
Rendering Parametrizable Planetary Atmospheres with Multiple
Scattering in Real-Time

Oskar Elek

Faculty of Mathematics and Physics
Charles University

Prague / Czech Republic

Abstract

In the field of physically-based rendering of natural phe-
nomena, rendering of atmospheric light scattering takes a
very important place. Real-time rendering of the sky and
planetary atmospheres in general is essential for all out-
door computer games, various simulators, virtual worlds
and even for animated movies. In our work we present
an accurate and fast method for real-time rendering of
parametrizable planetary atmospheres. This is achieved
by precomputing the complex volumetric scattering equa-
tions into a set of compact lookup tables. The correct at-
mospheric colour values are then fetched from these in a
fragment shader during rendering. The method is capa-
ble of rendering planetary atmospheres on today’s graph-
ics hardware at the speed of hundreds of frames per sec-
ond.

Keywords: atmospheric light scattering, natural phenom-
ena, GPU programming, participating media, procedural
textures

1 Introduction

Physically-based rendering of natural phenomena is per-
haps one of the most popular areas in the field of computer
graphics. Rendering of planetary atmospheres is very im-
portant amongst these, because the light and colour of the
Earth’s atmosphere is well-known to every human, as it
accompanies us during all our lives. Thus any render-
ing system that strives for realistic display of any general
outdoor scene needs to incorporate a beliveable method
for rendering a planetary atmosphere. This includes many
applications, for example 3D computer games, flight and
driving simulators, virtual worlds an so on. Applica-

tions like GoogleEarth, NASA WorldWind or for instance
SecondLife use very simplistic and physically unrealistic
models for rendering of the Earth’s atmosphere. 3D com-
puter games are more advanced in this direction, but they
still use either static cubemaps or physically-based but still
substantially simplified algorithms.

In this paper we present a method for physically-based
real-time rendering of general planetary atmospheres.
This is achieved by breaking the procedure down into two
steps: precomputation and rendering. During the precom-
putation step, a set of lookup tables is created by evaluat-
ing the light scattering equations in participating medium
accounting for both single and multiple scattering. Apart
from some acceptable simplifications of the problem, the
accent here is on numerical and physical accuracy. The
rendering step then utilises this precomputed dataset by
fetching the correct atmospheric colour values during the
fragment-shading phase. The atmosphere is described by
several parameters, where some of them can be changed
dynamically during the rendering. By changing these, one
can achieve a completely different look of the generated
atmosphere, which enables simulation of atmospheres of
other planets, not only of Earth.

The next sections are organised as follows. Section 2 gives
an overview of existing work on this topic. Section 3
gives a physical introduction into light scattering and then
presents the mathematical model for the calculation of at-
mospheric light scattering. Section 4 contains the descrip-
tion of the precomputation of atmospheric light scattering
and then decribes the rendering method. Finally Section 5
gives implementation details and concludes our work.

2 Related Work

Simulation of planetary atmosphere appearance has been
the point of interest in the field of computer graphics for
a long time. The absence of sufficently powerful graphics
hardware for this purpose implied that for a long time only
non-interactive methods have been used to display atmo-
spheric light scattering effects.

One of the first papers on this topic was [6]. Nishita
et al. presented here a set of equations for calculation
of single-scattering in the atmosphere; this model is used
until today, although it does not enable for changing the
atmosphere’s density. They also proposed a method for
calculating ambient illuminance of the ground and figured
out the way to precompute some terms from the model,
speeding up the rendering process. Their volumetric ray-
marching implementation was however capable of render-
ing of the Earth’s atmosphere only from space.

This work has been directly succeeded by [5]. The new
method based on division of the skydome into a set of cells
was theoretically capable of computing arbitrary number
of light scattering orders, but was usable only up to the sec-
ond order of scattering, because of the algorithm’s com-
sumption of computational resources. Their implementa-
tion now allowed for rendering of the Earth’s atmosphere
also from inside of it.

A method for displaying the sky from the ground was
presented in [3]. It used an approach based on the simula-
tion of radiative transfer in the body of the skydome, which
made the method capable of simulating arbitrary number
of scattering orders. The method also accounted for many
specific physical parameters, enabling the simulation of a
wide range of atmospheric conditions. The method’s only
downside were, despite various optimalizations, its large
computational requirements.

A completely different approach was used in [9].
Preetham et al. presented here an analytic solution for cal-
culation of the colour of the Earth’s sky. However, as has
been pointed out in [12], the model was behaving incor-
rectly under some specific conditions and in some cases
even yielded negative intensity values.

Secondly, there is a number of interactive or real-time
methods, that are made possible by using various approx-
imations and exploiting high computational power of to-
day’s graphics hardware. All of the following approaches
are capable of rendering the Earth’s atmosphere from both
outside and inside of it.

In 2004, O’Neil in his article [7] presented an approx-
imative real-time method for rendering the Earth’s atmo-
sphere based on the model from Nishita et al. [6]. Here he
suggested usage of 2D lookup tables for storing the optical
depth and predicted that the whole single-scattering inte-
gral should be precomputable into a monolythic 3D lookup
table with very high precision. A year later, in [8] he took a
different direction than he predicted himself and presented
a set of ad hoc analytic functions for calculating the at-
mosphere’s colour. These he evaluated in a vertex shader,

Symbol / Term Description
λ wavelength of light
θ scattering angle
FR,M(θ) Rayleigh/Mie phase function
βR,M(λ) Rayleigh/Mie scattering coefficient
NR,M Rayleigh/Mie molecular number density
II(λ) incident spectral intensity
ρR,M(h) Rayleigh/Mie density function
tR,M(S,λ) transmittance (optical length)
I(k)SR,M

(PO,V,L,λ) k-th order scattering intensity

Table 1: Definitions of symbols and terms

keeping a real-time characteristics of his approach.
In 2006, Wenzel [11] presented a fast method that was

periodically precalculating the single-scattering integral
into a 2D texture. He implemented this method in the
CryEngine2, making the first known implementation of
physically plausible atmospheric light scattering model in
a game engine.

In the work of Schafhitzel et al. [10], the authors figured
out the way to precompute the single-scattering equations
into a 3D lookup table, as suggested by O’Neil [7]. This
was the first time the single-scattering equations were fully
precomputed, although as has later shown up, the 3D tex-
tre still lacked one dimension. This paper forms the start-
ing point for our work.

Recently in 2008, Bruneton and Neyret presented [1]
a work that also built up on the paper of Schafhitzel et
al. [10]. Here they presented a first real-time method
that accounted for multiple scattering and also their pre-
computed lookup table was 4-dimensional, truly account-
ing for all viewing directions and observer positions at
any daytime, while we use a smaller but simplified 3-
dimensional table with empirical approximation of the
viewing azimuth. Our method shares many similarities
with theirs, mainly the algorithm for multiple scattering
computation is practically identical, although it is inde-
pendently developed.

3 Light Scattering Fundamentals

In this section we at first shortly explain the physical back-
ground of atmospheric light scattering. Despite being
available on the Internet and in books, we state it here for
sake of consistency. The second part of this section then
describes the mathematical model that is utilised by our
method.

3.1 Physical basis

Light scattering is a physical phenomenon, during which
light is deviated from the direction it was originally com-
ing from. This can occur for example on a molecule of

some substance or on a small particle of matter. The major
implication of this is that light may be coming from the di-
rection in which there is no light source. Atmospheric light
scattering is the very reason why the atmosphere manifests
colour.

We recognise various types of light scattering, but here
we will focus only on elastic light scattering, because this
is the type that occurs on particles typically contained in
planetary atmospheres. The important property of elastic
light scattering is that during the scattering event, no en-
ergy loss occurs.

We recognise two types of elastic light scattering rel-
evant for computer graphics — Rayleigh scattering and
Mie scattering1. Rayleigh scattering occurs on particles
that conform to the following criterion:

d� λ

2π
(1)

where d is particle diameter2. To such sizes correspond for
example oxygen, nitrogen or carbon dioxide molecules.
When the particles’ sizes grow up to and over λ , a smooth
transition to Mie scattering happens. This involves vari-
ous aerosol particles in atmosphere, as well as small solid
particles, such as tiny ice crystals and fine dust particles.

The major behavioural difference between Rayleigh and
Mie scattering is that while the intensity of Rayleight scat-
tering depends on the wavelength of scattered light, the
intensity of Mie scattering does not. It is then obvious that
while the blue colour of daily sky and reddish hues dur-
ing twilight are caused by Rayleigh scattering, the greyish
tones of clouds, fog or halos around the sun are caused by
Mie scattering.

We also have to define the terms single- and multi-
ple scattering. The distinction is very simple — single-
scattering means that only one scattering event is taken
into account, and accordingly, in multiple scattering it is
accounted for an arbitrary number of scattering events in
general. Since both Rayleigh and Mie scattering are elas-
tic, simulation of multiple scattering is strongly needed,
because light in the atmosphere can undergo many scat-
tering events as a consequence of no energy loss during
these. However, based on our experience, it is sufficent to
take into account only the first 6 – 7 orders of light scatter-
ing, because the higher orders are very weak, as photons
eventually either fly away into open space or get absorbed
by the planetary body.

3.2 Mathematical model

The physically-based model we present here builds on the
work of Nishita et al. [6] and on knowledge from [4]. Its

1There is also a third type, Rayleigh-Gans scattering, but because this
is the transitive type between Rayleigh and Mie scattering, we do not
discuss it here

2For the definition of frequently used symbols and terms, please refer
to Table 1

Figure 1: Rayleigh (top, linear scale, d = 20nm, λ =
450nm) and Mie (bottom, logarithmic scale, d = 4µm,
λ = 450nm) phase functions for θ ∈ 〈0,π〉. The corre-
sponding polar plots are shown as well.

major advantage is that it is directly useful for procedural
evaluation in programming languages such as C++.

3.2.1 Phase function

Phase function denotes an angular dependency of scattered
light in respect to the original direction of incoming light.
It is a 1D function that takes as its parameter the scatter-
ing angle θ (the angle between the incoming light ray and
the scattered light ray) and returns the relative amount of
scattered light under that particular angle. For Rayleigh
scattering, the phase function is defined as

FR =
3
4
(1+ cos2(θ)). (2)

The function is symmetrical around the axis of incindent
light and follows from wave properties of electromagnetic
radiation (see Figure 1).

On the other hand the Mie phase function FM(θ) is very
complex and can not be calculated by a single analytic
equation. It generally contains a strong forward lobe and
many side and backward lobes and changes with the di-
ameter of the scattering particle. However, after the size
of the scattering particle exceeds the wavelength of scat-
tered light, a strong prevalence of the dominating forward
lobe arises. Thanks to this, it can be approximated by
Henyey-Greenstein function further improved by Cornette
and Shanks [2]:

FM(θ ,g) =
3(1−g2)

2(2+g2)

(1+ cos2(θ))

(1+g2−2gcos(θ))3/2 (3)

where g ∈ (−1;1) is an assymetry factor denoting the
width of the forward lobe (see Figure 3).

3.2.2 Scattering coefficient

Let’s define a Rayleigh/Mie particle polarisability constant
αR,M as

αR,M =
2π2(n2

e−1)2

3N2
eR,M

(4)

where ne is the index of refraction of the Earth’s atmo-
sphere at sea level and NeR,M is the Rayleigh/Mie particles’
molecular number density of the Earth’s atmosphere at sea
level. This constant is calculated from measured parame-
ters of the Earth’s atmosphere and denotes how well the
particle scatters the light.

The Rayleigh and Mie scattering coefficients βR(λ) and
βM() are then defined as

βR(λ) = 4π
NR

λ 4 αR (5)

βM() = 4πNMαM (6)

where NR,M denotes molecular number density of
Rayleigh/Mie particles in the desired atmosphere. Note
that βM() is λ -independent.

3.2.3 Scattering intensity

The Rayleigh/Mie scattering intensity IsR,M expresses the
amount of light deviated by a given angle θ during a scat-
tering event at point P (see Figure 2 for illustration). It
depends on spectral wavelength λ and is expressed by the
following equation:

IsR,M (λ ,θ ,P) = II(λ)ρR,M(h)FR,M(θ)βR,M(λ) (7)

where II(λ) is the spectral intensity of incident light and
ρR,M(h) is the Rayleigh/Mie density function. This func-
tion expresses the decrease of atmospheric density in de-
pendence on h, the altitude of P over the ground. It is
defined as follows:

ρR,M(h) = exp(− h
HR,M

) (8)

where HR ≈ 8000m and HM ≈ 1200m are the Rayleigh and
Mie scale heights. These express the altitude where the
density of an appropriate type of particles scales down by
a 1/e term.

3.2.4 Transmittance

Transmittance, or optical length, tR,M(S,λ) expresses
the amount of attenuated light with wavelength λ af-
ter it passes the distance S in a Rayleigh/Mie scattering
medium. It is defined by the equation

tR,M(S,λ) = βR,M(λ)
∫ S

0
ρR,M(s′)ds′. (9)

Attenuation is the consequence of out-scattering in partic-
ipating medium.

P

P

aP

N
c

O~

h

L

V

planet

atmosphere

δ

θ

PIs

(k)

(1)

Is Pb

s

s'

Figure 2: A schematic view of the atmosphere

3.2.5 Single-scattering

The single-scattering equation describes the intensity of
light I(1)SR,M

(PO,V,L,λ) that reaches an observer PO looking
in the direction V , after exactly one scattering event:

I(1)SR,M
(PO,V,L,λ) = II(λ)FR,M(θ)

βR,M(λ)

4π
· (10)

·
∫ Pb

Pa

ρR,M(h)exp(−tR,M(PPc,λ)− tR,M(PaP,λ))ds

where L is the direction to the light source and h is the al-
titude of sample point P, which is parameterized by s. Pa
and Pb are the first and the last point where the density of
the atmosphere is nonzero (when the observer is situated
inside the atmosphere, then Pa = PO). Pc is the intersect-
ing point of L with the upper atmospheric boundary when
starting in P (see Figure 2 for illustration). FR,M(θ) can be
excluded from the integration, because we assume that all
light rays coming from the light source are parallel.

Finally, the total intensity of single-scattered light I(1)S is
obtained by the sum (omitting parameters for shortness):

I(1)S = I(1)SR
+ I(1)SM

. (11)

3.2.6 Multiple scattering

The key to make calculation of multiple scattering possible
(on consumer hardware) is to avoid the most primitive way
of doing it. This way corresponds to a multidimensional
integral which is in fact a global illumination equation in a
participating medium. The higher scattering orders would
be obtained here by nested recursive integration, the evalu-
ation of which would take a very long time. The solution to
this is the formulation of the reccurent formula that would
somehow take advantage of the previously calculated data.

At first we define a gathered scattered light of k-th order
G(k)

R,M(P,V,L,λ) at some point in the atmosphere P in the
direction V when the light source is in the direction L as

G(k)
R,M(P,V,L,λ) =

∫
4π

FR,M(θ)I(k)SR,M
(P,ω,L,λ)dω (12)

where θ is the scattering angle between V and ω and
I(k)SR,M

(P,ω,L,λ) is the scattered light intensity of kth or-
der. This formula denotes the amount of gathered light,

which has undergone exactly k scattering events, reflected
(in-scattered) into the direction −V at P.

We can now define the scattered light intensity of kth

order I(k)SR,M
(PO,V,L,λ) at the observer position PO in the

direction V as

I(k)SR,M
(PO,V,L,λ) =

βR,M(λ)

4π
· (13)

·
∫ Pb

Pa

G(k−1)
R,M (P,V,L,λ)ρR,M(h)exp(−tR,M(PaP,λ))ds

where the notation stays similar to Equation 10. Again
the total intensity of the kth order of scattered light is ex-
pressed as I(k)S = I(k)SR

+ I(k)SM
. If we now define K as the

number of desired calculated scattering orders, we get the
total scattering intensity as

IS =
K

∑
i=1

I(k)S . (14)

4 Method description

4.1 Precomputation

The rendering part of our algorithm is intended to be run
on graphics hardware. Since this is not capable of working
with textures of more than three dimensions, it is important
to keep the dimensionality of our lookup table in this limit.
Also it is necessary to keep the sampling resolutions in
all dimensions within reasonable limits, so the size of the
lookup table does not grow too large.

4.1.1 Parameterization

The precomputation of Equation 14 for every observer
position PO[x,y,z], every view direction V [x,y,z] and ev-
ery light source direction L[x,y,z] would require a 9-
dimensional table, which is by far unaffordable. It’s nec-
essary to take advantage of some symmerties as well as
make a few assumptions:

• (1) The star (light source) is so far away that all light
rays from it can be considered parallel

• (2) The planet is perfectly spherical (neglecting ter-
rain morphology for now)

• (3) The density of the atmosphere is changing in re-
spect to altitude (according to ρR,M(h)) but not in re-
spect to latitude and longitude (currently the strongest
limitation — it binds us to one type of atmosphere,
until the precomputation step is repeated)

• (4) The atmosphere is a spherical shell and its colour
is symmetrical around the plane between L and the
zenith vector in PO

(a) (b)

Figure 3: The plot of Cornette’s FM for g =−0.95 (a) and
the correct sampling of Mie scattering after deferring eval-
uation of FM (b)

Thanks to the assumptions (2) and (4), we can reduce PO,
V and L into 4 scalar parameters — altitude h ∈ 〈0;Htop〉
(where Htop is the upper atmosphere boundary altitude),
view↔zenith angle φ ∈ 〈0;π〉, sun↔zenith angle δ ∈
〈0;π〉 and sun↔view azimuth ω ∈ 〈0;π〉. Although it is
possible to emulate 4D table with 3D table, we decided
to omit azimuth ω from precomputation, because of the
following reasons:

• The main product of incorporation of ω into precom-
putation is the presence of the planet’s shadow dur-
ing the sunset in those parts of the sky where there
is no direct illumination. This shadow is however
only weakly visible (due to multiple scattering) and
in most times it is masked by the horizon.

• The size of the precomputed table is decreased sev-
eral times thanks to this.

However, this omitting also causes uniformity of the at-
mospheric colour in respect to ω , because all view direc-
tions now have implicitly ω = 0. The solution to this is
described in Section 4.1.2.

Our task is now to remap parameters of our lookup ta-
ble h, φ and δ into the 3D texture coordinate space UVW ,
i.e. to design a remapping function f : 〈0;Htop〉×〈0;π〉×
〈0;π〉 −→ 〈0;1〉×〈0;1〉×〈0;1〉. For this purpose we par-
tially adopted the remapping functions from [1]:

U =
√

(h2−R2
p)/(R2

a−R2
p)

V = (1+ cos(φ))/2

W = (1− e−2.8cos(δ)−0.8)/(1− e−3.6)

where Rp and Ra are the planet and the atmosphere radius,
respectively.

4.1.2 Phase function

Thanks to the assumption (1) we can not only exclude
evaluation of FR,M from integration in Equation 10, but we
can even defer its evaluation into a fragment shader. This
has two advantages.

Firstly, it partially solves the problem with the absence
of ω in our parameterization, because now it is accounted
for at least in calculation of FR,M (because ω is contained
within the angle between V and L). Even though ω is not
contained in the rest of the computations, the uniformity
of atmosphere colour in respect to it now does not appear
so strongly.

Secondly, it solves the problem of undersampled Mie
scattering. The gradient of Mie-scattered light is very high
when the angle between V and L is close to zero because
of the behaviour of Cornette’s approximation of FM (see
Figure 3 for its visualization). Deferring calculation of FM
gives us a very fine per-fragment sampling precision.

Deferred phase function for Rayleigh scattering causes
unnatural look of the atmosphere, because the standard
Rayleigh phase function has its maxima at 0◦ and 180◦

angles and its minimum at 90◦ angle (see Figure 1). Nor-
mally, this behaviour is neutralised by multiple scatter-
ing, but here the phase function is applied also on higher
scattering orders. For this purpose we derived an ad hoc
Rayleigh phase function

FR(θ) =
8
10

(
7
5
+

1
2

cos(θ)
)

(15)

that looks more natural, as it has its minimum at 180 de-
grees. The darkest area of the sky during the sunset is then
on the opposite side of the sky than the sun.

4.1.3 Multiple scattering

Calculation of higher scattering orders by direct evaluation
of Equation 13 would cause the same exponential compu-
tational complexity (in regard to the number of scattering
orders K) as the forward recursive computation.

The key to success is the fact that Equation 13 is for-
mulated in the way that it allows an incremental computa-
tion of scattering orders, one at the time. At first the I(1)S is
computed exactly, according to Equation 11 and the results
of this computation are stored in the lookup table as de-
scribed in Section 4.1.1. Then we can compute the desired
number of higher scattering orders — for calculation of
the I(k)S we use Equation 13, where G(k−1) is calculated by
fetching scattering intensity values from the already com-
puted lookup table for (k−1)th scattering order. When we
have all desired scattering orders computed, we just sum
them according to Equation 14 into a single lookup table.

4.1.4 Ambient illumination

Scattered light indeed causes ambient illumination on the
planetary surface and it is necessary to account for this in
order to conserve energy in the simulated system. The in-
tensity of the ambient illumination on the planetary surface
due to scattered light IA(L,λ) for the light source direction
L can be expressed by

IAR,M (L,λ) =
∫

2π

(N •ω)ISR,M (0,ω,L,λ)dω (16)

where N is the surface normal. This can be precomputed
into a 1D lookup table by fetching intensity values from
the main scattering 3D lookup table.

Figure 4: Comparison of single-scattering (left col-
umn) and multiple scattering (right-column) from identi-
cal views.

4.2 Rendering

As has been said, the rendering part is intended to be pro-
cessed by graphics hardware. All lookup tables are repre-
sented by textures that are utilisable by GPU. The atmo-
sphere is represented by a single tesselated sphere and is
always rendered with front face primitive culling enabled.
All important computations are carried out in a fragment
shader, which also fetches values from the precomputed
lookup textures. Fetching from the main lookup texture
is performed by calculating an inverse function from the
remapping projection f .

4.2.1 Planetary surface

For rendering the planetary surface we have to account for
direct illumination, indirect illumination and in case of wa-
ter surfaces, for reflected skylight.

For calculation of the direct illumination, the incident
light at the top of the atmosphere must be attenuated by the
optical length on its path through the atmosphere, because
of out-scattering:

I′I(Ps,L,λ) = II(λ)exp(−(tR + tM)(PsPc,λ)) (17)

where I′I(Ps,L,λ) is the direct illumination intensity at sur-
face point Ps, L is the light direction and Pc is the intersec-
tion of L with the upper atmosphere boundary (see Fig-
ure 5).

To avoid costly real-time calculation of transmittance,
it is also possible to precompute it into a 2D lookup table

φ φ
P

A

P

I

a

s

I
I

I

P

P

N

L
R

W

I'P

c

O

planet

atmosphere

Figure 5: A scheme illustrating the calculation of the light
reflected from the planetary surface

parameterized by the observer altitude h and zenith angle
µ . Each record (texel) in this table then stores tR,M(PPc),
where the point P has an altitude h and Pc is the intersec-
tion of the ray that starts at P under a zenith angle µ , with
the upper atmosphere boundary.

Obtaining the indirect illumination is trivial here, hav-
ing precomputed the abmient intensity lookup texture.
Only one texture fetch is necessary here for obtaining
IAR,M (L,λ).

If Ps is located on a water surface, we must also account
for the reflection of the sky. Thanks to the nature of the
scattering lookup table, we can easily fetch the sky reflec-
tion IWR,M (Ps,V,L,λ) from here, without resorting to any
costly multi-pass technique. At first we calculate the re-
flection vector R at Ps. Then we set h = 0, ϕ to the zenith
angle of R and δ to the zenith angle of L at Ps. Then we
fetch the main scattering lookup table by evaluating the
inverse remapping function. For obtaining the reflected
amount of light, one should use the Fresnel reflectance
term for unpolarised light. However, this is not neces-
sary for non-absorbing or weakly absorbing substances
like water, as the imaginary part of their index of refrac-
tion is zero or very small, respectively3. For this reason
and also for the sake of decreasing the computational re-
quirements, we use the following approximation:

F̂(ϕ) = max(0.03,(1− cos(ϕ))5) (18)

where ϕ is again the zenith angle of R. This simple and
cheap formula fits very well with the actual Fresnel re-
flectance of water.

Finally, to calculate the total intensity of light reaching
the observer situated at PO, we have to calculate the trans-
mittance from Ps to PO. Such value is however not stored
in our lookup table for transmitance, because it stores the
transmittance value from some altitude always to the top
of the atmosphere. To obtain tR,M(POPs,λ) we must per-
form two transmittance texture lookups:

tR,M(POPs,λ) = tR,M(PaPs,λ)− tR,M(PaPO,λ) (19)

where Pa is the intersection of the inverted view ray −V
with the upper atmosphere boundary. Having this last

3The imaginary part of the index of refraction of water is in the orders
from 10−10 to 10−8 in the visible spectrum

piece of the puzzle, we can now express the total amount
of light reflected from the planetary surface that reaches
the observer as

IP(PO,V,L,λ) = (IC(λ)(N •L)I′I(Ps,L,λ)+

+IC(λ)(IAR + IAM)(L,λ)+ (20)
+aF̂(ϕ)(IWR + IWM)(Ps,V,L,λ)) ·
·exp(−(tR + tM)(POPs,λ))

where IC is the diffuse colour of the planet’s surface at Ps
and a is the surface albedo at Ps. For water surfaces, IC is
generally blue and can be regarded as a rough substitution
for the calculated intensity of underwater scattering.

We do not discuss here the rendering of a complex ter-
raing morphology, since this has not been amongst the top-
ics of our work. If you are interested in how to utilise the
main scattering lookup table precomputed for a perfectly
spherical planet in a terrain renderer, please refer to [1], or
[10].

4.2.2 Star disc rendering

In order to keep the scene looking natural, it is necessary
to also render a star (light source) disc. It is however suffi-
cent to use a simple textured billboard for this purpose —
this billboard then always has to be rendered in the light
source direction. Shading of the disc is then identical with
the calculation of the direct surface illumination (Equa-
tion 17), only the II(λ) term is changed with the colour
fetched from the billboard texture (although these should
be similar) and the observer current position PO is substi-
tuted for the surface point Ps.

5 Results and Conclusions

Our implementation uses a single-thread CPU-based pro-
gram for the precomputation algorithm and a GPU-based
renderer. The precomputation could be also carried out by
a GPU, but we have chosen CPU-implementation because
of its flexibility and higher numerical precision.

The used resolutions of the lookup textures are 32×
256 × 32 × 64bpp for the main scattering 3D texture,
512 × 512 × 64bpp for the transmittance 2D texture,
4096×32×32bpp for the phase function 2D texture and
256× 64bpp for the ambient 1D texture. Their size to-
gether is 5MB. For numerical sampling of all integrals a
trapezoidal evaluation rule with 30 evenly distributed sam-
ples for each integral was used. Using higher sampling
rates does not improve the apparent quality of the calcu-
lated data.

The hardware configuration used for testing was a desk-
top PC with Intel Core 2 Duo 1.86 Ghz CPU, NVidia
GeForce 8800GT graphics adapter and 2GB DDR2 RAM.
The precomputation time for the entire dataset was about
3 hours for 6 scattering orders when using the aforemen-
tioned sampling rates. The performance of our render-
ing application is always in real-time framerates. For

the screen resolution of 1024×768 the average measured
framerate was 180 FPS and the minimal framerate was 85
FPS. For the screen resolution of 2560× 2048 the aver-
age measured framerate was 62 FPS and never dropped
below 33 FPS. The scene in both measurement cases con-
tained approximately 530,000 vertices. For the results of
our method, see Figure 4, Figure 6 and the title page.

Figure 6: Examples of different atmospheres’ parameteri-
zations. Left column: 5-times sparser atmosphere than the
Earth’s, right column: 5-times denser atmosphere than the
Earth’s. Top to bottom: global view, fisheye view from
altitude 20km, sunset from altitude 1km.

Conclusion We have presented a method for real-time
rendering of parameterizable planetary atmospheres. At
first we have shown a physically-based mathematical
model for calculation of atmospheric light scattering, ac-
counting for both single and multiple scattering. Secondly,
we have described the procedure for precomputing this
model into a set of lookup tables. Then we have shown
how to utilise these lookup textures in a real-time renderer
for rendering of the planet and its atmospheric shell. Fi-
nally we have verified our method with a functional imple-
mentation.

6 Acknowledgements

I would like to thank Petr Kmoch for his kind guidance
during the creation of this work.

References

[1] Bruneton E., Neyret F.: Precomputed Atmospheric
Scattering, in Comput. Graph. Forum: Proceedings
of the 19th Eurographics Symposium on Rendering
2008, volume 27, number 4, pages 1079–1086, 2008

[2] Cornette W. M., Shanks J. G.: Physical Reasonable
Analytic Expression for The Single-Scattering Phase
Function, in Applied Optics Vol. 31, No. 16, pages
3152–3160, 1992

[3] Haber J., Magnor M., Seidel H.-P.: Physically-Based
Simulation of Twilight Phenomena, in ACM Transac-
tions on Graphics, Vol. 24, No. 4, pages 1353–1373,
2005

[4] H. C. van de Hulst: Light Scattering by Small Par-
ticles, Dover Publications, New York, ISBN 0-486-
64228-3, 1981

[5] Nishita T., Dobashi Y., Kaneda K., Yamashita H.:
Display Method of the Sky Color Taking into Account
Multiple Scattering, in Pacific Graphics ’96, pages
66–79, 1996

[6] Nishita T., Sirai T., Tadamura K., Nakamae E.: Dis-
play of The Earth Taking into Account Atmospheric
Scattering, in Siggraph ’93: Proceedings of the 20th
annual conference on Computer graphics and inter-
active techniques, pages 175–182, 1993

[7] O’Neil S.: Real-Time Atmospehric Scattering,
http://www.gamedev.net/reference/
articles/article2093.asp, 2004

[8] O’Neil S.: Accurate Atmospheric Scattering,
Addison-Wesley Professional, in GPU Gems 2: Pro-
gramming Techniques for High-Performance Graph-
ics and General-Purpose Computation, pages 253–
268, 2005

[9] Preetham A. J., Shirley P., Smits B.: A Practical
Analytic Model for Daylight, in Siggraph ’99: Pro-
ceedings of the 26th annual conference on Computer
graphics and interactive techniques, pages 91–100,
1999

[10] Schafhitzel T., Falk M., Ertl T.: Real-Time Rendering
of Planets with Atmospheres, in Journal of WSCG,
volume 15, 2007

[11] Wenzel C.: Real-time atmospheric effects in games,
in ACM Siggraph 2006’s International Conference
on Computer Graphics and Interactive Techniques:
Advanced real-time rendering in 3D graphics and
games, pages 113–128, 2006

[12] Zotti G., Wilkie A., Purgathofer W.,: A Critical Re-
view of the Preetham Skylight Model, in WSCG 2007
Short Communications Proceedings I, pages 23–30,
2007

