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Abstract

This paper introduces a fine image resampling algorithm
intended for corrections of image distortions caused by
lenses or similar devices. The algorithm is designed for
correction of small distortions in terms of pixel displace-
ment but with high subpixel precision. The geometri-
cal description of the correction is through bilinear in-
terpolation within each node of a sparse square or rect-
angular mesh. The paper describes the algorithms it-
self, its features, implementation issues and data formats.
Specifically discussed are the issues connected with pro-
grammable hardware (FPGA) implementation.

Keywords: Image resampling, Subpixel resampling,
Lens distortion correction, FIR filter, Bilinear interpola-
tion

1 Introduction

Image processing is one of the fields of computer science
and applications that is developing very fast. The object
of image processing is, of course, an image. Vast major-
ity of image processing methods assumes that the image
is a 2D signal represented through samples organized in
a regular square or rectangular raster [2]. While the con-
temporary image acquisition devices and methods acquire
images that relatively well fulfill the above assumption, in
most cases, the images suffer from small geometrical im-
perfections caused e.g. by lenses (pincushion distortion,
barrel distortion) used with the cameras that acquire the
images.

The geometrical imperfections are in some cases not
critical; however, many applications of image processing
exist that suffer from the imperfections and where it is de-
sirable to correct them. While the geometrical correction
– calculation of new sample positions in the image – is rel-
atively straightforward and can be e.g. performed through
bilinear interpolation within square or rectangular mesh,
the problem remains how to get the new samples values
so that the signal properties of the image remain as much
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preserved as possible. Unfortunately, the nearest neighbor
method, which completely destroys the image signal prop-
erties, and bilinear or bicubic interpolation [3] which can
be better but by far is not ideal, are traditionally used for
this purpose (see figure 1 for illustration). The main reason
is that while the algorithms to preserve good signal prop-
erties, namely frequency spectrum, are known, they are
often considered prohibitively computationally expensive.
This paper proposes a method that is far better from the
point of view of signal properties than the bilinear or bicu-
bic interpolation while still preserves relatively low com-
putational requirements. The limitation of the proposed
method, however, is that it is limited to the cases where
the distortions do not involve significant angular or scale
changes – the method merely assumes only local subpixel
shift limited to several pixels displacement [2, 3].

Figure 1: (a) Original pattern with 4 px thick synthetic
lines 15× magnified. (b) The same pattern resampled at
scale 1.05 using bilinear interpolation. Note that edges of
lines in the resampled image are significantly blurred.

2 Image Resampling

General image resampling problem is relatively straight-
forward mathematically – it is merely a problem of proper
reconstruction of signal values in 2D space and proper ap-
plication of sampling theorem. However, the efficient im-
plementation of such resampling is still quite open prob-
lem. In our approach, we limit the general problem to
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resampling in order to correct geometrical imperfections
only. This limitation has the following implications:

• The displacement of pixel location of the original and
resampled images is only units of pixels,

• no angular distortion is expected, and
• no scaling is expected.

The general approach for resampling in our case is to
scan the output image raster pixel by pixel (sample by
sample) and reconstruct the values from the original raster
based on knowledge of the pixel displacement. Taking into
account the above limitations, it is known that the sam-
pling theorem cannot be violated and also it can be as-
sumed that the function is separable:

rx,y = f (o,d(x,y)) = f ′′
(

f ′ (o,d(x,y)) ,d(x,y)
)
, (1)

where r is the resampled image,
o is the original image,
d is the displacement function,
f is a resampling function,
and f ′ and f ′′ are the partial reconstruction functions

after separation.

In our case, the functions f ′ and f ′′ are implemented
through a bank of FIR1 filters [4] indexed by subpixel lo-
cation of the pixel. Moreover, the sampling is the same in
both directions, so f ′ and f ′′ are implemented using the
same FIR bank.

The above solution with FIR filters was chosen as it has
well defined features and as it is quite flexible in terms of
exchangeability of the filtering function.

3 Proposed Resampling

The proposed approach to resampling relies on the separa-
bility; however, in addition to the generally used approach,
the separability is applied to both the resampling function
itself and the geometrical distortion calculation so that the
distortion calculation is separated in vertical and horizon-
tal directions:

rx,y = f ′′
(

f ′ (o,dx(x,y)) ,dy(x,y)
)
, (2)

where r is the resampled image,
o is the original image,
dx and dy are the displacement functions,
and f ′ and f ′′ are the partial reconstruction functions

after separation.

1Abbreviation from Finite Impulse Response.

The resampling function itself is assumed to be some
suitable filter function and in the presented approach it is
implemented through a bank of FIR filters. The bank of
FIR filters is indexed through a subpixel position of the
desired sample in the raster (see equation 3). The reason
is that the FIR coefficients are dependent on the subpixel
position of the desired sample location. Of course, the
size of FIR filters is limited. The filters in the bank can
be e.g. Lanczos filters [7] for optimal exploitation of the
bandwidth of the image signal given the size of the filter,
or other filter design to achieve the desired image signal
properties. The described approach is, in fact, not depen-
dent on it.

rx,y = FIR f p(x)
(
FIR f p(y) (o, ip(dy(x,y))) , ip(dx(x,y))

)
,

(3)
where r is the resampled image,
o is the original image,
dx and dy are the displacement functions,
FIRt is the function of the bank for position t,
f p is the fractional part of a numerical value,
and ip is the integer part of a numerical value.

The distortion to be corrected can be described in dif-
ferent ways, e.g. analytically or by a offset texture. Dis-
tortion description acquisition is not subject of this work
but it has been studied e.g. in [5, 6, 8]. In our approach the
distortion is described with a sparse rectangular mesh with
displacement specified for each node of the mesh. In fact,
the mesh can be seen as a offset texture. While the dis-
placement in each node (corner of the rectangles) of that
mesh is known, the displacement inside the rectangles is
computed via bilinear interpolation. Size of the rectangles
depends on application and local change of the displace-
ment – the smaller size of the rectangle, the more precise
approximation of the distortion but more memory for the
distortion description needed.

Distortion inside each rectangle is described by means
of the following four precalculated coefficients:

• D0 – displacement of top left pixel in the rectangle.
• DC0 – difference of displacements between adjacent

pixels in 1st row of the rectangle.
• DR – difference of displacements between 1st pixels

of adjacent rows in the rectangle.
• DDC – change in difference of displacements be-

tween pixels of adjacent rows in the rectangle, that
means DCn+1 – DCn.

For more detailed description see figure 2. Note, please,
that the displacement calculation can be subdivided into
independent calculation of vertical and horizontal dis-
placements.

Displacement calculation executed by the resampling
algorithm in each rectangle of the mesh can bee seen in
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Figure 2: Displacement interpolation inside rectangles. (a) Output image is covered with rectangular mesh, source image
distortion is defined within each mesh node. (b) Rectangular area of the output image with individual pixels visible. (c,
d) Graphical representation of precalculated coefficients describing the source image distortion for horizontal and vertical
resampling respectively. Pixels of distorted source image are plotted with gray dashed lines, pixels of output image are
plotted with black solid lines. Big black dots are centers of source image pixels. Meaning of precalculated coefficients is
marked with coloured vectors.

algorithm 1. The input of the algorithm is the original im-
age, distortion description (through the above mentioned
coefficients), and FIR filter; the output is the resampled
pixels within the given rectangle. Note, please, that two
instances of the algorithm are being used, one for vertical
and one for horizontal displacement and filtering.

1: var DoR, DC, D;
2: DoR = D0;
3: DC = DC0;
4: for all rows in rectangle do
5: D = DoR;
6: for all pixels in row do
7: Output FIR[fp(D)](O,ip(D));
8: D += DC;
9: end for

10: DoR += DR;
11: DC += DDC;
12: end for

Algorithm 1: Displacement calculation.

Time complexity class of the displacement calculation
algorithm is O(n2) because displacement for each pixel of

the output image needs to be computed directly. Cost of
displacement calculation for a pixel is just cost of one ad-
dition operation (algorithm 1, line 8) plus cost of FIR fil-
ter response computation (algorithm 1, line 7). When the
proposed FIR filtering is used, the time complexity class
does not change and remains O(n2). This fact is, however,
not important as the size of the image is fixed anyway and
the proposed approach significantly reduces the computa-
tional cost.

As it can be seen from the pseudocode, three vari-
ables are needed in the displacement calculation algo-
rithm. Their meaning is as following:

• DoR – displacement of 1st pixel in a row.
• DC – difference of pixel displacements.
• D – displacement of current pixel.

As shown in the algorithm, the displacement is subdi-
vided into integer and fractional parts. The integer part is
used to determine the pixel placement of the filter while
the fractional part is used to determine the set of coeffi-
cients within the filter bank. When the number of filters in
the bank is N (e.g. 16), the fractional part is multiplied by
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N and then rounded to nearest integer. Then it is used for
filter bank index.

4 FPGA Implementation

Two implementations of proposed approach have been re-
alized so far; On CPU2 using C3 language and in FPGA4

[1] using VHDL5 language. The former one was origi-
nally intended as support and template for implementation
of the latter one, so it does not fully exploit potential of
the CPU. However it closely simulates processes running
in programmable hardware with bit-precision, so outputs
of both implementations are identical.

An FPGA platform has been chosen as it offers high
degree of parallelism, which is exploitable e.g. in
convolution-like operations. In our case it has been em-
ployed together with pipelining6 to accelerate computation
of the FIR filter response.

When implemented on CPU, time complexity class of
filtering operation is generally O(n2) (when using only
row or columnar filter it is O(n)) as a function of the filter
size. This is because all pixels in the filtered area have to
be multiplied by their respective filter coefficients sequen-
tially and also summed up sequentially. On the other hand
FPGA offers the possibility to multiply all pixels with fil-
ter coefficients simultaneously. However impact of this
can be eliminated by pipelining which causes that results
of the filtering operations are available in each cycle, only
with some delay.

The overall structure of the resampling system is based
on the fact that in vast majority of applications, the image
is acquired ”line by line” ”pixel by pixel” from top left cor-
ner to bottom right corner. Also, in most of the memory
storage structures, the images are stored this way. There-
fore, it can be assumed that the image is best processed in
the same order and the dataflow is adjusted so.

The overall structure is illustrated in figure 3. First, the
image is fed into a buffer that can hold several complete
image lines. The buffer must be large enough to accomo-
date as many lines of the image as it corresponds to the
maximal vertical displacement in both directions plus the
size of vertical FIR filter. In this case, the height of the
buffer should be at least 31 pixels (2×12 px maximal ver-
tical displacement + 7 px FIR filter height).

Next, the data fed into the buffer is processed so that
for each line of the output image and for each position
of a pixel on that line, the corresponding vertical location
in the buffer is found. Then columnar neighborhood of
that location, which is of same size as the FIR filter, is fed

2Abbreviation from Central Processing Unit – a processor.
3A general purpose programming language.
4Abbreviation from Field-programmable Gate Array – a type of inte-

grated circuit which can be programmed after manufacturing.
5Abbreviation from Very-high-speed integrated circuit Hardware De-

scription Language.
6Pipeline is a series of computational elements which work in paral-

lel. Output of one element is input of the next one.

into the vertical resampling unit (in our case 7 samples).
Thanks to parallelism of FPGA, the buffer allows to access
the neighborhood in one clock cycle.

Then, the resampling unit calculates on output value of
the vertical part of the resampling process through FIR′′

q ,
where q is the index of a set of coefficients in the FIR′′ fil-
ter bank determined from the fractional part of the vertical
position. This concludes the vertical resampling process.

After the vertical resampling, the horizontal resampling
takes place. The horizontal resampling part can take ad-
vantage from the fact that the data used in it is image line
data only – the result of the vertical resampling unit. As
the sampling frequency of the resampled image is very
similar to the original image, it can be additionally as-
sumed that for one pixel produced by the vertical resam-
pling unit, approximately one pixel of the output image
will be produced by the horizontal resampling unit as well.
This allows for usage of only a small buffer (units of sam-
ples) between the vertical and horizontal resampling. In
fact, the data buffer can even be in a form of a small shift
register where the shift factor is 0, 1, or 2 samples at a
time.

When the location of the data in the horizontal direction
is determined, the actual horizontal resampling takes place
using similar mechanism to the vertical one – the FIR′

q
filter is applied based on the subpixel position in horizontal
direction, where q is the index of a set of coefficients in the
FIR′ filter bank.

The horizontal resampling unit directly produces the re-
sampled image pixels that should be stored into the resam-
pled image data structures and this concludes the process-
ing of the complete resampling unit.

In both vertical and horizontal resampling units, the
control is done based on the calculation of displacements
of resampled pixels according to the method described in
section 3.

An FPGA implementation of the resampling algorithm
has been prepared as part of the experiments with the de-
sign. The dataflow in the resampling unit can be seen in
figure 4. Functional blocks are associated in two groups
– one group handles vertical resampling while the other
handles horizontal resampling. Each group consists of a
FIR module, a Displacement interpolation module and re-
spective Resampling module.

Figure 4: Dataflow of the resampling algorithm in FPGA.

Data formats used in the algorithm are the fixed deci-
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Figure 3: Overall processing of the image resampling.

mal point numbers in order to represent the data accurately
enough while maintaining the design simple to enable its
simple implementation.

The actual data formats used in the experiments are de-
scribed below.

• Pixel data – 16 bit signed or unsigned. The pixel pro-
cessing is assumed in 16 bit format in order to support
the standard dynamic range of contemporary video
cameras, which is 10 to 14 bits, plus an overhead for
absorption of rounding errors of FIR.

• Coordinate – 12+4 bits unsigned. The subpixel res-
olution is assumed to be 16 subpixel positions which
is in practical terms enough to avoid measurable ad-
verse effects of granularity in subpixel position.

• Difference of coordinates – 2+8 bits signed. The dif-
ference of positions must be precise enough to repre-
sent the change of displacement.

Data formats of precalculated coefficients used as pa-
rameters of the displacement interpolation algorithm (see
section 3) as well as data format of its output can be seen
in table 1. Data formats specified in the table may seem-
ingly not correspond to data formats described above. This
is because all the coefficients and variables used in the in-
terpolation algorithm do not represent coordinates of pix-
els. Instead of this, they represent displacements of out-
put image pixels relative to input image pixels which have
smaller range. Therefore upper bits of integer parts of the
variables do not have to be used. On the other hand, more
bits of fractional parts of the variables are utilized in order
to absorb a cumulative error which emerges during execu-
tion of the interpolation algorithm.

The experimental design and synthesis of the resam-
pling unit was performed for Xilinx7 Virtex-II xc2v1000
FPGA device. XST8 version H.38 was chosen for this
task. As the unit is relatively generic, the following pa-
rameters were used: Image size 256×1024 px and square
size 64 px which results in square mesh of 4×16 squares

7A company producing programmable logic devices, such as FPGAs.
8Abbreviation from Xilinx Synthesis Technology; A application for

synthesizing device designs from hardware description language code.

(and also displacement coefficient sets). Device utilization
with configuration mentioned above is shown in table 2.

Items on chip Used Capacity % capacity
Slices 3 947 5 120 77 %
Slice Flip Flops 2 112 10 240 21 %
4 input LUTs 3 103 10 240 30 %
BRAMs 20 40 50 %

Table 2: Exploitation of FPGA unit Virtex II-1000.

The device clock frequency is up to 105 MHz. While
the resampling unit produces one output pixel per 2 clock
cycles, the output resampling data rate for a single unit is
up to 52.5 Mpixels per second. Thus the device is able to
process 720p high definition video format (1280 × 720 px)
at framerate 50 fps. This demonstrates the real-time poten-
tial of the design.

5 Results

The algorithm has been evaluated with images of artificial
lines, photographic patterns acquired by camera and other
images with results identical for standard CPU implemen-
tation and FPGA implementation. The resampling itself
was performed with 7-sample Lanczos filter and the sub-
pixel resolution was 16. These values are the limit values
for the current implementation. These values can be seen
as limits for efficient exploitation in real-life applications;
However, they do not represent any limit for FPGA hard-
ware.

Because no ground truth of an resampled image is avail-
able, we decided to use energy of power spectrum as a
measure of error. The exact measure is ratio of energy of
the resampled image and energy of the source image. An
ideal algorithm would have the ratio 100 %.

The image of artificial lines (figure 5) was resampled at
constant scale 1.05 in whole area using bilinear interpo-
lation as well as our proposed algorithm. Power spectra
of respective images are also shown. Bilinear interpola-
tion algorithm proved to preserve 88.96 % of the spectrum
energy, our proposed algorithm preserved 91.77 %.
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Order of bit (2n) 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 -1 -2 -3 -4 -5 -6 -7 -8 -9 -10 -11 -12 -13 -14 -15 -16

D0 (signed) s • • • • • , • • • •
DC0 (signed) , s • • • • • • • •
DR (signed) , s • • • • • • • •

DDC (signed) , s • • • • • • • • • • • •
Displacement (signed) s • • • • • , • • • • • • • • • • • • • • • •

Table 1: Precision of the interpolation algorithm coefficients and computed displacement. • denotes a used bit, ”s” stands
for sign, void bits are not used. Fixed decimal point is marked between bits nr. 0 and -1 with a comma.

Figure 5: (a) Original pattern with 4 px thick synthetic lines 15× magnified and (d) its power spectrum. (b) The same
pattern resampled at scale 1.05 using bilinear interpolation and (e) its power spectrum. 88.96 % of energy of the power
spectrum has been preserved. (c) The same pattern resampled at scale 1.05 using our proposed algorithm and (f) its power
spectrum. 91.77 % of energy of the power spectrum has been preserved.

The image of photographic pattern (figure 6) was re-
sampled simulating geometrical correction of barrel dis-
tortion using bilinear interpolation and our proposed algo-
rithm too. Power spectra of respective images are shown
as well because there are no observable differences in the
output images. Bilinear interpolation preserved 90.32 %
of the spectrum energy, our proposed algorithm preserved
98.45 %.

6 Conclusions

In this paper we described the accelerated fine image re-
sampling approach based on a combination of a set of al-
gorithms. Its intention is to correct geometrical image dis-
tortions caused by lenses or similar devices. Additionally,
the implementation in software and FPGA is mentioned.

The presented approach and set of selected algorithms

is based on approximation of the image distortion using a
sparse rectangular mesh with bilinear interpolation of the
positions within the nodes. The resampling itself is based
on separable FIR filtering with a bank of filters indexed by
a subpixel position.

As shown in the paper, the selected approach proved
to be functional and lead into efficient implementation
of resampling in both software and programmable hard-
ware. The FPGA implementation is able to process up to
52.5 Mpixels per second which demonstrates the real-time
potential.

It has also been shown that the selected approach gives
better results than widely used bilinear interpolation algo-
rithm. Additionally, we solved the problem of efficient
implementation of a resampling algorithm, which properly
reconstructs signal values in 2D space. However the gen-
eral problem is limited by this approach to cases without
angular distortion, scaling and significant pixel displace-
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Figure 6: (a) Original image with a photographic pattern acquired by a camera and (d) its power spectrum. (b) The same
image resampled using bilinear interpolation simulating barrel distortion correction and (e) its power spectrum. 90.32 % of
energy of the power spectrum has been preserved. (c) The same image resampled using our proposed algorithm simulating
barrel distortion correction and (f) its power spectrum. 98.45 % of energy of the power spectrum has been preserved.

ments.
Future work includes exploitation of the design in real-

time applications of image processing. For example an
efficient GPU9 implementation will be considered. The
work also includes further improvements of the structure
and possible extension to 3D raster data.
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