, not as a prefect mirror. This compli-
cates the situation, because it is now necessary to take multiple
interreflections between neighbouring microfacets into account.
The resulting model from Oren and Nayar is therefore only an
approximation of the full solution, although a very good one. Its
full formulation can be found in [15].

The model is suitable for modelling rough materials with dom-
inant diffuse component, such as clay, stone or uncoated paper.
It is capable of reproducing the effect of diffuse backscattering,
characteristic for example for the full Moon. Despite its moder-
ate computational costs, it is rarely used in real-time rendering.
The reason for this is that the standard ‘N-dot-L’ Lambertian re-
flectance exhibits very similar reflectance behaviour, but is far
superior in terms of computational performance.

2.2 Layered Reflectance Models

Due to the frequent occurrence of layered materials in our envi-
ronment, the search for model capable of rendering such materi-
als has received adequate attention. Kubelka and Munk [12, 10,
11] developed a physical model for modelling subsurface scatter-
ing within multiple layers. Hanrahan and Krueger [8] presented

a model for subsurface scattering computation in the context of
computer graphics, and made it directly usable in a Monte-Carlo
renderer. These models are comprehensive, but lack an analytical
closed form, and therefore are not suitable for real-time applica-
tions.

As for analytical models, Neumann and Neumann [14]
proposed a simple model for modelling multiple layers. How-
ever, they considered only perfectly smooth, transparent layers
without including internal reflection. Kelemen and Szirmay-
Kalos [9] presented a composite BRDF derived from the
Cook-Torrance model. Their model does not explicitly consider
surface layers and therefore does not account for absorption and
internal reflections, but thanks to the tight coupling between
diffuse and specular BRDF components, their model estimates
the appearance of single-layered surfaces fairly well.

Finally, the model of Weidlich and Wilkie [21] accounts for
both internal reflection and absorption and supports unlimited
number of layers. Each layer can have any arbitrary BRDF; the
only requirement on these BRDFs is that for all layers except the
lowest a transmission component, which allows the light enter
the layer underneath, must exist (for example the Cook-Torrance
model does contain a transmissive component, while the Oren-
Nayar model does not). The only limitation is that the model
does not support scattering within the layers. Since this model
forms the starting point for our work, we will briefly review it
now.

It is worth mentioning that the model relies on the assump-
tion of layers, which are thin in comparison with the surface ge-
ometric features. This is not uncommon; in fact all previously
mentioned models rely on this. This allows to assume that all
incident and refracted rays meet at a single point at every layer
(which is very convenient, as it allows purely local evaluation
of the model, without including surface spatial position into the
model). Fortunately, this condition, along with the assumption of
nonpresent subsurface scattering, still hold true for wide variety
of materials.

Figure 1: The recursive evaluation scheme. Each stage is also
shown graphically. Scheme used with permission.

The evaluation of the model is carried out in a recursive man-
ner and can be described in four steps for two given layers i and
i+1 (see also Equation 2 and Figure 1):

1. The BRDF of the upper layer fri is evaluated for given light
and view directions L and V . This also produces the trans-

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)

mittance coefficient Ti→i+1 = 1−Fi. Two refracted direc-
tions L′ and V ′ are calculated, according to Snell’s law for
given refractive indices ni−1 and ni (n0 ≈ 1 if the object is
in the air).

2. The refracted light is attenuated by the absorption term ai.

3. The BRDF of the lower layer fri+1 is evaluated for L′ and
V ′. If the layer i+ 1 is not the lowest one, we recursively
continue from Step 1 (fri+1 ≡ f (i+1)

r).

4. On return from the recursion, the light coming from the
lower layer is attenuated by Ti+1→i and subjected to possi-
ble total internal reflection ti. The contributions from both
layers are added together.

This can be expressed in the form of a recurrent equation for the
composite BRDF at layer i as:

f (i)r = fri(L,V)+Ti→i+1 · fri+1(L
′,V ′) ·ai · ti (2)

• ai is the attenuation term according to Bouguer-Lambert-
Beer law. The portion of absorbed light depends on the
material-specific wavelength-dependent absorption coeffi-
cient σ and the distance the light travels in a particular
layer:

ai = e−σ li li = di · (1
N·L′ +

1
N·V ′) (3)

where di is the thickness of the layer i.

• ti is the internal reflection term. It compensates for the en-
ergy lost during the potential total internal reflection of light
when crossing an inter-layer boundary from denser into a
less dense medium on its way upwards. It is defined as

ti = (1−Gi)+Ti+1→i ·Gi (4)

where Gi is the Torrance-Sparrow geometry attenuation
term.

The final value of the entire model is simply obtained as fr =
f (1)r . For the detailed discussion of the model, please refer to the
original paper [21].

2.3 Specialized Material Models

Specialized material models are utilized when the available gen-
eral BRDFs cannot reproduce the desired material’s appearance
well enough. As a consequence there is a large variety of such
models, each aiming to simulate a single particular effect. There-
fore we will list only those few which are relevant for us here; for
a comprehensive overview of these models, please refer to [5].

Modelling of car paint is a subject of intensive research, since
it is important for virtual prototyping in the automotive industry.
Takagi et al. [18, 19] developed techniques for both acquisition
and rendering of car paints, that are directly applicable in the
industry. Ershov et al. [6] developed an interactive model for
pearlescent car paint rendering by simulating scattering between
virtual thin sublayers. Recently, Rump et al. [17] introduced a
realistic hybrid model for metallic car paint rendering that com-
bines acquired BTF data and classical BRDFs, such as Cook-
Torrance model.

As for modelling of metallic patinas, Dorsey and Hanrahan [4]
presented a method for simulating growth of patinas on metallic
objects by considering multiple layers of material and applying

Figure 2: Variation of the upper layer’s roughness influences
shape of the reflection from the lower layer with m2 = 0.3. The
image on the right shows a torus with m1 = 0.4 and m2 = 0.05
without the correction.

eroding operators on them. For rendering they used the Kubelka-
Munk theory with three layers for copper substrate, tarnish and
the patina itself. Yao-Xun and Zen-Chung [22] simulated patina
growth on objects buried underground, using L-systems. How-
ever, these works are focused on patina development simulation
and not on rendering.

3 Layered Materials in Real-Time

The basic version of the real-time layered model adaptation
is a relatively straightforward implementation of the evaluation
scheme presented in Section 2.2. Algorithm 1 shows a Cg frag-
ment shader for the model with two layers, one light source and
an environment reflection from the upper layer. Both layers use
the Torrance-Sparrow BRDF, plus a diffuse component for the
lower layer, and are normal-mapped.

The main difference is of course the lack of capacity to explic-
itly cast sampling rays. This has several implications. First, we
must strictly stick to the evaluation of the local model with given
L and V directions (or L′ and V ′ for the lower layer, respectively).
Also the environment reflection must take into account the up-
per layer roughness, and without sampling this can be achieved
only by providing an adequately blurred environment map for the
texture lookup at Line 29. Otherwise an inconsistency between
the environment reflection sharpness and the specular highlight
shape will occur.

Another consequence of the inability to actually sample the
BRDF is that a discrepancy between the roughness of the layers
might cause an incorrect appearance of the surface, specifically
when m1 > m2. Figure 2 depicts the problem. This cannot hap-
pen in Monte-Carlo rendering, because the light gets properly
blurred during the refraction on the upper layer. The solution
here is to clamp the value of m2 to the value of m1 (see Line 21),
so that the lower layer’s roughness is always greater or equal to
the one of the upper layer.

Although the shader we show uses only two layers, there is
no obstacle to using more layers (except performance considera-
tions), thanks to the recurrent character of Equation 2. Adding a
layer would mean calculation of a new pair of refracted vectors
L′′ and V ′′, terms a2 and t2 for the new layer and of course of
its own BRDF. Another means of enhancing the model’s visual
richness would be for example adding a thickness map for the
upper layer (as in Figure 2), or using a roughness map to vary m
across the surface.

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 3: Examples of surfaces that can be generated by the layered model. Top row: Results from the original paper. Bottom
row: Images generated by our real-time implementation, with parameters adjusted to the best visual match with their corresponding
Monte-Carlo versions. Note that the only qualitative difference is the absence of global illumination. The original image used with
permission.

3.1 Optimizations

Undoubtedly the largest performance impact is caused by eval-
uation of the Torrance-Sparrow model. We will therefore try to
speed up its evaluation, what practically means optimizing eval-
uation of F , D and G terms. We will show that it is possible to
precompute F and D.

Fresnel term F(θ ,n,κ): The Fresnel term evaluation is the
most expensive operation in the model, and is called three times
in the basic version of the layered model. The value of F depends
on the angle θ between two considered vectors and on the mate-
rial index of refraction (n,κ). This yields 7 degrees of freedom
(for RGB colour components), making a naive precomputation
impossible. Of course, it would be possible to separate the R, G
and B components of (n,κ) and create three 3D tables, one for
each colour component. This is however not the best solution,
because it would increase the number of lookups needed to eval-
uate F from one to three. The solution lies in the fact that for a
given material, the value of (n,κ) is fixed, which allows creation
of a 1D table parameterized only by the incident angle θ . Such
1D table would contain all possible values of F for that particular
material and would be very compact — since the gradient of F
in respect to θ is low, the resolution of this table can be small,
for example 128 samples. For R8G8B8 texture (which is suffi-
cient, since the value of F is always ∈ 〈0,1〉) this means the size
of only 384 bytes. This allows for creation of a 2D texture atlas
for hundreds of materials in the scene with the size in the order
of tens of kB.

If precomputation is not desired for some reason, F can be
approximated. Lazányi and Szirmay-Kalos [13] presented an ac-
curate and inexpensive approximation of the full Fresnel term,
which deviates from the full formula in 5% at most.

Figure 4: Zoom on a sharp specular highlight (m1 = 0.01) using
tabulated D term with linear mapping (top), nonlinear mapping
(middle) and the full evaluation (bottom). The right image shows
a highlight when MIP-mapping is enabled on the texture which
contains D.

Distribution term D(α,m): Dimensionality is not an issue
here, since both α and m are scalars, so a 2D table can hold
the entire distribution term. The complication here is the con-
vergence of D towards the Dirac δ -function when m→ 0, inde-
pendent of which distribution is used. This implies that for very
small values of m and α → 0, the large gradient of D cannot
properly be reproduced, even if a large sampling rate is used for
α (see Figure 4). To remedy this problem, a non-linear mapping
must be used for α — on the coordinate u ∈ 〈0,1〉 the texture
holds a value of D, which would be stored in the linearly-mapped
texture on the coordinate ux. We use x = 8, since u8 can be com-
puted in 3 multiplications. But still, even with linear mapping,
this issue starts to be apparent just for very smooth surfaces (with
m < 0.02).

It is also better to disable MIP-mapping for the texture con-
taining D. The reason for this is that the higher MIP levels
will blend together adjacent values of the texture (which corre-
spond the different values of m), resulting in an incorrect size
and jaggedness of the specular highlight, when viewed from dis-
tance. As for the texture resolution, we use a single-channel 16b

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)

Data: vertex shader output structure IN, uniform variables m1, m2, d
(float) and n1, κ1, n2, κ2, σ , lightCol (float3), texture samplers

Result: fragment colour
begin1

// calculate involved vectors...
float3 N = normalize(2 * tex2D(normalMap, IN.UV).xyz - 1);2
float3 L = normalize(IN.lightDir);3
float3 V = normalize(IN.eyePos - IN.fragmentPos);4
float3 H = normalize(V + L);5
float3 R = reflect(-V, N);6
float3 L’ = -refract(L, N, 1/n1);7
float3 V’ = -refract(V, N, 1/n1);8
float3 H’ = normalize(V’ + L’);9

// ...and their dot products
float NdotL = dot(N, L);10
float NdotH = dot(N, H);11
float NdotV = dot(N, V);12
float VdotH = dot(V, H);13
float NdotL’ = dot(N, L’);14
float NdotH’ = dot(N, H’);15
float NdotV’ = dot(N, V’);16
float V’dotH’ = dot(V’, H’);17

// BRDFs for both layers
float3 F1, F2;18
float G1, G2;19

// F and G are ‘out’ parameters
float3 f1 = TorranceSparrow(NdotL, NdotV, NdotH, VdotH, n1,20
κ1, m1, F1, G1);

float3 f2 = TorranceSparrow(NdotL’, NdotV’, NdotH’, V’dotH’,21
n2, κ2, max(m2, m1), F2, G2);

// diffuse contribution of lower layer
f2 += (1 - F2) * max(NdotL, 0) * tex2D(diffuseMap, IN.UV);22

// internal reflection term
float3 T12 = 1 - F1;23
float3 T21 = T12;24
float3 t = (1 - G1) + T21 * G1;25

// attenuation term
float l = d * (1/NdotL’ + 1/NdotV’);26
float3 a = exp(-sigma * l);27

// environment reflection for upper layer
float3 F1env = FresnelTermNP(NdotV, n1, κ1);28
float3 envCol = F1env * texCUBE(environmentMap, R);29

// final summation
float3 fr = lightCol * (f1 + T12 * f2 * a * t);30
return float4(fr + envCol, 1);31

end32

Algorithm 1: The layered model shader code.

floating-point texture with 512 samples for α and 512 samples
for m, resulting in the size of 0.5MB.

Geometry term G(L,V,N): The precomputation of the
geometry term is not necessary, as most of the involved dot
products have to be calculated anyway, leaving only a few mul-
tiplications and two divisions to be evaluated. However, should
such need arise, Kelemen and Szirmay-Kalos [9] showed a way
to exclude the evaluation of G from the Torrance-Sparrow model.

Of course, a completely different way of speeding up the com-
putation can be taken — instead of using the Torrance-Sparrow
model, one can use a simpler BRDF for the layers. Even the
Phong model can be used, with the transmission term T derived
from the amount of reflected light or by explicitly evaluating the
Fresnel term. However, usage of the Phong model decreases the
richness of appearance that can be achieved with physically plau-
sible models.

A comparison between the full and precomputed model ver-
sions can be seen on Figure 5. A comparison between the results
of the real-time version of the model and the original Monte-
Carlo implementation of Weidlich and Wilkie can be seen in Fig-

Figure 5: Visual comparison of the full evaluation (left)
and using precomputed tables for F and D (middle). The
right image shows a magnified difference between the two
(| f ull− precomputed|); the largest error is less than 6%.

Figure 6: Left: Sparkling effect on an object coated with metal-
lic paint. Right: An example of a texture representing the metal-
lic flakes heightfield and the corresponding normal map.

ure 3. Figure 10 shows more examples of the model usage.

4 Specialized Materials Modelling

In this section we will present two specialized models for mod-
elling the appearance of metallic car paint and metallic patina.
Both are straightforward modifications of the model discussed
previously.

4.1 Metallic Paint

Standard solid car paints usually consist of an opaque pigment
layer sprayed over base substrate. Metallic paints use translucent
pigments which in addition contain very small metallic flakes and
can optionally be covered with a clear coating. This structure is
responsible for two characteristic appearance features of metallic
car paints — an overly metallic look (naturally caused by the ma-
terial the flakes are made of, e.g. chromium) and sparkling effect,
which is especially visible under direct sunlight. This sparkling
effect is caused by the fact that the flakes spread in the medium
are almost randomly oriented and reflect the incoming light to
different directions (see figure 6 for illustration).

To model a surface with such structure it is natural to use the
layered model. We use two layers, a lower ‘substrate’ layer made
of chromium and a tinted ‘coating’ layer. The sparkling effect is
achieved by perturbing the surface normal with the texture shown
in Figure 6, but only for the lower layer. This normal map is tiled
many times across the surface, so that the individual flakes are
not visible.

Two problems arise from this approach. The first problem is
the consequence of the fact that the flakes are smaller than the
size of a pixel. This is modelled by the aforementioned tiling
of the perturbing normal map. By doing this, however, a MIP
map of the texture is used instead of the full texture to fetch the
value of the perturbed normal. This effectively smoothes out all

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)

original surface
perturbed surface

N
N

N'

p

x1

x2

x3

x4

Figure 7: Left: The scheme depicting the scaling of the perturbed normal. Middle: Four distances from the object corresponding to
the scheme. Right: The object without the scaling correction.

details provided by the flakes normal map. To overcome this,
all filtering must be disabled for the normal map. This produces
the effect of noisy sparkling, which dynamically changes as the
observer moves.

The second problem arises from the solution to the first
one. Minification filtering and MIP mapping ensure that high-
frequency features on the texture are filtered so aliasing does
not occur. By disabling these, the noisy sparkling is apparent
even from distance. In reality this cannot happen, because as the
observed object gets further from the eye, more flakes are pro-
jected onto the same area on the retina, effectively averaging and
smoothing the perceived image. This can be solved by scaling
the original surface normal by the distance of the observer from
the fragment and add this scaled normal to the perturbed normal
(see Figure 7). This effectively decreases the influence of the per-
turbed normal, making the surface look smooth from distance. In
code, this can be written as:

float distance = length(IN.eyePos - IN.fragmentPos);
// N currently contains the normal-mapped normal
// also remember we are in tangent space

N += max(distance, 1) * float3(0, 0, 1) +
(2 * tex2D(flakesNormalMap, 1000 * IN.UV).xyz - 1);

N = normalize(N);

Multiplication of the UV coordinates by a large number tiles
the normal map. This block of code is to be inserted between
Lines 13 and 14 in the Algorithm 1 (to influence only the angles
between the refracted rays).

4.2 Patina

Patination is a chemical oxidation process which occurs on met-
als. It changes the chemical composition near the surface of the
material, often resulting in a layer of substance with different
optical properties than the original material. Unlike rusting, pati-
nation does not destructively erode the metal; instead, it forms
a solid protective layer atop of the metal substrate, which then
stays stable. Patination occurs on many common metals and al-
loys, for example on copper, brass, aluminium, tin and even on
silver. We chose to model copper patina, because of its distinct
appearance.

Copper patinas often have complex chemical composition,
which tend to differ with the atmospheric conditions the cop-
per object is exposed to. The involved substances are cuprite
Cu2O, antlerite, brochantite and possibly others. Since the phys-
ical constants for these are not widely available, we use for the
patina the IOR of cuprite and an empirically matched light-green
absorption spectrum.

An important thing is to have control over the patina growth,
i.e. to determine places where patina is already developed and

Figure 9: Left: A grayscale map that controls the patina de-
velopment. Right: Blurry (transition = 0.9) and sharp
(transition = 0.2) boundaries of the developed patina re-
gions.

where not yet. Naturally, this changes over time. To model
the development we use a single grayscale texture (see Fig-
ure 9) and two parameters: transition ∈ 〈0,1〉 and extent ∈
〈−transition,1+ transition〉. The first one controls the sharp-
ness of the patina regions and the second one controls the ex-
tent of patina development (the larger is the extent parameter,
the more of the surface is covered with patina). As for the tex-
ture, the darker the value, the earlier will the patina develop on
that particular position. The texture can be derived from the sur-
face curvature (as in our case, since the patina develops earlier
in places like cracks and wrinkles) or can be an output from an
actual weathering simulation. The code for this looks as follows:

float patinaValue = tex2D(patinaMap, IN.UV).r;
float extentFactor = 1-smoothstep(extent - transition,

extent + transition,
patinaValue);

The variable extentFactor ∈ 〈0,1〉 is then used through the entire
shader to control the amount of patina.

It is necessary to realize that on the places where the patina is
not developed yet, only the reflection from the lower layer has to
be taken into account. The development of patina also changes
some properties of the lower layer, for example its roughness.
Figure 8 demonstrates this process. Therefore the model has to
be evaluated for both cases (with and without the upper patina
layer) and the extentFactor variable should be used to linearly
interpolate between them. The extentFactor should be also used
to interpolate between the model parameters influenced by the
patina growth, namely the aforementioned roughness parameter
m2 and the IOR value (n, κ) used to calculate the environment
reflection (Line 28 in Algorithm 1).

Unfortunately, the substance that forms the patina layer does
not conform to the assumption that no light is scattered within
the layer. Quite the contrary — it is the scattering that makes the
patina appear primarily as a diffuse reflector. To avoid subsurface

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 8: Patina development ‘over time’ by changing the extent parameter value (from left to right −0.65, −0.05, 0.15, 0.45, 0.75
and 1.65; transition = 0.65).

scattering computation we approximate this effect by adding a
diffuse component to the BRDF of the patina layer, that is:

float3 patinaDiffuse = (1 - sigma)

* (1 - F_1) * max(NdotL, 0);
f_1 += patinaDiffuse;

We modulate the diffuse component by the remainder of the ab-
sorption spectrum σ to strengthen the characteristic colour of the
patina. To further improve the appearance of patina, we control
its thickness with an additional texture (as proposed in Section 3)
and modulate the base copper layer with a dark-orange tone to
mimic the appearance of tarnish.

5 Results and Conclusions
We implemented the basic model and the derived specialized
models in HLSL, using NVIDIA FX Composer 2.5 for devel-
opment and measurements. We test the basic two-layer model in
two versions, using the full evaluation and using precomputed
tables for F and D, against a single-layer Phong shader with
similar features (normal mapping, environment reflection). We
do not measure the two specialized models, as these are sim-
ple modifications of the basic model and do not add significant
computational overhead. The measurements used GeForce 8800
GTX (G80) as a reference GPU. Table 1 summarizes the mea-
surements.

Model GPU cycles MPix/s
Layered (full) 436 348
Layered (precomp.) 236 757
Phong 104 1648

Table 1: Performance comparison of the layered model and
standard Phong model. The measured quantities are the number
of G80 GPU cycles used for model’s evaluation and the corre-
sponding pixel throughput.

So, the discussed layered model is still roughly 2.3 times
slower than the Phong model. This is expected however, since
we are evaluating two BRDFs instead of one, and each of them
being far more complex than the Phong model.

Conclusions Although the discussed layered model is slower
than the commonly used reflectance models in real-time 3D ap-
plications, it provides superior appearance reproduction of a wide
variety of surfaces, and is physically plausible. Moreover, it is
very likely that the performance impact of using this model in a
real-time application would be only a few percent, because:

• It is not necessary to use the model on all objects in a scene,
but only on objects in the user’s primary attention (e.g. cars
in a racing game).

• The performance of any renderer is not given solely by the
performance of the used reflectance models, but is mainly a
consequence of many other tasks the renderer have to per-
form.

This indicates that the model is a viable alternative for use in
today’s real-time 3D applications, including games.

To conclude the paper; we have presented a real-time imple-
mentation of the physically-based layered BRDF introduced by
Weidlich and Wilkie [21]. We have then shown how to optimize
this model to be useful in real-time 3D applications. Further-
more, we have explored the capabilities of this model by deriving
two specialized models for modelling the appearance of metallic
car paint and metallic patina from it. The FX Composer project
containing all discussed shaders will be made available on the
author’s webpage.

6 Acknowledgements

I would like to thank Alexander Wilkie for his insights and advice
regarding this work.

References

[1] J. F. Blinn. Models of light reflection for computer synthe-
sized pictures. In Proceedings of SIGGRAPH ’77, pages
192–198, 1977.

[2] M. F. Born and E. Wolf. Principles of Optics. Cambridge
University Press, 7th edition, 1999.

[3] R. L. Cook and K. E. Torrance. A reflectance model for
computer graphics. In Radiometry, pages 42–59, 1992.

[4] J. Dorsey and P. Hanrahan. Modeling and rendering of
metallic patinas. In Proceedings of SIGGRAPH ’96, pages
387–396, 1996.

[5] J. Dorsey, H. Rushmeier, and F. Sillion. Digital Modeling
of Material Appearance. Morgan Kaufmann Publishers,
2008.

[6] S. Ershov, K. Kolchin, and K. Myszkowski. Rendering
pearlescent appearance based on paint-composition mod-
elling. Comput. Graph. Forum, 20(3), 2001.

[7] A. S. Glassner. Principles of Digital Image Synthesis Vol-
ume Two. Morgan Kaufmann Publishers, 1995.

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)

Figure 10: Examples of the model usage. Left: Car paint with strong sparkling effect. Middle: Varying upper layer thickness (orange
and purple lacquers used). Right: Concrete ball coated in a blue transparent varnish. The lower concrete layer uses the Oren-Nayar
BRDF.

[8] P. Hanrahan and W. Krueger. Reflection from layered sur-
faces due to subsurface scattering. In Proceedings of SIG-
GRAPH ’93, pages 165–174, 1993.

[9] C. Kelemen and L. Szirmay-Kalos. A microfacet based
coupled specular-matte BRDF model with importance sam-
pling. In Eurographics Short Presentations, pages 25–34,
2001.

[10] P. Kubelka. New contributions to the optics of in-
tensely light-scattering materials. Part I. J. Opt. Soc. Am.,
38(5):448–448, 1948.

[11] P. Kubelka. New contributions to the optics of intensely
light-scattering materials. Part II: Nonhomogeneous layers.
J. Opt. Soc. Am., 44(4):330–334, 1954.

[12] P. Kubelka and F. Munk. Ein beitrag zur optik der farben-
striche. In Z. tech. Physik 12, pages 593–601, 1931.

[13] I. Lazányi and L. Szirmay-Kalos. Fresnel term approxi-
mations for metals. In WSCG 2005 Short Communications
Proceedings, 2005.

[14] L. Neumann and A. Neumann. Photosimulation: Inter-
reflection with arbitrary reflection models and illumination.
Comput. Graph. Forum, 8(1):21–34, 1989.

[15] M. Oren and S. K. Nayar. Generalization of Lambert’s re-
flectance model. In Proceedings of SIGGRAPH ’94, pages
239–246, 1994.

[16] B. T. Phong. Illumination for computer generated pictures.
Commun. ACM, 18(6):311–317, 1975.

[17] M. Rump, G. Müller, R. Sarlette, D. Koch, and R. Klein.
Photo-realistic rendering of metallic car paint from image-
based measurements. Comput. Graph. Forum, 27(2), 2008.

[18] A. Takagi, H. Takaoka, T. Oshima, and Y. Ogata. Accurate
rendering technique based on colorimetric conception. In
Proceedings of SIGGRAPH ’90, pages 263–272, 1990.

[19] A. Takagi, A. Watanabe, and G. Baba. Prediction of spec-
tral reflectance factor distribution of automotive paint fin-
ishes. Color Research and Application, 30(4), 2005.

[20] K. E. Torrance and E. M. Sparrow. Theory for off-specular
reflection from roughened surfaces. In Radiometry, pages
32–41, 1992.

[21] A. Weidlich and A. Wilkie. Arbitrarily layered micro-facet
surfaces. In GRAPHITE 2007, pages 171–178, 2007.

[22] Ch. Yao-Xun and S. Zen-Chung. Physically-based pati-
nation for underground objects. Comput. Graph. Forum,
19(3), 2000.

A Selected coefficients
The following table lists a few selected indices of refraction for
materials that have been used in the paper (in the models for
metallic car paint and metallic patina rendering).

Material\λ r[690nm] g[550nm] b[450nm]
Copper (Cu)
n 0.213 1.04 1.17
κ 4.05 2.59 2.36
Chromium (Cr)
n 3.84 3.18 1.99
κ 4.37 4.41 4.22
Cuprite (Cu2O)
n 2.83 3.10 3.06
κ 0.083 0.19 0.6

B Torrance-Sparrow model
float3 TorranceSparrow(float NdotL, float NdotV,

float NdotH, float VdotH,
float3 n, float3 k, float m,
out float3 F, out float G)

{
//D term - Beckmann distribution

float D;
float tg = sqrt(1 - NdotH * NdotH) / NdotH;
D = 1 / (m * m * NdotH * NdotH * NdotH * NdotH)

* exp(-(tg/m) * (tg/m));

//F term - Lazanyi-Szirmay-Kalos approximation
float q = 1 - VdotH;
F = ((n - 1)*(n - 1) + 4 * n * q*q*q*q*q + k*k)

/ ((n + 1)*(n + 1) + k*k);

//G term
G = min(1, min(NdotV * (2 * NdotH) / VdotH,

NdotL * (2 * NdotH) / VdotH));

//entire model
return F * D * G / (4 * NdotV);

}

Proceedings of CESCG 2010: The 14th Central European Seminar on Computer Graphics (non-peer-reviewed)

