
A Novel User Interface for Photogrammetric Reconstruction

Irene Reisner-Kollmann∗

VRVis Research Center for Virtual Reality and Visualization
Vienna / Austria

Figure 1: Several views of the new user interface: Epipolar lines in rectified image pair (left). Multiple images in a grid
view (middle). 3d view with cameras, triangulated points and a fitted image (right).

Abstract

Reconstruction from images has become a popular and in-
expensive method of building 3D scenes. For this method
to work, one has to determine the position and orienta-
tion of the camera at which the images where taken. Al-
though the camera orientation can be done fully automati-
cally, the results are sometimes inaccurate and incomplete.
These problems can be solved by manual interactions. We
present a new graphical user interface for identifying pos-
sible orientation errors and for improving the orientation
results. Several views and editors show different aspects
of the oriented camera network and support the user in
creating exact camera orientations.

Keywords: Photogrammetry, Computer Vision, User In-
terface Design

1 Introduction

Interactive systems for investigating photographs of pop-
ular world sites, high-quality modeling of real-world ob-
jects or reconstructions of big cities are just a few exam-
ples for the use of photogrammetric reconstruction. They
all have in common that the information given by a set of
input images is used for determining the camera poses and
the structure of the scene.

The first step in all reconstruction applications is to de-
termine the camera parameters. These include the internal
camera parameters as well as the position and orientation
of the cameras. Usually an automatic system based on
feature points is used for determining the relative poses

∗reisner-kollmann@vrvis.at

between the cameras that have captured the input images.
Unfortunately, the automatic camera orientation process

does not always deliver exact and complete results. We
provide a new user interface for manually improving the
orientation results. The user can review the results of the
automatic algorithm and if necessary edit the matching
points between images. Manually editing the automatic
results will usually be more convenient than taking new
photographs.

The paper starts with the problem statement in Sec-
tion 2. Section 3 outlines the automatic camera orientation
process. Section 4 gives an overview of related work. Sec-
tion 5 describes some general aspects of the user interface.
Detailed information about the views and editors is given
in Section 6.

2 Problem Statement

It is possible to calculate the camera orientations fully au-
tomatically for a set of images (see Section 3). Unfortu-
nately, the automatic process sometimes leads to inaccu-
rate results because of incorrectly matched feature points
or due to a lack of feature points. These problems can
be solved by taking additional pictures of the scene which
provide more information for the orientation calculations.
However, this approach is not very convenient and some-
times it is just not possible, because the scene has changed
or is not accessible anymore.

Some examples for possible errors during automatic ori-
entation are provided in the following list:

• Similar but uncorrelated feature points have been
matched.



• Large image regions have no or only a few feature
points.

• Different feature tracks point to the same item and
could be merged.

• Feature points on a moving object have been identi-
fied and matched across multiple images.

• Wrong elements of a repetitive pattern have been
matched.

• An image has only very few matches to other images.
The camera pose for this image is probably inaccu-
rate.

• Image shots are only connected to very few other im-
ages and form a string of concatenated image shots.
Errors are accumulated which can be prevented by
connecting more images to each other.

It is easier for humans to compare images and find cor-
responding parts than for the automatic algorithm. There-
fore, we want to give the user the possibility to correct
these errors by manually editing the feature points. Inac-
curate camera poses for a set of images can be improved
with the help of the human visual system and creativity.
The results are satisfactorily accurate camera poses which
are the foundation for other photogrammetric applications.

3 Camera Orientation

The goal of the camera orientation process is to calcu-
late the relative camera poses for a set of input images.
Furthermore, the structure of the scene can be previewed
by a sparse reconstruction of scene points. The camera
poses are defined by the extrinsic camera parameters po-
sition and orientation. We usually use calibrated images,
i. e. the intrinsic camera parameters focal length and prin-
cipal point are already known. A comprehensive descrip-
tion of the orientation of multiple cameras is given by
Hartley and Zisserman [6].

Our system for orienting the cameras is based on
the Structure-and-Motion computation developed by the
VRVis [10, 7]. The algorithm uses feature points and car-
ries out the following steps:

• Feature detection

• Feature matching

• Camera pose estimation and triangulation

• Bundle adjustment

Each image is searched for distinctive feature points.
These features are matched across multiple images by
comparing the image contents at their position. Corre-
sponding points across two or more images are connected
to a feature track. These corresponding points are used for
estimating initial camera poses.

For each feature track the position of the point in 3D can
be obtained by triangulation. Triangulation intersects the

back-projected rays from all feature points in this track.
Triangulating many feature tracks reconstructs a sparse
point model of the scene.

The final step in the orientation process is a nonlinear
optimization called bundle adjustment. The reprojection
errors are reduced by adapting the camera poses and tri-
angulated points while the positions of the feature points
stay fixed. The camera orientation delivers one or more
networks of cameras which are connected by a set of fea-
ture tracks.

4 Related Work

Panorama stitching combines multiple input images for
creating a panoramic view of a scene. The registration of
input images is often done by matching feature points with
the same techniques as described in Section 3[1]. Registra-
tion is simplified due to the constraint that all images have
been taken from the same position. Panorama stitching
applications like PTGui1 or Autopano2 provide user inter-
faces for editing the feature points. Usually, two images
are displayed next to each other for comparing and edit-
ing the matched feature points. The user is additionally
supported by a magnifier, automatically placed matching
points and linked scrolling for automatically showing cor-
responding image contents.

Camera tracking applications (Boujou3, Voodoo Cam-
era Tracker4) calculate the camera path for a video se-
quence by observing the change of feature points over
time. Image registration as well as user interfaces exploit
that consecutive frames usually show a similar view of the
scene. The feature points are enhanced by showing the
path to the pixel positions of corresponding feature points
in neighboring frames. This reveals incorrectly matched
feature points as their path differs from the other feature
paths.

Applications like Photo Tourism5 and Photosynth6 po-
sition sets of photographs in 3D according to their view-
point location and orientation together with a sparse set
of 3D points. The calculation of the camera orientation
[9] is specialized on large sets of unordered and uncali-
brated photographs. The scene can be explored by click-
ing through the images. It is also possible to move to
a neighboring image of the currently selected image. A
more sophisticated navigation technique [8] detects orbits
and panoramas based on the camera poses.

Image-based modeling [2, 11] creates 3D models from
one or multiple input images. In semi-automatic modeling
applications (ImageModeler7, PhotoModeler8) the user

1http://www.ptgui.com
2http://www.autopano.net
3http://www.2d3.com
4http://www.digilab.uni-hannover.de
5http://phototour.cs.washington.edu
6http://photosynth.net
7http://www.imagemodeler.com
8http://www.photomodeler.com



marks features and defines geometric primitives across all
input images. Epipolar lines support the user at finding the
correct corresponding points. If two corresponding fea-
ture points have been defined, the corresponding features
in other images are set automatically.

5 User Interface

5.1 Task Analysis

The usual workflow (Figure 2) in our application starts
with the automatic orientation of all input images. The
next step is to review the results and look for possible er-
rors. These errors can be adjusted by editing the feature
points. The camera orientation can then be refined auto-
matically with another bundle adjustment step using the
newly added information. This procedure is repeated until
the results are accurate enough and all necessary images
are orientated.

Figure 2: Workflow for creating an accurate camera orien-
tation.

The first step after the automatic orientation is to re-
view the results and look for possible errors. Various views
show different aspects of the camera network.

The results can be manipulated by editing the feature
tracks and points. Most operations can be done with direct
manipulation techniques using the mouse. If it is useful,
keyboard shortcuts are available, e. g. moving a point can
be done with the arrow keys.

Three groups of tools for the feature point manipula-
tion with the mouse are available: Move, Link and Cre-
ate. The selection state of the points and the location of
the mouse define which specific action is done. Selecting
points and deleting points can be done independently from
the selected tool.

Select Many actions are applied to a set of selected feature
tracks. Tracks are selected by spanning a rectangle
over feature points in one image. The selection set
always contains the whole feature track, not only the
feature point in the current image.

Delete Selected feature tracks can be deleted by pressing
Ctrl+Del. If a feature track only contains one feature
point, it can be deleted by pressing only Del.

Move One or more feature points can be translated to a
new image position. All selected points are moved
by clicking on one of them and dragging it to a new
position.

Link Two or more feature tracks are merged to one track.
The user successively selects the individual tracks for
linking. Linking is only possible if the tracks do not
have feature points in the same image.

Unlink Unlinking removes one feature point from the fea-
ture track and creates a new feature track with the re-
moved feature. Hitting Del twice unlinks a feature
point and subsequently deletes it.

Create It is possible to create new feature tracks as well
as to add new feature points to an existing track. If
one feature track is selected, a new feature point is
linked to it. Otherwise a new track is created.

All actions that affect the result of the orientation pro-
cess are stored in an Undo/Redo-stack. The user can undo
all actions in reverse order. The user can redo all undone
actions as long as no new action has been performed. The
Undo/Redo-stack enables the user to easily reverse actions
and to undo mistakes. Sequences of rather small actions
that belong together are concatenated to an action group
and are undone at once.

5.2 Scene components

A picture shot consists of an image together with its cam-
era parameters. For simplicity we always show the undis-
torted images which are used for detecting and matching
feature points. The reconstruction projects usually have a
lot of input images with high resolutions. Using precom-
puted thumbnails shortens the waiting time during loading
the images and reduces the required texture memory.

A feature point is visualized with an icon at the image
position and with a label that shows the id of the associ-
ated track. It is important that the user can easily detect
corresponding feature points in different images. For this
reason, feature points belonging to the same feature track
always have the same appearance. Selected feature tracks
and tracks with the mouse over are visualized differently
than other feature tracks.

The user can set various attributes for distinguishing be-
tween different feature tracks. The shape, size and color of
the feature point as well as the size, color and transparency
of the label are adjustable. These values are defined for the
states standard, mouse over, selected and mouse over se-
lected. Another possibility is to display each track with a
randomly defined track color. The track color is used for
all points of a track which supports the user in finding cor-
responding points. All scene components can be seen in
the single editor shown in Figure 3.



5.3 Zooming and panning

Navigation techniques are necessary in order to explore
different parts of the 2D or 3D space. They allow the user
to investigate small details as well as to get an overview
of the whole scene. Zooming and panning can be accom-
plished by mouse and keyboard interaction. 2D and 3D
navigation are designed similar in order to provide a con-
sistent interaction style9.

Scrollbars are a widely used technique for moving the
viewport. An important feature of scrollbars is that they
inform the user about the location and size of the whole
scene in relation to the widget size. Unfortunately, scroll-
bars are often very imprecise. Another drawback is that
the user has to move the mouse away from the currently
investigated part of the image.

The viewport can be moved continuously by panning it
with the middle mouse button. Panning is done like grab-
bing the image and dragging the grabbed point to a new
position. This has the advantage that the user can move
the viewport directly at the currently viewed image por-
tion.

During panning it may occur that the mouse reaches the
screen border before the desired viewport is visible. In this
case the user would have to stop panning, move the mouse
back and start panning again. Infinite panning performs
this task for the user and sets the mouse back automati-
cally. The user can move the viewport over wide ranges
without the need of interrupting.

The zoom value can be adjusted with the scroll wheels.
During zooming, the image position under the mouse cur-
sor stays where it is. This allows the user to zoom into a
specific position of the image. Moving the mouse with the
right button pressed provides a continuous zooming. Fur-
thermore, the zoom level can be set exactly in a text field.
A zoom level of 100% means that a pixel of the displayed
image has the same size as a screen pixel. The user inter-
face also provides buttons for fitting the height, width or
both dimensions of the image into the widget.

6 Views and Editors

Our application provides multiple views to show different
aspects of the orientation data. Some of the views are used
for editing the feature points whereas other ones are only
used for reviewing the results. Multiple views of the same
or different type can be used simultaneously. The views
are available via a window system and can be enabled and
disabled arbitrarily by the user. The window layout can
be changed by dragging and dropping the individual win-
dows. The windows can be arranged next to each other or
stacked in a tabbed window.

9See Section 6.5 for 3D navigation techniques

Figure 3: The single image editor displays one image shot
and provides editable feature points. Feature points are
displayed with an icon and the unique id of their feature
track.

6.1 Single image editor

The single image editor displays a single shot whose fea-
ture points can be edited. Using one single image editor
alone is usually not sufficient for editing feature points,
because feature tracks have to be defined across two or
more images. However, multiple single image editors can
be used simultaneously for comparing and editing multi-
ple shots. The single editor can also be used in combina-
tion with other views. For example, a grid view gives an
overview on multiple images and the single editor shows
one image in detail.

The basic setup contains the image and the feature
points with their label (see Figure 3). The feature points
and labels are not affected by zooming, rotations or other
transformations of the image. The feature points are visu-
alized as described in Section 5.2.

(a) (b) (c)

Figure 4: Different versions of the magnifier. (a) No filter.
(b) Contrast filter. (c) Edge filter.

6.1.1 Magnifier

The magnifier enables the user to see details of the image
simultaneously with the context around these details. The
magnifying window is attached to the mouse cursor and
shows the region around the mouse position with a spec-
ified zoom level. The zoom level is usually higher than
the overall zoom level of the image, but it is also possible
to use it the other way round. In this case the magnifier



gives an overview whereas the details are visible in the
background image.

It is possible to change the contrast value of the im-
age in the magnifier. A higher contrast may reveal some
features for an exacter placement of feature points. An-
other possibility is the application of an edge filter. We
use the Roberts filter due to its fast computation. Feature
points and labels are also displayed in the magnifier win-
dow. They are not affected by the image enhancement fil-
ters. Figure 4 shows the magnifier window with different
settings.

6.1.2 Subpixel accuracy

Feature points can be located at subpixel accurate posi-
tions. Editing feature points with subpixel precision is
possible with a very high zoom level so that screen pix-
els are smaller than image pixels. This procedure has the
drawback that the user has to switch often between the
zoomed-in view for placing precise feature points and the
zoomed-out view for getting an overview of the whole im-
age region.

A more convenient method for placing feature points at
subpixel positions involves the magnifier. If subpixel ac-
curate movements are enabled, movements of the mouse
cursor are decreased by the zoom factor of the magnifier.
Moving the mouse for one pixel in the magnifier corre-
sponds to a subpixel movement of the original mouse cur-
sor, provided that the zoom level in the magnifier is higher
than in the surrounding view.

6.2 Dual image editor

The dual image editor displays two single image editors
next to each other. The user can compare two images
and edit the feature correspondences between these im-
ages. The dual image editor offers additional function-
alities based on constraints given by epipolar geometry.
If the relative orientation between two views already has
been estimated, the user is supported by epipolar lines and
rectified images.

Figure 5: Feature points correspond to an epipolar line in
the other image. In the left image, the epipole correspond-
ing to the camera center of the right image is visible.

6.2.1 Epipolar lines

Each point in one image corresponds to an epipolar line in
the other image (see Figure 5). Epipolar lines can be con-
structed by projecting the viewing ray of an image point
onto the other camera. If the relative orientation between
the cameras is correct, the corresponding point has to lie
exactly on this epipolar line.

Epipolar lines can be used to control if all existing fea-
ture tracks agree with the relative pose between the shots.
If a point does not lie on its epipolar line, it probably has
been matched incorrectly. Manually adding new feature
points is also facilitated by displaying epipolar lines.

Three modes for epipolar lines are provided. The first
one displays the epipolar line corresponding to the current
mouse position. The other modes show the epipolar lines
for all feature points or for the current selection of points.

Figure 6: Rectification transform the images such that cor-
responding image points lie on the same height.

6.2.2 Rectification

Epipolar rectification [5] transforms a pair of camera
views in such a way that corresponding epipolar lines
become collinear and parallel to one of the image axes.
In rectified images corresponding points lie on the same
height in both images. Figure 6 shows an example for rec-
tified images.

Rectification facilitates the manual creation of new fea-
ture tracks because the matching feature point has to be
located on the same horizontal line in the other image.
Furthermore, orientation errors become easily visible in
rectified images as incorrect feature points do not lie on
their epipolar line. Rectified images can also be used as a
stereo view if large parts of them are overlapping.



6.3 Grid view

The grid view (Figure 7) gives an overview of a set of
shots where the connectivity between the shots can be vi-
sualized. The individual images cannot be moved or en-
larged, but it is possible to zoom and pan the whole layout
of images with the usual 2D navigation techniques. Fea-
ture points are usually not visible in this view.

One shot in the grid view can be selected as focused
shot. The focused shot can be made editable, i.e. feature
points are visible and can be manipulated like in a single
image editor.

Several properties of the grid view can be adjusted dy-
namically. It is possible to modify which shots are dis-
played, how they are ordered and which layout is used.
The properties are independent from each other and can
be combined arbitrarily.

6.3.1 Shot selection

Depending on the shot selection, the grid view can give an
overview of a large set of shots as well as it can show de-
tails of only a few shots. The shot selection types are based
on the currently focused shot or on the set of selected fea-
ture points.

All All images from the current network are shown.

Connected Shots that are connected by at least one fea-
ture track to the focused shot are shown.

Selected Shots that contain a feature in the current track
selection set are displayed.

6.3.2 Shot order

The selected shots can be ordered in different ways. The
goal is to put interesting shots to the beginning of the shot
list. Interesting shots are e. g. the ones that are most similar
to the focused shot. A simple similarity measurement is
the number of feature point matches between two shots.
Highly connected shots will be placed near the focused
shot.

Other possibilities for ordering the shots are available.
The shots can be ordered according to their number of fea-
ture points or to how many shots they are connected. The
shots can be arranged in descending or ascending order.
Some orderings are independent from the focused shot
which means that it will not be visible. The focused shot
will appear again if another ordering is selected.

6.3.3 Layout

The grid view should efficiently use the available screen
space in order to display a large set of images. The layout
defines the size and position of each image in the ordered
list of images.

The user can switch between two layouts. The table
layout places the images in a table with fixed-sized cells.

Figure 7: The grid view with circular layout and an ed-
itable focused shot.

The images are laid out in rows from left to right. The fo-
cused shot is positioned at the top left corner of the render
window. The number of rows and columns depends on the
aspect ratio of the window in order to display the images
as big as possible.

The circular layout positions the focused shot in the
center of the windows. The other shots are arranged in
rectangles around the focused shot. The focused shot can
be enlarged compared to the other images. The size of the
other images is adapted based on how far from the focused
shot they are located. Shots that were ranked higher during
sorting are displayed larger than others.

6.4 Graph view

The graph view (Figure 8) visualizes the connections be-
tween the individual image shots. It displays the structure
of the network and reveals if it contains sparsely connected
groups of shots. If groups are only connected by a few fea-
ture tracks, the resulting camera orientations probably will
be inaccurate. It is recommended to add additional feature
tracks between these images.

Force-directed graph drawing techniques [4, 12] are
suitable for revealing the structures of the shot networks.
The network of picture shots and feature tracks can be in-
terpreted as an undirected graph. The shots are considered
as nodes. A pair of nodes is connected by an edge if the
shots share a feature track.

Nodes that are connected by an edge are moved together
by attractive forces. Repulsive forces are applied to all
nodes. This has the effect that connected nodes keep a
minimum distance. Nodes that are not connected with
each other are pushed away from each other.

The iterative algorithm is stopped if the system is con-
sidered as converged. Three steps are done in each iter-
ation: The effects of repulsive forces are applied to each
node, then the attractive forces are applied to connected
nodes and finally the calculated displacement is limited



Figure 8: The graph view displays the relations between
image shots. The enlarged part shows that similar images
are placed near each other.

to a maximum value. This maximum value is decreased
in every iteration (cooling down) in order to assure that
the system finally converges. The system is initialized by
placing the nodes at random positions.

The optimal distance between nodes is calculated based
on the number of nodes and the size of the window. The at-
tractive and repulsive forces, fa and fr, between two nodes
are calculated with the following equations (based on Wal-
shaw [12]):

fr(d) = −Ck2/d
fa(d,n,m) = (d− k) ·n/m

(1)

where d denotes the current distance between two nodes
and k is the optimal distance. The constant C is an ar-
bitrary number for preventing unstable systems with too
high repulsive forces. Attractive forces are weighted with
the number of feature point correspondences n divided by
the overall number of feature tracks m in the current shot.

The user can define an arbitrary value for the constant
C. A higher value leads to a more divergent layout than a
small value. In order to avoid visual clutter, connections
with less than a user definable number can be hidden. This
also allows the user to see the approximate number of fea-
ture point correspondences between two shots.

6.5 3D view

The 3D view (Figure 9) allows the user to see the posi-
tions and orientations of the cameras together with their
photographs. Additionally, triangulated 3D points reveal
the basic structure of the scene. The 3D view gives a first
impression whether the orientation needs further refine-
ment. In combination with other views, it is often helpful
to know how cameras are approximately oriented to each
other.

Camera poses are visualized by frustums at their camera
position. A frustum illustrates the position, orientation and
field of view of the camera. The triangulated 3D points are
rendered as points. They are colored with the mean color
value of all features of the particular feature track.

It is possible to select a shot in the 3D view and dis-
play its image. The image can either be positioned at the
back plane of the frustum or at a plane fitted to the trian-
gulated 3D points. All 3D points of the feature points in
the selected image are used for determining the best fitting
plane. RANSAC [3] is used in order to exclude possible
outliers.

Figure 9: The 3D view shows cameras and triangulated
points. Further, it is possible to display a selected image.

6.5.1 Navigation

The user can navigate in the 3D space by changing the
camera with keyboard and mouse interactions. The keys
WASDEF are used for translating the camera in all six
main directions. The mouse interaction is similar to the
navigation techniques in 2D. Panning, which changes the
camera position, is done by pressing the middle mouse
button. Moving the mouse with the right mouse button
pressed moves the camera forward or backward. The
scrolling wheel is used for changing the field of view of
the camera. Mouse movements with the left button pressed
rotate the camera.

Another way for navigating through the 3D space is
jumping from one image to another. A new image can be
selected by clicking on the particular camera frustum. Hit-
ting the spacebar moves the viewing camera to the camera
of the currently selected image by interpolating between
the camera parameters.

We provide an image-based navigation similar to the
techniques described by Snavely et al. [9]. In a pre-
processing step the neighbors for each image are computed
for the directions left, right, up, down, forward and back-
ward. If neighbors are available, the user can switch to
them with the arrow and page up/down keys. All shots
that share a minimum amount of feature tracks with the
current shot are candidates for being a neighbor. The re-
lation between the images is estimated by comparing the
bounding box of the matching feature points. For exam-
ple, the bounding box of the zoom-in neighbor has to lie



inside the bounding box of the current shot.

7 Conclusions and Future Work

We have presented a new graphical user interface that al-
lows efficient manual interventions in the orientation stage
of photogrammetric reconstruction. The relative camera
poses are initially calculated automatically. The user can
review the results with several views and search for pos-
sible errors. These errors can be reduced by editing the
feature points. The new information is used to refine the
orientation results by applying auto-orientation again.

The advantage of the new application is that automatic
orientation and manual interventions can be used together.
Auto-orientation delivers results without user input. These
results will often be sufficient if enough photographs have
been provided. Otherwise, the user has the possibility to
manually improve the orientation. The manual refinement
will usually be more efficient and convenient than taking
additional photographs.

We have several ideas how we can further improve the
user interface. One task will be to give the user more hints
about probably wrong feature points. This includes em-
phasizing feature points with high reprojection errors or
image shots with only a few feature points. A timeline
view could be used for detecting incorrect features in fea-
ture tracks. The user can scroll through all images contain-
ing one or more selected feature tracks across the timeline
view. The selected points stay centered during scrolling so
that large errors will stand out during scrolling. The time-
line can also provide additional information, e. g. the point
errors per image.

Another task will be to provide a higher connectivity
between the individual views. For example, it would be
convenient to open a certain image shot in a single image
editor by clicking on it in a grid view.

We want to provide the possibility to use videos and
panoramic images. They can be imported together with
their orientation data from camera tracking software or
panorama stitchers. Special user interface elements are
required for investigating these assets. For example, the
panorama can be displayed together with other oriented
image shots in the 3d view from the position of the
panorama camera.

Finally, the user interface should be extended for other
steps in photogrammetric reconstruction. We want to pro-
vide an application with graphical user interfaces for the
whole reconstruction pipeline. The user starts with the
camera calibration and orientation. The results can then
be used for dense matching and creating 3D models or for
creating novel views of the scene with image based ren-
dering.

8 Acknowledgments

This work has been accomplished at the VRVis Research
Center and is part of the project Reconstruction for Inte-
grated Facility Planning (FFG Basisprogramm 818114). I
want to thank Andreas Reichinger and Anton Fuhrmann
for their supervision and valuable input on this work.

References

[1] M. Brown and D. G. Lowe. Recognising panoramas.
In Proc. ICCV ’03, pages 1218–1227, 2003.

[2] P. E. Debevec. Modeling and Rendering Architec-
ture from Photographs. PhD thesis, University of
California at Berkeley, Computer Science Division,
Berkeley CA, 1996.

[3] M. A. Fischler and R. C. Bolles. Random sample
consensus: A paradigm for model fitting with appli-
cations to image analysis and automated cartography.
Commun. ACM, 24(6):381–395, 1981.

[4] T. M. Fruchterman and E. M. Reingold. Graph draw-
ing by force-directed placement. Softw. Pract. Ex-
per., 21(11):1129–1164, 1991.

[5] A. Fusiello, E. Trucco, and A. Verri. A compact al-
gorithm for rectification of stereo pairs. Mach. Vision
Appl., 12(1):16–22, 2000.

[6] R. I. Hartley and A. Zisserman. Multiple View Ge-
ometry in Computer Vision. Cambridge University
Press, Second edition, 2003.

[7] A. Irschara, C. Zach, and H. Bischof. Towards wiki-
based dense city modeling. In Proc. ICCV ’07, 2007.

[8] N. Snavely, R. Garg, S. M. Seitz, and R. Szeliski.
Finding paths through the world’s photos. In Proc.
SIGGRAPH ’08, pages 15:1–15:11, 2008.

[9] N. Snavely, S. M. Seitz, and R. Szeliski. Photo
tourism: Exploring photo collections in 3D. In Proc.
SIGGRAPH ’06, pages 835–846, 2006.

[10] M. Sormann, J. Bauer, C. Zach, A. Klaus, and
K. Karner. VR modeler: from image sequences to 3D
models. In Proc. SCCG ’04, pages 148–156, 2004.

[11] A. van den Hengel, A. Dick, T. Thormählen,
B. Ward, and P. H. S. Torr. Videotrace: rapid in-
teractive scene modelling from video. In Proc. SIG-
GRAPH ’07, pages 86:1–86:5, 2007.

[12] C. Walshaw. A multilevel algorithm for force-
directed graph drawing. In Proc. GD ’00, pages 171–
182, 2000.


