
Real-Time Soft Shadows with Adaptive Light Source Sampling

Michael Schwärzler∗

Institute of Computer Graphics and Algorithms
Vienna University of Technology

Vienna / Austria

Abstract

Simulating physically accurate soft shadows in Computer
Graphics applications is usually done by taking multiple
samples from all over the area light source and accumu-
lating them. Due to the unpredictability of the size of the
penumbra regions, the sampling density has to be quite
high in order to guarantee smooth shadow transitions in all
cases, making the process computationally extremely ex-
pensive and therefore hardly usable in anything else than
offline rendering aplications.

Thus, we suggest a new approach, in which we select
the sampling points adaptively and avoid the generation
and evaluation of shadow maps which do not contribute to
an increased image quality. The main idea is to reproject
the shadow maps of two neighboring sampling points into
camera space, investigate how much they differ by exploit-
ing the functionality of hardware occlusion queries, and
recursively add more sampling points only if necessary.

While sampling the light source with a fixed number
of samples leads to either over- (guarantees constant qual-
ity) or undersampling (guarantees constant frame rates) in
most cases, our method is capable of selecting only the
samples which really contribute to an improved shadow
quality. This saves rendering time, but still generates shad-
ows of comparable quality and accuracy. Even though ad-
ditional calculation time is needed for the comparison step,
interactive frame rates are possible in most cases, since the
calculation of many unnecessary samples is saved.

Keywords: Soft Shadows, Sampling, Shadow Mapping,
Real-Time

1 Introduction

Using shadows in applications and games greatly im-
proves the quality of the generated images and has a big
impact on the scene perception: Apart from giving visual
cues on the relationship between the scene object, shad-
ows are perceived to be a natural part of the scene. Missing
shadows can give a rendered scene an unnatural, artificial
look.

While algorithms for the creation of hard shadow are al-
ready widely used in today’s games and applications, the

∗michael@schwaerzler.com

Figure 1: A comparison between a regular sampling ap-
proach (left, 81 shadow maps, 12 frames per second) and
our algorithm (right, 14 shadow maps, 40 frames per sec-
ond) using an area light source. Images created in the Di-
rectX 10 framework using Texture Arrays.

fast and correct calculation of soft shadows is a complex
task and still an area of active research. Soft shadows are,
in opposite to hard shadows, not cast by theoretical point
lights without extents, but by area light sources. They do
therefore consist of umbra (areas where the light source is
completely blocked) and penumbra (areas where the light
source is partly visible) regions, and despite the increased
computational costs, using them is worth the effort: Nearly
every shadow in reality has soft boundaries, so using soft
shadows in rendering applications significantly increases
the realism of the generated images (see Figure 2). More-
over, aliasing artifacts at the boundaries can be hidden by
them as well due to their low frequency.

Nearly all current soft shadow approaches are either
based on the shadow mapping (see Section 3.1) or the
shadow volumes algorithm [5] – the two most widely
used hard shadow generation methods – and have been ex-
tended to work together with area light sources. There ex-
ist both physically accurate, and so-called fake or single-
sample soft shadow approaches (see Section 2). Fake ap-
proaches are usually faster, but inaccurate, since the area-
from-point visibility is simplified to a point-to-point vis-
ibility there. Physically accurate algorithms usually suf-
fer from speed problems, and real-time or even interactive
frame rates are hard to achieve.

We suggest a new approach, which is based on the idea
of sampling the light source several times in order to ob-
tain physically correct shadows in Section 3: We optimize
the number of sampling points needed for satisfying re-
sults by starting with only very few sampling points and
adaptively adding more and more of them, depending on



penumbrapenumbra umbra

occluder

area light source

receiver

Figure 2: An area light source leads to a soft shadow,
which consists of umbra and penumbra regions.

whether the sampling density is already high enough or
not. This decision is made by projecting the shadow maps
of two neighboring sample points to the camera’s view
point, and by comparing there how much they differ. Only
if the percentage of differing shadow map texels is higher
than a predefined value ε , a new sampling point is created
in-between the compared ones.

After creating n shadow maps by applying our adaptive
sampling strategy, we show how these can be used to ren-
der physically accurate soft shadows at interactive or even
real-time frame rates. We employ both Deferred Render-
ing as well as Texture arrays for our tests and comparisons
in our rendering framework (see Section 3.4).

2 Related Work

A vast amount of real-time soft shadow algorithms have
been published during the last few years; it is therefore
out of the scope of this paper to explain all of them. A
not completely up-to-date, but still valuable survey of soft
shadowing approaches was published by Hasenfratz et. al
in 2003 [13]. We will focus on the most relevant and recent
publications which are related to our work.

Since the calculation of physically correct soft shadows
is often considered to be too costly, most real-time soft
shadow approaches estimate the visibility by calculating it
from only one point of the area light source, and simulate
the penumbra using approximative heuristics. Fernando
[9] suggests using a technique called Percentage Closer
Soft Shadows (PCSS), where the Percentage Closer Filter-
ing (PCF) [15] method is exploited and combined with a
blocker search: PCF softens hard shadow boundaries by
not only comparing the current depth to a single value in

the shadow map, but to do so with the neighboring pixels
in the shadow map as well. The percentage of success-
ful shadow tests specifies the shadow intensity. It helps
to reduce aliasing artifacts at the softened shadow bound-
aries, but the penumbra is far from being accurate, as it
always has the same size. PCSS therefore uses an ad-
ditional blocker search in the shadow map, so the filter
kernel can be adjusted according to the relation between
light, blocker and receiver. Newer approaches like Vari-
ance Shadow Maps [2] or Convolution Shadow maps [7]
propose ways to pre-filter the shadow map, so the vast
amount of shadow map lookups needed for PCF can be
avoided. It is possible to achieve real-time frame rates
with these kinds of filtering algorithms, and even though
the created shadows are not physically accurate, they pro-
duce perceptually convincing results, especially since the
human visual perception is not very sensitive to the geo-
metrical correctness of soft shadows.

Several papers (e.g. Guennebaud et. al [11][12], Atty
et. al [4], Aszdi & Szirmay-Kalos [3], Schwarz & Stam-
minger [17]) have recently been released, which all sug-
gest to use a technique called backprojection. It was orig-
inally presented by Drettakis [8] in order to generate soft
shadows in offline-rendering. The idea is to use a single
shadow map not only for depth comparison, but to employ
it as a discretized representation of the scene. In order to
calculate the visibility factor v for a screen-space pixel p,
the shadow map texels are backprojected from p onto the
light source, where the amount of occlusion is estimated.
These approaches produce physically convincing results in
many cases, but are prone to artifacts (e.g. in cases when
occluders overlap, when the light source is too close, or
when the penumbra is extremely large) and require a costly
blocker search in the shadow map.

The probably most intuitive approach to generate soft
shadows is to generate hard shadows from several sam-
pling points on the area light source and accumulate this
information. If the sampling density is high enough,
this idea would lead to the exact, physically correct soft
shadow solution. The main problem of this approach is
speed: It can be necessary to compute more than 256 hard
shadows in order to obtain a smooth penumbra region with
256 possible attenuation levels in an 8Bit color channel,
which leads to a long computation time and makes real-
time application a hard challenge. Therefore, Heckbert &
Herf [14] suggest using only a few regularly distributed
samples for the calculation. For each shadow receiver, a
so-called attenuation map is computed by summing up the
individual shadows, which is then used to modify the illu-
mination of the object. So, for n sampling points and m re-
ceivers, m×n shadow maps are required. An improvement
of this idea has been suggested by Agrawala et. al [1]: In-
stead of calculating and using an attenuation map for each
receiver, a single layered attenuation map for the whole
scene is created, which allows interactive frame rates on
modern graphics hardware. In the method proposed by
St-Amour et. al [19], the visibility information of many



shadow maps is combined into a precomputed compressed
3d visibility structure, and use this structure for rendering.
Sintorn et. al [18] use the CUDA capabilities on mod-
ern NVidia graphics hardware to compute and evaluate the
sampled shadow maps.

The idea of using multiple sampling points on an area
can also be used with modified versions of the shadow
volumes algorithm which was introduced by Crow in [5]:
Forest et. al [10] calculate the depth complexity of the
scene with a method based on silhouette extraction and
light source sampling.

Our algorithm is based on the approaches which use
multiple shadow maps per light, but we propose a clever
adaptive sampling strategy in order to reduce both the
number of shadow maps needed to obtain high quality soft
shadows and the rendering time per frame.

3 The Algorithm

In this Section, we present our new sampling strategy,
which is based on adaptive refinement of the sampling po-
sitions and employs the shadow mapping algorithm for the
evaluation of the shadow information. Furthermore, possi-
ble ways to render the large amounts of generated shadow
maps are discussed.

3.1 The Shadow Mapping Algorithm

Shadow mapping is an image based algorithm first intro-
duced by Williams in 1978 [20]. It is widely used in games
and application to compute hard shadows, but we exploit
it for the calculation of soft shadows in Section 3.2. Its ba-
sic idea is to view the scene from the position of the light
source in a first pass, and store the depth values of the frag-
ments in a texture (called the shadow map). The shadow
map therefore contains the distances to all sampled sur-
face points which are illuminated by the light source. De-
pending on the type of used light source, a perspective (for
point lights) or an orthographic (for directional lights) pro-
jection has to be used. The shadow map has to be updated
whenever an object in the scene or the light source moves.

Figure 3: The shadow mapping algorithm: The depth val-
ues as seen from the light source are stored in a shadow
map, and are then used in a second pass to generate shad-
ows on the objects [16].

In the second pass, the scene is rendered from the cam-
era’s point of view. Every fragment is transformed into
light space, where its distance to the light source is com-
pared to the corresponding value in the shadow map. If the
distance to the current fragment is larger than the shadow
map value, it lies in shadow; otherwise it has to be illumi-
nated by this light source. Figure 3 illustrates the basics of
the algorithm.

The shadow mapping algorithm can be implemented in
a fully hardware accelerated way on modern GPUs and
is therefore a comparatively fast and often used method
to simulate hard shadows in real-time applications and
games. Furthermore, it can handle any geometry due to
the fact that it is an image based approach, its speed is
independent of the scene and object complexity, and self-
shadowing is handled automatically. Due to the sampling
of the scene during the creation of the shadow maps, alias-
ing and undersampling artifacts are likely to occur (see
Scherzer’s diploma thesis [16] for details and solutions).

3.2 Estimating Soft Shadows with Light
Source Sampling

An area light source can be approximated by n different
light source samples. We use the shadow mapping algo-
rithm described in Section 3.1 to gather shadow informa-
tion at each of these sampling points, as it is fast, feasable
for rasterization hardware and independent of the scene
complexity. A shadow map allows us to evaluate for every
screen space fragment if it is illuminated by its associated
point light.

τi(x,y) =
{

0 lit from point light i
1 in shadow of point light i (1)

τi(x,y) is the result of the hard shadow test for the ith
shadow map for the screen space fragment at position
(x,y). Under the assumption that the point sampling on
the area light source is dense enough (i.e n is high enough),
the soft shadowing result ψ (i.e., the fractional light source
area occluded from the fragment) can be estimated by the
proportion ψ̂n of shadowed samples

ψ̂n(x,y) =
1
n

n

∑
i=1

τi(x,y). (2)

In order to create smooth penumbrae in all cases, the
number of sampling points n has to be quite high. This
has a negative impact on both the calculation time as well
as the memory consumption, making a real-time applica-
tion hard to achieve. Thus, we propose the use of a new
adaptive sampling strategy in Section 3.3.

3.3 Adaptive Refinement of the Sampling
Density

Generating soft shadows with multiple shadow maps per
light is computationally expensive due to the high sam-



pling density which is required to render visually appeal-
ing penumbra regions. If the density is too low, band ar-
tifacts are likely to appear, and the human visual system
does not perceive a soft shadow anymore, but several hard
shadows.

penumbra penumbra

penumbra

penumbra

area light source

Figure 4: Already a slight change in the receiver geometry
can lead to a significant increase of the penumbra size.

The larger a penumbra is, the more samples are neces-
sary to create a smooth transitions between the individual
hard shadows. The minimum required sampling density
is not easy to predict, though: It depends on the relation
between light, blocker and occluder. As can be seen in an
example in Figure 4, a slight rotation of the receiver ge-
ometry leads to a drastic increase of the penumbra size,
making more samples a necessity. Due to the perspective
projection, the camera’s point of view plays an important
role here as well, as it determines the size of the penumbra
in screen space: if the camera is very close to the shadow,
the penumbra region can be as large as the whole frame
buffer. So, in regular multi-sample approaches, the sam-
pling rate has to be quite high in order to be sufficient in
such worst cases.

To omit the oversampling caused by the high sampling
density required for the worst case, we suggest not to use a
fixed sampling rate, but to select the sampling points adap-
tively. Despite the additional time needed for evaluating
the need for another sampling point, the overall rendering
performance can be significantly increased, since the gen-
eration and evaluation of all the unnecessary shadow maps
can be saved.

3.3.1 Generating Shadow Maps

The first step in our algorithm is to create the initial
shadow maps at the borders of the area light source. These
are the only shadow maps which are always generated; all
the others are only computed if it is necessary (see Sec-
tion 3.3.3). To simplify the explanation, we only use a
1-dimensional light source here (i.e. all sample points lie

on a straight line), so the sampling points are placed on
both ends. For a subdivision strategy for two-dimensional
light sources, see Section 3.3.5. The shadow maps are gen-
erated from these sampling points using standard uniform
shadow mapping with a perspective projection.

3.3.2 Reprojection

After the creation of the initial sampling points, the
shadow maps have to be projected into the same space in
order to be comparable. It is important that the refinement
is dependent on the observer position and view: For ex-
ample, it makes no sense to refine a soft shadow which is
far away and hardly visible. For shadows very close to the
camera, on the other hand, it is important to have more
samples in order to obtain a smooth penumbra transition.
The generated shadow maps are therefore projected into
camera space, where a comparison makes such a view-
dependent refinement possible.

The reprojection step is done similar to the second step
in the regular shadow mapping algorithm, but instead of
using the stored values from the shadow map for a depth
comparison, they are directly used for comparisons as de-
scribed in Section 3.3.3.

3.3.3 Comparison

The comparison of two neighboring shadow maps in cam-
era space is done in a pixel shader: The reprojected depth
values of the two shadow maps are compared and consid-
ered equal if they fulfill the following condition:∣∣depthle f t(x,y)−depthright(x,y)

∣∣ < γ, (3)

where γ is the maximum allowed depth difference, and
(x,y) are the fragment coordinates in camera space. If a
fragment’s shadow map values are considered equal, the
pixel shader depth output is 0, otherwise it is 1. By exploit-
ing the functionality of an occlusion query, which usually
returns the number of pixels that pass z-testing, we can
now identify the number of pixels which have been classi-
fied to be different (see Figure 5).

Figure 5: The comparison of two neighboring shadow
maps: Left: The depth values of the first shadow map.
Middle: The depth values of the second shadow map.
Right: The pixels on which the depth values are larger
than γ (See Equation 3).



3.3.4 Generating additional Sampling Points

Based on the number of differing pixels p, we evaluate a
simple error metric

p
SMx×SMy

< ε, (4)

where SMx and SMy are the shadow map dimensions, and
ε is a predefined value which is used to control the sam-
pling granularity. If the above inequation is true, the sam-
pling density in the area of the two shadow maps is high
enough. Otherwise a new sampling point is created in-
between them. A higher ε therefore leads to fewer created
shadow maps.

For the new sampling point, the whole procedure is re-
peated again: A shadow map is generated from its position
and compared to its two neighbors. This refinement pro-
cess is repeated until either the sampling density is high
enough in all areas to fulfill the condition in inequation 4,
or the maximum number of shadow maps has been cre-
ated.

3.3.5 Subdivision Strategy for 2D light sources

In case a two-dimensional rectangular area light source is
used instead of the linear one, we suggest using a quadtree-
like structure: Starting with 4 sampling points on each
corner, the shadow maps which lie diagonally opposed are
compared (i.e. the top left corner shadow map is compared
to the bottom right one, and the top right shadow map is
compared to the lower left one) and evaluated using the
Equations 3 and 4.

Figure 6: Subdivision strategy for area light sources: Left:
Generate initial maps. Middle: Compare opposing maps.
Right: Subdivide the quad in 4 sub-quads, repeat steps 1-3
for each sub-quad.

If at least one of the comparisons makes a subdivision
necessary, the rectangle is split into 4 sub-quads, and new
shadow maps are generated on all the new corners (See
Figure 6). This refinement is repeated until either the sam-
pling density is high enough, or the maximum refinement
depth is reached.

3.3.6 Assigning Shadow Map Contribution Weights

If all shadow maps generated with our refinement strat-
egy contribute to the final soft shadow solution with equal
weight, the darkness of the penumbra can sometimes vary

slightly from the exact solution, if the distribution of the
adaptively selected sampling points is very nonuniform.
We therefore apply weights on the sampling points: In ar-
eas of many subdivision, the individual samples are as-
signed a smaller weight, and will not contribute as much
to the darkness of the penumbra as the ones with a large
weight.

In case of a linear light source, the weight ωi assigned
to the ith shadow map is calculated with

ωi =
1

2d +1
, (5)

and for area light sources with

ωi =
1

(2d +1)2 , (6)

where d is the subdivision depth. The sum of all weights
is 1 if all samples reached the same subdivision depth d.
Otherwise, the weights have to be normalized.

3.4 Evaluating the shadow map information

After having all the necessary shadow maps obtained, they
have to be evaluated in an illumination render pass, which
is basically similar to the second render pass in the stan-
dard shadow mapping algorithm. Still, difficulties can
arise due to the large amount of depth textures which have
to be sampled. We show two ways how this problem can
be solved in Sections 3.4.1 and 3.4.2.

3.4.1 Soft Shadow estimation using an Accumulation
Buffer and n render passes

In the standard shadow mapping algorithm, the shadow
map is evaluated in a second pass rendered from the cam-
era’s point of view, and the pixels in screen space are then
illuminated according to their occlusion. For the calcula-
tion of soft shadows, the information from all generated
shadow maps has to be checked for each screen space
pixel. The hard shadow test values (0 or 1) from all shadow
maps i are multiplied with their weight ωi and summed up,
resulting in an estimate for the percentage of occlusion.

If the number of shadow maps is too high, this can
lead to problems due to technical limitations: For exam-
ple, in some older rendering APIs, it is not possible to
sample more than 16 textures in a single rendering pass.
This limits the theoretical number of shadow maps to 16;
in most games and applications this number will be even
lower, since most objects do usually have diffuse, normal,
or other textures as well.

A way to solve this is to make use of a Deferred Render-
ing System [6] as well as a so-called Accumulation Buffer,
which is a screen-space buffer with a single data channel.
For each shadow map, we render the scene in a separate
render pass, but instead of using the obtained hard shadow
value of a screen space fragment f (x,y) for illumination,



we multiply it with its weight and add it to the accumula-
tion buffer at the position fAccumulationBu f f er(x,y).

After n render passes, all shadow maps have been eval-
uated, and the accumulation buffer is filled. Now, in a final
rendering pass, the scene is illuminated: For each screen
space fragment f (x,y), the corresponding Accumulation
Buffer value fAccumulationBu f f er(x,y) is sampled and used
as the occlusion percentage.

Care has to be taken whenever several shadow receivers
lie behind each other from the camera’s point of view:
their individual shadow values get summed up if no addi-
tional depth comparison is done, leading to wrong results.
It is therefore necessary to render an additional depth pass
from the camera’s point of view into a texture with the
same size as the framebuffer. During the accumulation
passes, the depth value stored there is sampled for each
fragment and compared to its depth, so that only fragments
which are visible for the observer can have an influence on
the data in the accumulation buffer.

Note: Since current graphics hardware does not support
read and write operations on render targets at the same
time, two instances of the accumulation buffer have to be
created and swapped each rendered frame, resulting in an
additional need for memory on the GPU.

3.4.2 Soft Shadow estimation using Texture arrays

In newer graphics APIs, the limitation to only 16 textures
in a shader was dropped: the introduction of so-called Tex-
ture Arrays makes it possible to send up to 512 textures
with the same size and format to the shader, where they
can be sampled arbitrarily.

Using this new technique, it is not necessary to evalu-
ate the shadow maps in multiple passes anymore: Since
the shadow maps are all of the same size and format, the
texture array functionality is perfectly suited for our pur-
poses, making all maps accessible in a single shader. An
array of corresponding matrices needed for the shadow
map lookups is made available by using a Constant Buffer.

Furthermore, there is no need to use an accumulation
buffer anymore: By simply summing up the hard shad-
ows values multiplied with their corresponding weights,
we obtain the fragment’s occlusion value. This value can
be directly used in the same pass to modify the illumina-
tion. So, even though it is still necessary to sample all
shadow maps, n read/write operations as well as the mem-
ory previously consumed by the accumulation buffer and
the depth buffer can be saved.

3.4.3 Filtering

In order to improve the smoothness of the transitions be-
tween the individual shadow maps, we suggest sampling
them using a small PCF kernel. PCF filtering softens the
shadow boundaries, and a special version with a 2x2 ker-
nel can be used on modern graphics hardware without per-
formance hit.

By increasing the PCF filter kernel, it is moreover pos-
sible to increase the ε value as well while still obtaining
smooth penumbrae: In such a case, fewer shadow maps
are generated and used, and the time needed for rendering
is reduced. This comes of course at the cost of physical
accuracy, as PCF filtering blurs and widens the penumbrae
artificially.

4 Implementation

We implemented the method described in Section 3.4.1
in a DirectX 9 rendering framework application using a
one-dimensional light source, and the method described
in Section 3.4.2 in a DirectX 10 rendering framework ap-
plication using a two-dimensional light source. For the
shadow maps, we used 32Bit floating point textures with a
size of 5122.

4.1 Deferred Rendering (DirectX 9)

In the DirectX 9 framework, we applied 32Bit floating
point textures with the same dimensions as the frame
buffer for both the accumulation buffer as well as for the
needed depth buffer.

The use of the Deferred Rendering system and the ac-
cumulation buffer allow a shadow map to be evaluated as
soon as it is created: Right after its generation and repro-
jection, the shadow information is stored in the accumula-
tion buffer, and the texture can be re-used again in the next
subdivision step. This saves a lot of memory, since not all
shadow maps have to be available at the same time, mak-
ing an execution on older hardware with limited resources
feasible. The drawback of this approach is that it is not
possible to foresee the contribution weight of the current
shadow map as described in Section 3.3.6 at the time the
shadow map is evaluated, making it necessary to weight
all shadow maps equally. This can of course lead to phys-
ically incorrect soft shadow results.

The reprojection step was implemented in two ways for
testing purposes: Apart from the projecting the shadow
maps to the camera’s point of view, we also tried to project
them to the center of light source. With this method, the
subdivision of the light source is not view-dependent any-
more, but for applications with a foreseeable minimum
viewing distance (e.g. a strategy game using a top-down-
view), the generated penumbrae are smooth enough, and a
constant frame rate can be achieved more easily.

4.2 Texture Arrays (DirectX 10)

We implemented the texture array rendering method as de-
scribed in Section 3.4.2 using a single render pass for the
evaluation of the shadow maps in our DirectX 10 render-
ing framework. In the shadow maps, we store the depth
linearly and use the following condition instead of the one



given in equation 3 to check if two fragments are equal:∣∣∣∣1− depthle f t(x,y)
depthright(x,y)

∣∣∣∣ < γ̂, (7)

resulting in an error threshold that is relative to the dis-
tance.

We furthermore implemented a subdivision strategy for
two-dimensional light sources using a quad tree as de-
scribed in Section 3.3.5. An example image can be seen in
Figure 1.

5 Results

Figure 7: Left side: Sampling with 128 Shadow maps.
Right Side: Our Method. For the scene in the upper row,
our approach generates only 7 shadow maps and renders
at more than 60 fps, while the 128 shadow maps can only
be rendered at 11 fps. In the lower row, 44 shadow maps
are created in our approach, but the rendering speed is still
better (10 fps vs. 5 fps). Images created in the DirectX 9
framework using a linear light source and Deferred Shad-
ing.

All tests and images in this paper were calculated with a
frame buffer size of 1024×768, a shadow map size of 5122

and PCF filtering turned on. The system on which we were
testing our approach consisted of an AMD Athlon 64 X2
Dual Core Processor 4200 with 2GB RAM, and a NVidia
Geforce 8800GT with 512 MB Memory.

The goal of our algorithm was to improve the generation
of physically correct soft shadows by adaptively selecting
only the light source samples which do really contribute
to the visual quality of the penumbrae. In nearly all our
tests, our approach performed better than a version with
128 fixed equally distributed samples (Using 128 samples
results in reasonable accurate soft shadows and is still fea-
sible in terms of performance.). In scene configurations
where the penumbra regions are small, even real-time per-
formance could be achieved; but also in cases when up
to 50 shadow maps were necessary, our method was still

approximately twice as fast. Only when a penumbra is ex-
tremely large and fills a wide area of the frame buffer, the
performance of our algorithm was worse, since it has to
evaluate the same number of shadow maps plus the repro-
jection and comparison steps. In such a worst case, our
algorithm performs at approximately 66% of the speed of
the sampling approach with 128 fixed equally distributed
samples.

The DirectX 10 implementation using texture arrays
performed slightly better than the Deferred Rendering so-
lution, since the shadow map evaluation can be done in a
single pass, and no additional read/write operations on the
accumulation buffer are needed.

As you can see in Figure 7, the visual quality of the
generated shadows is very similar to the exact solution. By
varying the parameters ε and γ as well as by using a larger
PCF filter kernel, the soft shadow quality and accuracy can
moreover easily be traded for better performance.

5.1 Limitations

A big drawback of our approach is the global error met-
ric as described in Equation 4: It fails in cases when
hardly any shadows are visible on the screen, as the num-
ber of differing pixels on the screen is very low in such a
case. The algorithm will stop the subdivision, no matter
how coarse the shadow boundaries are. Furthermore, very
small light leaks could be missed due to the global error
metric as well.

Even though the rendering speed can be significantly
increased in most cases, our approach is very not suitable
for applications where a guaranteed constant frame rate
is necessary, as the number of needed samples can vary
heavily.

6 Conclusions and Future Work

We presented an algorithm which is able to render phys-
ically accurate soft shadows in most cases faster than the
regular light sampling method with a fixed sampling rate,
since only the samples which contribute to the visual qual-
ity are computed and evaluated. The decision whether
another sampling point is needed in-between two neigh-
boring ones is being reached by reprojecting the corre-
sponding shadow maps to the camera’s point of view and
comparing them there using an occlusion query. The time
needed for these checks is compensated by the reduced
number of shadow maps which have to be calculated.

In our test applications, we were able to render soft
shadows of a quality similar to the ones generated with
128 or 256 samples, but at interactive or even real-time
frame rates.

The method could be further improved by finding a bet-
ter error metric for the decision whether more sampling
points are needed or not; this could be for example done
by using a local error metric and not a global one. We



also plan to employ more advanced filtering strategies than
PCF for smooth penumbra transitions.

References

[1] Maneesh Agrawala, Ravi Ramamoorthi, Alan
Heirich, and Laurent Moll. Efficient image-based
methods for rendering soft shadows. In Proceedings
of the 27th annual conference on Computer graph-
ics and interactive techniques, pages 375–384. ACM
Press/Addison-Wesley Publishing Co., 2000.

[2] Thomas Annen, Tom Mertens, Philippe Bekaert,
Hans-Peter Seidel, and Jan Kautz. Convolution
shadow maps. In Jan Kautz and Sumanta Pattanaik,
editors, Rendering Techniques 2007: Eurograph-
ics Symposium on Rendering, volume 18 of Euro-
graphics / ACM SIGGRAPH Symposium Proceed-
ings, pages 51–60, Grenoble, France, June 2007. Eu-
rographics.

[3] B. Aszdi and L. Szirmay-Kalos. Real-time soft shad-
ows with shadow accumulation. In Eurographics
2006 Short Presentations, pages 53–56, 2006.

[4] Lionel Atty, Nicolas Holzschuch, Marc Lapierre,
Jean-Marc Hasenfratz, Chuck Hansen, and François
Sillion. Soft shadow maps: Efficient sampling of
light source visibility. Computer Graphics Forum,
25(4), dec 2006.

[5] Franklin C. Crow. Shadow algorithms for computer
graphics. In James George, editor, Proceedings of
the 4th annual conference on Computer graphics and
interactive techniques, volume 11, pages 242–248.
ACM Press, July 1977.

[6] Michael Deering, Stephanie Winner, Bic Schediwy,
Chris Duffy, and Neil Hunt. The triangle proces-
sor and normal vector shader: a vlsi system for high
performance graphics. SIGGRAPH Comput. Graph.,
22(4):21–30, 1988.

[7] William Donnelly and Andrew Lauritzen. Variance
shadow maps. In In SI3D 06: Proceedings of the
2006 symposium on Interactive 3D graphics and
games, ACM, pages 161–165. Press, 2006.

[8] George Drettakis and Eugene Fiume. A fast shadow
algorithm for area light sources using backprojec-
tion. In SIGGRAPH ’94 Proc., pages 223–230, 1994.
http://safran.imag.fr/Membres/George.Drettakis/pub.html.

[9] Randima Fernando. Percentage-closer soft shad-
ows. In SIGGRAPH ’05: ACM SIGGRAPH 2005
Sketches, page 35, New York, NY, USA, 2005. ACM.

[10] Vincent Forest, Loc Barthe, and Mathias Paulin.
Accurate Shadows by Depth Complexity Sampling.

Computer Graphics Forum, Eurographics 2008 Pro-
ceedings, 27(2):663–674, 2008.

[11] Gael Guennebaud, Loc Barthe, and Mathias Paulin.
Real-time soft shadow mapping by backprojec-
tion. In Eurographics Symposium on Rendering
(EGSR), Nicosia, Cyprus, 26/06/2006-28/06/2006,
pages 227–234, http://www.eg.org/, 2006. Euro-
graphics.

[12] Gael Guennebaud, Loc Barthe, and Mathias Paulin.
High-Quality Adaptive Soft Shadow Mapping. Com-
puter Graphics Forum, Eurographics 2007 proceed-
ings, 26(3):525–534, septembre 2007.

[13] Jean-Marc Hasenfratz, Marc Lapierre, Nicolas
Holzschuch, and François Sillion. A survey of real-
time soft shadows algorithms. In Eurographics. Eu-
rographics, Eurographics, 2003. State-of-the-Art Re-
port.

[14] Paul S. Heckbert and Michael Herf. Sim-
ulating soft shadows with graphics hardware.
Technical Report CMU-CS-97-104, CS Dept.,
Carnegie Mellon U., Jan. 1997. CMU-CS-97-104,
http://www.cs.cmu.edu/ ph.

[15] William T. Reeves, David H. Salesin, and Robert L.
Cook. Rendering antialiased shadows with depth
maps. In Proceedings of the 14th annual conference
on Computer graphics and interactive techniques,
pages 283–291. ACM Press, 1987.

[16] Daniel Scherzer. Shadow mapping of large environ-
ments. Master’s thesis, Institute of Computer Graph-
ics and Algorithms, Vienna University of Tech-
nology, Favoritenstrasse 9-11/186, A-1040 Vienna,
Austria, 8 2005.

[17] Michael Schwarz and Marc Stamminger. Bitmask
soft shadows. Comput. Graph. Forum, 26(3):515–
524, 2007.

[18] Erik Sintorn, Elmar Eisemann, and Ulf Assarsson.
Sample-based visibility for soft shadows using alias-
free shadow maps. Computer Graphics Forum (Pro-
ceedings of the Eurographics Symposium on Render-
ing 2008), 27(4):1285–1292, June 2008.

[19] Jean-François St-Amour, Eric Paquette, and Pierre
Poulin. Soft shadows from extended light sources
with penumbra deep shadow maps. In Graphics In-
terface 2005, pages 105–112, May 2005.

[20] Lance Williams. Casting curved shadows on curved
surfaces. Computer Graphics (SIGGRAPH ’78 Pro-
ceedings), 12(3):270–274, Aug. 1978.


