
*hapalm1@fel.cvut.cz or rest@mikee.cz

Data structures for ray tracing on Cell architecture
Michal Hapala

*

Department of Computer Graphics and Interaction

Faculty of Electrical Engineering

Czech Technical University in Prague

Abstract

Today, streaming multiple core architectures are on the

rise. This brings an option to use these architectures for

ray tracing as these algorithms can heavily benefit from

multiple available cores. We show an implementation of

two different acceleration structures on the Cell

Broadband Engine Architecture, which belongs to the

aforementioned group. We show the limitations of Cell

and how some of them may be overcome by software

caches, branch hinting and branchless code.

Keywords: Ray tracing, Cell, branchless

1 Introduction

Ray tracing is a technique for generating photo-realistic

images from 3D scenes composed of objects with

defined materials. Every pixel’s color is computed by

shooting a ray through it and finding the closest

intersection between the ray and one of the scene objects.

Color is taken from the material of the found object and

it is then simple to generate shadows by finding an

occluder between the intersection and a light source and

also complex light effects by shooting secondary rays,

which start in the intersection point and lead outward.

The general idea of ray tracing is a couple of decades

old, though only in recent years it started to gain

popularity. The reason for it being so looked over in

interactive industry was its poor performance in

comparison to the main technique used, which is

rasterization. It is quite clear that ray tracing is a

computationally expensive technique, with its need for

shooting millions of rays to find color for pixels in the

image. Rasterization with z-buffer, on the other hand, is

supported by every major graphics card manufacturer, is

easy to work with and has been a standard for years.

However, recent changes in hardware development

put ray tracing into prominence. Manufactures realized

that pushing circuit frequency to the limit does not yield

the best performance anymore and rather moved to

multi-core architectures with optimized instructions. This

current era spawned the much acclaimed dual and quad

core Intel processors for PCs, but also hybrid multimedia

units, such as the IBM Cell Broadband Engine

Architecture, with one leading CPU and 8 simplified

worker processors. Cell’s first major commercial

application was to be the heart of Sony Playstation 3

gaming console which also boasted an Nvidia graphic

card. And graphic cards also experienced a rebirth in

recent years as Nvidia followed with the G80 processor

in 88xx GeForce series with massively parallel

computational elements and CUDA (Compute Unified

Device Architecture), API that allows programmer to

write GPU oriented general purpose computations code

in C.

As ray tracing is “embarrassingly” parallel, i.e. each

pixel’s color is independent on the others, it heavily

profits from this move to parallel architectures. Also,

dedicated hardware units are being developed, like the

Ray Processing Unit (RPU) from Saarland University in

Germany, successor to the SaarCor, an early

experimental ray tracing unit.

This paper aims to see how well the standard ray

tracing algorithms and data structures can be mapped to

IBM Cell, one of the specialized processing units. In

particular what problems could emerge and how these

problems can be solved. As IBM Cell is one of the few

publicly available many-core architectures it is definitely

an interesting platform to try.

2 Acceleration structures

Ray tracing is heavily dependent on data structures that

divide the scene into smaller parts to speed up the search

for intersected objects. They are essentially search trees

where instead of intersecting one object after another one

can traverse this tree to get quickly to places where

intersection with scene objects is most possible.

Acceleration structures can be split into two major

groups, based on their splitting algorithm:

• Space partitioning structures – i.e. they divide

space, creating a hierarchy of subspaces. Objects

are inserted into these subspaces according to

their position.

• Object partitioning structures – i.e. they divide

objects, creating a hierarchy of volumes that are

bounded to the objects that are inside of them.

Typical construction of an acceleration structure

starts with a root node that encompasses the whole scene

and follows with these recursive steps:

• If terminating conditions are met create a leaf and

terminate. These could be reaching a certain depth

in the tree or certain number of objects in our

node (this is usually set to one)

• Compute split position

• Distribute geometry among left and right child

depending on the split position

• Repeat from the start with left and right child

Quality of the splitting method used usually

determines the quality of acceleration structure as a

whole, as traversal algorithms are typically trivial to

implement and are rarely the source of problems, thus the

focus point here is how to build an optimal tree.

The simplest splitting method is the median where

one will split space/objects at the median of the

respective interval. This is definitely the fastest method

but will most probably create a sub-optimal structure. In

spite of this, Wächter et al. [WK06] proposed quite an

effective algorithm based on median splitting.

Currently, the state of the art among splitting

methods is the surface area heuristic (SAH), invented in

the late 80’s, more recently described in e.g. [WH06].

SAH tries to minimize cost computed from surface area

of child nodes and number of primitives in these nodes.

As SAH computation is quite costly Wald in [W07]

showed a faster binning algorithm where the idea is to

split an interval into a number of equally large bins and

evaluating SAH only on the boundaries of these bins.

Shevtsov et al. then expanded on this with a min-max

binning algorithm [SSK07] which gives a better

approximation than a conventional binning version with

boundaries.

Two different structures, KD-tree and Bounding

Interval Hierarchy, are used in this paper, where KD-tree

is implemented with the aforementioned min-max

binning SAH and BIH with the median split described in

[WK06]. Wald et al. [WH06] summarized techniques

for KD-tree construction and proposed an O(N log N)

algorithm, which reaches the theoretical lower bound for

KD-tree construction. SAH KD-tree is believed to be the

best structure for ray tracing of static scenes, though it

struggles with dynamic ones as its construction is costly,

also due to the need to copy objects in each split step.

[SSK07] expanded on these ideas by showing an

approximation scheme for computing SAH without the

need to sort objects in advance. Our KD-tree traversal

algorithm is based on TArec described in [H01].

Bounding interval hierarchy (BIH) [WK06] is in a

sense an analogue to a Bounded KD-tree [WMS06]. BIH

stores only two bounding planes, one for each child. This

is in contrast to a standard Bounding Volume Hierarchy

storing the whole AABB for each node. Left and right

child are then reconstructed in traversal by replacing

maximum or minimum value with one of the split values.

What is really different from a BKD-tree is the

construction method. Wächter et al. proposed a new non-

greedy global heuristic that is based on a global bounding

box of a scene, not on subsequent node bounding boxes.

This approach, in effect, chooses split plane candidates

from a regular grid.

3 IBM Cell

Before moving to the implementation specifics we will

summarize IBM Cell architecture and its abilities. Cell is

a broadband architecture developed jointly by Sony,

Toshiba and IBM. It is a microprocessor designed for

computationally intensive, mainly multimedia, tasks.

Cell consists of one PPE (Power Processor Element), a

Power architecture based processor, and eight Synergistic

Processor Elements (SPEs), RISC processors with most

of its instructions being 128-bit wide SIMD. The PPE is

intended as a work distributor with SPEs as worker units.

The SPE is designed as a simple processor for

streamlined workload and because of this it can run on

high frequencies of up to 4GHz. Its instructions have

fixed latency of 2-7 cycles and they are processed in-

order with no branch prediction, though it has a branch

hint instruction which can be used to help the processor

in instruction pre-fetching. SPE cannot access main

memory directly and it has no cache. Instead, all SPEs

have a 256kB local store memory for both data and code.

Also, it has a large register base consisting of 128 128bit

SIMD registers.

Figure 3-1 IBM Cell Architecture

Element Interconnect Bus (EIB) is used as a

connection between all on-chip elements: the PPE, eight

SPEs, memory controller and two I/O interfaces. It is

capable of transferring 96 bytes per cycle in between its

elements.

Cell has a few limitations/features that have to be

taken into account, when one wants to run a ray tracing

algorithm on this architecture. Those are mainly:

• In-order execution of instructions - In contrast to a

contemporary PC processor, Cell SPEs does not

support out-of-order execution, relying solely on

the quality of a code compiler to pre-process the

code. The compiler has to resolve chain

dependencies in the code to minimize pipeline

stalls.

• Single-instruction-multiple-data instructions –

SPE is designed for working on multiple data at

once, by the means of SIMD instruction.

Therefore, one has to ensure enough independent

data to work on at all times, otherwise even the

smartest compiler cannot ensure minimum of

stalls.

• Memory access – Each SPE has access to three

levels of memory: 128 SIMD local registers,

256kB local memory and a main memory access

through asynchronous DMA transfer. Main

memory access has latency of a few hundred

cycles; thus one has to plan his data transfers to

larger blocks to avoid stalls.

• Branch hinting - There can be only one branch

hint active at once and for the branch hint to be

effective one must place it at least 11 cycles and

four instruction pairs in front of the branch that is

to be hinted.

• Programming model – Eight parallel SPE units

gives us choice between homogenous approach,

where each SPE runs identical program but on

different data, and a heterogeneous approach,

where SPEs create a pipeline with data pushed

through one SPE after another. Both are feasible

options, the latter being possible because of a

large 300GB/s bandwidth in between SPEs.

A model how to map ray tracing onto Cell’s

architecture is given in [BWSF06]. Benthin et al. use

homogenous approach with Bounding Volume

Hierarchy, running identical ray tracing kernel on all

SPEs but on different pixels, using 8x8 packets of rays.

They also describe the usage of 256kB local store as an

emulated software cache. Cache is organized into a

separate BVH Node Cache and a Triangle cache.

4 Implementation

Although Cell is still halfway in between a many-core

architecture and a regular CPU, as there’s a single

“mother” PPE element to run and control the smaller,

RISC-like, SPEs, it is generally regarded as a challenging

environment for software development. IBM offers a free

SDK for anyone to use who has a Linux machine running

(we have used the Fedora 8 distribution). Also, if one

wants to use a graphic development environment, plugins

for Eclipse IDE are available for download. Code can be

debugged with a modified version of GDB or it can be

profiled on a cycle-precise simulator that is developed

separately.

Beyond simple code rewrite we’ve had to tackle

different challenges, mainly the absence of hardware

cache and branch prediction on the SPEs. We’ve done

measurements of our first implementation and they’ve

indicated that our traversal algorithm is stalling mostly

on branch misses. We’ve then decided to implement a

branchless version. We have also tested all possible

cache layouts and an asynchronous cache access to find

out settings that will give us a performance gain.

Both of the acceleration structures we’ve

implemented on Cell reacted positively to our

improvements as they both gained performance with a

move to branchless code and asynchronous cache access.

4.1 PPE

Choices had to be made about which parts of code would

be run on PPE and which on the smaller SPEs. It was

decided to keep initialization and hierarchy build on the

PPE, as there was no parallel code in place. Ray traversal

was to be executed on the SPE units in parallel.

Acceleration structure was split into two, one to be

held in main memory with build statistics and other

excess member variables, and one that is transferred to

the SPE with only the necessary pointers (e.g. to node

array, primitive array etc.) for the SPE to work with. The

PPE side program now runs these phases:

• Initialization – All basic structures are allocated

and initialized

• Hierarchy build – BIH or a KD-tree build

• SPE Init – PPE spawns a thread for each SPE.

Inside it a premade traversal kernel is loaded onto

the SPE and started, which blocks this thread.

Main thread then sends a memory pointer to the

already built acceleration structure.

• Trace - A global packet counter is initialized

which holds pixel coordinates of the last packet

traced. PPE spawns a thread for each SPE and

until there’s a valid packet coordinate waiting, it

will:

1. increment global pixel coordinates

accordingly

2. if this is the last pixel then terminate,

otherwise continue to 3

3. initialize a packet based on these

coordinates

4. send a packet pointer to the SPE

5. wait for SPE to send back the color of the

traced pixels in the packet

6. save this color into the frame buffer

7. go back to 1

Main thread uses pthread_join to wait until all SPE

threads have finished.

There are two ways how to transfer data from the

main memory to the SPE. First option is a DMA transfer,

to be used for larger amounts of data and it usually takes

considerable amount of cycles, or mailboxing, a direct

32bit transfer through a dedicated pipeline. Both have

their usage in our code. Mailboxing functions are used to

send memory pointers to structures that are then DMAed

in by the SPE. As they are able to block execution until a

message arrives, they are also used for synchronization

on both the SPE and PPE side. Software caches, which

are used in the SPE code, also use DMA transfer when a

cache miss occurs, though this can be minimized by

clever memory setup.

4.2 SPE

SPE binary has to be small with an upper limit of 250kB

(size of SPE local store) to cover code and local memory

to be used by it. Parts of its inner workings were revealed

in the previous chapter, mainly about data exchange in

between SPE and PPE through DMA and mailboxing.

Every SPE holds in local store pointers to node and

primitive arrays, data from these are loaded from main

memory on demand and cached as they are needed by the

traversal and triangle intersection code.

SPE kernel first receives a hierarchy pointer, loads it

to local store and then enters an infinite while loop, in

which it waits for a ray packet pointer, DMAs the packet

in after receiving it and then traces it. After it is finished

the SPE will DMA the results back to the main memory

and waits for another packet.

4.3 SPE Software caches

As access to main memory is costly (in the range of 900

cycles) it is advisable to use a cache to store data that are

used frequently or load data speculatively from main

memory to exploit data locality. SPU provides us with

other memory than registers, a 250kb local store which

has an access time of 7 to 11 cycles. Luckily, in SDK

version 3.0 there is implementation available of a directly

mapped or a 4-way associative software cache, with a

couple of handy macros to change cache type, cache line

width and number of sets. Great benefit of having a

software cache is definitely in the option to optimize it

for the current code by changing its topology and internal

algorithms.

We have used the SDK implementation with success,

with only minor changes in branch hinting, as we

expected a branch hit to occur most of the time. Hence a

branch hint was used in the code to always pre-load

instructions for a branch hit, instead of a miss.

We have employed two separate directly mapped

software caches as was proposed in [BWSF06], one for

nodes and the other for primitives, both the size of 16kB,

which was the maximum we were able to achieve due to

the 256kB local store limit. Different cache line widths

and number of sets were used and cache hit/miss ratios

from these tests can be found in section 5, though we

were limited by the maximum size the cache can have.

4.4 SPE evaluation and optimization

Our main focus was set on the traversal code as a main

unit of execution, which, with the first implementation

which was described up to this point, was performing

terribly as far as clocks per instruction (CPI) was

concerned. This was caused by branch and dependency

stalls:

Therefore we have decided to optimize the code for

branches, i.e. implement a branchless traversal algorithm,

as we saw no place where to interleave the code to lessen

the dependency hit. Asynchronous access to cache was

further employed to improve the branchless code’s CPI.

Moreover, we have experienced what we believe is a

compiler error, which had to be solved with a sort of a

hack.

4.5 Branchless code

Idea of transforming branched code to a branchless one is

based on running computations in both the taken and not

taken part sequentially and then choosing one based on

the boolean value that was previously used to branch the

code. In SIMD this can be achieved by a “blending”

instruction that will combine two SIMD values into one

according to another SIMD. SPE instruction set calls this

instruction spu_sel.

Our branchless traversal algorithm [H07] is based on

the idea that instead of using branches when deciding

which node is going to be traversed or possibly pushed

on the stack, one can push both nodes and with simple

moving the stack pointer forward or backward skip those

that are not needed.

This can be demonstrated on a branchless version of

a KD-tree traversal code:

4.6 Asynchronous cache access

In the first version of our code a synchronous cache

access was employed, e.g. when a cache miss occurred

code stalled until the necessary DMA transfer finished.

Cell SDK’s software cache implementation supports a

so-called “unsafe” (asynchronous) approach that allows

us to only signify that we will need some data in the

future, do some computations in the meantime, and then

ask for the data. This can be done with cache_touch and

cache_wait, where the former will start DMA transfer

when the data is not cached and the latter will wait for

this transfer to finish or return cached data immediately

when there’s no DMA transfer pending.

Asynchronous access to cache proved useful in the

branchless code where both branches are computed

sequentially, thus both nodes were read from cache every

time. With cache touching one can use pointers to

structures (synchronous access to cache needs actual

structures), only signify that he will need data on those

pointers (children of the actual node) sometimes in the

future and read them in via DMA in the background.

An error can occur, however, when other cache

operations are done in between touch and wait, as we can

evict the line we asked for in the first place. It is clear

that this can lead to serious artifacts in the image

produced, as sometimes cache would give us a different

node than what we asked for. A correct approach is to

use a cache touch before each wait to make sure that no

cache eviction has occurred. The worst that can happen is

that we will really have to wait for the data to be

transferred via DMA again, hence to utilize this we have

to balance cache line size with cache eviction probability.

Perf. Cycle count 2305725
Perf. Instr. Count 1243760 (1162657)
Performance CPI 1.85 (1.98)

Single cycle 805931 (35.0%)
Dual cycle 178363 (7.7%)
Branch miss stalls 566692 (24.6%)
Dependency stalls 743987 (32.3%)

 bool c = t < tmax;
 bool d = t < tmin;

 stack[stackPtr].node = farChild;
 stack[stackPtr].tmin = max(t,tmin);
 stack[stackPtr].tmax = tmax;
 stackPtr += c;

 stack[stackPtr].node = nearChild;
 stack[stackPtr].tmin = tmin;
 stack[stackPtr].tmax = min(t,tmax);
 stackPtr -= d;
 /* stack pop is already included
here */

 currNode = stack[stackPtr].node;
 tmin = stack[stackPtr].tmin;
 tmax = stack[stackPtr].tmax;

4.7 While branch hint

A small inconsistency led us to an idea how to

optimize hints in a while cycle, where we were unable to

persuade the compiler to behave as we wanted it to. What

happened is that we’ve put a branch hint on a while cycle

condition and it never actually got into the code on the

place we expected. While cycle compiles to a code with

two jump instructions and when using while { } we

cannot effect in any way where our hint would be placed.

It can be wise to do this decomposition (while to do-

while) ourselves and try to define that we want the hint

on both branches (this is still only a hint to the compiler

itself, it does not mean it will end up in code).

In our code this little trick helped, and we were able

to save approximately 3% of branch miss stalls and

apparently due to code reformatting another 3% of

dependency stalls.

5 Results

In this section we will summarize results measured

on both structures that were implemented on a set of

testing scenes. These were chosen in a variety of triangle

count and scene layouts and some of them are also quite

commonly used in scientific papers mentioned

throughout this text.

The testing scenes used were:
A10 City Crown F15

218652 tris 68497 tris 3092 tris 3588 tris

Bunny Fairie forest Moon Sponza

atrium

70255 tris

174117 tris 35520 tris 67462 tris

Park Sibenik

cathedral

29174 tris 80479 tris
* A10 scene was modeled by and is a courtesy of Ondřej Karlík

(keymaster@keymaster.cz)

5.1 Cell cache statistics

First section discussing statistics is about caches, as

high cache hit rate is principal to our code performance

on the SPE. As we had two distinct software caches

we’ve made measurements for both of them with all

possible settings in cache line size and number of sets.

However we were limited by SPE code size, as software

cache is essentially a part of the executable as any other

static data.

We were interested in the cache hit ratio for different

cache layouts. All tests were also timed to get an idea

how the overall code is performing in response to layout

changes. Caches were assessed separately and to keep

comparable results the one not being measured was

always set to constant values of 128B cache line with

128 sets.

5.2 Node cache

There is a major difference between BIH and KD-tree

(KDT) cache hit profiles. KDT usually checks only one

of node’s children when traversing, so the KDT profile

looks as expected; for a bigger cache line more cache

evictions will occur, thus lowering hit rate. BIH on the

other hand will usually in the end try both of its nodes,

putting one on stack. Larger cache lines here befits

scenes that traverse more nodes per ray, as they are

positioned close to each other in memory which explains

why the cache hit rate can sometimes rise even with a

greater cache line.

60

65

70

75

80

85

90

95

100

32B

line,512

sets

64B

line,256

sets

128B

line,128

sets

256B

line,64

sets

512B

line,32

sets

1024B

line,16

sets

2048B

line,8 sets

4096B

line,4 sets

c
a
c
h
e
 h
it
 r
a
ti
o
 [
%
]

A10

city

crow n

f15

fforest

moon

park

sibenik

sponza

sta

Graph 5-1 KDT branchless cache – node cache hit ratio

Considering time, KD-tree case is clear. A small rise

up to 128B is gained from having few (8 nodes for 128B

cache line) sequential nodes prepared in memory.

Beyond 128B cache line evictions will start to take their

toll and performance deteriorate very quickly. BIH’s hit

rate is not falling as swiftly, or is even rising, though that

is not enough to overcome more costly DMA transfers

and beyond 256B cache line size performance will

almost always only get worse.

60

65

70

75

80

85

90

95

100

32B line

512 sets

64B line

256 sets

128B line

128 sets

256B line

64 sets

512B line

32 sets

1024B line

16 sets

2048B line

8 sets

4096B line

4 sets

c
a
c
h
e
 h
it
 r
a
ti
o
 [
%
]

A10

city

crown

f15

fforest

moon

park

sibenik

sponza

bunny

Graph 5-2 BIH branchless cache – node cache hit ratio

0

1

2

3

4

5

6

7

8

32B line

512 sets

64B line

256 sets

128B line

128 sets

256B line

64 sets

512B line

32 sets

1024B line

16 sets

2048B line

8 sets

4096B line

4 sets

ti
m
e
 [
s
]

A10

city

crow n

f15

fforest

moon

park

sibenik

sponza

bunny

Graph 5-3 BIH branchless cache – rendering time

depending on node cache layout

0

0,5

1

1,5

2

2,5

3

32B

line,512

sets

64B

line,256

sets

128B

line,128

sets

256B

line,64

sets

512B

line,32

sets

1024B

line,16

sets

2048B

line,8 sets

4096B

line,4 sets

ti
m
e
 [
s
]

A10

city

crow n

f15

fforest

moon

park

sibenik

sponza

sta

Graph 5-4 KD-tree branchless cache – rendering time

depending on node cache layout

Lastly, we will compare a synchronous access to

cache against the asynchronous one. This will be shown

for both implementations, where even if cache hit ratio is

higher for the synchronous access many of the nodes

gotten are lost as in our branchless algorithm both nodes

are loaded onto stack and then possibly one or both are

immediately popped depending on the traversal

computation. Thus it is clearly wiser to only “touch”

those nodes that are pushed and wait for the DMA

transfer to complete only when the node is really needed.

0

0,2

0,4

0,6

0,8

1

1,2

1,4

32B line

512 sets

64B line

256 sets

128B line

128 sets

256B line

64 sets

512B line

32 sets

1024B line

16 sets

2048B line

8 sets

4096B line

4 sets

ti
m
e
 [
s
]

KDT async

KDT sync

Graph 5-5 A10 scene KDT async/sync rendering time

depending on node cache layout

0,85

0,9

0,95

1

1,05

1,1

32B line

512 sets

64B line

256 sets

128B line

128 sets

256B line

64 sets

512B line

32 sets

1024B line

16 sets

2048B line

8 sets

4096B line

4 sets

ti
m
e
 [
s
]

BIH async

BIH sync

Graph 5-6 A10 scene BIH async/sync rendering time

depending on node cache layout

Graph 5-5 and Graph 5-6 show that an async

approach is clearly better.

5.3 Triangle cache

Triangle caches for both KD-tree and BIH show

similar behavior. Their hit rate rises with the cache line

up to a limit of about 1024B where it either rises very

slowly or falls down. As in previous section it is useful to

have a look at the measured rendering times as these will

give us an idea if the cache line growth is useful overall.

20

30

40

50

60

70

80

90

100

64B line

256 sets

128B line

128 sets

256B line

64 sets

512B line

32 sets

1024B line

16 sets

2048B line

8 sets

4096B line

4 sets

c
a
c
h
e
 h
it
 r
a
ti
o
 [
%
]

A10

city

crow n

f15

f forest

moon

park

sibenik

sponza

bunny

Graph 5-7 BIH triangle cache hit ratio

0

1

2

3

4

5

6

7

8

9

64B line

256 sets

128B line

128 sets

256B line

64 sets

512B line

32 sets

1024B line

16 sets

2048B line

8 sets

4096B line

4 sets

ti
m
e
 [
s
]

A10

city

crow n

f15

fforest

moon

park

sibenik

sponza

bunny

Graph 5-8 BIH rendering time depending on tri-cache

layout

20

30

40

50

60

70

80

90

100

64B

line,256

sets

128B

line,128

sets

256B

line,64 sets

512B

line,32 sets

1024B

line,16 sets

2048B

line,8 sets

4096B

line,4 sets

c
a
c
h
e
 h
it
 r
a
ti
o
 [
%
]

A10

city

crow n

f15

f forest

moon

park

sibenik

sponza

bunny

Graph 5-9 KDT triangle cache hit ratio

0

0,5

1

1,5

2

2,5

3

64B

line,256

sets

128B

line,128

sets

256B

line,64 sets

512B

line,32 sets

1024B

line,16 sets

2048B

line,8 sets

4096B

line,4 sets

ti
m
e
 [
s
]

A10

city

crow n

f15

fforest

moon

park

sibenik

sponza

bunny

Graph 5-10 KDT rendering depending on tri-cache

layout

As we can observe from Graph 5-8 and Graph 5-10 it

is clear that 1024B is indeed the upper limit and beyond

that performance either stays the same or degrades.

5.4 Cell timings and instruction
statistics

Here we will show time measurements for the fastest

cache layouts as was discussed in the previous chapter.

Scenes would be measured with 1 to 6 SPE’s active to

see if our code is scalable and if it is then how much.

These would be shown for the fastest code, branchless

variant with asynchronous cache access, of both

acceleration structures. All renderings were done in

512x512 resolution using primary and shadow rays with

one light source with the following cache settings:

• 1024B cache line for triangle cache

• 256B cache line for BIH node cache

• 128B cache line for KD-tree node cache

•

BIH 1 2 3 4 5 6

A10 0,908 0,687 0,686 0,642 0,638 0,624

CITY 3,770 2,267 1,955 1,682 1,517 1,506

CROWN 1,077 0,793 0,777 0,719 0,718 0,723

F15 0,857 0,632 0,621 0,603 0,625 0,605

FFOREST 3,475 2,182 1,962 1,619 1,554 1,476

MOON 1,043 0,776 0,733 0,721 0,722 0,730

PARK 1,808 1,374 1,271 1,158 1,133 1,142

SIBENIK 6,734 3,385 2,548 2,207 2,040 1,892

SPONZA 5,397 2,827 2,342 2,141 1,740 1,688

BUNNY 4,526 2,398 1,766 1,687 1,570 1,504

Table 5-1 BIH Cell performance for 1 to 6 SPEs in

seconds

Clearly the performance has a lower bound, as we

can observe that it is not much scalable beyond the 2

active SPEs. This can be caused by a sub-optimal PPE

code performance, whereas it cannot supply packet data

fast enough. Also, as we process only one 2x2 packet at

once it is clear that smaller scenes that will compute their

packets too fast will have to wait longer for the PPE to

get to them and their scalability will deteriorate much

faster.

KDT 1 2 3 4 5 6

A10 1,000 0,777 0,735 0,731 0,727 0,743

CITY 1,764 1,372 1,180 1,075 1,146 1,096

CROWN 1,059 0,750 0,697 0,698 0,700 0,706

F15 0,811 0,625 0,591 0,590 0,590 0,614

FFOREST 2,059 1,533 1,397 1,300 1,203 1,195

MOON 1,056 0,804 0,742 0,746 0,744 0,758

PARK 1,578 1,185 0,991 0,940 0,972 0,947

SIBENIK 1,894 1,298 1,297 1,187 1,154 1,186

SPONZA 1,889 1,331 1,256 1,198 1,265 1,206

BUNNY 1,744 0,909 0,817 0,821 0,833 0,818

Table 5-2 KDT Cell performance for 1 to 6 SPEs in

seconds

 TOT INTERN

A10 6,47 1,28

CITY 1,34 1,28

CROWN 5,21 1,29

F15 23,04 1,28

FFOREST 1,63 1,28

MOON 6,71 1,28

PARK 1,93 1,29

SIBENIK 1,29 1,28

SPONZA 1,32 1,28

BUNNY 1,3 1,28

Table 5-3 BIH total versus

internal while CPI

 TOT INTERN

A10 4,12 1,16

CITY 2,12 1,16

CROWN 6,91 1,16

F15 13,37 1,16

FFOREST 3,17 1,16

MOON 4,91 1,16

PARK 2,71 1,16

SIBENIK 2,47 1,16

SPONZA 2,54 1,16

BUNNY 2,05 1,17

Table 5-4 KDT total

versus internal while CPI

We have measured total CPI over the whole program

for one active SPE and compared it with CPI measured

over the traversal internal while cycle (which was our

performance target). Tables 5-3 and 5-4 above clearly

show that there is indeed something wrong with smaller

scenes even without the scalability limitation.

 SINGLE

CYCLES
DUAL

CYCLES
BR. MISS
STALLS

DEPENDENCY

STALLS

CHANNEL

STALLS

CROWN 7,6 % 2,3 % 4,1 % 4,3 % 81,1 %

F15 3,5 % 1,1 % 1,8 % 1,9 % 91,4 %

MOON 10,4 % 2,9 % 6,4 % 6,8 % 72,8 %

Table 5-5 BIH Small scenes channel stalls

To further test the PPE-SPE communication

performance, we’ve measured channel stalls for all of our

smaller scenes to see if the SPE is not overly waiting on

DMA transfers and Table 5-5 shows that performance

was worsening precisely for this reason. Also the smaller

the scene, i.e. the shallower resulting acceleration

structure and faster packet traversal, the higher the

overall percentage of channel stalls.

There was still a possibility that these would be

DMA’s run by cache code. This hypothesis was proven

incorrect by another measurement, which measured

complete traversal code, leaving outside of performance

code only the DMAs to PPE (packet retrieval and result

save). This was shown on one small and one large scene

and Table 5-6 shows that for both the channel stalls are

negligible.

 SINGLE

CYCLES
DUAL

CYCLES
BR. MISS
STALLS

DEPENDENCY

STALLS

CHANNEL

STALLS

F15 49,9 % 15,1 % 10,7 % 21,6 % 0,2 %

SPONZA 51 % 13,2 % 9 % 24,8 % 0 %

Table 5-6 BIH Complete traversal code performance

As our overall implementation is suboptimal we had

another choice how to compare the quality of code and

that is by comparing CPI. We have measured instruction

statistic over the internal traversal while loop, as this we

were trying to gradually improve. Our statistics show that

internal cycle statistics are the same (in the range of 1.0%

of each other) for every measured scene, thus the

statistics here would show only one (moon) scene.

 CPI SINGLE

CYCLES
DUAL

CYCLES
BR. MISS
STALLS

DEPEND.

STALLS

BIH BRANCH SYNC 2,05 33,6 % 7,6 % 27,6 % 30,1 %

BIH BRANCHLESS

ASYNC
1,28 54,3 % 11,8 % 5,9 % 27,4 %

KD-TREE BRANCH
SYNC

1,87 33,7 % 9,9 % 14,6 % 40,8 %

KD-TREE
BRANCHLESS

ASYNC

1,16 49 % 18,6 % 6,5 % 23,3 %

Table 5-7 Traversal while cycle instruction statistics for

BIH

We can see that we’ve achieved an improvement in

CPI values with our branchless code. This was caused

with two factors:

• Branchless code successfully lowered overall

cycles lost to branch miss

• Code with more instructions in a row can be

interleaved better to lower dependency misses.

6 Summary and Conclusion

This paper focused on evaluating ray tracing

acceleration structures implementations on the Cell

architecture. From our results we can summarize the

following:

• There was a difference in the best node cache

layout, which we attribute to a different traversal

algorithm, where BIH as an object partitioning

structure usually traverses both children, thus

needing more local nodes than a KD-tree.

• Software cache in SPE local store is feasible and

the option to change its layout as one see fit can

be used to gain performance advantage.

• Asynchronous cache access clearly improves

performance.

• Our branchless code outperforms our branched

code. It has lower CPI and better timings. This is

due to a smaller number of branch and

dependency misses.

• Branch hints are only suggestions to the compiler,

thus one has to watch if his hints actually got into

the resulting compiled code. We have gained

performance by analyzing branch and hint

histories and changing our code accordingly.

• 2x2 ray packets are too small for the code to be

scalable, as DMA stalls starts to greatly hinder

performance. To overcome it one has to use

bigger packets to reduce communication with

SPEs.

We’ve not concerned ourselves with more high-level

algorithms as they can be used to improve performance

on basically all architectures, and showing this was not

the point of this paper. However in future work we will

definitely want to look into optimizing these higher

levels, as it could lead to a smaller amount of PPE-SPE

communication and thus less channel stalls that now

hinder the overall performance.

Acknowledgments

We would like to thank Vlastimil Havran for

invaluable help and remarks. Our thanks also goes to

Tomáš Davidovič, who has aided greatly on different,

mostly hardware related, issues and Lukáš Maršálek,

who provided input on some specific Cell problems.

References

[CBEA08] A. Arevalo, R. M. Matinata, M. Pandian, E.

Peri, K. Ruby, F. Thomas, C. Almond. Programming the

Cell Broadband Engine Architecture: Examples and Best

Practices, IBM Redbooks, August 2008

[BWSF06] C. Benthin, I. Wald, M. Scherbaum, H.

Friedrich. Ray Tracing on the Cell Processor.

Proceedings of the 2006 IEEE Symposium on Interactive

Ray Tracing, 2006

[H01] V. Havran. Heuristic Ray Shooting Algorithms.

Ph.D. dissertation, 2001

[H07] V.Havran. Analysis of Fast Branchless KD-tree

Traversal Algorithms. Manuscript, Personal

Communication, December 2007

[SSK07] M. Shevtsov, A. Soupikov, A. Kapustin. Highly

Parallel Fast KD-tree Construction for Interactive Ray

Tracing of Dynamic Scenes. Computer Graphics Forum,

26(3), pages 395- 404, September 2007

[W07] I. Wald. On fast Construction of SAH-based

Bounding Volume Hierarchies. Proceedings of the

IEEE/Eurographics Symposium on Interactive Ray

Tracing 2007, pages 33-40, September 2007

[WH06] I. Wald, V. Havran. On building fast kd-Trees

for Ray Tracing, and on doing that in O(N log N).

Proceedings of the 2006 IEEE Symposium on Interactive

Ray Tracing, pages 61-69, 2006

[WK06] C. Wächter, A. Keller. Instant Ray Tracing: The

Bounding Interval Hierarchy. Proceedings of the 17th

Eurographics Symposium on Rendering, 2006

[WMS06] S. Woop, G. Marmitt, P. Slusallek. B-KD

Trees for Hardware Accelerated Ray Tracing of Dynamic

Scenes. Graphics Hardware 2006, September 2006

