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Abstract 

Today, streaming multiple core architectures are on the 

rise. This brings an option to use these architectures for 

ray tracing as these algorithms can heavily benefit from 

multiple available cores. We show an implementation of 

two different acceleration structures on the Cell 

Broadband Engine Architecture, which belongs to the 

aforementioned group. We show the limitations of Cell 

and how some of them may be overcome by software 

caches, branch hinting and branchless code. 
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1 Introduction 

Ray tracing is a technique for generating photo-realistic 

images from 3D scenes composed of objects with 

defined materials. Every pixel’s color is computed by 

shooting a ray through it and finding the closest 

intersection between the ray and one of the scene objects. 

Color is taken from the material of the found object and 

it is then simple to generate shadows by finding an 

occluder between the intersection and a light source and 

also complex light effects by shooting secondary rays, 

which start in the intersection point and lead outward. 

The general idea of ray tracing is a couple of decades 

old, though only in recent years it started to gain 

popularity. The reason for it being so looked over in 

interactive industry was its poor performance in 

comparison to the main technique used, which is 

rasterization. It is quite clear that ray tracing is a 

computationally expensive technique, with its need for 

shooting millions of rays to find color for pixels in the 

image. Rasterization with z-buffer, on the other hand, is 

supported by every major graphics card manufacturer, is 

easy to work with and has been a standard for years. 

However, recent changes in hardware development 

put ray tracing into prominence. Manufactures realized 

that pushing circuit frequency to the limit does not yield 

the best performance anymore and rather moved to 

multi-core architectures with optimized instructions. This 

current era spawned the much acclaimed dual and quad 

core Intel processors for PCs, but also hybrid multimedia 

units, such as the IBM Cell Broadband Engine 

Architecture, with one leading CPU and 8 simplified 

worker processors. Cell’s first major commercial 

application was to be the heart of Sony Playstation 3 

gaming console which also boasted an Nvidia graphic 

card. And graphic cards also experienced a rebirth in 

recent years as Nvidia followed with the G80 processor 

in 88xx GeForce series with massively parallel 

computational elements and CUDA (Compute Unified 

Device Architecture), API that allows programmer to 

write GPU oriented general purpose computations code 

in C.  

As ray tracing is “embarrassingly” parallel, i.e. each 

pixel’s color is independent on the others, it heavily 

profits from this move to parallel architectures. Also, 

dedicated hardware units are being developed, like the 

Ray Processing Unit (RPU) from Saarland University in 

Germany, successor to the SaarCor, an early 

experimental ray tracing unit. 

This paper aims to see how well the standard ray 

tracing algorithms and data structures can be mapped to 

IBM Cell, one of the specialized processing units. In 

particular what problems could emerge and how these 

problems can be solved. As IBM Cell is one of the few 

publicly available many-core architectures it is definitely 

an interesting platform to try. 

2 Acceleration structures 

Ray tracing is heavily dependent on data structures that 

divide the scene into smaller parts to speed up the search 

for intersected objects. They are essentially search trees 

where instead of intersecting one object after another one 

can traverse this tree to get quickly to places where 

intersection with scene objects is most possible. 

Acceleration structures can be split into two major 

groups, based on their splitting algorithm:  

• Space partitioning structures – i.e. they divide 

space, creating a hierarchy of subspaces. Objects 

are inserted into these subspaces according to 

their position. 

• Object partitioning structures – i.e. they divide 

objects, creating a hierarchy of volumes that are 

bounded to the objects that are inside of them. 

Typical construction of an acceleration structure 

starts with a root node that encompasses the whole scene 

and follows with these recursive steps: 

• If terminating conditions are met create a leaf and 

terminate. These could be reaching a certain depth 

in the tree or certain number of objects in our 

node (this is usually set to one) 

• Compute split position 

• Distribute geometry among left and right child 

depending on the split position 

• Repeat from the start with left and right child 

Quality of the splitting method used usually 

determines the quality of acceleration structure as a 

whole, as traversal algorithms are typically trivial to 



 

implement and are rarely the source of problems, thus the 

focus point here is how to build an optimal tree.  

The simplest splitting method is the median where 

one will split space/objects at the median of the 

respective interval. This is definitely the fastest method 

but will most probably create a sub-optimal structure. In 

spite of this, Wächter et al. [WK06] proposed quite an 

effective algorithm based on median splitting. 

Currently, the state of the art among splitting 

methods is the surface area heuristic (SAH), invented in 

the late 80’s, more recently described in e.g. [WH06]. 

SAH tries to minimize cost computed from surface area 

of child nodes and number of primitives in these nodes. 

As SAH computation is quite costly Wald in [W07] 

showed a faster binning algorithm where the idea is to 

split an interval into a number of equally large bins and 

evaluating SAH only on the boundaries of these bins. 

Shevtsov et al. then expanded on this with a min-max 

binning algorithm [SSK07] which gives a better 

approximation than a conventional binning version with 

boundaries. 

Two different structures, KD-tree and Bounding 

Interval Hierarchy, are used in this paper, where KD-tree 

is implemented with the aforementioned min-max 

binning SAH and BIH with the median split described in 

[WK06]. Wald et al. [WH06] summarized techniques  

for KD-tree construction and proposed an O(N log N) 

algorithm, which reaches the theoretical lower bound for 

KD-tree construction. SAH KD-tree is believed to be the 

best structure for ray tracing of static scenes, though it 

struggles with dynamic ones as its construction is costly, 

also due to the need to copy objects in each split step. 

[SSK07] expanded on these ideas by showing an 

approximation scheme for computing SAH without the 

need to sort objects in advance. Our KD-tree traversal 

algorithm is based on TArec described in [H01]. 

Bounding interval hierarchy (BIH) [WK06] is in a 

sense an analogue to a Bounded KD-tree [WMS06]. BIH 

stores only two bounding planes, one for each child. This 

is in contrast to a standard Bounding Volume Hierarchy 

storing the whole AABB for each node. Left and right 

child are then reconstructed in traversal by replacing 

maximum or minimum value with one of the split values. 

What is really different from a BKD-tree is the 

construction method. Wächter et al. proposed a new non-

greedy global heuristic that is based on a global bounding 

box of a scene, not on subsequent node bounding boxes. 

This approach, in effect, chooses split plane candidates 

from a regular grid. 

3 IBM Cell 

Before moving to the implementation specifics we will 

summarize IBM Cell architecture and its abilities. Cell is 

a broadband architecture developed jointly by Sony, 

Toshiba and IBM. It is a microprocessor designed for 

computationally intensive, mainly multimedia, tasks. 

Cell consists of one PPE (Power Processor Element), a 

Power architecture based processor, and eight Synergistic 

Processor Elements (SPEs), RISC processors with most 

of its instructions being 128-bit wide SIMD. The PPE is 

intended as a work distributor with SPEs as worker units. 

The SPE is designed as a simple processor for 

streamlined workload and because of this it can run on 

high frequencies of up to 4GHz. Its instructions have 

fixed latency of 2-7 cycles and they are processed in-

order with no branch prediction, though it has a branch 

hint instruction which can be used to help the processor 

in instruction pre-fetching. SPE cannot access main 

memory directly and it has no cache. Instead, all SPEs 

have a 256kB local store memory for both data and code. 

Also, it has a large register base consisting of 128 128bit 

SIMD registers. 

 
Figure 3-1 IBM Cell Architecture 

Element Interconnect Bus (EIB) is used as a 

connection between all on-chip elements: the PPE, eight 

SPEs, memory controller and two I/O interfaces. It is 

capable of transferring 96 bytes per cycle in between its 

elements. 

Cell has a few limitations/features that have to be 

taken into account, when one wants to run a ray tracing 

algorithm on this architecture. Those are mainly: 

• In-order execution of instructions - In contrast to a 

contemporary PC processor, Cell SPEs does not 

support out-of-order execution, relying solely on 

the quality of a code compiler to pre-process the 

code. The compiler has to resolve chain 

dependencies in the code to minimize pipeline 

stalls. 

• Single-instruction-multiple-data instructions – 

SPE is designed for working on multiple data at 

once, by the means of SIMD instruction. 

Therefore, one has to ensure enough independent 

data to work on at all times, otherwise even the 

smartest compiler cannot ensure minimum of 

stalls. 

• Memory access – Each SPE has access to three 

levels of memory: 128 SIMD local registers, 

256kB local memory and a main memory access 

through asynchronous DMA transfer. Main 

memory access has latency of a few hundred 

cycles; thus one has to plan his data transfers to 

larger blocks to avoid stalls. 



 

• Branch hinting - There can be only one branch 

hint active at once and for the branch hint to be 

effective one must place it at least 11 cycles and 

four instruction pairs in front of the branch that is 

to be hinted. 

• Programming model – Eight parallel SPE units 

gives us choice between homogenous approach, 

where each SPE runs identical program but on 

different data, and a heterogeneous approach, 

where SPEs create a pipeline with data pushed 

through one SPE after another. Both are feasible 

options, the latter being possible because of a 

large 300GB/s bandwidth in between SPEs. 

A model how to map ray tracing onto Cell’s 

architecture is given in [BWSF06]. Benthin et al. use 

homogenous approach with Bounding Volume 

Hierarchy, running identical ray tracing kernel on all 

SPEs but on different pixels, using 8x8 packets of rays. 

They also describe the usage of 256kB local store as an 

emulated software cache. Cache is organized into a 

separate BVH Node Cache and a Triangle cache. 

4 Implementation 

Although Cell is still halfway in between a many-core 

architecture and a regular CPU, as there’s a single 

“mother” PPE element to run and control the smaller, 

RISC-like, SPEs, it is generally regarded as a challenging 

environment for software development. IBM offers a free 

SDK for anyone to use who has a Linux machine running 

(we have used the Fedora 8 distribution). Also, if one 

wants to use a graphic development environment, plugins 

for Eclipse IDE are available for download. Code can be 

debugged with a modified version of GDB or it can be 

profiled on a cycle-precise simulator that is developed 

separately. 

Beyond simple code rewrite we’ve had to tackle 

different challenges, mainly the absence of hardware 

cache and branch prediction on the SPEs. We’ve done 

measurements of our first implementation and they’ve 

indicated that our traversal algorithm is stalling mostly 

on branch misses. We’ve then decided to implement a 

branchless version.  We have also tested all possible 

cache layouts and an asynchronous cache access to find 

out settings that will give us a performance gain. 

Both of the acceleration structures we’ve 

implemented on Cell reacted positively to our 

improvements as they both gained performance with a 

move to branchless code and asynchronous cache access. 

4.1 PPE 

Choices had to be made about which parts of code would 

be run on PPE and which on the smaller SPEs. It was 

decided to keep initialization and hierarchy build on the 

PPE, as there was no parallel code in place. Ray traversal 

was to be executed on the SPE units in parallel. 

Acceleration structure was split into two, one to be 

held in main memory with build statistics and other 

excess member variables, and one that is transferred to 

the SPE with only the necessary pointers (e.g. to node 

array, primitive array etc.) for the SPE to work with. The 

PPE side program now runs these phases: 

• Initialization – All basic structures are allocated 

and initialized 

• Hierarchy build – BIH or a KD-tree build 

• SPE Init – PPE spawns a thread for each SPE. 

Inside it a premade traversal kernel is loaded onto 

the SPE and started, which blocks this thread. 

Main thread then sends a memory pointer to the 

already built acceleration structure. 

• Trace - A global packet counter is initialized 

which holds pixel coordinates of the last packet 

traced. PPE spawns a thread for each SPE and 

until there’s a valid packet coordinate waiting, it 

will: 

1. increment global pixel coordinates 

accordingly 

2. if this is the last pixel then terminate, 

otherwise continue to 3 

3. initialize a packet based on these 

coordinates 

4. send a packet pointer to the SPE 

5. wait for SPE to send back the color of the 

traced pixels in the packet 

6. save this color into the frame buffer 

7. go back to 1 

Main thread uses pthread_join to wait until all SPE 

threads have finished. 

There are two ways how to transfer data from the 

main memory to the SPE. First option is a DMA transfer, 

to be used for larger amounts of data and it usually takes 

considerable amount of cycles, or mailboxing, a direct 

32bit transfer through a dedicated pipeline. Both have 

their usage in our code. Mailboxing functions are used to 

send memory pointers to structures that are then DMAed 

in by the SPE. As they are able to block execution until a 

message arrives, they are also used for synchronization 

on both the SPE and PPE side. Software caches, which 

are used in the SPE code, also use DMA transfer when a 

cache miss occurs, though this can be minimized by 

clever memory setup. 

4.2 SPE 

SPE binary has to be small with an upper limit of 250kB 

(size of SPE local store) to cover code and local memory 

to be used by it. Parts of its inner workings were revealed 

in the previous chapter, mainly about data exchange in 

between SPE and PPE through DMA and mailboxing. 

Every SPE holds in local store pointers to node and 

primitive arrays, data from these are loaded from main 

memory on demand and cached as they are needed by the 

traversal and triangle intersection code.  

SPE kernel first receives a hierarchy pointer, loads it 

to local store and then enters an infinite while loop, in 

which it waits for a ray packet pointer, DMAs the packet 

in after receiving it and then traces it. After it is finished 

the SPE will DMA the results back to the main memory 

and waits for another packet. 



 

4.3 SPE Software caches 

As access to main memory is costly (in the range of 900 

cycles) it is advisable to use a cache to store data that are 

used frequently or load data speculatively from main 

memory to exploit data locality. SPU provides us with 

other memory than registers, a 250kb local store which 

has an access time of 7 to 11 cycles. Luckily, in SDK 

version 3.0 there is implementation available of a directly 

mapped or a 4-way associative software cache, with a 

couple of handy macros to change cache type, cache line 

width and number of sets. Great benefit of having a 

software cache is definitely in the option to optimize it 

for the current code by changing its topology and internal 

algorithms. 

We have used the SDK implementation with success, 

with only minor changes in branch hinting, as we 

expected a branch hit to occur most of the time. Hence a 

branch hint was used in the code to always pre-load 

instructions for a branch hit, instead of a miss. 

We have employed two separate directly mapped 

software caches as was proposed in [BWSF06], one for 

nodes and the other for primitives, both the size of 16kB, 

which was the maximum we were able to achieve due to 

the 256kB local store limit. Different cache line widths 

and number of sets were used and cache hit/miss ratios 

from these tests can be found in section 5, though we 

were limited by the maximum size the cache can have. 

4.4 SPE evaluation and optimization 

Our main focus was set on the traversal code as a main 

unit of execution, which, with the first implementation 

which was described up to this point, was performing 

terribly as far as clocks per instruction (CPI) was 

concerned. This was caused by branch and dependency 

stalls: 

Therefore we have decided to optimize the code for 

branches, i.e. implement a branchless traversal algorithm, 

as we saw no place where to interleave the code to lessen 

the dependency hit. Asynchronous access to cache was 

further employed to improve the branchless code’s CPI. 

Moreover, we have experienced what we believe is a 

compiler error, which had to be solved with a sort of a 

hack. 

4.5 Branchless code 

Idea of transforming branched code to a branchless one is 

based on running computations in both the taken and not 

taken part sequentially and then choosing one based on 

the boolean value that was previously used to branch the 

code. In SIMD this can be achieved by a “blending” 

instruction that will combine two SIMD values into one 

according to another SIMD. SPE instruction set calls this 

instruction spu_sel. 

Our branchless traversal algorithm [H07] is based on 

the idea that instead of using branches when deciding 

which node is going to be traversed or possibly pushed 

on the stack, one can push both nodes and with simple 

moving the stack pointer forward or backward skip those 

that are not needed. 

This can be demonstrated on a branchless version of 

a KD-tree traversal code: 

4.6 Asynchronous cache access 

In the first version of our code a synchronous cache 

access was employed, e.g. when a cache miss occurred 

code stalled until the necessary DMA transfer finished. 

Cell SDK’s software cache implementation supports a 

so-called “unsafe” (asynchronous) approach that allows 

us to only signify that we will need some data in the 

future, do some computations in the meantime, and then 

ask for the data. This can be done with cache_touch and 

cache_wait, where the former will start DMA transfer 

when the data is not cached and the latter will wait for 

this transfer to finish or return cached data immediately 

when there’s no DMA transfer pending. 

Asynchronous access to cache proved useful in the 

branchless code where both branches are computed 

sequentially, thus both nodes were read from cache every 

time. With cache touching one can use pointers to 

structures (synchronous access to cache needs actual 

structures), only signify that he will need data on those 

pointers (children of the actual node) sometimes in the 

future and read them in via DMA in the background. 

An error can occur, however, when other cache 

operations are done in between touch and wait, as we can 

evict the line we asked for in the first place. It is clear 

that this can lead to serious artifacts in the image 

produced, as sometimes cache would give us a different 

node than what we asked for. A correct approach is to 

use a cache touch before each wait to make sure that no 

cache eviction has occurred. The worst that can happen is 

that we will really have to wait for the data to be 

transferred via DMA again, hence to utilize this we have 

to balance cache line size with cache eviction probability. 

Perf. Cycle count  2305725 
Perf. Instr. Count 1243760 (1162657) 
Performance CPI    1.85 (1.98) 
   
Single cycle       805931 ( 35.0%) 
Dual cycle         178363 (  7.7%) 
Branch miss stalls 566692 ( 24.6%) 
Dependency stalls  743987 ( 32.3%) 

  bool c = t < tmax; 
  bool d = t < tmin; 
   
  stack[stackPtr].node = farChild; 
  stack[stackPtr].tmin = max(t,tmin); 
  stack[stackPtr].tmax = tmax; 
  stackPtr += c; 
   
  stack[stackPtr].node = nearChild; 
  stack[stackPtr].tmin = tmin; 
  stack[stackPtr].tmax = min(t,tmax); 
  stackPtr -= d;  
  /* stack pop is already included 
here */ 
   
  currNode = stack[stackPtr].node; 
  tmin   = stack[stackPtr].tmin; 
  tmax   = stack[stackPtr].tmax; 
   



 

4.7 While branch hint 

A small inconsistency led us to an idea how to 

optimize hints in a while cycle, where we were unable to 

persuade the compiler to behave as we wanted it to. What 

happened is that we’ve put a branch hint on a while cycle 

condition and it never actually got into the code on the 

place we expected. While cycle compiles to a code with 

two jump instructions and when using while { } we 

cannot effect in any way where our hint would be placed. 

It can be wise to do this decomposition (while to do-

while) ourselves and try to define that we want the hint 

on both branches (this is still only a hint to the compiler 

itself, it does not mean it will end up in code). 

In our code this little trick helped, and we were able 

to save approximately 3% of branch miss stalls and 

apparently due to code reformatting another 3% of 

dependency stalls. 

5 Results 

In this section we will summarize results measured 

on both structures that were implemented on a set of 

testing scenes. These were chosen in a variety of triangle 

count and scene layouts and some of them are also quite 

commonly used in scientific papers mentioned 

throughout this text.  

The testing scenes used were:  
A10 City Crown F15 

    

218652 tris 68497 tris 3092 tris 3588 tris 

Bunny Fairie forest Moon Sponza 

atrium 

    
70255 tris 

 

174117 tris 35520 tris 67462 tris 

Park Sibenik 

cathedral 

  

  

 
 

29174 tris 80479 tris   
* A10 scene was modeled by and is a courtesy of Ondřej Karlík 

(keymaster@keymaster.cz)  

5.1 Cell cache statistics 

First section discussing statistics is about caches, as 

high cache hit rate is principal to our code performance 

on the SPE. As we had two distinct software caches 

we’ve made measurements for both of them with all 

possible settings in cache line size and number of sets. 

However we were limited by SPE code size, as software 

cache is essentially a part of the executable as any other 

static data. 

We were interested in the cache hit ratio for different 

cache layouts. All tests were also timed to get an idea 

how the overall code is performing in response to layout 

changes. Caches were assessed separately and to keep 

comparable results the one not being measured was 

always set to constant values of 128B cache line with 

128 sets. 

5.2 Node cache 

There is a major difference between BIH and KD-tree 

(KDT) cache hit profiles. KDT usually checks only one 

of node’s children when traversing, so the KDT profile 

looks as expected; for a bigger cache line more cache 

evictions will occur, thus lowering hit rate.  BIH on the 

other hand will usually in the end try both of its nodes, 

putting one on stack. Larger cache lines here befits 

scenes that traverse more nodes per ray, as they are 

positioned close to each other in memory which explains 

why the cache hit rate can sometimes rise even with a 

greater cache line.  
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Graph 5-1 KDT branchless cache – node cache hit ratio 

Considering time, KD-tree case is clear. A small rise 

up to 128B is gained from having few (8 nodes for 128B 

cache line) sequential nodes prepared in memory. 

Beyond 128B cache line evictions will start to take their 

toll and performance deteriorate very quickly. BIH’s hit 

rate is not falling as swiftly, or is even rising, though that 

is not enough to overcome more costly DMA transfers 

and beyond 256B cache line size performance will 

almost always only get worse. 
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Graph 5-2 BIH branchless cache – node cache hit ratio 

 



 

0

1

2

3

4

5

6

7

8

32B line

512 sets

64B line

256 sets

128B line

128 sets

256B line

64 sets

512B line

32 sets

1024B line

16 sets

2048B line

8 sets

4096B line

4 sets

ti
m
e
 [
s
]

A10

city

crow n

f15

fforest

moon

park

sibenik

sponza

bunny

 
Graph 5-3 BIH branchless cache – rendering time 

depending on node cache layout 
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Graph 5-4 KD-tree branchless cache – rendering time 

depending on node cache layout 

Lastly, we will compare a synchronous access to 

cache against the asynchronous one. This will be shown 

for both implementations, where even if cache hit ratio is 

higher for the synchronous access many of the nodes 

gotten are lost as in our branchless algorithm both nodes 

are loaded onto stack and then possibly one or both are 

immediately popped depending on the traversal 

computation. Thus it is clearly wiser to only “touch” 

those nodes that are pushed and wait for the DMA 

transfer to complete only when the node is really needed.  
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Graph 5-5 A10 scene KDT async/sync rendering time 

depending on node cache layout 
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Graph 5-6 A10 scene BIH async/sync rendering time 

depending on node cache layout 

Graph 5-5 and Graph 5-6 show that an async 

approach is clearly better. 

5.3 Triangle cache 

Triangle caches for both KD-tree and BIH show 

similar behavior. Their hit rate rises with the cache line 

up to a limit of about 1024B where it either rises very 

slowly or falls down. As in previous section it is useful to 

have a look at the measured rendering times as these will 

give us an idea if the cache line growth is useful overall.  
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Graph 5-7 BIH triangle cache hit ratio 
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Graph 5-8 BIH rendering time depending on tri-cache 

layout 
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Graph 5-9 KDT triangle cache hit ratio 
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Graph 5-10 KDT rendering depending on tri-cache 

layout 



 

As we can observe from Graph 5-8 and Graph 5-10 it 

is clear that 1024B is indeed the upper limit and beyond 

that performance either stays the same or degrades. 

5.4 Cell timings and instruction 
statistics 

Here we will show time measurements for the fastest 

cache layouts as was discussed in the previous chapter. 

Scenes would be measured with 1 to 6 SPE’s active to 

see if our code is scalable and if it is then how much. 

These would be shown for the fastest code, branchless 

variant with asynchronous cache access, of both 

acceleration structures. All renderings were done in 

512x512 resolution using primary and shadow rays with 

one light source with the following cache settings: 

• 1024B cache line for triangle cache 

• 256B cache line for BIH node cache 

• 128B cache line for KD-tree node cache 

•  

BIH 1 2 3 4 5 6 

A10 0,908 0,687 0,686 0,642 0,638 0,624 

CITY 3,770 2,267 1,955 1,682 1,517 1,506 

CROWN 1,077 0,793 0,777 0,719 0,718 0,723 

F15 0,857 0,632 0,621 0,603 0,625 0,605 

FFOREST 3,475 2,182 1,962 1,619 1,554 1,476 

MOON 1,043 0,776 0,733 0,721 0,722 0,730 

PARK 1,808 1,374 1,271 1,158 1,133 1,142 

SIBENIK 6,734 3,385 2,548 2,207 2,040 1,892 

SPONZA 5,397 2,827 2,342 2,141 1,740 1,688 

BUNNY 4,526 2,398 1,766 1,687 1,570 1,504 

Table 5-1 BIH Cell performance for 1 to 6 SPEs in 

seconds 

Clearly the performance has a lower bound, as we 

can observe that it is not much scalable beyond the 2 

active SPEs. This can be caused by a sub-optimal PPE 

code performance, whereas it cannot supply packet data 

fast enough. Also, as we process only one 2x2 packet at 

once it is clear that smaller scenes that will compute their 

packets too fast will have to wait longer for the PPE to 

get to them and their scalability will deteriorate much 

faster. 

 

KDT 1 2 3 4 5 6 

A10 1,000 0,777 0,735 0,731 0,727 0,743 

CITY 1,764 1,372 1,180 1,075 1,146 1,096 

CROWN 1,059 0,750 0,697 0,698 0,700 0,706 

F15 0,811 0,625 0,591 0,590 0,590 0,614 

FFOREST 2,059 1,533 1,397 1,300 1,203 1,195 

MOON 1,056 0,804 0,742 0,746 0,744 0,758 

PARK 1,578 1,185 0,991 0,940 0,972 0,947 

SIBENIK 1,894 1,298 1,297 1,187 1,154 1,186 

SPONZA 1,889 1,331 1,256 1,198 1,265 1,206 

BUNNY 1,744 0,909 0,817 0,821 0,833 0,818 

Table 5-2 KDT Cell performance for 1 to 6 SPEs in 

seconds 

 

 TOT INTERN 

A10 6,47 1,28 

CITY 1,34 1,28 

CROWN 5,21 1,29 

F15 23,04 1,28 

FFOREST 1,63 1,28 

MOON 6,71 1,28 

PARK 1,93 1,29 

SIBENIK 1,29 1,28 

SPONZA 1,32 1,28 

BUNNY 1,3 1,28 

Table 5-3 BIH total versus 

internal while CPI 

 TOT INTERN 

A10 4,12 1,16 

CITY 2,12 1,16 

CROWN 6,91 1,16 

F15 13,37 1,16 

FFOREST 3,17 1,16 

MOON 4,91 1,16 

PARK 2,71 1,16 

SIBENIK 2,47 1,16 

SPONZA 2,54 1,16 

BUNNY 2,05 1,17 

Table 5-4 KDT total 

versus internal while CPI 

 

We have measured total CPI over the whole program 

for one active SPE and compared it with CPI measured 

over the traversal internal while cycle (which was our 

performance target). Tables 5-3 and 5-4 above clearly 

show that there is indeed something wrong with smaller 

scenes even without the scalability limitation. 

 

 SINGLE 

CYCLES 
DUAL 

CYCLES 
BR. MISS 
STALLS 

DEPENDENCY 

STALLS 

CHANNEL 

STALLS 

CROWN 7,6 % 2,3 % 4,1 % 4,3 % 81,1 % 

F15 3,5 % 1,1 % 1,8 % 1,9 % 91,4 % 

MOON 10,4 % 2,9 % 6,4 % 6,8 % 72,8 % 

Table 5-5 BIH Small scenes channel stalls 

 

To further test the PPE-SPE communication 

performance, we’ve measured channel stalls for all of our 

smaller scenes to see if the SPE is not overly waiting on 

DMA transfers and Table 5-5 shows that performance 

was worsening precisely for this reason. Also the smaller 

the scene, i.e. the shallower resulting acceleration 

structure and faster packet traversal, the higher the 

overall percentage of channel stalls. 

There was still a possibility that these would be 

DMA’s run by cache code. This hypothesis was proven 

incorrect by another measurement, which measured 

complete traversal code, leaving outside of performance 

code only the DMAs to PPE (packet retrieval and result 

save). This was shown on one small and one large scene 

and Table 5-6 shows that for both the channel stalls are 

negligible. 

 

 SINGLE 

CYCLES 
DUAL 

CYCLES 
BR. MISS 
STALLS 

DEPENDENCY 

STALLS 

CHANNEL 

STALLS 

F15 49,9 % 15,1 % 10,7 % 21,6 % 0,2 % 

SPONZA 51 % 13,2 % 9 % 24,8 % 0 % 

Table 5-6 BIH Complete traversal code performance 

 

As our overall implementation is suboptimal we had 

another choice how to compare the quality of code and 

that is by comparing CPI. We have measured instruction 

statistic over the internal traversal while loop, as this we 



 

were trying to gradually improve. Our statistics show that 

internal cycle statistics are the same (in the range of 1.0% 

of each other) for every measured scene, thus the 

statistics here would show only one (moon) scene. 

 

 CPI SINGLE 

CYCLES 
DUAL 

CYCLES 
BR. MISS 
STALLS 

DEPEND. 

STALLS 

BIH BRANCH SYNC 2,05 33,6 % 7,6 % 27,6 % 30,1 % 

BIH BRANCHLESS 

ASYNC 
1,28 54,3 % 11,8 % 5,9 % 27,4 % 

KD-TREE BRANCH 
SYNC 

1,87 33,7 % 9,9 % 14,6 % 40,8 % 

KD-TREE 
BRANCHLESS 

ASYNC 

1,16 49 % 18,6 % 6,5 % 23,3 % 

Table 5-7 Traversal while cycle instruction statistics for 

BIH 

 

We can see that we’ve achieved an improvement in 

CPI values with our branchless code. This was caused 

with two factors: 

• Branchless code successfully lowered overall 

cycles lost to branch miss 

• Code with more instructions in a row can be 

interleaved better to lower dependency misses. 

6 Summary and Conclusion 

This paper focused on evaluating ray tracing 

acceleration structures implementations on the Cell 

architecture. From our results we can summarize the 

following: 

• There was a difference in the best node cache 

layout, which we attribute to a different traversal 

algorithm, where BIH as an object partitioning 

structure usually traverses both children, thus 

needing more local nodes than a KD-tree. 

• Software cache in SPE local store is feasible and 

the option to change its layout as one see fit can 

be used to gain performance advantage.  

• Asynchronous cache access clearly improves 

performance. 

• Our branchless code outperforms our branched 

code. It has lower CPI and better timings. This is 

due to a smaller number of branch and 

dependency misses. 

• Branch hints are only suggestions to the compiler, 

thus one has to watch if his hints actually got into 

the resulting compiled code. We have gained 

performance by analyzing branch and hint 

histories and changing our code accordingly. 

• 2x2 ray packets are too small for the code to be 

scalable, as DMA stalls starts to greatly hinder 

performance. To overcome it one has to use 

bigger packets to reduce communication with 

SPEs. 

We’ve not concerned ourselves with more high-level 

algorithms as they can be used to improve performance 

on basically all architectures, and showing this was not 

the point of this paper. However in future work we will 

definitely want to look into optimizing these higher 

levels, as it could lead to a smaller amount of PPE-SPE 

communication and thus less channel stalls that now 

hinder the overall performance. 
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