
User interfaces for intelligent household remote controls
Miroslav Macík and Václav Slováček

{macikm1|slovav1}[at]fel.cvut.cz

Department of Computer Graphics and Interaction

Faculty of Electrical Engineering

Czech Technical University in Prague

Abstract

In the last few years the number of home appliances in

our environment has dramatically increased. Each device

has its own user interface and a corresponding way to

communicate with its users. These user interfaces usually

differ for every single device. This can be confusing for

users, especially aged people and disabled people. It

would be optimal, if we could provide a consistent user

interface for all applications. Such interface shall respect

specific needs of every particular user.

We focus on developing a method for designing and

developing user interfaces that would enable us to deploy

single interface on any platform. For this purpose we

have developed a XML-based protocol called UIProtocol

that enables us to separate application logic on the server

side and the user interface on the client side. This

protocol also enables us to update the user interface and

to notify the server about events invoked by user.

Based on the technology we developed for delivering

user interfaces, we have built a server layer capable of

automatic construction of user interfaces for controlling

the currently available set of devices. The user interfaces

are built to match the restrictions (screen, controls etc.)

of target controller while keeping the effort to control the

user interface at minimum.

Keywords: User Interfaces, Description Language, User

Interface Generation

1 Introduction

Our work addresses the problem of developing an

intelligent household with special focus on elderly and/or

disabled people. This work is part of a larger project

called i2home. The motivation of i2home project is to

address the problem of complexity in a modern

household. As mentioned, there are many devices made

by many manufacturers and every such device usually

has its own user interface that is usually not consistent

with user interfaces of other devices in the household

developed by other manufacturers. A user can be

confused by such situation.

i2home aims to solve this problem by using a universal

control device that would be able to remotely control

most of devices in such household. Optimally the user

interface of the controlling device should be designed

directly for purposes of the current user and for current

set of devices in the household. It is obvious that this

problem could not be completely covered by human

developers because of a vast amount of possible

combinations. In addition not all information is available

during the development process - set of devices and user

preferences could vary over time.

This is the motivation for development of the

UIGenerator. It should solve in runtime problems that

human developers are not able to solve.

Figure 1: System architecture

2 Related work

Several efforts have been made to develop a language for

describing cross-platform user interfaces [6][7].

Although most of the languages try to describe complex

user interfaces, they mostly fail in separating the model

and the controller from the view, which is essential for

simple generating of user interfaces.

There have been some promising approaches introduced

in the field of automatic user interface generation, such

as the SUPPLE [1], which provides an inspiration to for

our work. In this work we adapt the user interface

generation into an environment of an intelligent

household.

3 Our method

We have addressed the problem of providing user

interfaces for home appliances by splitting it into two

parts. We have solved the user interface delivery,

rendering and client-server communication by

developing UIProtocol. Then we have developed

UIGenerator that relies on MVC design [4] of

UIProtocol.

UIGenerator provides user interfaces (view) without

having to have access to data (model) that are

provided/updated by application logic (controller).

Whenever dynamic data are updated they are pushed

directly to client without the interface having to be

reconstructed on the server side. UIProtocol client

handles binding of data to corresponding user interface

elements automatically. Whenever the user initiates an

event, the event is sent to server. UIProtocol server then

locates appropriate handler for the event and executes it.

3.1 Protocol for user interfaces and
communication

UIProtocol combines user interface description language

and a language for client-server communication in a

single type of XML files. This protocol was developed at

the Czech Technical University in Prague and was

originally designed for purposes of the i2home. It is

based on Model-View-Controller design pattern [4]

which brings many advantages. The key advantage is

separation of application logic and presentation. Thanks

to client-server architecture one application logic can be

used for multiple clients. The original motivation was to

create only one interface that can be later delivered on

multiple platforms. Additionally a need to manage the

client-server communication has been addressed.

UIProtocol is designed to support rich clients with

animations, media and styles. It also defines behavior

(so-called graceful feedback) that enables simple client to

render complex components that are not directly

supported by rendering a hierarchical structure of basic

user interface components. Key features of UIProtocol

are:

 XML syntax

 MVC design – clear separation of presentation,

model and application logic [4]

 internationalization support

 direct support for data binding

 application logic is programming language

independent

 simple implementation of basic renderer

 implementing of the whole protocol is not necessary

for simple renderer

 extensible without modifying the protocol

specification

 precise visual definition of elements if necessary

 layouts support

 animation support

All these features are important for the UIGenerator and

some of them have been designed with UIGenerator in

mind. Firstly, the XML syntax makes the management of

final user interfaces simpler because there are many tools

available for processing XML documents. Secondly, the

problem of generating user interfaces would be

extremely difficult without the separation of presentation,

model and application logic. The data binding feature

inherently supported by clients is another important

feature that simplifies the design of the UIGenerator.

Finally, it is necessary to point out the precise visual

definitions of elements, this feature is crucial for the

UIGenerator because it allows computation of the

estimated layout, positioning and appearance of the final

interface. Such optimization would not be possible

without this feature.

3.2 UIProtocol communication

The sequence diagram in Figure 2 shows an example of

communication between the UIProtocol client and server.

UIProtocol client is allowed to send only events to the

server. In the opposite direction, the server sends the

models (data) and the user interfaces. At the beginning,

the client notifies the server about the connection and

sends its description (screen resolution, supported

widgets etc.) (1.). The server answers with a model

containing its own description (http server port etc.) (2.).

In the next step the client asks the server for the

public.application model, which contains, name of the

master interface (interface displayed on root of the

application) (3.). The server answers with the

public.application model (4.). As soon as the client

knows the name of the master interface, it asks the server

for its description (5.). The server sends the Master

interface back to the client (6.). The Master interface

contains elements that are bound to a model called

Master data. The client automatically asks the server for

this model (7.). The Server replies with the Master data

model (8.). After some time the user invokes an action in

the user interface rendered on the client, for example he

presses “+” button of the heating control. An event with

id temperature.up.pressed is being automatically sent to

the server (9.) The application logic on the server handles

all the work that, in this case, causes the change of

temperature element of Master data model. Update of

this model is automatically sent back to the client (10.)

and by using the data biding propagated to the user

interface.

Figure 2: Sequence diagram of example UIProtocol

communication

3.3 UIProtocol user interfaces

In Figure 3 is a sample user interface in UIProtocol. The

description in UIProtocol (see next page) is not very

space-saving but on the other hand UIProtocol provides

extensibility without modification of schema file and

implementation of a XML parser is easy.

Figure 3: Example of UIProtocol UI

3.4 Data Binding

Very important feature of UIProtocol is support of

binding. Binding enables to connect any property

(position, style, content of text component) of any

element in user interface to specified data in model.

Binding separates dynamic data from the user interface

structure. This enables the application to alter the user

interface without knowing its structure and it is important

for making the application logic independent on the user

interface generation process.

Changes of values in the model are automatically

propagated to all associated user interface elements.

Application itself does not have to (and cannot) handle

this process on the client side.

Data binding also provides a simple way to animate user

interface elements by specifying an interpolation that is

then used to change an original value to an updated value

in a specified amount of time.

3.5 Event based communication

Event based communication is a second aspect of

separation of the user interface structure and the

application logic. The client sends to the server a

UIProtocol document describing an event whenever the

user performs an action that was declared to trigger an

event.

By design UIProtocol enables application logic only on

the server side. This is essential for delivering same

interfaces with the same behavior on different platforms.

Although this brings some disadvantages such as latency

when responding to user feedback, it is essential for

proper functionality across platforms. UIProtocol

provides features to eliminate these disadvantages,

however description of these features is out of the scope

of this paper.

Both event based communication and model binding

enable developing application logic without knowing

anything about user interface. Only the list of events and

important (bound) values have to be passed to user

interface generator to connect the interface and

application logic.

Code 1: Example of UIProtocol UI description

<?xml version="1.0" encoding="UTF-8"?>

<UIProtocol xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:noNamespaceSchemaLocation="http://solari.cz/resources/xsd/uiprotocol/1.0"

 version="1.0">

 <interfaces>

 <interface class="MyInterface">

 <container>

 <element class="public.text">

 <position>

 <properties names="x,y" values="50,35"/>

 </position>

 <property name="text" value="Username:"/>

 </element>

 <element class="public.input">

 <position>

 <properties names="x,y,width,height" values="180,15,150,25"/>

 </position>

 </element>

 <element class="public.text">

 <position>

 <properties names="x,y" values="50,95"/>

 </position>

 <property name="text" value="Password:"/>

 </element>

 <element class="public.input">

 <position>

 <properties names="x,y,width,height" values="180,75,150,25"/>

 </position>

 </element>

 <element class="public.button">

 <position>

 <properties names="x,y,width,height" values="180,150,150,30"/>

 </position>

 <property name="text" value="Login"/>

 </element>

 </container>

 </interface>

 </interfaces>

</UIProtocol>

3.6 User groups with special needs

Some parameters of human capabilities are involved in

the usability of particular user interface. The user

interface enables a user to interact with an application but

a badly designed user interface needs much more effort

to deal with. The parameters of the evaluation function

should also correspond to the estimated effort needed for

the successful interaction with the user interface. The

better the user interface is the lower should be the value

of this function. In the following text we call this

function “estimated user effort function”.

This chapter summarizes requirements on function

formulating the estimated user effort. The following

parameters are crucial for a successful user interface and

the function should them take into account.

 Load of working (short-term) memory: The user

interface should not contain complex structures.

Such structures require memorizing of the current

position or other parameters. The information

required for a particular task should be accessible at

the same time and place.

 Usage of low capacity channel between sensory

and working memory: The user interface should

be well organized and corresponding elements

should be visually grouped.

 Cognitive complexity: User interfaces should not

be complex. The user interface should contain only

elements needed for satisfaction of required goals.

New user interfaces should be maximally consistent

with the existing ones.

 Visual appearance: Size of elements should satisfy

the needs of users with low vision capabilities and

respect a device where the user interface is rendered

on.

The aim is to create a function, which expresses the

estimated user effort needed to manage a user interface.

Let us have such a function and a possibility to make

changes in the user interface. Then we can use well-

known optimization techniques to find an optimal user

interface with the minimal value of this function.

3.7 Automatically generating user
interfaces

Thought the UIProtocol is very capable itself it is not

able to address all problems in the intelligent household.

For example the context awareness could not be involved

into the static user interfaces. In addition, there are

different needs and capabilities of particular users. It is

very hard to design a user interface tuned directly to

cover needs of particular user in a general way because

each user is different. Last but not least because of an

intelligent household is a complex system, developers of

particular components usually do not know the whole

context of usage.

Addressing these problems was the original motivation

for implementing the UIGenerator. We analyzed state of

the art solutions in this area and we have found SUPPLE

[1] being very promising approach. We adopted the basic

idea to minimize the estimated user effort necessary to

deal with the user interface. We called our solution

UIGenerator and integrated it into the current i2home

system and the UIProtocol become the output language.

3.7.1 Rendering pipeline

The generating process of user interfaces is divided into

multiple separate steps. This separation makes the design

clear and extensible. Figure 4 illustrates the layout of the

rendering pipeline.

Figure 4: Rendering process

1. The first step is the construction of an abstract user

interface by the Abstract interface builder. An

abstract user interface is a hierarchical structure of so

called abstract user interface elements. The abstract

user interface is an input for the following step in the

rendering process. Currently the abstract user

interfaces are based on the description of connected

appliances to be controlled.

2. The second step is the rendering of concrete user

interface and its optimization. The input to this

process is an abstract user interface, properties of the

client (screen resolution, supported user interface

elements etc.) and properties of the user (quality of

vision, cognitive capabilities etc.) and his preferences

(desired language, usage patterns etc.). The purpose

of these parameters is the computation of a function

representing the estimated user effort to deal with the

final user interface. The estimated user effort is also

the parameter which is minimized during the

optimization process.

3. The third stage is building of a user interface in

UIProtocol and post-processing. The building is a

transformation from the object representation to the

XML representation of UIProtocol. During the post-

processing further adjustment is performed, but the

structure of the user interface is not changed. For

example aligning of elements and containers or

applying of styles takes place here.

At this point the architecture of the UIGenerator and its

rendering process has been introduced. In following text

individual components of UIGenerator and their

functionality are described in detail.

3.7.2 Abstract interface builder

There are two types of these abstract elements:

 Abstract Containers: Elements that can contain

other abstract elements as children.

 Abstract Widgets: Elements that refer to particular

property of a connected appliance to be controlled.

Currently there are these abstract widgets: Boolean,

DateTime, Enumeration, Numeric, Media, String,

and Trigger.

In Figure 5is an example of an abstract user interface

based on a hypothetical intelligent household with three

appliances: Heating system, Lighting and a TV. The

heating provides the adjustment of temperature. The

lighting subsystem makes it possible to control light in

the living room which has the dimming functionality and

a simple light in the hall. Finally for the TV we can

switch between channels and adjust the volume. We use

this example to show how the UIGenerator works.

3.7.3 Concrete interface builder and optimizer

The building process begins when the root Concrete

Interface is initialized with corresponding Abstract

Interface. The hierarchical structure is then built

recursively.

We defined classes that are object representation of the

UIProtocol user interface elements. Each such class can

compute its own value of estimated user effort function.

This value depends on the user and particular controlling

device. The value of particular elements is summarized

for the whole user interface and corresponds to the

overall estimated user effort. The concrete interface

builder also works with Concrete widgets and containers.

This is similar to abstract interface builder, but the

semantic of these elements is different. There are also

these concrete widgets and containers which correspond

to the UIProtocol elements:

 Concrete containers: Frame, Tabs and Generic

container.

 Concrete widgets: Button, Checkbox, Choice,

Textfield, Audio clip, Image, Video clip, Slider,

Label, Textarea.

At the beginning the Concrete interface builder provides

a user interface with the minimal value of user effort

function. This process is trivial – the widget and

container providers provide widgets with minimal value

of user effort function. The resulting user interface has

also minimal value of user effort function but the

parameters of the controlling device are not taken into

account. For example this user interface usually does not

fit into the screen resolution of the controlling device.

This interface is passed forward to the optimizer.

Optimization of the user interface begins with the

interface provided by the concrete user interface builder.

The first step is removal of widgets that are not

supported by the controlling device. This affects

selection of widgets that can be used in the user interface.

For the minimization of the overall value of the estimated

user effort we adopt the simulated evolution because of

this well known algorithm is very flexible and produces

good solutions for many complex problems. In some

publications is this algorithm designated as evolutionary

algorithm (EA) [5].

Figure 5: An example of an abstract user interface

Figure 6: Simulated evolution

In Figure 6 is the diagram of a simulated evolution

algorithm. In our case the initial population is the

concrete user interface with minimal value of estimated

user effort produced by the concrete interface builder.

Each cycle of simulated evolution consists of three basic

steps: Selection, Crossing, and Mutation. In the selection

step some individuals are randomly taken from the

previous generation. In this process is used so-called

artificial roulette which provides the probability to be

selected corresponding to the fitness (value of

optimization function) of the particular individual.

4 Results

Figure 7 shows examples of generated user interfaces.

The interfaces enable direct control of several home

appliances. In the first example, in which more home

appliances are available, the optimizer has to divide user

interfaces for particular devices into tabs to be able to fit

it onto the screen. The second example is the case where

the complete interface fits the screen. Both user

interfaces have minimal estimated user effort in our

metric.

Figure 7: Example of generated user interfaces

Currently the optimization metric of estimated user effort

is set for particular elements manually. It is a subject of

future work to develop better approach to address this

issue.

5 Conclusion and Future work

By developing the UIProtocol and the UIGenerator we

have successfully addressed many problems in an

intelligent household. Now we can provide one user

interface on multiple controlling device platforms. In

addition we are able to generate a user interface with

minimal estimated user effort. During the work we

uncovered new ways how we can extend our approach

and make the intelligent household more user friendly.

First of all it is necessary to evaluate our results with

target user audience. Results will feed back into our

development to enable the final product to fit the user

needs.

We would like address the problem of adapting a user

interface to a particular user more generally, in the way

of involving a module that will test the user capabilities.

This module should be in a form of a wizard. Currently

the estimated user effort of particular elements is set

manually. Result of this test should be a modification of

the properties of estimated user effort function to fit the

need of the particular user. The Result should also

provide information about a preferred color scheme and

contrast thresholds for particular user.

A Significant contribution of the UIGenerator can be

seen if the context awareness will be involved to the

generation process of the user interfaces. This connection

brings advanced features like the intelligent selection of

the interaction device, automatic invocation of tasks and

extended possibilities on how to adapt the user interface

directly for the current situation.

The usage of the UIGenerator should not be restricted

only to a generation of new user interfaces. The user

generator could eventually analyze even an existing user

interface. Using the optimization process, it may provide

a feedback to the designer of a user interface. This

feedback will contain information about what is wrong

and the guidelines on how to improve the interface for a

particular user or a group of users.

6 Acknowledgements

We would like to thank to all partners in i2home project

(www.i2home.org). This work was funded by EU 6
th

framework program under grant FP6-033502(i2home).

References

[1] Gajos K., Weld D. SUPPLE: Automatically

Generating User Interfaces, 9th international

conference on Intelligent user interfaces, University

of Washington, Seattle, 2004

[2] Macík M. – User interface generator, Master’s

thesis, Czech Technical University in Prague,

Department of Computer Graphics and Interaction,

2009

[3] Slováček V. – UIProtocol specification draft 5.

Draft of specification, Czech Technical University,

Prague, 2008

[4] Krasner G., Pope S. – A Description of the Model-

View-Controller User, Interface Paradigm in the

Smalltalk-80 System, ParcPlace Systems, Mountain

View, CA, 1988

[5] Bäck T. - Evolutionary Algorithms in Theory and

Practice, Oxford University Press US, 1996, ISBN

0195099710

[6] Souchon N., Vanderdonckt J. – A Review of XML-

compliant User Interface Description Languages,

Lecture notes in computer science, Université

catholique de Louvain, Belgium, 2003

[7] Stöttner H. – A Platform-Independent User

Interface Description Language, technical report 16,

Johannes Kepler University Linz, Austria, 2001

