
Smoke simulation with obstacles
outside the simulation grid

Adam Csendesi

Department of Control Engineering and Information Technology

Budapest University of Technology and Economics

Budapest / Hungary
E-mail: csendesi.adam@gmail.com

Abstract

The integration of natural phenomena in a virtual scene is

a difficult task. Most of them involve small scale

dynamics that looks chaotic on large scale. Such

phenomena are fluid motion, fire, and smoke. Although

their simulation is difficult and usually has high resource

requirements real-time simulation is possible by making

compromises. In this paper we present a method to

simulate smoke in real-time by taking advantage of the

GPU. We also present a way to include solid objects

considered as obstacles in the simulation. A disadvantage

of the simulation is that the space for simulation is

limited. The obstacles outside the simulation grid have

no effect. In this paper we introduce a way to overcome

this.

Keywords: Smoke simulation, Navier-Stokes equations,

Obstacles, Real-time, GPGPU

1 Introduction

Natural phenomena are still a researched field in

computer graphics. In engineering their simulation is

essential to accurately predict their behaviour. In the

game industry accurate visualizations make the virtual

worlds more realistic. Even though we know their inner

dynamics their simulation remains difficult due to the

tremendous amount of the resources required. In most

cases it is necessary to run these simulations fast. In

computer games the phenomena are only part of the

virtual scene that needs to be updated and rendered

within a fraction of a second.

Smoke is one of the complex natural phenomena. It is

basically a flow of matter, similar to fluids and fire. Its

motion and dynamics are governed by the laws of

physics on the scale of particles, but the tremendous

amount of particles form a complex system that is

difficult to simulate. The calculation capacity limits the

number of particles we can use to create the effect, and a

low number of particles make the effect visually

unrealistic. The approach to simulate the individual

particles is referred to as the Lagrangian view.

There is another approach, called the Eulerian view,

where the space is divided into discrete cells forming a

grid. Every cell contains macroscopic quantities that give

information about the space and matter inside that cell

(like velocity, pressure, density, etc.). A simulation in

Euler space does not calculate the motion of each

particle, but the changes of the quantities in the cells. An

advantage of this view is that it is easy to approximate

gradients in a grid. Using this view, the accuracy of the

simulation highly depends on the resolution of the grid

instead of the amount of particles used. The higher this

resolution the better it approximates the real life

behaviour.

The value of a simulation method is also measured by

how well it can be integrated into a virtual world. An

absolutely essential part of these scenes are solid objects.

A world, even a virtual one would be boring with only

fluid, or gas in it. Solid objects are considered obstacles

and they drastically affect the motion of other objects,

fluids, and gases. That is why their affect on smoke

should be included in its simulation.

2 Related work

The particle based approach was the dominant solution

for fluid simulations mostly because the necessary

computing time can be controlled by limiting the

maximum number of particles. In real-time applications

there was no capacity for solving equations. With the

particles the computations are very simple as long as

there is no need to simulate particle-particle interactions.

An accurate simulation however requires those

calculations as well.

The Eulerian approaches had very limited potential

until Stam introduced the “stable fluid” simulation in [8].

This presented the first unconditionally stable algorithm

for solving the Navier-Stokes equations. The method was

still far from applicable in real-time. Harris [9] presented

an implementation that uses the GPU on a video card

based on Stam’s work. He also tested algorithms and

recommended the Jacobi iteration to be used in the

solving process.

There are also articles and papers [1][3] on

implementing a real-time fluid simulator based on the

Navier-Stokes equations using the modern GPUs. The

method is based on storing the simulation grid in textures

and implementing the algorithms in pixel/fragment

shaders. Rendering the texture that contains the current

state onto another texture using the special shaders

executes an algorithm. The target texture then contains

the new state of the grid, containing the updated values in

the cells. Even if some technical details are different in

the implementations, the simulation in [1] and [3] are

based on this method. We also used this technique to run

the simulation on GPU.

3 Simulation

3.1 Dynamics

The basics of the simulation are to numerically calculate

the flow in the simulation grid. Every cell has a velocity

which describes the average velocity of the matter inside

the cell. Based on this, it is possible to approximate the

distribution of quantities in the next time step. To

simulate the motion we need to update the velocities

according to the physical quantities. The Navier-Stokes

equations offer a possible solution to that problem. The

momentum equation (1) describes the change of the

velocity.

�����
�� + ��� ∙ ∇��� +

� ∇� = �� + � ∙ ∇���� (1)

In the equations u stands for velocity, p for pressure, g

for acceleration caused by gravity, ν for dynamic

viscosity, and ρ for density.

The second is the incompressibility equation (2),

which guarantees the conservation of mass if the matter

is incompressible.

 ∇ ∙ ��� = 0 (2)

Fluids and gases are compressible but here we can

make a general simplification and regard them

incompressible. In most cases the compressibility is

irrelevant because extreme circumstances are required to

produce visible compression. We don’t lose much with

this constraint but we gain a lot by enforcing the

conservation of material.

The momentum equation is a special form of

Newton’s second law. The numerical solving of this

formula alone is easy since the variables are all contained

in the cells as quantities or can be calculated from the

stored quantities. It can be further simplified by dropping

viscosity. It is a very important force in the equation and

must be counted in for realistic results but we can still

leave it out. The reason is that the numeric nature of the

simulation has an effect which is similar to viscosity and

is very strong and visible. This is called numeric

dissipation because the accumulating numeric errors in

the calculations eliminate the small details in the motion.

An example is the blur of turbulent flow when the vortex

is created by the simulation, but with time the numeric

dissipation blurs it into a simple moving mass. We

replace the gravity with a variable force that creates

acceleration a.

�����
�� + ��� ∙ ∇��� +

� ∇� = �� (3)

The incompressibility equation derives from the

constraint that the amount of quantities flowing out from

a certain place must equal the quantities flowing in. This

is a constraint for the momentum equation which makes

the solution difficult to calculate. We have to ensure that

the velocity field is divergence free. A projection

operator can be defined which takes w as input and gives

u as output. It is called projection because executing the

same operator again on a field leaves it unchanged. It is

necessary in this case since we want a divergence free

velocity field unchanged after a projection on it.

The projection operator should solve a linear

equation. If w is a velocity field containing divergence

and u is divergence free than (4) is true.

 � = � − ∇� (4)

Combining this with the incompressibility constraint

gives equation (5). This can be interpreted as a linear

equation and can be solved for pressure.

 ∇2� = ∇ ∙ � (5)

Using equation (5) we can update the pressure values

in the cells so when changing the velocities using the

pressure gradient we eliminate the divergence. Solving

equation (4) for pressure is possible with a number of

algorithms. We used the Jacobi iteration to do this. This

is considered an any-time algorithm since it converges to

the solution. We need to run several iterations to get an

accurate update of the pressures. Based on experience

20-30 cycles produce acceptable results. The

disadvantage of this method is that the results are not

perfect so this cannot ensure a perfectly divergence free

velocity field nor the perfect incompressibility of matter.

The first creates an error in the simulation but the second

can also be considered an advantage since it makes the

simulated material slightly compressible.

Now that the velocity field is updated and divergence

free, the simulator only needs to calculate the advection

of quantities in the grid. It would seem almost trivial to

just use a forward integration to get the next position of

the quantities in a cell. It would be a solution with

Lagrangian viewpoint, but in Eulerian space it is

unconditionally unstable. Not to mention that this could

not be done on a GPU. There is also an algorithm that

traces back the flow by approximating the source

position based on the velocity. The disadvantage of this

solution is that it is only an approximation and only first

order accurate. The main reason for the error is that the

calculated position of the source is based on the velocity

in the destination cell at the previous moment. Its

advantage is that the advection is unconditionally stable

so it can even be used with large time steps. Because the

theoretical view of this algorithm is Lagrangian but it is

an advection in Eulerian space, this advection scheme is

called semi-Lagrangian advection. Many simulators use

this because it is fairly easy to implement and it always

remains stable. The only condition is that it requires a

divergence free velocity field to work. In practice the

relatively small divergence that is left after the projection

is acceptable.

For the implementation, the solving of the Navier-

Stokes equations is broken down into the steps

introduced before. The first step is the advection on a

divergence free velocity field. It is followed by the

application of the accelerations, forces and other

manipulations on the quantities. Then the simulator runs

the projection operator to apply the pressure gradient and

make the velocity field divergence free again.

3.2 Smoke

The basic simulation is able to approximate a general

flow of the quantities in the cells. These quantities must

include the velocity and the pressure in order to run the

basic simulation. New quantities can be added to serve

the needs of special simulations. These new attributes are

not necessarily physical. For the smoke we should add

two more quantities which both describe physical

attributes. The new quantities are advected the same way

the previously introduced quantities do so the advection

scheme used previously is also applicable with the new

quantities

The density of the smoke is an essential value. It does

not affect the dynamics but is required for the

visualization of the smoke. The other one is the

temperature which creates buoyancy. This force is

calculated by (5), where m is the molar mass, R is the

universal gas constant, T is the temperature of the smoke,

T0 is the ambient temperature.

 ���������� = �∙�∙�
 !

"#
−

"$ %� (6)

Using the Boussinesq approximation the force to

apply in the simulation is sown in equation (6). It

includes the gravity as well as the buoyancy, and

simplifies them in a linear equation. The constants α and

β can be chosen based on experiences and test results.

 ���������� = &−' ∙ (+) ∙ *+ − +,-. ∙ %� (7)

Applying this force after advection and using the

density values for rendering the general flow simulation

is capable of simulating the motion of smoke.

Based on these algorithms we implemented a smoke

simulator in 2D. It is mainly for a sample

implementation. The results are shown on figure 1,

which pictures are taken as screenshots from the

simulator.

Figure 1 : Smoke simulation in 2D

3.3 MacCormack advection

The simulation is far from perfect. It has an inevitable

error because of its discrete nature. There are several

sources of this error. The trivial solution to decrease the

error is to increase the resolution of the simulation grid.

This approach works but has a high cost since the

simulation algorithm is to be executed for every cell. The

performance of the simulator is significantly lowered by

a higher resolution of the grid as shown by Table (1).

Another source of the error is the advection scheme

used in the implementation because it is only an

approximation. The semi-Lagrangian algorithm is only

first order accurate. Its accuracy highly depends on the

divergence in the velocity field, and the distance between

the source and the destination. A more accurate

advection scheme could also greatly improve the results.

Another advection scheme that is called MacCormack

advection gives second order accurate results and has

low performance cost. We used the algorithm that [6]

suggests and which is also used by [3]. It relies on the

following equations if A is a first order accurate

advection scheme, q
n
 is a quantity in the current moment,

q
n+1

 is a quantity in the next moment and A
inv

 is the

inverse of A (like time was going backwards).

 /0�1
 = 2*/�-

 /0� = 23�4*/0�1
-

 5 = 607867

�

 /� = /0�1
 − 5 = /0�1
 + 678607

�

The MacCormack advection uses a second advection

step to estimate the error of the first one and then

eliminates that error. This advection scheme is second

order accurate and requires not much more than two

semi-Lagrangian advection steps. There is a severe

problem with this algorithm, its stability. It is only

conditionally stable, which means that during the

simulation it can destabilize and give completely useless

results (as it is visible in Figure (2)). These incidents can

be avoided by preventing the algorithm to create new

extrema. To make it unconditionally stable limiters must

be applied as presented in [6]. We decided that the

advection should revert to the first order accurate result

in case the limits would be passed. Since the semi-

Lagrangian advection scheme and the results within the

boundaries of the limiters are both unconditionally stable

the resulting advection scheme remains stable under any

circumstances.

Figure 2 : Result of unstable advection

Figure 3 shows the quality gained by this more

accurate advection because there are clearly more details,

even though the grid resolution is the same. Table 1

presents the low performance cost of this method. The

MacCormack advection can also be used to gain

performance by lowering the resolution since (as Figure

4 demonstrates) the quality of the semi-Lagrangian

advection in a high resolution grid can be achieved with

the MacCormack method on a lower resolution.

Figure 3 : left: semi-Lagrangian,

right: MacCormack

Figure 4 : left: 256x256 semi-Lagrangian,

right: 128x128 MacCormack

 semi-Lagrangian MacCormack

128x128 443 413

256x256 331 312

512x512 93 90

Table 1 : Performance
*
 results of the 2D simulator [FPS]

3.4 Simulation in 3D

In a virtual world the smoke should flow in a three

dimensional space. The equations do not limit the

dimension of the simulation grid, it is only a matter of

implementation. A way to use the GPU to run the

simulation is to store the values of the grid cells in

textures with floating point numeric representation. One

channel of a texture cell stores the value of one quantity

and since one texture has four channels we must use

more than one texture for all the quantities. A special

quantity is the velocity which being a vector requires one

channel for each of its components.

A crucial question is what texture type to use. Today

it is possible to use 3D textures because they can be used

as render targets. This feature was introduced in Shader

Model 4.0. An example for such implementation can be

found in [3]. It makes the shader just as simple as in a 2D

simulator leaving only the visualization as the main

difference. We used a ray marching algorithm - similar to

the one presented by [7] – to visualize the three

dimensional grid.

However it is also possible to use 2D textures and

divide them into tiles representing the layers of a 3D

texture. This flat 3D technique was chosen in [1]. The

*
 Test configuration: Athlon 64 X2 3800+, 4GB RAM,

Radeon HD3870 512 MB, Vista (64 bit)

coding is more difficult in this case because real 2D

texture coordinates have to be converted to virtual 3D

coordinates. Also the interpolation between the layers

has to be done manually in the shaders. The price in

difficulties is returned by the gain in performance.

We implemented both versions. The performance of

the simulator that uses 3D textures is almost

unreasonably low, as it is clearly visible from Table 2.

These values do not contain the visualization of the data.

 Flat3D 3D

32x32x32 336 18

64x64x64 76 9

128x128x128 10 4

Table 2 : Performance of the 3D simulator [FPS]

4 Obstacles

4.1 Voxelization

To simulate the effect of solid objects on the smoke’s

motion it is inevitable to provide data about them in

Eulerian space. The vertex based description would be

useless in the simulation. A useful form is a voxel based

model of the objects. The operation which creates a

voxel based model from a vertex based is called

voxelization. The main goal is to sign in every grid cell

whether or not an obstacle is present, and to store the

velocity of a moving solid object. The velocity describes

the average velocity of the obstacle’s part that is located

in the cell. This also means that the velocity is the same

for a whole object if it is not animated and not rotating.

The accuracy of the simulation with obstacles highly

depends on the resolution of the simulation grid since it

can be considered as the sampling resolution of the

objects physical form.

The implementation depends on the specifics of the

obstacles. If we assume all objects have closed surfaces

we can use a special rendering technique to voxelize. The

result will be the needed information, which voxels are

inside and which outside the solid object. The problem is

similar to the well known shadow volume, so the

solution can be similar as well. There are variations of

the implementation. Some use the stencil buffer, some

use blending (like [1]). The advantage is that the objects

can be any free form surfaces that are closed. The

disadvantage is that the model used for the voxelization

must be rendered for each layer of the grid. This is why a

simplified object is recommended for the voxeliation and

not the same as the one used in the scene.

If we limit the types of the obstacles to quadrics we

can use a simple shader to calculate the inside-outside

information for the whole grid. This is more

performance-friendly since we do not need to render the

object itself only specify its parameters. In case of a

sphere the shader can simply determine if a voxel is

inside by comparing its distance from the sphere’s centre

to the sphere’s radius. The disadvantage is the obvious

fact that the objects are limited. We used this method for

voxelizing a sphere in our sample program.

Figure 5 : 3D simulation with an obstacle

4.2 Boundary conditions

To create the effect of a solid object in the simulation

grid we must modify the simulator. An important change

is to ignore the values in those cells that are occupied by

obstacles whenever calculating gradients, or divergences.

This can be done by using the value in the centre cell for

the calculation instead of the real value in that

neighbouring cell. Without this modification the velocity

divergence and the pressure gradient could be corrupt at

the boundaries of the obstacles.

The other change in the shaders should be the

enforcement of the boundary condition. This condition

limits the velocity in the neighbour cells of the obstacles.

It is essential to keep the matter from flowing inside the

solid objects. If the velocities at the boundaries have to

be corrected, then these values create a divergence in the

velocity field. The created projection operator will then

smooth the velocity field. This allows the boundary

condition to affect the velocity field near the obstacles.

During the final step of the projection the neighbour

cell’s velocity can be changed directly so it is the best

place to enforce the boundary condition.

The condition itself may vary as the specific

application requires. Usually the free-slip condition is

used by fluid simulators and it is formally defined by

equation (7) if u is the velocity in a cell, uobstacle is the

obstacle’s velocity, and n is the surface normal of the

obstacle. It only allows the matter to flow parallel to the

obstacle’s surface which creates an effect similar to the

real behaviour of fluids. They appear to stick to the

surfaces and this can be reproduced using the free-slip

condition.

 ��� ∙ 9�� = �����:���;< ∙ 9�� (8)

Although it is realistic for fluids this behaviour looks

strange. Also it would require accurate surface normal

vectors to produce the desired effect. Instead, we used a

simple estimation by the relative position of the occupied

neighbouring cell to the centre cell.

This estimation makes it possible to limit the velocity

in a cell to zero which can produce an anomaly. When

smoke flows into such cell it acts as a source because the

neighbour cells are likely to pull matter from that cell

while the smoke is still completely stuck there. For these

reasons we chose to use a condition that lets the smoke

flow away from obstacles. Its formal description,

equation (8) is very similar to the free-slip condition only

it allows more freedom.

 ��� ∙ 9�� ≥ �����:���;< ∙ 9�� (9)

With this extra freedom it is possible that

neighbouring cells pull out matter from cells occupied by

obstacles. It has to be prevented by extending the

advection to check for this condition and change the

result accordingly.

Using the voxelization and the integration of the

boundary condition the simulator is now capable of

handling solid objects. It looks realistic and it does not

require too much extra resources. Unfortunately there is a

fundamental problem. The simulation grid is only a

predefined part of the virtual space. It means that only

those objects that at least intersect the box defined as the

simulation space can affect the simulation. The objects

outside the grid have no effect whatsoever and no matter

how close they are.

5 Outer obstacles

5.1 Effect of inner obstacles

The simulation of the outer obstacles is not possible but

the approximation of their effect can be applied

indirectly to the simulation. We used an acceleration

field to do this because it is not a direct manipulation of

the velocities but it still offers some level of local

control. The first step is to observe the simulated effect

of the objects inside the grid.

For the observation it is necessary to visualize the

velocity field. A ray marching algorithm like the one

used for the density is suitable with a slight modification.

The output colour should represent the vector of velocity,

and the colours are linked to the three components. The

problem is that the output is limited and the velocities are

not. Because of this problem a visible range must be

defined for the visualization.

Figure 6 : Velocity field

In Figure 5 it is visible that the dominant effect is that

the matter in front of the obstacle is pushed. It is like a

shockwave before the moving object. This is the case

when the pressure values are visualized on Figure 6. The

negative and positive values are coded into separate

colour channels. The pressure drops even in front of the

object but before the shockwave.

Figure 7 : Pressure field

The shockwave appears as the objects starts moving.

It is getting stronger and moves away from the surface of

the object. The amount of the changes in the velocity

field depends on the velocity of the object. The effect

remains similar but the strength differs as its speed

changes.

5.2 Approximation

To approximately reproduce the effect of solid objects,

the following algorithm attempts to create a shockwave

similar to the simulated. Any vector in Cartesian space

can be defined by the linear combination of the axes of

the coordinate system’s basis. Including the negative

directions of the axes the vectors can be expressed using

only non-negative coefficients. We express an objects

velocity using the positive and negative directions of the

three axes. This division into separate components allows

storing data about the object’s movement through time

without any increase in the storage space. The program

updates the parameters for each segment instead of

always storing new values in every frame. Every segment

has individual parameters used to calculate the

accelerations. The parameters are the centre, the distance

of the peak of the wave from the centre and the

maximum of its strength. The strongest acceleration is

located in the intersection of the sphere defined by the

centre and distance parameters and the vector defined by

the direction of the velocity. The accelerations fade away

as they are farther from this point.

Figure 8 : Accelerations to approximate obstacle’s effect

Also the direction is important so the accelerations

are also fading as they are farther from the direction of

the movement. Based on these assumptions the equations

to get the acceleration in a position p are:

Dist[i] = length*p – Centre[i]-;
DistStr[i] = max*PeakStr[i] – abs*PeakDist[i] – Dist[i]-, 0-;
DirStr[i] = max*dot*p – Centre[i], Dir[i]- – 0.8, 0-•5.0;
Acc [i] = normalize*p – Centre[i]-•DistStr[i]•DirStr[i];
FinalAcc = ∑ Acc[i]b

cd, ;

This calculation is implemented in a shader that

renders onto the texture representing the acceleration

field. This shader has to be executed for every solid

object.

5.3 Parameters

The parameters used to calculate the accelerations should

be updated every time step according to the object’s

movement. To get an effect that is getting stronger by

time the maximum strength should be increased in case

of a continued movement in the same direction. Also the

distance of the wave should be slightly increased as well.

When the object starts moving the distance is reset to a

constant chosen based on the object’s size. A possible

choice could be the radius of the object’s bounding

sphere. The starting effect is almost always irrelevant

since it will take some time for the object to get near the

simulation grid. The centre parameter is updated as the

object is moving. When an obstacle is no longer moving

in the same direction, the centre should remain

unchanged and the distance should be rapidly increased.

The strength of the shockwave should be decreased so

the effect will fade away after the object stopped. Based

on these directives the algorithm to update the

parameters is shown below.

SpeedStrength[i] = dot*ObstacleSpeed, Dir[i]-;
if *SpeedStrength[i] > 0- {
 if *PeakStr[i] < DragCoeff[i]•SpeedStrength[i]- {
 PeakDist[i] = StartDist[i];
 } else {
 PeakDist[i] = PeakDist[i] + 0.1 • Δt;
 }
 PeakStr[i] = DragCoeff[i]•SpeedStrength[i];
 Centre[i] = ObstaclePosition;
} else {
 PeakStr[i] = PeakStr[i]•max*0.0, 1.0 – 5.0•Δt-;
 PeakDist[i] = PeakDist[i] + Δt;
}

5.4 Results

The simulator program voxelizes the objects entering the

simulation grid and uses the approximation of their

effects otherwise. This made it possible to observe and

compare the simulated and the approximated effect of

obstacles. In the left side of Figure (8) the object is inside

the simulation grid but in the sequence on the right side

of Figure (8) it is outside. The distance between the

objects starting position and the timing of its movement

is the same in both cases. Therefore an ideal

approximation should produce the same changes in the

smoke’s motion.

By looking at the two sequences (Figure 8) it can be

stated that the result of the approximation is close to the

simulated. The details are different but the main changes

in the movement are very similar. The effect of the

obstacle outside the grid can be considered as part of the

simulation.

Figure 9 : left: simulated, right: approximated

6 Conclusion and future work

The theory and the mathematical basis of the smoke

simulation is well established. Methods to implement

them in a real-time simulator are also available and there

are several sources that present them. Most of these rely

on the computing power of the GPU because the

algorithms can be executed in parallel on each cell. In

this paper we presented a way to implement a real-time

smoke simulator. The interaction with solid objects is a

highly important part when integrating the simulator into

a virtual world. The limits of the Eulerian view require

some form of extension to make this a competitive option

in more scenarios. The method present can approximate

the effect of solid objects with a visually acceptable

error. Depending on the requirements this could increase

the applicability of simulators with Eulerian space. The

advantage of the algorithm is that its requirements are

independent from the movement of the objects. The

disadvantage is that it has to be executed for every

obstacle separately.

The algorithm can be extended with the monitoring of

the obstacles and choosing only those that probably

affect the simulation to run the approximation with them.

This could save time in a general virtual world where

many objects could be discarded easily. The

approximation itself could be improved to give more

accurate results. The drag coefficient used in the update

of the parameters is manually specified. It would worth

some research to automatically calculate this number.

The simulator part could also be improved. The

voxelization could be modified to work with free form

objects like in [1] or in [3] and implement the

approximation for them as well. Also the rotation of the

objects is not part of the voxelization and the

approximation therefore it could be examined and

determine if it changes the approximation’s accuracy.

Acknowledgements

This work has been supported by the National Scientific

Research Fund (OTKA ref. No.: T042735).

References

[1] Tamás Umenhoffer and László Szirmay-Kalos,

Interactive Distributed Fluid Simulation on the

GPU, In: Petar Biljanovic, Karolj Skala (editor)

MIPRO 2008: Grid and Visualization Systems.

Opatija, Croatia, 2008. pp. 236-242.

[2] Robert Bridson, Matthias Müller-Fischer, Fluid

Simulation, International Conference on Computer

Graphics and Interactive Techniques, ACM

SIGGRAPH 2007 courses, San Diego, California,

SESSION: Course 31: Fluid simulation, pp. 1 – 81,

2007

[3] Keenan Crane, Ignacio Llamas, Sarah Tariq, Real-

Time Simulation and Rendering of 3D Fluids, GPU

Gems 3, Chapter 30, pp 633 - 674, 2007

[4] Enhua Wu, Youquan Liu, Xuehui Liu, An Improved

Study of Real-Time Fluid Simulation on GPU,

Computer Animation and Virtual Worlds, Volume

15 , Issue 3-4 (July 2004), Special Issue: The Very

Best Papers from CASA 2004, pp. 139 – 146, 2004

[5] Ronald Fedkiw, Jos Stam, Henrik Wann Jensen,

Visual Simulation of Smoke, International

Conference on Computer Graphics and Interactive

Techniques, Proceedings of the 28th annual

conference on Computer graphics and interactive

techniques, pp. 15 - 22, 2001

[6] A. Selle, R. Fedkiw, B.-M. Kim, Y. Liu, J.

Rossignac, An Unconditionally Stable MacCormack

Method, J. Sci. Comput. 35, pp. 350-371, 2008

[7] Simon Green (NVIDIA Corporation), Volume

Rendering For Games, Game Developers

Conference 2005, 2005

[8] Jos Stam, Stable Fluids, Proceedings of SIGGRAPH

99, Computer Graphics Proceedings, Annual

Conference Series, pp. 121-128, 1999

[9] M. Harris, W. Baxter, T. Scheuermann, A. Lastra,

Simulation of cloud dynamics on graphics

hardware, Proceedings of the ACM

SIGGRAPH/EUROGRAPHICS conference on

Graphics hardware, San Diego, California, pp. 92 -

101, 2003

